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S U M M A R Y  
Small-scale heterogeneity in crustal structure can be very complex and difficult to 
describe in detail and  yet, at the  same time, can be very important for the  
description of, for instance, tectonic stress and porosity. Statistical properties of 
such heterogeneity can be derived from the properties of waves of relatively large 
wavelength as they propagate through the  crust. T h e  differences between measured 
wavelengths and attenuation coefficients and  those of compact rock and the 
variations of these quantities in space and  time provide, in principle, a means of 
determining quantities like the  density and orientations of microfractures and the 
nature of crack infill material. T h e  theoretical basis for inferences of this kind is the  
concept of the  ‘effective’ or ‘equivalent’ material based on an averaging process 
taken over the  microstructure. A number of methods have been used to calculate 
the  properties of the  effective medium, several of which are described here. 

Key words: anisotropy, composites, cracked materials, effective media, elastic 
waves. 

1 INTRODUCTION 

The large-scale structure of the Earth has been known now 
for several decades and as time has passed more and more 
of the detail has been filled in. Part of this advance has 
consisted of more accurate determination of seismic 
velocities, and of the shape and position of the Earth’s 
major discontinuities. As the scale of variation of the details 
of structure to be investigated becomes smaller and smaller, 
the effort to provide an exact description steadily increases. 
In addition, the need for precise details eventually 
disappears and a statistical description is not only sufficient 
but also the most useful information that can be provided. 
This is particularly true in the exploration industry, where 
the nature and content of microcracks and intergranular pores 
are of major interest, and in the investigation of tectonic 
stress and failure, where once again small-scale fracturing 
and the flow of fluid into the fractures is important. 

In these circumstances where, on the one hand, the 
scale-size of heterogeneities is too small for seismic 
investigation with viable wavelengths to be able to scan in 
detail and, on the other, a statistical description is what is 
being asked for, the method of attack changes from one 
based on the idea that, to ‘see’ structure, wavelengths less 
than the scale-size must be used, to one where wavelengths 
large compared with the scale-size are used so that the 
waves cannot ‘see’ details but only an average or 
smeared-out structure. 

If the heterogeneous microstructure has certain preferred 
directions (if, say, the pores are preferentially aligned) then 
the average or mean response on the macroscopic level will 
be anisotropic. In particular, if the microstructure has 
certain symmetries, the macroscopic response will show the 
same symmetries. A random distribution of spherical 
inclusions will be, in the large, isotropic; a distribution of 
microcracks randomly orientated about normals fixed 
parallel to a given direction will give rise to transverse 
isotropy with the symmetry axis along the same direction. 
This principle has been observed, of course, for a very long 
time in the prediction of the symmetry classes of crystals 
from their bonding structure (Auld 1973) and, in the last 10 
years or so, measured anisotropy in the Earth’s crust has 
often been assigned to alignments in the microstructure 
(Crampin 1985). It is not usually clear whether the 
anisotropy is due to microstructure or whether it is ‘intrinsic’ 
(due to molecular structure). Further information is available 
from the attenuation which may also be anisotropic 
(Crampin 1981, 1984). 

Attenuation may be due to ‘intrinsic’ effects-viscoelastic 
behaviour of the rock or pore infill-or scattering by the 
heterogeneity. The difference between these two mechan- 
isms is that, in the second, the scattered waves may be 
recorded as signal coda and noise. If of course the scattering 
is significant, the waves are interacting with the structural 
detail whose scale-size is therefore no longer inGgnificant 
compared with a wavelength. 
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2 THE CONTINUUM HYPOTHESIS 

In continuum mechanics the hypothesis is made that, if a 
real material with its atomic and molecular structure is 
replaced by an equivalent model continuum, which remains 
a continuum no matter how much subdivided, the 
macroscopic mechanical properties of the material remain 
unchanged. This is called the continuum hypothesis (Hunter 
1976) and it enables theoretical concepts, like that of a 
material point, and the density at such a point as the limit of 
mass over volume as the volume tends to zero. So long as all 
spatial variations are on a scale much larger than the 
scale-length of the molecular structure this hypothesis works 
well. Although, in order to construct a pulse, a Fourier sum 
over all frequencies and therefore comprising infinitesimal 
wavelengths is necessary, it is never necessary to take 
account of the particulate structure of the material; the 
material can always be regraded as a perfect continuum. 

In a similar way, microfractures, pores and other 
microstructure may, if the statistical distribution of structure 
is locally uniform, be replaced by an 'effective' or 
'equivalent' material, which is a perfect continuum with 
properties such that, on a scale large compared with the 
scale-length of the microstructure, its mechanical properties 
are identical to those of the heterogeneous material. Thus a 
material which behaves as an anisotropic elastic solid for 
wavelengths larger than a certain scale may be porous, 
fractured or otherwise heterogeneous on a much smaller 
scale. However, for all disturbances with variations on the 
larger scale, the material may be regarded as a 
homogeneous continuum, even if a Fourier sum extending 
to infinite frequency is employed. 

The main difference between these two applications of the 
continuum hypothesis is that, whereas derivations of the 
continuum properties from the known molecular structure 
have not been particularly successful, there are several 
theories which provide a means of calculating the 
parameters of the effective material from a presupposed 
microstructure. 

3 MATHEMATICAL MODELS OF A 
HETEROGENEOUS MEDIUM 

There are four main idealizations of materials with complex 
3-D microstructures which are used to derive 'overall' 
properties of equivalent homogeneous media. The first is a 
continuous elastic material whose properties vary smoothly 
but randomly with position in space. The elastic constants e 
and density p vary with the position vector x in such a way 
that p and the spatial derivatives of c are continuous 
functions. The elastodynamic equations of motion for the 
displacement field, 

g(u)Ez-c.. a % p - =  d2Ui  -pb1 
axi 'Jpq axq at2 

where b is the body force density, hold everywhere. 
The second model is of isolated inclusions within a 

homogeneous matrix material. The inclusions consist of 
material with different properties from those of the matrix, 
or may be empty, so that the equations of motion (1) are 
satisfied in the matrix and in the inclusions (if non-empty) 

with appropriate values of c and p ,  and solutions are linked 
by continuity conditions at the boundaries of the inclusions. 
Since almost all methods of analysis applied to this model 
involve the solution of the problem of a single inclusion 
within an unbounded matrix with an imposed stress field, 
most models of inclusions are very simple. The most popular 
shape is an ellipsoid on account of the fact that analytic 
solutions exist for a homogeneous ellipsoid, set in 
unbounded homogeneous material, and deformed by an 
arbitrary static stress field at infinity (Eshelby 1957). 
Fortunately, the ellipsoid is a very versatile shape, varying 
from a spherical ball to an elongated (elliptic) crack, dry or 
fluid-filled, with vanishing aspect ratio. However, there is 
nothing in principle to prevent the use of a numerical 
solution of an inclusion of arbitrarily complex shape. 

The third model is of connected, fluid-filled pores within a 
homogeneous solid. The analysis, usually called Biot theory 
after its originator (Biot 1956), results in coupled equations 
for the motion of the solid and the flow of the fluid. In 
principle, as for model 2 above, the pores may have any 
shape but, since the calculation of the overall parameters 
requires the solution for a single pore with an arbitrary 
imposed stress field (Burridge & Keller 1981), economy of 
time and effort requires that the shape should be reasonably 
simple. 

The last model is that of an aggregate or granular material 
and consists of separate compact solid grains in contact with 
and pressing on their neighbours and surrounded by an 
interstital fluid. In general the grains are taken to be 
homogeneous spheres (see, for example, Walton 1987). 

Finally mention must be made of a model in which the 
material structure varies in one dimension only-finely 
layered material. Each layer may be isotropic or anisotropic 
elastic or viscoelastic, and even (Schoenberg & Douma 
1988) a layer of parallel cracks. 

4 STOCHASTIC MODELS A N D  THE 
AVERAGING PROCESS 

The idea of an effective homogeneous material clearly 
implies that, if stress, strain or displacements, etc. are 
measured on a large enough scale, the values obtained and 
the relationships between them will be those of a 
homogeneous continuum. This in turn implies some kind of 
spatial averaging process. For instance, the average stress 
would be defined as 

1 
GJx) = v 1" ail dV, 

where V is a region with a length-scale e large compared 
with that of the microstructure and with centroid x. The 
continuum hypothesis depends on the assumption that the 
values obtained for ii do not depend on the exact shape of 
V. It may be that the stress field, or the properties of the 
effective material, will vary on a large scale L, and this will 
be consistent so long as 

L>>e>>a ,  (3) 
where a is a scale-length of the microstructure. 

One may construct a laboratory test, or mathematical 
model, by isolating V and imposing a static average stress 
and measuring average strain in order to determine the 
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overall elastic constants. The static stress field satisfies 

(4) 

and so, by application of the divergence theorem, we have 

where S is the boundary of V and n the outward normal to 
S. We may, therefore, impose any average stress by using 
suitable surface tractions t. For instance, if we put 

at each point of S, where uo is a constant, then 

The average strain is 

and this too can be measured, or imposed, on the surface S. 
The problem is linear and so the displacements must be a 
linear function of the imposed stress which means, if we use 
the tractions given by equation (6), a linear function of 0'. 
Substituting into equation (8), we get the linear relation 

(9) 

for some C. The continuum hypothesis implies that the 
relation between ii and e is independent of the method of 
loading and so the Cijpq are the elastic constants of the 
effective material. In practical measurements, the averaging 
may be done explicitly or by the measuring instrument itself 
if its area of contact with the material is large compared with 
the scale-size of the heterogeneity. 

The most explicit application of this averaging process to 
derive dynamical equations for heterogeneous material is 
the use of the two-space method of homogenization by 
Burridge & Keller (1981) to derive overall material 
parameters for the Biot model of a porous solid. In this 
method, the parameter E is defined by 

E = aJL,  (10) 

where a and L are scale-lengths, respectively, of the 
microstructure and the macroscopic field. It is then assumed 
that every property of the medium is of the form f ( x ,  y) ,  
where 

y = XEC'. (11) 

The first argument in f describes the relatively slow variation 
of some property, (for instance, the elastic constants) of the 
material, while the second argument generates the fast 
variation associated with the microstructure. The next step 
is to assume that each field quantity u ( x ,  y, E) can be written 
in a series expansion in E :  

U ( X ,  y, E) = uo(x, Y) + E U , ( X ,  Y) + . . . (12) 

and the equations of motion in the solid and fluid phases are 
evaluated at the zeroth (6') and first ( e l )  order level. The 
final step is to compute the averge F(x) of any function 
F(x, y) by integrating y over a sphere of radius R and centre 

x and allowing R to tend to infinity. This leads to the 
coupled equations of poroelasticity which were derived by 
Biot (1956) on more heuristic arguments. 

An alternative to spatial averaging is to take the mean or 
expectation over a statistical ensemble of material 
structures. The average stress ii, for instance, given by 
equation (2) is replaced by the expectation or mean stress 
(a) given by 

where 52 is the ensemble space of possible realizations w 
with the probability measure P ( w ) .  

The method of smoothing, applied by Keller (1964) to 
models 1 and 2 in the previous section, leads to an equation 
for (u), the expectation of the displacement. In the case of 
model 1 ,  the parameters of the equation depend on 
variances and covariances of the form 

R12(x, Y) = (Cl(X)C2(Y)) 7 (14) 

where c1 and c2 are any two of the elastic constants or 
density. In practice this quantity is identified with the spatial 
average 

on the assumption that the material is statistically 
homogeneous over the scale-length e of V ,  and e>>a as 
before. Similarly, (u)(x) is identified with the average 

(16) 

where now the scale of V must be large compared with the 
correlation length of (u). In the absence of other 
information (which can in principle be found although with 
difficulty), this correlation length may be identified with the 
scale-length a of the microstructure. It is understood, of 
course, that the scale-length t' should be small compared 
with L ,  the spatial scale of variation of (u) itself. This 
stochastic model is valid even if these identifications with 
spatial averages cannot be made. However, the inter- 
pretation of the results is different. 

A word of caution must be added on the measurement of 
(u) or 5. In either case, if the size of the measuring 
instrument is not large compared with the small-scale 
variations in u, then it is not the average which is being 
measured. In general, 

u = ii -k u', (17) 

where ii' = 0, but u' may in fact dominate ii on the record. 
This additional component may be eliminated by averaging 
over a number of different measurements taken at points 
within an area of scale-size e,  or its magnitude may be 
estimated by calculating either 

2- ~ 

or 
(18) 111'1 - (u - $2 = 

(lu12) - l(u)I2. 

- l5I2 

Once again, this is possible in principle, but difficult since it 
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is necessary not only to solve the equations for (u) , but also 
to construct and solve a similar equation for ( 1 1 1 1 ~ ) .  

One appkation of the averaging process is not 
particularly clear and that is in the justification of the use of 
simple models for grains. pores and inclusions. For instance, 
microfractures are not all elliptic in shape but, in averaging 
over a volume containing a larger number of them, it seems 
reasonable to replace each one by an 'average' crack. It is 
then assumed that this average crack is simple in structure 
and can be represented by an ellipsoidal cavity with 
vanishing aspect ratio. 

5 METHODS OF ANALYSIS 

If the model of a heterogeneous medium is taken to be 
granular, then the grains are typically assumed to be spheres 
and various modifications of Hertzian contact are used to 
analyse their interaction. An average may then be taken 
over a large number of grains with random points of contact 
(see Walton 1987) to obtain equations for the equivalent 
continuum. 

If the model consists of interconnected pores then, as 
stated above, some variety of Biot theory is normally used. 
The coupled equations for solid and Ruid motion predict the 
existence of three separate waves speeds in the effective 
continuum, even though the random arrangement of the 
pores means that the effective material properties are 
isotropic. The longitudinal and transverse plane waves of 
elastodynamic theory are predicted alongside a slower 'fluid' 
wave. One of the major successes of the theory has been the 
observation of this third wave (see, for instance, Berryman 
1980). Calculation of the effective parameters on the basis of 
a presumed micro structure is not easy and proceeds 
according to a scheme like, for instance, that given by the 
two-space method of homogenization of Burridge & Keller 
(1981). 

For a model structure consisting of inclusions, cavities or 
cracks embedded in a homogeneous matrix, methods of 
calculating the effective elastic parameters have generally 
concentrated on approximations valid for small concentra- 
tions of inclusions. A number of first-order expressions have 
been obtained by writing equation (2) as 

N 

a =  2 V " S ,  (19) 
n =O 

where v,, = Vn/V 

and V ,  is the volume occupied by the nth inclusion, or set of 
inclusions of similar material. The matrix material is 
included in the sum as n = 0. On the assumption that the 
materials of the matrix and the inclusions are homogeneous, 
equation (19) becomes 

N 

B = 2 v,,cnen, (21) 
n =o 

where C" is the elasticity tensor for the nth material, and 

Similarly, we have 
N 

e =  C vnen 
n = O  

and, operating on this equation with c0 and subtracting from 
(21), we eliminate the average over the matrix material: 

N 

( I  - c " ~ ) u  = 2 v,(cn - co)en, (24) 
n = l  

where I is the identity and S the effective compliance tensor 

If an average stress u = en is imposed on a representative 
(e = Sa). 

volume V by use of tractions 

as given in equation (6), the linearity of the problem means 
that there exists a tensor K" such that 

en = Knuo= K"C, 1 s n  5 N. 

Substituting into equation (24), we get 
N 

Since G is arbitrary, it follows that 
N .. 

I - c"S = 2 v"(c" - c0)Kn 
n = l  

or 
N 

S = SO - 2 v,,(s'c~ - I)K", 
n = l  

where so is the compliance tensor for the matrix material. 
It remains to calculate K" and this, clearly, is not easy. 

The simplest method, based on the assumption that the 
density of inclusions is small (vn << l), is to approximate K" 
by its equivalent for the case of a single inclusion 
embedded in matrix material which is either unbounded, or 
bounded in such a way that the volume ratio v,, is 
maintained. The results, which ignore all interactions 
between inclusions, are referred to as first order. 

A straightforward improvement on first order approxima- 
tions is given by the self-consistent method in which K" is 
calculated for a single inclusion embedded in effective 
material. This means that K" depends on S and equation 
(27) becomes an implicit relation for S which no longer 
depends on v,, in a linear way. This turns out to give 
reasonable looking values for S as vn increases to values 
which are not small, whereas the linear dependence of 
first-order results quickly become unacceptable as v,, 
increases. The self-consistent result can be expanded in 
powers of Y, and the term in (vn)' appears always to agree 
with first-order theory. However, in two cases where 
comparison have been made, the term in (v,,)* does not 
agree with second-order theory (Chatterjee, Ma1 & Knopoff 
1978; Hudson 1980). 

Second-order theory can be constructed by calculating K" 
for an inclusion embedded in the matrix in the presence of 
one other inclusion (Batchelor & Green 1972; Willis & 
Acton 1976; Chatterjee et al. 1978). In general, however, 
the averaging process which must be applied to the position 
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of the second inclusion (which extends to infinity unless 
boundaries are introduced, thus complicating things in 
another way) leads to divergent integrals. A technique 
called 'renormalization' has to be applied, and this is 
sufficiently difficult to discourage any second-order solution 
of this type other than for spherical inclusions. 

For static problems the calculation of S (or its inverse C )  
is sufficient for all purposes and, if the inclusions are taken 
to be ellipsoidal in shape, solutions for K" for an isolated 
ellipsoid are provided by Eshelby (1957). For dynamic 
problems, the imposed field is no longer a static stress uo 
but is usually taken to be the stress associated with a plane 
harmonic wave 

However, in the long-wavelength limit, 

ka << 1, k = lkl, 
the static solution for K" is appropriate. 

If dynamic solutions for K" are used, depending on ka, 
then the values for the effective parameters are, in general, 
complex and frequency dependent, implying a decay of the 
mean wave due to scattering. This also implies, of course, 
an increase in the incoherent signal. As mentioned before, it 
is possible for the incoherent part to dominate the signal. A 
second complication with such dynamic solutions for K" is 
that, unless the effective material is isotropic, the values 
calculated for the effective parameters depend on the 
direction of the wave and are therefore no longer material 
constants. The continuum hypothesis is no longer valid 
(since ka is no longer vanishingly small) and there is no 
'effective material'. However, the expressions describing the 
'mean' plane wave are still valid; they are just not so easy to 
use. 

The effective stress-strain relation is not, however, 
sufficient for the solution of dynamic problems. We need to 
use the averaged momentum equation 

where 
du 

p = p - .  
at 

The left-hand side of equation (30) is related to mean strain, 
and hence to the mean displacement u, by the stress-strain 
relation. It is necessary to calculate the right-hand side from 

l N  al 
P = -  v n = o  c P " ] v * / v ?  

where pn is the density of the nth material. 

before: 
We may eliminate the average over the matrix material as 

(32) 

and we may now use a first-order or self-consistent approach 
to find 

in terms of the imposed mean field &/at. The 
long-wavelength approximation gives 

3ii P = P d t '  (33) 

where P is the average density (Sabina & Willis 1988) as 
might be expected. Solutions involving ka lead to 
expressions in which p depends on k in both magnitude and 
direction. Once again, although valid, this shorter 
wavelength formulation does not lead to the characteriza- 
tion of an effective elastic material. 

A method of analysing methods of smoothly varying 
material parameters or isolated inclusions (models 1 and 2, 
respectively) which is workable up to second order and leads 
directly to an equation of motion for the mean displacement 
is the method of smoothing (Keller 1964). This technique 
has the advantage of dealing quite painlessly with the 
problem of renormalization. For continuously varying 
material (model l) ,  the elastic parameters and density are 
viewed as varying slightly about their spatially averaged 
values. Using the spatial average as a reference medium the 
first non-zero perturbation term in the expression for the 
effective parameters is in fact second order in the variation 
of the actual parameters about their means. The effective 
static stress-strain relation corresponds to 'non-local 
elasticity' (Beran & McCoy 1970): 

(34) 

(this method uses the stochastic average, denoted by ()) 
where C(x, 5 )  is a tensor of elastic moduli which is 
negligibly small when Ix - 51/a is large, and a must now be 
taken to be the correlation distance for variations in the 
microstructure. Thus stress depends on a weighted average 
of the strain within, roughly, a correlation distance. 
Derivation of similar results for a dilute distribution of 
cracks is given by Hudson & Knopoff (1989). 

In general, the kernel C appears as an infinite series of 
terms of which the nth represents multiple interactions of 
order n between scattering centres, and has not been 
evaluated in full. The highest order calculations have been 
for n = 2, involving pair-wise interactions between scat- 
terers. The results for continuously varying material were 
given by Karal & Keller (1964) and, for discrete scatterers, 
by Hudson (1980). For wavelengths large compared with the 
correlation distance/inclusion scale-length a ,  equation (34) 
reduces to 

(35) 

as in equation (9), where C is a tensor of material constants. 
For materials with discrete inclusions cavities or cracks 

(model 2), the first-order term (involving the reaction of 
isolated scatterers only) is non-zero and agrees with other 
first-order methods. The second-order term, involving 
pair-wise scatterer interactions, depends in general on the 
statistics of the scatterer distribution, whereas the self- 
consistent method, which is claimed to be more accurate 
than first-order results, does not. Not surprisingly then, the 
two theories are not in agreement at second order (Hudson 
1980). It appears that theories which involve scatterer- 
scatterer interactions are more accurate than the self- 
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consistent method, and that the method of smoothing is the 
simplest and most straightforward way of arriving at 
second-order accuracy. 

Results for a distribution of circular cracks with normals 
aligned in a given direction are given in the form (Hudson 
1980) 

c = co + tC1 + .E2c2 + O ( E 3 ) ,  (36) 

E = va3, (37) 

where this time the small parameter E is given by 

v being the number density of cracks and a the crack radius; 
c” is tensor of elastic moduli of the uncracked matrix 
material and the first-order term c’ is given by 

- p(ninPGjq + nin,6, + njnpSiq + njn,6, - 4n,njn,,nq)Ull, 

(38) 

where I and p are the Lam6 moduli of the uncracked 
material, n is the unit normal to the cracks, and U , ,  and 4, 
represent the response of a single crack to shear and normal 
stresses respectively. If the material contains cracks 
orientated in more than one direction, the expression for c1 
is obtained by summing or integrating the formula (38) for a 
single direction over the appropriate range (Hudson 1986). 
A variety of different crack responses--dry, fluid-filled, 
partially filled-can be accommodated through the quan- 
tities ol, and 4, (Hudson 1981, 1988). 

Once c1 is determined, c2 is found from 

(39) 

where 

Xijpq = {hiphjqt4 + PI(’ + ~ F L ) I  
- (S jq6jp  + 6ij6,,)[1 - P / ( L  + 2~)]} /15 .  (40) 

A wide range of crack distributions and conditions can be 
accommodated in this way and it appears that, with 
parameter values appropriate to conditions in the Earth’s 
crust, the second-order formulae above are reasonably 
accurate for values of E up to 0.1 (Crampin 1984). 

In the long-wavelength approximation, as described 
above, the stress-strain relation is exactly the same as for 
the static problem except for cases where the inclusions or 
cracks contain a viscous fluid, in which case the viscosity 
enters in association with the strain-rate. The equation of 
motion is 

using the stress-strain relation (35) on the left and an 
equivalent density p* on the right. In the long-wavelength 
approximation, p* becomes p ,  the spatially averaged 
density both for continuously varying material (McCoy 
1973) and for distributions of inclusions (Hudson, 
unpublished manuscript). In the case of cracks of vanishing 
aspect ratio, p* is just the density p of the matrix material 
(Hudson 1980). 

Analysis of a 1-D, finely layered structure is usually along 
the lines given by Backus (1962), of a fairly empirical spatial 
average. The result is simple and very general. Alterna- 
tively, the theory of stochastic differential equations may be 
used (see de Hoop, Chang & Burridge 1991). Results are 
presented as rigorously derived asymptotic expressions. 

6 ATTENUATION 

The formulae above apply to systems where the wavelengths 
of a disturbance of the material is long compared with the 
scale-length of the microstructure; for instance with the size 
and spacing of cracks. These conditions are in accord with 
those on which the continuum hypothesis depends and the 
resulting effective material is perfectly elastic unless there is 
intrinsic damping in the materials of the composite. That is, 
there is no attuation due to scattering at this level, only 
viscous absorption by, for instance, viscous fluid infill of 
crack (Hudson 1981). 

In order to obtain expressions for effective damping due 
to scattering out of the mean wave, it is necessary to 
consider the next higher terms in the long-wavelength 
approximation. If such terms are taken from only the 
first-order terms in the stress-strain relation (ignoring 
interactions between scatterers) the result is in accord with 
that given by Waterman & Truell (1961) for the acoustic 
problem; that is the attenuation coefficient for a plane 
wave is given by (Hudson 1981) 

V E  y = -  
2 ’  (42) 

where Z is the scattering cross-section for a single scatterer. 
This is a physically appealing result although, for parameter 
values appropriate to the crust, the value of y is generally 
extremely small (Peacock & Hudson 1990). However, since 
nearby scatterers lie within a wavelength of each other, their 
motion must be correlated, and the scattered energy can 
hardly be expected to be the simple sum implied by 
equation (42). An investigation of the interaction (second- 
order) terms (Hudson 1990) shows that this doubt is justified 
and the attenuation given by (42) is exactly cancelled by the 
lowest order scattering terms in c2. Attenuation due to 
scattering is therefore associated with even higher order 
(and presumably even smaller) terms in the expansion in 
powers of the ratio of scale-length to wavelength. Such 
expressions may be required where scattering is sufficiently 
large to show up on the records, but in this case attention 
must be paid to the meaning of the stochastic average and 
the mean wave; that is, the appropriate average of the 
observations must be used for a suitable comparison with 
theory. However, it does seem that the prime candidate as 
the source of attenuation in crustal materials is viscous infill 
of cracks and inclusions. 

7 CONCLUSIONS 

For the analysis of the dynamic response of materials with 
heterogeneities whose scale-length is small compared with a 
wavelength, two methods stand out as the most effective and 
versatile; they are Biot’s equations for porous media, and 
the method of smoothing. The former has the advantage of 
being able to deal with medium and high porosities. 
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However, the connection between the macroscopic overall 
properties and the structure of the pores is complicated; it is 
not easy to construct a ‘simple’ model of an individual pore. 
Without this connection, inferences from macroscopic 
properties to a description of the microstructure are 
impossible. In addition, Biot theory is based on an 
averaging rather than a stochastic process and is only useful 
when wavelengths are so large that scattered signals can be 
neglected. The method of smoothing, on the other hand, 
can be used for medium or even short wavelengths so long 
as the ‘mean wave’ is interpreted correctly. Different types 
and shapes of inclusions can be handled in a simple way; all 
that is required is the solution analytic or numerical, for a 
single inclusion in an unbounded matrix. Inclusions are 
isolated in the model, a serious restriction, although an 
empirical method of allowing flow between inclusions has 
been given by O’Connell & Budiansky (1977). However, the 
greatest constraint on the range of application of the method 
of smoothing is that the porosity, or number density of 
inclusions, must be small 

If the porosity approaches unity, then it is questionable 
whether the Biot model or that of a granular material is 
more appropriate. In general, it seems that the theory 
available for the Biot model is rather more flexible and to be 
preferred unless the material really is an aggregate of loose, 
fairly regular, grains. 

Although the methods for 3-D inclusions-the self- 
consistent method, the method of smoothing-can in 
principle, be applied to 1-D structures there do not appear 
to have been any comparison between such results and those 
of 1-D averaging except in applications to aligned cracks 
(Schoenberg & Dourna 1988) where the 3-D results are used 
to provide the appropriate parameters for the equivalent 
layer in the stack. Comparison in this case shows that the 
1-D average remains a first-order theory in the sense that 
interactions between cracks are ignored. 

REFERENCES 

Auld, B. A., 1973. Acowtic Fields and Waves in Solids, John Wiley 
& Sons, New York. 

Backus, G. E., 1962. Long-wave anisotropy produced by horizontal 
layering, J. geophys. Rex, 66, 4427-4440. 

Batchelor, G. K. & Green, J. T., 1972. The determination of the 
bulk stress in a suspension of spherical particles to order c2, J. 
Fluid Mech., 56, 401-427. 

Berair, M. J .  & McCoy, J. J. ,  1970. Mean-field variations in a 
statistical sample of heterogeneous linearly elastic solids, Int. J. 
Solids Struct., 6, 1035-1054. 

Berryman, J. G., 1980. Confirmation of Biot’s theory, Appl. Phys. 
Lett., 37, 382-384. 

Biot, M. A., 1956. Theory of propagation of elastic waves in a fluid 
saturated, porous solid, J. acoust. SOC. Am. ,  28, 168-191. 

Burridge, R. & Keller, J .  B., 1981. Poroelasticity equations derived 

from microstructure, J. acoust. SOC. Am., 70, 1140-1146. 
Chatterjee, A. K., Mal, A.  K. & Knopoff, L., 1978. Elastic moduli 

of two-component systems, J. geophys. Res., 83, 1785-1792. 
Crampin, S.,  1981. A review of wave motion in anisotropic and 

cracked elastic media, Wave Motion, 3, 341-391. 
Crampin, S., 1984. Effective anisotropic elastic constants for wave 

propagation through cracked solids, Geophys J. R.  astr. Soc., 

Crampin, S . ,  1985. Evidence for aligned cracks in the Earth’s crust, 
First Break, 3, 12-15. 

de Hoop, M. V.,  Chang, H.-N. & Burridge, R., 1991. The 
pseudo-primary field due to a point source in a finely layered 
medium, Geophys. J. Int., 104, 489-506. 

Eshelby, J. D., 1957. The determination of the elastic field of an 
ellipsoidal inclusion, and related problems, Proc. R. SOC. 

Hudson, J. A., 1980. Overall properties of a cracked solid, Math. 
Proc. Camb. Phil. SOC., 88, 371-384. 

Hudson, J. A, ,  1981. Wave speeds and attenuation of elastic waves 
in material containing cracks, Geophys. J .  R.  astr. SOC., 64, 

Hudson, J. A, ,  1986. A higher order approximation to the wave 
propagation constants for a cracked solid, Geophys. J. R.  astr. 

Hudson, J. A, ,  1988. Seismic wave propagation through material 
containing partially saturated cracks, Geophys. J . ,  92, 33-37. 

Hudson, J. A, ,  1990. Attenuation due to second-order scattering in 
material containing cracks, Geophys. J. Int., 102, 485-490. 

Hudson, J. A. & Knopoff, L., 1989. Predicting the overall 
properties of composites-materials with small-scale inclusions 
or cracks, fageoph., 131, 551-576. 

Hunter, S. C., 1976. Mechanics of Continuous Media, Ellis 
Hanvood, Chichester. 

Karal, F. C. & Keller, J. B., 1964. Elastic, electromagnetic, and 
other waves in a random medium, J. Math. Phys., 5 ,  637-547. 

Keller, J. B., 1964. Stochastic wave equations and wave 
propagation in random media, Proc. Symp. appl. Math., 16, 

McCoy, J. J., 1973. On the dynamic response of disordered 
composites, J .  appl. Mech., 39, 511-517. 

O’Connell, R. J. & Budiansky, B., 1977. Viscoelastic properties of 
fluid-saturated cracked solids, 1. Phys. R e x ,  82, 5719-5735. 

Peacock, S. & Hudson, J. A, ,  1990. Seismic properties of rocks 
with distributions of small cracks, Geophys. J. int., 102, 

Sabina, F. J. & Willis, J. R., 1988. A simple self-consistent analysis 
of wave propagation in particulate materials, Wave Motion, 10, 

Schoenberg, M. & Douma, J., 1988. Elastic wave propagation in 
media with parallel fractures and aligned cracks Geophys. 
Prosp., 36, 571-590. 

Walton, K., 1987. The effective elastic moduli of a random packing 
of spheres, J. Mech. Phys. Solids, 35, 231-226. 

Waterman, P. C. & Truell, R., 1961. Multiple scattering of waves, 
J. Math. Phys., 2, 521-537. 

Willis, J .  R. & Acton, J. R., 1976. The overall elastic moduli of a 
dilute suspension of spheres, Q. J. Mech. appl. Math., 29, 

76, 135-145. 

Lond., A, 241, 376-396. 

133- 150. 

SOC., 87, 265-274. 

145-170. 

47 1-484. 

127- 142, 

163-177. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/107/3/505/659167 by U

.S. D
epartm

ent of Justice user on 16 August 2022



D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/107/3/505/659167 by U

.S. D
epartm

ent of Justice user on 16 August 2022


