
ARTICLE OPEN

CHRONIC MYELOPROLIFERATIVE NEOPLASMS

Overall survival in the SIMPLIFY-1 and SIMPLIFY-2 phase 3 trials
of momelotinib in patients with myelofibrosis
Ruben Mesa 1✉, Claire Harrison2, Stephen T. Oh 3, Aaron T. Gerds 4, Vikas Gupta 5, John Catalano6, Francisco Cervantes7,
Timothy Devos8, Marek Hus9, Jean-Jacques Kiladjian 10, Ewa Lech-Maranda11, Donal McLornan 2, Alessandro M. Vannucchi12,
Uwe Platzbecker 13, Mei Huang14, Bryan Strouse14, Barbara Klencke 14 and Srdan Verstovsek 15

© The Author(s) 2022

Janus kinase inhibitors (JAKi) approved for myelofibrosis provide spleen and symptom improvements but do not address anemia, a
negative prognostic factor. Momelotinib, an inhibitor of ACVR1/ALK2, JAK1 and JAK2, demonstrated activity against anemia,
symptoms, and splenomegaly in the phase 3 SIMPLIFY trials. Here, we report mature overall survival (OS) and leukemia-free survival
(LFS) from both studies, and retrospective analyses of baseline characteristics and efficacy endpoints for OS associations. Survival
distributions were similar between JAKi-naïve patients randomized to momelotinib, or ruxolitinib then momelotinib, in SIMPLIFY-1
(OS HR= 1.02 [0.73, 1.43]; LFS HR= 1.08 [0.78, 1.50]). Two-year OS and LFS were 81.6% and 80.7% with momelotinib and 80.6% and
79.3% with ruxolitinib then momelotinib. In ruxolitinib-exposed patients in SIMPLIFY-2, two-year OS and LFS were 65.8% and 64.2%
with momelotinib and 61.2% and 59.7% with best available therapy then momelotinib (OS HR= 0.98 [0.59, 1.62]; LFS HR= 0.97
[0.59, 1.60]). Baseline transfusion independence (TI) was associated with improved survival in both studies (SIMPLIFY-1 HR= 0.474,
p= 0.0001; SIMPLIFY-2 HR= 0.226, p= 0.0005). Week 24 TI response in JAKi-naïve, momelotinib-randomized patients was
associated with improved OS in univariate (HR= 0.323; p < 0.0001) and multivariate (HR= 0.311; p < 0.0001) analyses. These
findings underscore the importance of achieving or maintaining TI in myelofibrosis, supporting the clinical relevance of
momelotinib’s pro-erythropoietic mechanism of action, and potentially informing treatment decision-making.
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INTRODUCTION
Myelofibrosis (MF) is a chronic, progressive, Philadelphia-negative
myeloproliferative neoplasm characterized by dysregulated JAK-
STAT signaling and aberrant inflammatory cytokine production,
with features of bone marrow fibrosis, anemia, splenomegaly,
burdensome symptoms (i.e., fatigue, cachexia, fever, night sweats),
tendency to leukemic transformation, and shortened survival [1].
MF may present de novo (primary MF, or PMF) or secondary to
polycythemia vera (post-PV MF) or essential thrombocythemia
(post-ET MF). Due to the heterogeneity of clinicopathological
features of MF, validated prognostic scoring systems facilitate
patient risk stratification and inform clinical decision-making.
Among MF clinical indicators, two of the foremost negative
prognostic factors are anemia and transfusion dependency, each
of which are independently inversely correlated with overall
survival (OS) and quality of life [2–4]. The Dynamic International

Prognostic Scoring System (DIPSS) places a two-fold higher weight
in risk score on a hemoglobin (Hgb) level <10 g/dL, and the DIPSS-
plus model incorporates transfusion dependency as an additional
prognostically adverse factor that further elevates risk [3, 4].
Patients with mild, moderate, and severe anemia experience
shortened median survival of 4.9 years, 3.4 years, and 2.1 years,
respectively, and the risk of death is 1.5-fold higher in severely
anemic versus moderately anemic patients [5]. Similarly,
when patients are stratified by risk category, OS is markedly
worse for intermediate-2 and high-risk patients at 4 years and 2.25
years, respectively, compared to a median OS of ~6 years
among all patients with MF [2, 6]. Because approximately 60%
of patients with MF are anemic within one year of diagnosis, and
nearly all become dependent on red blood cell transfusions over
time [7, 8], anemia remains one of the most critical disease facets
to address.
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Allogeneic hematopoietic cell transplantation (HCT) is the only
curative therapy for MF and has shown significant improvements
in OS [9]. However, HCT is restricted to a limited subset of non-
elderly (< 70 years of age) patients with viable donors and good
performance status, as the procedure is associated with high
morbidity and mortality particularly in older adults [10]. For many
patients who are ineligible for HCT, the current standard of care
entails treatment with one of the currently approved JAK
inhibitors (JAKi).
Ruxolitinib (RUX), the first FDA-approved and primary JAKi used

to treat MF over the past decade, has demonstrated spleen and
symptom improvements in patients with MF but is myelosup-
pressive and associated with dose-dependent anemia [11, 12].
Long-term pooled analyses from the COMFORT studies showed a
prolonged median OS of 5.3 years with RUX compared to 3.8 years
with placebo or best available therapy (BAT) in patients with
intermediate-2 or high-risk MF (HR 0.70; p= 0.0065) [13]. OS was
not significantly different between RUX-treated patients who were
transfusion independent and not transfusion independent at
week 24 [13], whereas a significant prognostic improvement was
demonstrated in RUX-treated patients who experienced spleen
volume reduction at week 24 compared to those who did not [14].
In an observational study of RUX-treated patients with MF, red
blood cell transfusion need at baseline, 3 months, and 6 months of
treatment was negatively correlated with OS [15]. Further, a real-
world study of intermediate- to high-risk MF patients demon-
strated that OS was significantly improved in the five years
following RUX approval compared with the two years prior;
notably, in the RUX post-approval time frame, OS was greater for
those who received RUX versus those who did not [16].
Despite the advances achieved in MF due to RUX, cytopenia

remains a problem. An exploratory analysis from the COMFORT
studies found that anemia worsened in 69% of patients with
baseline anemia following treatment with RUX, and 61% of
patients who did not have baseline anemia experienced on-
treatment anemia [17]. Often, patients receive attenuated doses of
RUX due to anemia or reduced platelet counts, which may impact
treatment efficacy, and some never initiate JAKi therapy to avoid
worsening their disease-related bone marrow impairment. Even
among patients who initially benefit from RUX, eventual
discontinuation may be necessary due to intolerance, disease
progression, or sub-optimal response often corresponding with
cytopenia-related dose reductions. While clinical trial data show
that half of patients discontinue RUX within 3 years [11, 12], real-
world evidence suggests approximately 40–70% of MF patients
discontinue RUX during the first year of treatment with anemia
being the leading cause [18–20]. Because patient survival
following RUX discontinuation is generally poor [21, 22], there is
a substantial unmet medical need for safe and efficacious
therapies for MF patients presenting with anemia and in those
previously treated with an approved JAKi.
Momelotinib (MMB), the first JAK1 and JAK2 inhibitor to also

inhibit activin A receptor type 1/activin receptor-like kinase-2
(ACVR1/ALK2), has been investigated in >1000 MF patients,
including in the completed phase 3 studies in JAK inhibitor-
naïve (SIMPLIFY-1) and previously RUX-exposed (SIMPLIFY-2)
patients [23, 24]. MMB has demonstrated clinical activity against
anemia, symptoms, and splenomegaly, and confers substantial
anemia benefits including conversion to and maintenance of
durable transfusion independence, reductions in transfusion
burden, elevated Hgb levels, and fewer adverse events of anemia
in phase 3 clinical trials [23–25]. Preclinical and clinical transla-
tional studies have demonstrated that MMB’s ability to improve
anemia and transfusion dependency is linked to suppression of
ACVR1/ALK2-mediated hepcidin production, which leads to
increased serum iron availability and stimulation of erythropoiesis
[26, 27]. Importantly, elevated hepcidin is significantly associated
with shortened OS in patients with MF [28]. However, the impact

of MMB treatment and response on OS and leukemia-free survival
(LFS) has not yet been reported in the literature.
Here, we present mature analyses of OS and LFS observed with

extended MMB treatment in the SIMPLIFY-1 and SIMPLIFY-2 study
populations. Associations between baseline characteristics, as well
as week 24 clinical responses, and OS were also examined.

METHODS
Clinical study design
The details of SIMPLIFY-1 (NCT01969838) and SIMPLIFY-2 (NCT02101268)
study designs have been previously published [23, 24]. SIMPLIFY-1 was a
randomized, double-blind, phase 3 study conducted in JAK inhibitor-naïve
intermediate- and high-risk patients with PMF, post-PV MF, or post-ET MF
(n= 432) designed to test the non-inferiority of outcomes for subjects
randomized 1:1 to receive MMB or RUX over a 24-week treatment period,
at which time patients originally randomized to MMB were able to
continue receiving the compound for an extended treatment period, while
RUX-randomized patients were eligible to cross over to MMB therapy. In
total, 430 subjects received at least one dose of study treatment, and 197/
216 (91.2%) of RUX-randomized patients crossed over to MMB treatment at
week 24. SIMPLIFY-2 was a 2:1 randomized, multinational, open-label
phase 3 study testing the superiority of MMB compared to best available
therapy (BAT, which included RUX in 88.5% of patients) in patients with
PMF, post-PV MF, or post-ET MF who experienced hematologic toxicity
when previously treated with RUX (n= 156). All 156 subjects received
study treatment, and 40/52 (76.9%) of BAT/RUX-randomized patients
crossed over to MMB treatment at week 24. In both trials, the primary
endpoint was spleen volume reduction (SVR) ≥ 35% from baseline at
24 weeks. Secondary endpoints included total symptom score (TSS)
response rate and red blood cell transfusion independence (TI) rate at
24 weeks and overall and leukemia-free survival (OS and LFS).
Patients whose disease did not progress and who tolerated MMB

treatment while enrolled in SIMPLIFY-1 or SIMPLIFY-2 were eligible to
enroll in an ongoing open-label, extended access protocol (NCT03441113)
at the completion of these phase 3 studies. Survival data captured during
this extension protocol were included in the analyses presented herein.

Clinical response definitions
TI responders were defined as patients who did not receive a red blood cell
transfusion and whose Hgb remained ≥8 g/dL within the 12 weeks
immediately prior to week 24. SVR responders were defined as patients
who experienced ≥35% SVR at week 24 compared to baseline. Symptom
responders were defined as patients who experienced ≥50% reduction in
TSS as measured by the Myeloproliferative Neoplasm Symptom Assess-
ment Form (MPN-SAF) at week 24 compared to baseline.

Statistical analyses
OS and LFS were analyzed for the enrolled populations from SIMPLIFY-1
and SIMPLIFY-2, inclusive of data for those who continued MMB treatment
beyond study through the extended access protocol, using Kaplan-Meier
analyses and compared between groups with stratified log-rank tests and
proportional hazard Cox regression models stratified by randomization
stratification factors. OS was calculated as time from first dose of study
drug to death of any cause, and LFS was calculated as time from
randomization to leukemic transformation or death from any cause,
whichever earlier. Subjects who did not die or transform were censored at
the last date known to be alive. No adjustments were made for the
crossover of active control patients at week 24 in either study in the
analyses because limited information is available for the minority of
patients who did not cross over to MMB. There was no prespecified test for
the difference between MMB and control arms for OS and LFS in the
studies because it was recognized that the analyses would be confounded
by the fact that all control patients were to cross over to MMB at week 24.
Duration of follow up for OS and LFS was analyzed using the reverse
Kaplan-Meier method.
Long-term safety data was analyzed from SIMPLIFY-1 and SIMPLIFY-2

studies and included patients who continued to receive MMB through the
extended access protocol. Treatment emergent adverse events (TEAE)
were documented for patients who received MMB, RUX or BAT/RUX in the
24-week randomization treatment periods and those who received MMB
from crossover at week 24 throughout extended treatment and long-term
follow up. The incidences of any grade TEAEs, and grade 3/4 TEAEs, by
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patient were calculated for each trial with a final data cut of
September 2021.
The mean daily doses of administered MMB and RUX were calculated for

patients on study each week over the 24-week randomization treatment
periods in both SIMPLIFY-1 and SIMPLIFY-2. The mean daily doses of MMB
were also similarly calculated for the subsequent week 24–48 extended
treatment periods for both studies.
Univariate regression analysis was performed with the two treatment

arms combined to explore associations between baseline characteristics
and OS in SIMPLIFY-1 and SIMPLIFY-2 study populations. Baseline
characteristics tested included TI status, TSS, Hgb level, spleen volume,
platelet count, white blood cell (WBC) count, disease type and Interna-
tional Prognostic Scoring System (IPSS)/DIPPS risk category. A multivariate
Cox regression model with stepwise selection was then used to select
independent prognostic baseline factors.
To examine whether traditional MF endpoints of clinical efficacy (TI, SVR,

and TSS response rates) at week 24 were predictive of improved OS in the
SIMPLIFY studies, survival from week 24 was calculated for responders
versus non-responders for individual clinical endpoints by treatment arm
and analyzed using Kaplan-Meier analyses with log-rank tests to compare
between groups, which included only those patients who were alive at
week 24. Because the survival of RUX-randomized subjects in SIMPLIFY-1
and BAT/RUX-randomized patients in SIMPLIFY-2 were confounded by
crossover to MMB at week 24, all responder analyses were performed
separately for the MMB and control arms. Hazard ratios for MMB
responders versus MMB non-responders were computed using propor-
tional hazard Cox regression. Similarly, hazard ratios for responders versus
non-responders for the control arm were also computed. Multivariate Cox
regression analysis including all three response endpoints (week 24 TI, SVR,
and TSS response rates) in the same model was performed to determine

independence of associations between OS starting from week 24 and each
response endpoint for MMB-randomized patients who were alive at week
24 in SIMPLIFY-1.

RESULTS
With a median follow-up of 3.43 years in the MMB arm and 3.47
years in the RUX arm of SIMPLIFY-1, 66 (30.8%) MMB-randomized
patients and 73 (33.8%) RUX to MMB crossover patients died, and
12 (5.6%) MMB-randomized patients and 9 (4.2%) RUX to MMB
crossover patients had leukemic progression. The distributions of
OS and LFS were similar between RUX to MMB crossover patients
and originally MMB-randomized patients (OS HR= 1.02 [95% CI:
0.73, 1.43], Fig. 1A; LFS HR= 1.08 [95% CI: 0.78, 1.50], Fig. 1B). The
OS rates at 2, 4 and 6 years were 81.6%, 62.9% and 56.5% in the
MMB arm and 80.6%, 64.4%, and 52.7% in the RUX to MMB
crossover arm (Fig. 1A). The LFS rates at 2, 4 and 6 years were
80.7%, 59.7% and 53.6% in the MMB arm and 79.3%, 63.8%, and
52.2% in the RUX to MMB crossover arm (Fig. 1B).
With a median follow-up of 3.22 years in the BAT/RUX arm and

3.07 years in the MMB arm of SIMPLIFY-2, 47 (45.2%) MMB-
randomized patients and 23 (44.2%) BAT/RUX to MMB crossover
patients died, and 7 (6.7%) MMB-randomized patients and 1
(1.9%) BAT/RUX to MMB crossover patients had leukemic
progression. Median OS from baseline was 3.1 [95% CI: 1.8, NE]
years in BAT/RUX to MMB crossover patients and 2.9 [95% CI: 2.3,
NE] years in originally MMB-randomized patients (HR= 0.98 [95%
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Fig. 1 Overall survival (OS) and leukemia-free survival (LFS) of patients with MF in the phase 3 SIMPLIFY studies. A, B OS and LFS,
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patients who remained on therapy received open-label momelotinib (MMB). RUX ruxolitinib, BAT best available therapy, HR hazard ratio.
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CI: 0.59, 1.62], Fig. 1C). The OS rate at 2 years was 65.8% in the
MMB arm and 61.2% in the BAT/RUX to MMB crossover arm.
Median LFS from baseline in SIMPLIFY-2 was 3.1 [95% CI: 1.7, NE]
years in BAT/RUX to MMB crossover patients and 2.8 [95% CI: 2.3,
NE] years in originally MMB-randomized patients (HR= 0.97 [95%
CI: 0.59, 1.60, Fig. 1D). The LFS rate at 2 years was 64.2% in the
MMB arm and 59.7% in the BAT/RUX to MMB crossover arm.
Safety of MMB was similar to that of RUX during the

randomized treatment period of SIMPLIFY-1 with a few excep-
tions; all grade anemia and thrombocytopenia were less frequent
while nausea was more common with MMB compared to RUX
(Supplemental Table 1A). The incidence of grade 3/4 anemia was
lower with MMB compared to RUX in both SIMPLIFY-1 (6.1% vs
22.7%, respectively) and SIMPLIFY-2 (13.5% vs 17.3%, respectively)
(Supplemental Table 1). The median duration of MMB therapy was
17.7 months in SIMPLIFY-1 and 9.2 months in SIMPLIFY-2.
Following closure of the SIMPLIFY studies, 118 patients who
initiated MMB treatment through these trials continued to receive
MMB through the extended access protocol, 88 of whom
remained on MMB therapy for more than 5 years. No new safety
signals or cumulative toxicity were observed during either
randomized or extended MMB dosing (Supplemental Table 1).
Furthermore, high MMB dose intensity was maintained through-
out the 24-week study periods and beyond, whereas attenuated
starting doses and progressive dose reductions of RUX were
required due to induced or exacerbated myelosuppression
(Supplemental Fig. 1).
In univariate analyses of baseline characteristics and OS in

SIMPLIFY-1, TI status (p < 0.001), higher Hgb (p < 0.0001), and
higher platelets (p= 0.0035) were each predictive of improved
survival, whereas larger spleen volume (p= 0.0288), higher WBC
(p= 0.0258), and IPSS high and intermediate (INT)-2 risk status
(p < 0.0001) were predictive of shortened survival (Table 1).
Multivariate analyses showed that IPSS risk status (HR [high versus
INT-1]=4.293, p < 0.0001; HR [INT-2 versus INT-1]=2.759,
p= 0.0044), WBC (HR [ ≥ 10 versus <10 × 109/L]= 1.648,
p= 0.0054) and TI status (HR [TI versus non-TI]= 0.474,
p= 0.0001) at baseline were independent prognostic factors of
OS after model selection (Table 2). Similar associations were
observed in SIMPLIFY-2, where TI status (p= 0.0002), Hgb
(p= 0.0003), spleen volume (p= 0.0006), WBC (p < 0.0001), and
DIPSS risk status (p < 0.0001) were prognostic baseline character-
istics in univariate analysis (Table 1). Multivariate analyses showed
that in SIMPLIFY-2, TI status (HR [TI versus non-TI]= 0.226,
p= 0.0005), Hgb (HR [8-<10 g/dL versus <8 g/dL]=0.427,
p= 0.0040), spleen volume (HR [ > 2000 cm3 versus ≤ 2000 cm3]
=1.905, p= 0.0159), and WBC (HR [ ≥ 10 versus <10 × 109/
L]= 4.498, p < 0.0001) were independent prognostic factors of
OS after model selection (Table 2). In both studies, disease type
(PMF, post-ET MF, or post-PV MF) was not predictive of OS.
In SIMPLIFY-1, TI response at week 24 in MMB-randomized

patients was associated with improved OS, with a 3-year survival
rate of 77.2% for TI responders (N= 142) compared to 51.6% for TI
non-responders (N= 56) (HR= 0.323; p < 0.0001; Fig. 2A). Trends
toward improvements in OS were observed in MMB-randomized
TI responders at week 24 in SIMPLIFY-2, with a 2-year survival rate
of 66.1% for TI responders (N= 45) compared to 57.0% for TI non-
responders (N= 43) (HR= 0.771; p= 0.4193; Fig. 2B).
Trends toward improvements in OS were observed in week 24

TI responders randomized to RUX in SIMPLIFY-1 (HR= 0.668,
p= 0.0954; Fig. 2A) and to BAT/RUX in SIMPLIFY-2 (HR= 0.479,
p= 0.2326; Fig. 2B). Of the patients randomized to RUX followed
by MMB in SIMPLIFY-1 who were non-TI at week 24 (N= 92), 42
(45.7%) became TI by week 36; of those who did not become TI by
week 36 and for whom week 36 transfusion data was available
(N= 37), 29 (78.4%) had decreased transfusion burden at week 36
compared to week 24.

Observations from SIMPLIFY-1 demonstrate a trend toward
improved OS for MMB- and RUX-randomized patients who
achieved a symptom response at week 24 versus non-
responders (MMB HR= 0.684, p= 0.2040; RUX→MMB HR= 0.637,
p= 0.0728; Fig. 3A). In SIMPLIFY-1, week 24 SVR response was
associated with improved OS in RUX-randomized patients
(RUX→MMB HR= 0.450, p= 0.0078), and a trend toward
improved OS in MMB-randomized patients (MMB HR= 0.796,
p= 0.4281; Fig. 4). In SIMPLIFY-2, no difference in OS was found
between TSS responders and non-responders in either treatment
arm (MMB HR= 0.839, p= 0.6147; BAT/RUX→MMB HR= 0.982,
p= 0.9858; Fig. 3B).
Multivariate Cox regression analysis was performed to confirm

the association between TI response at week 24 and OS in MMB-
randomized patients in SIMPLIFY-1 in the presence of other
response endpoints in the model. An independent association
between MMB TI response at week 24 and OS in the SIMPLIFY-1
trial was found [HR= 0.311 (95% CI, 0.173-0.559), p < 0.0001].
Neither MMB splenic response [HR= 1.151 (95% CI, 0.613-2.161),
p= 0.6613] nor MMB symptom response [HR= 0.853 (95% CI,
0.466-1.562), p= 0.6071] at week 24 was associated with OS in
SIMPLIFY-1.

DISCUSSION
Here we present for the first time, mature survival data from the
two phase 3 SIMPLIFY trials, which demonstrate that extended
treatment with MMB is associated with excellent OS and LFS,
regardless of whether a JAKi-naïve patient was initially
randomized to MMB or to RUX followed by MMB in SIMPLIFY-
1, or whether a previously RUX-treated patient was initially
randomized to MMB or to BAT/RUX followed by MMB in
SIMPLIFY-2. In the SIMPLIFY-1 non-inferiority study, the two
treatment arms produced nearly identical OS and LFS outcomes,
providing confidence that survival is similar for patients whose
initial frontline JAKi is MMB or RUX. The median OS was not
reached and the 5-year survival probability was ~55% in both
arms of SIMPLIFY-1; while cross-study variability precludes a
direct comparison, a 5-year survival rate of ~55% was also
observed with RUX in COMFORT pooled analyses [13]. In the
RUX-exposed setting of SIMPLIFY-2, patients were anemic and/or
thrombocytopenic at study onset, and analogous historical
clinical trial data for post-JAKi RUX is not available. Real-world
studies estimate the median OS of patients who discontinue
RUX to be 11–14 months, although there are no standardized
criteria for RUX discontinuation [18, 19, 22, 29]. In a clinical trial
setting, the median OS of ~3 years and the 2-year survival rate of
~61–66% observed in patients treated with extended MMB in
SIMPLIFY-2 demonstrate excellent survival post-RUX.
Imparting MMB’s spectrum of clinical efficacy is its unique

inhibition of not only JAK1 and JAK2, but also ACVR1/ALK2, a
central player in iron homeostasis. MMB inhibition of ACVR1/ALK2
leads to decreased hepcidin – the master regulator of iron
metabolism that is elevated in patients with MF – resulting in
increased serum iron availability for erythropoiesis [26, 27]. Due to
this distinctive mechanism of action, MMB has demonstrated
considerable anemia benefit in patients with MF [27], including
higher rates of week 24 TI compared with RUX, regardless of
degree of baseline anemia, baseline platelet count, or transfusion
status [23, 30]. As anemia and transfusion dependency are two of
the leading adverse prognostic indicators in patients with MF
[2–4], and elevated hepcidin is significantly associated with
shortened OS in patients with MF [28], the durable survival
outcomes observed with extended MMB treatment in the
SIMPLIFY studies are potentially linked to MMB’s marked anemia
and TI benefits. In addition, MMB’s favorable hematologic safety
profile enables high dose intensity to be maintained over long
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treatment periods, potentially contributing to the durability of
MMB benefits including long-term survival.
In the SIMPLIFY study populations, baseline TI status, Hgb

levels, and other known prognostic baseline factors were
predictive of OS, consistent with well-established clinical
assessments. The new finding that TI response at week 24 in

JAKi-naïve, MMB-randomized patients in SIMPLIFY-1 was sig-
nificantly associated with improved OS may have clinically
relevant implications for future treatment decision-making. A
trend toward improved OS in TI responders was also observed in
the JAKi-exposed SIMPLIFY-2 population, as well as in JAKi-naïve,
RUX-randomized patients in SIMPLIFY-1, which may be partially

Table 1. Univariate Cox regression analyses of baseline characteristics and overall survival (OS) in SIMPLIFY-1 and SIMPLIFY-2 study populations.

Subgroup Number of Events/ Number of
Evaluable Patients (%)

Median OS
(years)

2-year OS (%) Hazard Ratio (95% CI) p-value

SIMPLIFY-1

TI 74/297 (24.9) NR 86.0 0.373 (0.267, 0.523) <0.0001

non-TI 65/133 (48.9) 3.20 69.9 ref

TSS ≥ 18 62/196 (31.6) NR 78.9 1.059 (0.756, 1.482) 0.7408

TSS < 18 75/229 (32.8) NR 82.6 ref

Hgb ≥ 10 g/dL 68/249 (27.3) NR 83.3 0.351 (0.222, 0.557) <0.0001

Hgb8-<10 g/dL 45/131 (34.4) 5.01 86.1 0.493 (0.302, 0.805)

Hgb < 8 g/dL 25/49 (51.0) 3.76 55.6 ref

Spleen volume > 2000 cm3 74/208 (35.6) NR 74.2 1.448 (1.037, 2.022) 0.0288

Spleen volume ≤2000 cm3 65/221 (29.4) NR 87.5 ref

Platelets > 200 × 109/L 73/260 (28.1) NR 84.5 0.466 (0.281, 0.773) 0.0035

Platelets 100-200 × 109/L 47/129 (36.4) NR 78.0 0.713 (0.418, 1.215)

Platelets <100 × 109/L 19/41 (46.3) 4.28 68.0 ref

Disease type: PET 35/90 (38.9) 5.02 80.4 1.125 (0.755, 1.674) 0.2909

Disease type: PPV 25/96 (26.0) NR 82.7 0.752 (0.480, 1.179)

Disease type: PMF 79/244 (32.4) NR 80.7 ref

IPSS risk: High 88/200 (44.0) 3.76 72.2 5.494 (2.920, 10.340) <0.0001

IPSS risk: INT-2 40/143 (28.0) NR 85.7 2.792 (1.430, 5.451)

IPSS risk: INT-1 11/87 (12.6) NR 93.9 ref

WBC ≥ 10 × 109/L 79/219 (36.1) 5.31 76.4 1.466 (1.045, 2.056) 0.0258

WBC < 10 × 109/L 59/210 (28.1) NR 86.0 ref

SIMPLIFY-2

TI 12/51 (23.5) NR 80.7 0.319 (0.171, 0.595) 0.0002

non-TI 58/105 (55.2) 2.28 56.1 ref

TSS ≥ 18 30/67 (44.8) 2.86 57.2 1.272 (0.792, 2.044) 0.3174

TSS < 18 40/89 (44.9) 5.31 69.3 ref

Hgb ≥ 10 g/dL 18/51 (35.3) NR 67.9 0.335 (0.179, 0.624) 0.0003

Hgb 8-<10 g/dL 29/72 (40.3) 5.31 71.7 0.493 (0.302, 0.805)

Hgb <8 g/dL 23/33 (69.7) 1.60 42.4 ref

Spleen volume > 2000 cm3 46/84 (54.8) 2.19 53.2 2.329 (1.418, 3.824) 0.0006

Spleen volume ≤2000 cm3 24/72 (33.3) NR 76.1 ref

Platelets >200 × 109/L 19/36 (52.8) 2.02 52.3 1.926 (1.063, 3.489) 0.0857

Platelets 100-200 × 109/L 23/49 (46.9) 2.58 58.8 1.440 (0.821, 2.526)

Platelets <100 × 109/L 26/69 (37.7) NR 76.1 ref

Disease type: PET 12/32 (37.5) NR 82.9 0.614 (0.326, 1.156) 0.0606

Disease type: PPV 9/30 (30.0) NR 68.7 0.482 (0.237, 0.982)

Disease type: PMF 49/94 (52.1) 2.76 56.4 ref

DIPSS risk: High 19/27 (70.4) 1.18 24.0 5.043 (2.374, 10.710) <0.0001

DIPSS risk: INT-2 40/90 (44.4) 5.31 70.9 1.651 (0.847, 3.221)

DIPSS risk: INT-1 11/39 (28.2) NR 73.9 ref

WBC ≥ 10 × 109/L 37/59 (62.7) 1.33 38.4 3.335 (2.072, 5.365) <0.0001

WBC < 10 × 109/L 33/97 (34.0) NR 78.6 ref

TI Transfusion independence, TSS Total symptom score, Hgb Hemoglobin, PET Post-essential thrombocythemia, PPV Post-polycythemia vera, PMF Primary
myelofibrosis; IPSS, International Prognostic Scoring System, DIPSS Dynamic International Prognostic Scoring System, INT Intermediate, NR Not reached, Ref
Reference group, WBC White blood cells. Bold font highlights statistically significant associations.
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attributed to a salvage effect provided by crossover to MMB at
week 24. This is supported by an observed TI response by week
36 in nearly half of non-TI RUX-randomized patients who
switched to MMB at week 24, and reduced transfusion burden
by week 36 in over three-fourths of the remaining non-TI
patients who switched from RUX to MMB at week 24. As of note,
OS was not different between RUX-treated patients who were TI
and not TI at week 24 in long-term pooled analyses from the
COMFORT-I and COMFORT-II phase 3 trials [13]. However,
transfusion need at several timepoints following treatment with
RUX was associated with shortened survival in a real-world
observational study in MF, and was subsequently incorporated
into the Response to Ruxolitinib After 6 Months (RR6) prognostic
model that may help to predict which patients will benefit from
a prompt treatment switch from RUX [15].
Because MMB has demonstrated higher rates of TI compared

with RUX, and because MMB may be given at full dosage for

longer, MMB may be the optimal treatment choice to maximize
survival in certain subsets of patients with MF. While future studies
are needed to validate week 24 TI response as a potential
surrogate endpoint reasonably likely to predict improved OS in
patients receiving MMB, the likelihood of a patient achieving week
24 TI response may become an important consideration regarding
the initial choice of treatment. Currently, spleen volume and
symptoms are primary drivers of treatment selection, and guide-
lines place an emphasis on platelet counts as a critical clinical
factor. Given the association found between TI response and OS in
JAKi-naïve patients, anemia and the importance of managing
anemia may become a more central consideration when
evaluating treatment options, and MMB is uniquely poised to fill
the critical gap of addressing anemia in MF patients.
There are limitations inherent to the week 24 crossover design

of the SIMPLIFY trials, which may influence the OS findings from
the SIMPLIFY-1 and SIMPLIFY-2 studies. Specifically, because of
crossover, OS data is not directly comparable between MMB and
control arms, and therefore the MMB treatment effect cannot
not be accurately estimated. Both studies were designed to
provide 24-week comparative data while the survival outcomes
might be considered descriptive for patients treated with
extended MMB as most control arm patients crossed over to
MMB at a relatively early timepoint relative to the median
survival follow-up of more than three years. Moreover, the
design of SIMPLIFY-2 did not allow for a washout period of prior
JAKi therapy, which may have influenced the specificity of MMB
effects and impacted the non-significance of association
between week 24 clinical endpoints and OS in this study. Future
studies are needed to uncover potential factors beyond baseline
hemoglobin and transfusion requirements that may predict
which MMB-treated patients are likely to become TI responders
versus TI non-responders.
Momelotinib’s anemia benefits are currently being further

characterized in MOMENTUM (NCT04173494), a global phase 3
clinical trial in symptomatic and anemic patients previously
treated with an approved JAKi, intended to support potential
registration of momelotinib for the treatment of MF [31]. In
addition to assessments of transfusion independence, symp-
toms, and splenomegaly, MOMENTUM will provide an opportu-
nity to evaluate associations between MMB anemia benefit,
transfusion burden and patient-reported measures of clinical
benefit as well as survival.

Overall Survival From Week 24 by TI Response: SIMPLIFY-1 Overall Survival From Week 24 by TI Response: SIMPLIFY-2
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Fig. 2 Association between transfusion independence (TI) response at week 24 and overall survival (OS) in patients with MF. A OS by TI
response in JAKi-naïve patients in SIMPLIFY-1; (B) OS by TI response in JAKi-exposed patients in SIMPLIFY-2. TI-NR Transfusion independence
non-responders, TI-R Transfusion independence responders.

Table 2. Multivariate Cox regression analyses of baseline
characteristics and overall survival (OS) in SIMPLIFY-1 and SIMPLIFY-2
study populations.

Baseline Parameter Hazard Ratio
(95% CI)

p-value

SIMPLIFY-1

IPSS risk: High vs INT-1 4.293 (2.160, 8.532) <0.0001

IPSS risk: INT-2 vs INT-1 2.759 (1.373, 5.546) 0.0044

TI: Yes vs No 0.474 (0.325, 0.691) 0.0001

WBC: ≥ 10 vs <10 × 109/L 1.648 (1.160, 2.342) 0.0054

SIMPLIFY-2

TI: Yes vs No 0.226 (0.097, 0.524) 0.0005

Spleen volume > 2000 cm3:
Yes vs No

1.905 (1.128, 3.216) 0.0159

Hgb: 8-<10 vs <8 g/dL 0.427 (0.239, 0.762) 0.0040

Hgb: ≥10 vs <8 g/dL 0.653 (0.294, 1.449) 0.2949

WBC: ≥ 10 vs <10 × 109/L 4.498 (2.655, 7.621) <0.0001

IPSS International Prognostic Scoring System, INT Intermediate, TI Transfu-
sion independence, WBC White blood cells, DIPSS Dynamic International
Prognostic Scoring System, Hgb hemoglobin, CI Confidence interval. Bold
font highlights statistically significant associations.
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DATA AVAILABILITY
Sierra Oncology commits to share clinical study data with qualified researchers to
enable enhancement of public health. As such, Sierra will share anonymized patient-
level data on request or if required by law or regulation. Qualified scientific and
medical researchers can request patient-level data for studies of Sierra pharmaceu-
tical substances listed on ClinicalTrials.gov and approved by health authorities in the
United States and the EU. Patient-level data for studies of newly approved
pharmaceutical substances or indications can be requested 9 months after US Food
and Drug Administration and European Medicines Agency approvals. Such requests
are assessed at Sierra’s discretion, and the decisions depend on the scientific merit of
the proposed request, data availability, and the purpose of the proposal. If Sierra
agrees to share clinical data for research purposes, the applicant is required to sign
an agreement for data sharing before data release, to ensure that the patient data are
de-identified. In case of any risk of re-identification on anonymized data despite
measures to protect patient confidentiality, the data will not be shared. The patients’
informed consent will always be respected. If the anonymization process will provide
futile data, Sierra will have the right to refuse the request. Sierra will provide access to
patient-level clinical trial analysis datasets in a secured environment upon execution
of the data sharing agreement. Sierra will also provide the protocol, statistical analysis
plan, and the clinical study report synopsis if needed. For additional information or
requests for access to Sierra clinical trial data for research purposes, please contact us
at Medinfo@sierraoncology.com.
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