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Glioblastoma is a WHO grade IV brain tumor, which leads to poor overall survival (OS)

of patients. For precise surgical and treatment planning, OS prediction of glioblastoma

(GBM) patients is highly desired by clinicians and oncologists. Radiomic research

attempts at predicting disease prognosis, thus providing beneficial information for

personalized treatment from a variety of imaging features extracted from multiple MR

images. In this study, first-order, intensity-based volume and shape-based and textural

radiomic features are extracted from fluid-attenuated inversion recovery (FLAIR) and T1ce

MRI data. The region of interest is further decomposed with stationary wavelet transform

with low-pass and high-pass filtering. Further, radiomic features are extracted on these

decomposed images, which helped in acquiring the directional information. The efficiency

of the proposed algorithm is evaluated on Brain Tumor Segmentation (BraTS) challenge

training, validation, and test datasets. The proposed approach achieved 0.695, 0.571,

and 0.558 on BraTS training, validation, and test datasets. The proposed approach

secured the third position in BraTS 2018 challenge for the OS prediction task.

Keywords: brain tumor, glioblastoma, overall survival, radiomic, machine learning

INTRODUCTION

Glioblastoma (GBM) remains the most aggressive primary malignant brain tumor in adults,
with a median survival time of 15 months and 5-year survival of ∼5% after initial diagnosis
(Chang et al., 2016). Nearly all patients with GBM relapse despite providing maximal safe surgical
resection, radiotherapy, temozolomide, and aggressive therapy. Spatial and temporal intra-tumor
heterogeneity, extent, and location are some of the factors that make these tumors challenging to
resect and, in some cases, inoperable. The inability to perform complete surgical tumor resection
and poor drug delivery to the brain contributes notably to the lack of effective treatment and poor
prognosis (Mahajan et al., 2015).

Certain biological variables such as MGMT promoter methylation status, 1p/19q deletion, and
IDH1 gene mutation status have been shown to explain to a certain extent this observed variation,
in addition to certain host variables such as age and gender. The fact that GBM shows extremely
wide clinical behavior points to the fact that the current understanding of GBM as a single disease
entity is an oversimplification. This is further supported by the fact that there have been multiple
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attempts to divide GBM into more distinct subgroups using
molecular subtyping (Verhaak et al., 2010). However, these
methods are difficult to replicate in routine clinical practice
owing to the complexity of the assays and high costs. Further,
tumors show subtype plasticity with a complex transition
from one subtype to another during progression (Lee et al.,
2018). Thus, predicting survival of patients with GBM is a
challenging task.

Magnetic resonance imaging (MRI) plays a vital role in
neuro-oncology for initial diagnosis and assessment of treatment
response and is increasingly used as a powerful non-invasive
predictive tool. Researchers have identified that MRI provides
distinct information that can predict survival independently of
pathologic and clinical data. The process that extracts various
quantitative features on the basis of intensity, volume, shape,
and textural variations from radiographic images and design
predictive algorithms to find the association of these vast features
to the survival and outcome of the patient is known as radiomics
(Chaddad et al., 2019b). Radiomics incorporates several essential
disciplines, including radiology for imaging interpretation,
computer vision for quantitative feature extraction, and machine
learning for classifier evaluation and regression (Seow et al., 2018;
Vaidya et al., 2019).

In recent years, several radiomic models have been proposed
for survival prediction (Huang et al., 2016), distant metastasis
prediction (Coroller et al., 2015), and molecular characteristics
classification (Kickingereder et al., 2016a,b). Researchers
extracted several radiomic features on the basis of texture, area,
volume, and Euler characteristics-based features from different
intra-tumor parts (Shboul et al., 2019). Extreme Gradient
Boosting (XGBoost) was used as a regressor to predict the
OS. This approach achieved 0.519 accuracy on Brain Tumor
Segmentation (BraTS) 2018 test dataset. In another study,
multi-planer spatial convolutional neural networks were used for
brain tumor segmentation, and semantic and agnostic features
were extracted on these segmented tumor parts. These radiomic
features were provided as input to multilayer perceptron (MLP)
to predict OS (Banerjee et al., 2019). Although the proposed
approach performed well for segmentation task, the algorithm
performed poorly on BraTS 2018 test dataset for overall survival
(OS) prediction task. Other than the sophisticated machine
learning approaches, a simple linear regressor was used on
only nine features. These features were computed by the
volume, by summing up the voxels and the surface area, and by
summing up the magnitude of the gradients along with three
directions. There were fewer chances of overfitting because
of only nine features, and hence, the method performed well
(Feng et al., 2019). Multi-scale texture features-based approach
for predicting GBM patients’ progression-free survival and OS
on T1- and T2-weighted fluid-attenuated inversion recovery
(FLAIR) MRIs was proposed using the random forest (Chaddad
et al., 2018). The study results showed that the identified
seven-feature set, when combined with clinical factors, improved
the model performance, yielding an area under the receiver
operating characteristic curve (AUC) value of 85.54% for OS
predictions. Osman et al. extracted a set of 147 radiomic image
features locally from three tumor subregions on standardized

preoperative multiparametric MR images. LASSO regression was
applied for identifying an informative subset of chosen features,
whereas a Cox model was used to obtain the coefficients of those
selected features (Osman, 2019). Despite the various correlations
between imaging features, genomic expression, and survival
reported in the literature, no single analysis has been substantive
enough to enter clinical practice.

In another study, usefulness of geometric shape features,
extracted from MR images, as a potential non-invasive way to
characterize GBM tumors and predict the OS times of patients
with GBM, is evaluated (Chaddad et al., 2016a). Multi-contrast
MRI texture features were used for the prediction of survival
of patients GBM using texture features derived from gray-level
co-occurrence matrices (GLCMs). The statistical analysis based
on the Kaplan–Meier method and log-rank test was conducted in
order to identify the texture features most closely associated with
the OS (Chaddad and Tanougast, 2016; Chaddad et al., 2016b). A
study underlines that radiomic features could be complimentary
to biopsy-based sequencing methods to predict survival of
patients with IDH1 wild-type GBM (Chaddad et al., 2019a).

This study aims to evaluate the efficiency of the radiomic
feature-based MRI signatures from multi-modal MRI data and
to find their associations with OS in patients with high-
grade gliomas (HGGs) with improved accuracy compared with
those of the available state-of-the-art methods. The rest of the
manuscript is organized as follows: the dataset used for the study,
preprocessing steps, and radiomic feature extraction framework
is described in the Material and Method. Sample results are
discussed in the Result and Discussion. Conclusion and Future
Work concludes the paper with future direction.

MATERIALS AND METHODS

We participated in BraTS 2018 challenge, which mainly focused
on two tasks:

1. segmentation of brain tumor with intra-tumor parts like
edema, enhancing tumor, and necrotic part; and

2. OS prediction of the patients in days with the help of
imaging features.

In this study, we mainly focused on the survival prediction
aspects of the BraTS challenge.

Dataset
Since 2012, every year, the BraTS challenge is organized at
Medical Image Computing and Computer Assisted Intervention
(MICCAI) conference (Menze et al., 2015). The challenge is to
segment HGG and low-grade glioma (LGG) with high accuracy.
From 2017 onwards, the task is extended for the prediction
of OS of the patients in days as well (Bakas et al., 2017a,b,
2019). The BraTS organizers had provided multi-institutional
training dataset of 163 patients diagnosed with GBM. For the
validation dataset and test dataset, 53 and 130 cases were
provided separately. The data were obtained from various
institutions all over the globe, with different clinical protocols
and scanners. For each patient, MRI data of size 240 ×

240 × 155 were provided with FLAIR, T1, T1ce, and T2
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modalities along with the ground truth as shown in Figure 1.

The same annotation protocol was followed to segment all

the cases manually by one to four raters, which were later

verified by expert neurologists with more than 15 years of

experience. The labels were termed as edema, enhancing tumor

(ET), and necrosis. One of the tasks of BraTS 2018 challenge

was to auto-segment the tumor into its three constituent

regions, namely,

1. enhancing tumor region (ET), which shows hyperintensity in
T1 postcontrast when compared with T1;

2. tumor core (TC), which entails the ET, necrotic (fluid filled),
and non-enhancing (solid) parts; and

3. whole tumor (WT), which includes all intra-tumor parts along
with edema.

Additional information like resection status, age, and survival in
days were also provided exclusively for OS prediction task. The

FIGURE 1 | Multi-modal data with four channels provided in BraTS 2018 challenge dataset along with ground truth (GT). Subtumor parts are represented as follows:

green, edema; blue, enhancing tumor; red, necrosis. BraTS, Brain Tumor Segmentation; FLAIR, fluid-attenuated inversion recovery.

FIGURE 2 | Top row: original input MR slice and slice after biased field correction. Bottom row: corresponding histograms of original slice and histogram after biased

field correction. The horizontal X-axis of the histogram is intensity, and the vertical Y axis is frequency.
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MR data provided by BraTS organizers was skull stripped and
co-registered to 1mm× 1mm× 1mm isotropic resolution. The
proposed three-step pipeline is shown in Figure 2.

Proposed Methodology
We proposed three-step methodology for OS prediction, as
shown in Figure 3. In our approach, radiomic features were
extracted on region of interest (ROI). The segmentation labels
were provided for training dataset only, and hence, we segmented
the tumors in validation and test dataset first and then extracted
the radiomic features on the segmented ROI as first step. In step
2, radiomic features were extracted, and feature selection and OS
prediction model was designed in step 3.

Preprocessing
The biased field algorithm was applied on FLAIR, T1, T2, and
T1ce channel to correct the intensity inhomogeneity with N4ITK
tool (Tustison et al., 2010). From Figure 2, it can be observed
that the slice after bias field correction is more homogeneous in
terms of intensity. All the four MR channels were normalized to
zero mean and unit variance. We extracted multi-channel and
multi-regional radiomic features with the help of intra-tumor
annotations provided by the organizers on training dataset. We
segmented the tumor with patch-based 3D U-Net architecture
(Baid et al., 2019, 2020).

Radiomic Feature Extraction
We extracted radiomic features on FLAIR and T1ce channels.
Because whole tumor is best seen in FLAIR modality and
enhancing tumor boundaries can be best visualized in T1ce
modality, we selected these channels only for feature extraction.
We computed radiomic features on these modalities with three
varying combinations of intra-tumor parts as a whole tumor,
that is, all intra-tumor parts, necrosis with enhancing tumor, and

FIGURE 4 | Representative diagram for stationary wavelet decomposition.

LPF, low-pass filter; HPF, high-pass filter.

FIGURE 3 | Proposed three-step framework for overall survival prediction in glioblastoma (GBM).
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FIGURE 5 | Distribution of survival groups identified using two-step clustering and correlation with age. Left: the age is in years and overall survival in given days.

Right: on the X-axis of two-step cluster, Group 1, Group 2, and Group 3 are represented.

enhancing tumor only. So at the end, we had six combinations to
extract radiomic features.

First-order statistical features and shape-based features were
extracted from these combinations of ROI and MR channels.
ROI was decomposed into four sub-bands with a multi-level
2-D stationary wavelet decomposition using a biorthogonal
wavelet (Kickingereder et al., 2016b). In the first step, ROI
was decomposed into two sub-bands with low-pass filter (LPF)
and high-pass filter (HPF). Further, these sub-bands were again
passed through LPF and HPF, giving LL, LH, HL, and HH
bands (Figure 4). This was to extract directional texture features
from approximate, horizontal, vertical, and diagonal components
obtained after decomposition of the ROI (Nason and Silverman,
1995). It should be noted that we have not down-sampled the LPF
and HPF to generate LL, LH, HL, and HH purposefully to avoid
any sort of loss of information. GLCM features were extracted
from these sub-bands (Haralick and Shanmugam, 1973). One
hundred and thirteen first-order statistics, shape-based, and
GLCM features were extracted for each tumor part and modality
considering all four wavelet sub-bands. Thus, we had a total of
678 radiomic features extracted from six different combinations
of tumor parts and modalities. Each patient in the BraTS dataset
was provided with age as additional information, which we had
concatenated in our feature vector. Finally, for each patient, we
had 679 variables to be used to train the regression model for
the survival prediction task. In training dataset, we had 163
patients for whomOSwas provided in days. The radiomic feature
extraction pipeline is available at Github1.

Survival Prediction
Survival prediction was divided into two tasks. One task
aimed at classifying patients into three survival groups obtained
by unsupervised two-step clustering. These groups roughly

1https://github.com/ujjwalbaid0408/Radiomics

correspond to the known survival groups in GBM (PMID:
22517216). The survival groups were characterized as long
survivors (e.g., >900 days), short survivors (e.g., <300 days),
and mid-survivors (e.g., between 300 and 900 days). For precise
treatment planning, it is valuable to categorize a patient to either
of these survival subgroups. This will enable clinicians to decide
how aggressively a patient needs to be treated. The second task
aimed at predicting OS in days, which is the same as the task
required for BraTS 2018.

Delineating Survival Groups
Natural grouping of patients based on survival was investigated
using unsupervised two-step hierarchical clustering. This
resulted in three groups with a good silhouette of separation:
Group 1 (short survivors; patients with <300 days’ OS, n = 65),
Group 2 (mid-survivors; patients with OS between 300 and 900
days, n = 86), and Group 3 (long survivors; patients with >900
days’ survival, n = 12). Pearson’s correlation revealed a strong
inverse relationship of age with this group, with younger patients
having the greatest OS (p = 0.000008, r = −0.368), as shown
in Figure 5.

Assessment of Relationship With Survival and

Radiomic Feature Vector Dimension Reduction
In order to reduce the dimensionality of the feature vector,
Spearman’s correlation coefficient was calculated for each pair
of radiomic features. The features having Spearman’s correlation
coefficient >0.95 with each other were discarded, retaining
a single feature in each set (Supplementary Table 1). This
reduced the feature vector size from 679 to 118. The feature
set was further reduced to 54 by excluding all variables
with statistically insignificant (p > 0.05) relationship with
the survival groups (tested using ANOVA) identified above
and with OS (tested using Pearson’s correlation coefficient).
It was observed that in terms of normalized importance,
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FIGURE 6 | Performance summary of the overall survival (OS) prediction algorithm. (A) Predicted pseudoprobabilities across the three prediction categories. (B) Area

under the receiver operating characteristic curve (AUC) for the three categories. (C) Dot plot of predicted and actual survival in days. (D) Residual vs. predicted plots

for the survival prediction in days.

age is the most important feature. Because whole tumor
is visible in FLAIR modality with hyperintense pixels, their
features followed age. The enhancement tumor and core tumor
counts were of significant importance for survival prediction
(Supplementary Table 1).

Predicting Survival Groups Using Radiomic Features
Neural networks were designed using MLP to build a
predictive model using the reduced radiomic feature vector set
and age.

Neural Network Design
A single neural network was designed to classify the features in
the three survival categories and to predict the OS in days. The
neural network designed had two hidden layers. The number
of units per layer were fixed to “auto.” The sigmoid activation
function was used in hidden layers and output layers. Results
were replicated by setting a random seed. For fair evaluation
and to avoid overfitting, the BraTS training dataset was further
divided into training (51.5%), validation (14.7%), and testing
(33.7%) subsets by using randomly generated Bernoulli variates.
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TABLE 1 | Quantitative evaluation of multilayer perceptron for OS prediction on

the BraTS dataset.

BraTS Accuracy MSE Median Std. deviation Spearman R

dataset SE

Training 0.695 18,920.841 9,139.551 22,253.812 0.877

Validation 0.571 59,550,213.1 1,136,111.6 128,250,465.8 0.427

Testing 0.558 338219.366 38408.16 939986.796 0.222

OS, overall survival; BraTS, Brain Tumor Segmentation; MSE, mean squared error.

TABLE 2 | Quantitative evaluation of MLP and RF for OS prediction on BraTS

validation dataset.

Approach Accuracy MSE Median SE Std. deviation Spearman R

RF 0.375 6,109,105.6 47,545.13 143,070.37 0.11

MLP 0.571 5,955,021.1 11,361.6 12,825,046.8 0.427

MLP, multilayer perceptron; RF, random forest; OS, overall survival; BraTS, Brain Tumor

Segmentation; MSE, mean squared error.

All the features were rescaled with an adjusted normalized
correction of 0.2. We also performed an individual variable
importance analysis (Supplementary Table 1).

RESULT AND DISCUSSION

Neural Network Performance
For the prediction of survival categories, the neural network
demonstrated an accuracy of 70.2% in the training subset and
62.5 and 63.6% in the validation and testing subsets, respectively,
which we divided from BraTS training dataset. The accuracy was
73% for the entire training dataset. The AUC was 0.799 (0.817 for
Group 1, 0.709 for Group 2, and 0.784 for Group 3). A summary
of the model performance is shown in Figure 6. The designed
model performed better for patients in the mid-survivor groups,
with the least accuracy for patients in the long-survivor group.

For fair evaluation of all the proposed algorithms of
researchers participating in the BraTS challenge, organizers
had provided an online evaluation platform. Participants were
expected to submit the results on this platform, and later, they
could download the quantitative results for the same2. It had been
observed that despite less accuracy on validation dataset, our
method achieved the third position in OS prediction task in the
BraTS challenge3. The most convincing reason behind this was
that all other participants might have overfitted their methods
to the validation dataset. BraTS organizers have provided
leaderboard of all the participants with segmentation and OS
prediction task with several quantitative evaluation matrices4.
We evaluated the proposed approach on BraTS training testing
and validation dataset as shown in Table 1. The comparison
between random forest and MLP is given in Table 2 on BraTS
validation dataset.

We have also evaluated the efficiency of the proposed
approach with 10-fold validation. At every fold, 90% of patients

2https://ipp.cbica.upenn.edu/
3https://www.med.upenn.edu/sbia/brats2018/rankings.html
4https://www.cbica.upenn.edu/BraTS18/

are used for training and 10% of samples are kept as a holdout.
The classification accuracy at each fold is given in Figure 7. The
X-axis of the plot represents the fold number, and Y-axis gives
the corresponding classification accuracy. The average accuracy
is found to be 58.49, which is comparable with accuracy on
BraTS 2018 validation dataset, which proves the robustness of the
proposed approach.

DISCUSSION

Predicting outcomes has been the holy grail of modern oncology,
notoriously difficult to achieve with high accuracy, yet driving
numerous investigators toward finding newer ways of attempting
to reach that goal. Because of multiple challenging factors, this
task is out of clinical reach. Some of the challenges are the
limitations of the human mind and recording devices to quantify
the biological variations. The other is an amalgamation of cross-
disciplinary interactions of clinical sides (for treatment planning)
and engineering sides (toward quantitative analysis).

In this work, we have evaluated a couple of methods (MLP
and RF) to predict OS using radiomic feature extracted using
deep learning-based segmentation and feature pipeline as shown
in Figure 3. What is interesting is the fact that although
our segmentation pipeline did not feature in the top models
submitted to BraTS 2018, our survival prediction pipeline did
make it to the third position on the basis of the performance
metrics decided by the BraTS 2018 organizers. The neural
network achieved an accuracy of 0.583 with a relatively low
standard error. Age was the most important variable in the
predictive model. Further, we have also identified radiomic
features that contributed maximally to the model.

The importance of the independent variable in descending
order is given in Supplementary Table 1. It was observed that age
is the most important factor for the OS prediction. We observed
that radiomic analysis of tumor core region, which is comprised
of necrosis and enhancing tumor on FLAIRmodality contributed
significantly toward prediction OS. It can be concluded that the
core tumor count, that is, volume of enhancing tumor and tumor
core, are of extreme importance in OS prediction of patients
with GBM.

The amount of clinical information (only age and OS)
provided in BraTS 2018 is extremely limited; and no
details regarding gender, other co-existing comorbidities,
performance status, and details of treatment received are
provided. Considering these limiting factors, it is interesting to
note that radiomic features coupled with age could explain a
significant amount of variability seen in the OS of these patients
with GBM. Although predicting survival in terms of closest
number of days is desirable, in actual clinical practice, it often
suffices to predict prognostically relevant groups for treatment
intensification. For example, we were able to identify patients
with <300 days of survival with a significantly high accuracy
(0.804). These patients are ideal candidates for treatment
intensification. Our accuracy in predicting survival for the long
survivors was the least, possibly owing to the small number of
cases in that group.
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FIGURE 7 | K-fold cross-validation analysis. X-axis, fold number; Y-axis, accuracy.

Implementation Details
The radiomic feature extraction pipeline is designed in MATLAB
environment. The neural network design, feature reduction,
and other statistical analysis were performed with SPSS v24 on
computing machine with Windows 10 operating system.

CONCLUSION AND FUTURE WORK

In this study, we evaluated the efficiency of radiomic features
and machine learning-based classifier to predict the OS of
the patients diagnosed with GBM. Multi-modal radiomic
features were extracted from the FLAIR and T1ce channel
of preoperated MRI data. OS of the patient was predicted
with MLP and RF regressors. The classification accuracy
shows that MLP outperformed over random forest in terms
of accuracy. The proposed approach achieved the third
position in BraTS 2018. We have also identified radiomic
features that contribute maximally to the neural network’s
predictive ability. Further, the work could potentially
include incorporating additional prognostic variables such
as pathologic assessment information, molecular aberration
information, comorbidities, and performance status into the
predictive model.
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