
Overcoming Babbling-Idiot Failures in the FlexCAN Architecture: A Simple
Bus-Guardian

Giuseppe Buja and Alberto Zuccollo

University of Padova

Via Gradenigo 6/A

35131 Padova, Italy

g.buja@ieee.org, zuccollo@die.unipd.it

Juan Pimentel

Kettering University

 1700 West Third Avenue

48504 Flint, Michigan

jpimente@kettering.edu

Abstract The paper is concerned with the key issue of

protecting FlexCAN networks against the babbling-idiot

faults, e.g., node faults that busy the bus unduly. A full

solution of the problem would enhance the

dependability of these networks greatly, making them

attractive for safety-critical applications. After

analyzing the various modes by which a babbling-idiot

fault affects the network operation, a classification of

the babbling-idiot faults into hardware and software is

proposed. Then it is shown that the FlexCAN

architecture provides a suitable means for tolerating

hardware babbling-idiot faults. Afterwards, a simple

bus-guardian is proposed to cope with the software

babbling-idiot faults in the FlexCAN environment. The

proposed bus-guardian has been implemented and

tested, and some significant results are given to

demonstrate its effectiveness.

Keywords Babbling-Idiot Faults, Bus-Guardian, CAN

networks, FlexCAN Networks.

1. Introduction

Networking safety-critical distributed control

systems poses some stringent requirements on the

underlying network in terms of fault-tolerance and real-

time operation. Fault-tolerance means that the network

must suitably react to at least one failure in its

components, with a behavior correlated to the role

played by the component in assuring the desired safety

level [1]. Real-time operation means that the

communication tasks must be completed within an

established time interval. Such interval is correlated

with the dynamics of the controlled plant while hardness

in complying with the requirement is dictated by the

application [2]. Examples of very demanding safety-

critical applications are the drive-by-wire systems,

especially the steering one, where the needs of fault-

safety and/or fault-operational behavior and strictly

time-bounded communications are of uppermost

relevance for driving safely.

The fulfillment of the above requirements is

impeded by the babbling-idiot phenomenon. This

typically occurs, for example, when a node monopolizes

a CAN bus by transmitting high-priority messages at

erroneous time instants so frequently to delay more

than the necessary the communications between

properly operating nodes. Under this situation, the

node is affected by a babbling-idiot fault. The worst-

case scenario happens when a node keeps the bus

continuously busy, thus inhibiting every

communication between the other nodes. When the

occurrence of a babbling-idiot fault prevents the

execution of the requested application, then the

network suffers from a babbling-idiot failure, which is

“the most serious timing failure in a system with a

shared communication channel such as a bus system”

[3]. This justifies the numerous efforts taken on in

recent times to analyze the causes and to tolerate the

occurrence of a babbling-idiot fault.

The aim of this paper is twofold. In the first part we

analyze the issue of the babbling-idiot fault in CAN-

based networks, whilst in the second part a bus-

guardian for FlexCAN networks is developed. More

specifically, in the first part we analyze the modes by

which a faulty node busies the bus. Depending on the

mode, hardware and software babbling-idiot faults are

defined. Solutions employed to protect a network

against the two kinds of babbling-idiot faults are then

discussed. Component (bus and/or node) replication is

commonly used to prevent hardware babbling-idiot

failures. Such a replication is facilitated in time-

triggered networks (e.g., TTP and FlexRay) by the

availability of a synchronized global clock. However,

event-triggered networks like CAN call for a different

solution. One solution is represented by the FlexCAN

architecture [4], which is briefly summarized in

Section 4. Tolerance to software babbling-idiot fault is

commonly achieved by bus-guardians for both time-

and event-triggered networks. In Section 3 it is

explained why the bus-guardian has found an easy

implementation in the time-triggered networks while in

the event-triggered ones complex or partially tolerant

structures have been used.

In the second part of the paper a simple-in-structure

bus-guardian is proposed for FlexCAN networks, with

the purpose of inhibiting a node affected by the

software babbling-idiot faults. The novel bus-guardian

has been implemented and tested. Experimental results

confirming the effectiveness of the solution are given. It

is worthwhile to note that the proposed bus-guardian

can be used in other CAN-based networks with minor

modifications.

2. The CAN protocol

The CAN protocol was developed by Robert Bosch

gmbh at the end of the 80’s for automotive applications

not related to safety [5], [6]. It has enjoyed widespread

diffusion in other environments, such as in the industrial

and building automation. Recently, the CAN merits in

terms of low cost and efficient operation have fuelled

the interest in extending its usage to safety-critical

applications.

CAN is an event-triggered protocol that solves the

bus access competition by a bit-wise arbitration

technique: for any two messages with different priorities

sent by two distinct nodes, that one with the higher

priority is transmitted without collision whilst the

message with the lower priority is stopped and

retransmitted as soon as the bus becomes idle. The

arbitration strategy relies on the logical wired-AND

functioning of the bus, with 0 as dominant state. This

functioning is also exploited by the protocol to

implement a powerful error notification mechanism; as

soon as a node detects an error in the incoming

message, it forces on the bus an error frame message

formed by some dominant states that, besides destroying

the incoming message, inform the other nodes of the

error.

The conjunction of these features (event-triggered

strategy, bit-wise arbitration technique, and error

notification mechanism) facilitates the possibility that

faulty nodes interfere with other non-faulty transmitting

nodes whether superposing dominant states on recessive

bits or delaying the communications by inserting

continuously high-priority messages, thus dislocating

the information exchange though the network.

In this paper, a CAN network is considered made up

of at least two nodes and a channel, where the nodes

have the following components:

- the host-controller: it is the component of the node

where the application software is implemented;

- the communication-controller: it is the component

of the node entitled to transmit and receive the

messages;

- the transceiver: it is the component of the node that

applies to and detects on the bus the voltage levels

associated to the logical states.

3. Babbling-idiot faults

What gives rise to a babbling-idiot fault are some

types of fault in the node components. The effects of a

fault for the various components are as follows:

- for the host-controller: it produces data traffic on

the network carrying no useful information;

- for the communication-controller: it sends either

correct messages more frequently than required by the

host-controller or incorrect sequences of bits;

- for the transceiver: it keeps the bus fixed at the

dominant voltage level,

- for the channel: it has the dominant voltage level

permanently.

The babbling-idiot fault of transceiver and channel

is the direct consequence of hardware faults, for

instance the short circuit of the transceiver output or

the channel wires. Under these circumstances, a node is

affected by a hardware babbling-idiot fault. Note

that if the hardware faults forces on the bus the non-

dominant voltage level, the network can go on with its

operation, i.e. the node exhibits a fault-silent behavior.

The babbling-idiot fault of the host-controller is

likely due to software. Instead, that of the

communication controller probably originates from

hardware; nevertheless one can look at the

corresponding fault as though it were produced by a

software fault. For this reason, the babbling-idiot faults

of either the host- or the communication-controller are

designated with software babbling-idiot faults .

In safety-critical systems the occurrence of a

babbling-idiot fault leads to potentially catastrophic

consequences. Then suitable solutions must be

implemented, aimed at tolerating the babbling-idiot

faults regardless of whether they are hardware or

software.

3.1 Hardware babbling-idiot faults

A satisfactory level of protection against the

hardware babbling-idiot faults is achieved by bus-

replication. For a duplicated bus, a CAN network is

formed by two channels; each node is endowed with

two transceivers -one per channel- and sends the same

data over both the channels. The two channels are

physically separated, electrically isolated and

dislocated along different spatial paths. The

transceivers are also mutually separated and isolated.

Therefore the occurrence of a fault in one transceiver

or in one channel does not affect the companion one. In

this way, a hardware babbling-idiot fault does not

block the operation neither of the network nor of the

node, i.e. the node exhibits a fault-operational

behavior.

Time-triggered protocols like TTP/C [7], FlexRay

[8] and SafeBus [9], the first two developed for drive-

by-wire applications and the third one for aerospace

applications, provide for bus redundancy; in the first

two protocols the envisaged channels are two whilst in

the third one they are four. Networks based on these

protocols take advantage of the deterministic

transmission of the messages on the replica to override

a hardware babbling-idiot fault [2]. Bus redundancy,

instead, is not straightforward with networks based on

event-triggered protocols, like CAN, since the

transmission on the replica is non-deterministic. In

fact, with a bus access ruled by the bit-wise arbitration

“it is not possible to guarantee that the message order

on two replicated channels will always be the same”

[10] and comparison of the data flow on the two

channels is not significant. As a result, these networks

necessitate of solutions different from the conventional

bus redundancy to be tolerate a hardware babbling-idiot.

One of them is the FlexCAN architecture illustrated in

Section 4.

3.2 Software babbling-idiot faults

As mentioned in the introduction, a node affected by

a software babbling-idiot fault typically sends high-

priority messages at arbitrarily high rates on the bus.

The possibility that it transmits formally correct (i.e.

meeting the protocol) bit sequences without meaning

must be also accounted for. As a matter of fact, some

human involvement can introduce faults of this kind,

either accidentally (f.i. a bug in the code) or

intentionally (f.i. the exposition to a malicious attack).

Whatever the reason may be, the most promising

solution for protecting a network against a software

babbling-idiot failure is the bus-guardian. It is an

additional component of the node that interacts with the

other components in the way of silencing the node itself

when it begins to be affected by a software babbling-

idiot fault. In order to prevent that a fault in the node

propagates to the bus-guardian, the latter one is

physically separated, electromagnetically shielded,

supplied by an independent source and equipped with an

own oscillator.

In time-triggered networks, each node is entitled to

access the bus only during predetermined time slots and

the task of the bus-guardian is eased. For instance, a

straightforward technique consists in silencing the node

out from its own time slots, irrespectively of its safe or

faulty operation. A bus-guardian for TTP/C is presented

in [11]: it is designed as a state machine, built up around

a logic device and connected by four wires to the host-

controller and by one wire to the transceiver.

In event-triggered networks silencing a software

babbling-idiot is less easy. The time-free access to the

bus from the nodes and the delay in transmitting the

low-priority colliding messages entail that any

implementation of a bus-guardian must reckon with the

worst-case transmission time of a message. A working

approach relies on the definition of a minimum

inhibition time and the arrangement of the

communication tasks as follows: a node has the right to

access the bus at any time but is not allowed to transmit

within the inhibition time. The rationale underlying this

approach is that even if the node is affected by a

software babbling-idiot fault, during the inhibition time

it is disabled and the other nodes can communicate. The

approach has been applied in [12] to CAN networks.

The bus-guardian is built up with a communication-

controller and a transceiver, and acts as an auxiliary

node able to read (but not to write) the messages on the

bus, including those of the guarded node. When, by

inspecting the identifier of the messages, the bus-

guardian detects that the guarded node transmits too

frequently, it disables the transceiver of the node. This

solution is very efficient but has two shortcomings.

The first one is the complexity of the bus-guardian

since it has embedded the network protocol. The

second shortcoming is related to the fault detection

capabilities: they do not include the case that a node

babbles by transmitting messages with an incorrect

identifier or error frame messages. Such a shortcoming

has been eliminated with the solution presented in [13].

Here the communication-controller of the bus-guardian

is connected to the output of the node instead of to the

bus and hence the bus-guardian is directly aware of the

rate of recurrence of the node transmission.

4. The FlexCAN architecture

As with other proposals [14], [15] the FlexCAN

architecture represents an effort of enhancing the

dependable characteristics of the native CAN protocol

with the purpose of making it suitable for safety-

critical systems. A noticeable characteristic is that the

modification is made just by means of application

software, using COTS (Commercial Off The Shelf)

hardware components. The only particular hardware

requirement is that the host-controller is able to drive

two or more independent communication-controllers.

At any rate, this is not a stringent requirement: at the

moment, there are in the market several COTS

microcontrollers that drive even more than two CAN

communication-controllers (e.g., the HCS12

microcontroller of Motorola [16]).

Basically, FlexCAN relies on the replication of

nodes (“replicas”) and the channel. As a whole, the

replicas constitute a “Fault Tolerant Unit” (FTU).

There exists a hierarchical order among the replicas of

a FTU: the primary node, the secondary node, and so

on. In a running system, only the primary node is

entitled to send messages, and the other replicas

monitor its behavior. If the secondary node does not

receive any message in any channel within a

predetermined time-out interval, then it assumes that

the primary node is failed and starts sending messages

behaving as the primary node. If any replica (besides

the primary) receives a message via any of the

replicated channels, then the primary node is

considered non-faulty. In this way, the bus replication

is easily supported. On-line algorithms are provided

for the nodes to agree with the hierarchical order of the

replicas.

Nodes within an FTU interact among themselves

transmitting and receiving “inter-group messages”,

which carry on application-specific data and other

protocol information (like the time-synchronization

information). Apart from the initialization stage, the

communication period is the same for all the FlexCAN

nodes, and within a period a single message identifier

is not repeated. From the viewpoint of message

transmission, the FTUs are organized in chains: the

transmission of a FTU triggers the processing of its data

and the transmission of the subsequent message by the

following FTU. Since FlexCAN has been developed for

control applications, the most important types of FTUs

are: the sensor FTU, the controller FTU, and the

actuator FTU. The sensor FTU is the input device of the

system; it is configured as the first software link in the

chain. The second software link is the controller FTU,

the task of which is to receive the messages transmitted

by the sensor, to perform some computations and to

transmit the results. The actuator FTU is the output

device of the system and the third software link in the

chain. It receives the reference data from the controller

FTU, actuates them, and sends a feedback message to

the controller FTU. Much emphasis is placed in the

design stage on the maximum number of the nodes that

can access the bus, for avoiding problems of network

traffic and non replica determinism. A FlexCAN

network for a safety-critical system always has to be

characterized by a small number of nodes, basically

transmitting safety-related messages.

FlexCAN tolerates single hardware babbling-idiot

faults, with no distinction between babbling-idiot faults

due to the channel or the transceivers. A hardware

babbling-idiot fault is simply decoded as a sequence of

error frames that destroy the communication on the

channel. However, the hypothesis of non-propagation of

the faults ensures a hardware babbling-idiot fault does

not affect the replicated channels, which continue to

carry on the correct information both in the case that the

fault is transitory or permanent.

A FlexCAN prototype network has been built at

Kettering University, Flint, USA, for development and

testing purposes. A network with three types of devices,

namely a controller node, a sensor node, and an actuator

node, was built up, where the controller FTU consists of

one controller and two replicas (i.e., it is triplicated). All

the nodes were instantiated by Elektronikladen HCS12

T-Boards, endowed with Motorola HCS12

microprocessors having five independent CAN

channels.

The role of hardware babbling-idiot simulator was

played by an additional device, formed by a transceiver

connected to the bus and with the Tx pin entered by an

independent digital signal source. The babbling-idiot

fault was obtained by injecting continuously a 0 value in

the simulator, destroying all the transmissions in the

channel. The other nodes read sequences with error

frames and, in turn, transmitted error frames. Even if the

information carried on by that channel was destroyed,

the system continued to work properly, and the actuator

node never suffered from lack of information.

Despite this behavior against hardware babbling-

idiot faults, FlexCAN does not cope with software

babbling-idiot ones at all. As every node is physically

connected to both the channels, it is possible that a host-

controller continuously transmits high priority messages

on all the channels thus denying any network activity.

Hence the simple bus replication or triplication has no

effect in this case.

5. A Simple Bus-Guardian

In this section, a simple but effective bus-guardian

is presented. It has been developed, implemented, and

tested in the framework of the FlexCAN architecture.

Nevertheless the bus-guardian is generic enough so

that it can be used with other CAN-based networks.

Fig.1. Bus-guardian implementation.

Bus-

Guardian:

BG-en

Host-

Controller:

T’x

OR

Port:

Tx

Transceiver

0 en 0 0 Dominant (0)

0 en 1 1 Recessive (1)

1 inh 0 1 Recessive (1)

1 inh 1 1 Recessive (1)

Table 1. The Truth table of the Bus-Guardian

5.1 Bus-guardian description

The bus-guardian is a simple logic device,

connected to the host-controller by two wires (Fig.1).

The output of the communication-controller (T’x) and

that of the bus-guardian (BG-en) are connected to an

OR gate. In turn, the output of the OR gate (Tx) is

connected to the input of the transceiver. The bus-

guardian inhibits and enables the transmissions of the

host-controller by driving BG-en as depicted in Table

1. With this configuration, the following situations

occur:

- the communication-controller transmits and the bus-

guardian enables the transmission: the transmission is

considered correct in the time domain;

- the communication-controller tries to transmit but the

bus-guardian inhibits the transmission: in this case, one

of these two components is faulty (it is not possible to

know a priori which one); in the FlexCAN architecture,

the secondary node replaces the primary one and the

time error is completely masked;

- while the communication-controller is transmitting its

message, the bus-guardian changes from enabling to

inhibiting the transmission: in this case, all other nodes

detect the occurrence of an error (e.g., either a CRC

error, a stuff error ,or other error types) and error

frames are transmitted on the network.

The connection between bus-guardian and host-

controller consists of two wires: one is used for

sending signals from the host-controller to the bus-

guardian (HC-req), and one in the other direction (BG-

res). The main idea is that a host-controller has to

request the bus-guardian the permission to transmit; the

bus-guardian enables the transmission only if enough

time has elapsed from the previous transmission (Fig.2).

The bus-guardian and the host-controller use

independent clocks since their operation does not

necessitate being synchronous. After a given time

interval, the bus-guardian inhibits the communication.

In the laboratory test implementation, HC-req and BG-

res were physically connected to two pins of Port A of

the Motorola HCS12 microcontroller. Later on the

relevant bits are used as state variables. Decoded as

binary number, Port A is hence composed by HC-req as

the least significant bit and by BG-res as the second

least significant bit. That is

Port A = [BG-res, HC-req]

The bus-guardian activates two timers for pacing the

time intervals mentioned above:

- inhibit_time (t i): during this interval the bus-guardian

inhibits the node transmissions;

- write_time (t w): during this interval the bus-guardian

enables the node transmissions.

Fig. 2. Bus-guardian timing.

The algorithm established for the bus-guardian can

be described as a four-state machine (Fig.3), where the

states are given by the Port A value. The following text

describes the state evolution within the algorithm:

State 1) The bus-guardian inhibits the transmission

but the host-controller has no messages to send. In this

situation, Port A = 0, HC-req = 0, BG-res = 0 and

BG-en = 1.

State 2) The host-controller requests the

communication by setting HC-req (Port A = 1). If the

inhibit_time has already expired, the bus-guardian

enables the communication (BG-en = 0).

State 3) The bus-guardian enables the

communication by clearing BG-en and reports the

enabling action to the host-controller by setting BG-res

(port A = 3). The write_time interval starts and, during

this period, the host-controller is enabled to transmit

messages.

State 4) After transmission, the host-controller

clears HC-req (port A = 2).

Fig.3. Bus-guardian state machine.

To illustrate the algorithm, Fig.4 lists the

transmission routine for a typical host-controller with a

single thread; at any rate, this issue is not important as

the actual bus-guardian is a simple device that does not

involve any operating system. The transmit function is

invoked whenever a message has to be transmitted. It

requires as an input argument a pointer to a variable of

type TxMessage. TxMessage is a data structure that

describes the characteristics of the messages. The

CANTransmit function invokes the transmission of the

message to the communication-controller. Before the

transmission, the transmission_request function is

invoked for setting HC-req and waiting for BG-res.

When BG- res is found to be 1, then the transmission is

granted to the communication-controller. After the

invocation of the transmission_end function, HC-req is

cleared. Although the bus-guardian was implemented

on a separate HCS12, simpler devices (e.g. a general-

purpose timer) can be used.

void transmission_request (void) {

 PORTA = 0x01; // state 2

 while (PORTA != 0x03) {} // wait for the BG-res

}

void transmission_end (void) {

 PORTA = 0x02; // state 4

}

void transmit (struct TxMessage *message) {

 transmission_request();

 CANTransmit (message);

 transmission_end();

 }

__

Fig.4. Transmission routine of the host-

controller.

Fig.5 lists the C code of the main segment of the

bus-guardian routine. The timer drivers were

programmed so that the associated variables

(inhibit_time and write_time) are equal to 0 within the

intervals and different from 0 after the intervals are

completed.

5.2 Time parameter choice

Some guidelines for choosing the parameters t w, and

t I are given below for a generic message m. The

write_time t w must be greater than the worst-case

message latency Rm, that is

mw R>τ (1)

where [17]

mmmm IJCR ++= (2)

In (2) Cm is the transmission time of the message, Jm is

the queuing jitter, and Im is the queuing delay referred to

as interference time. Im is the sum of the longest time

that all the messages with priority higher than m can

occupy the bus plus Bm, which is the longest

transmission time taken by a message with priority

lower than m.

__

while (TRUE) {

 if (inhibit_time > 0) {

 if (PORTA == 0x01) {

 BGEN = 0 // enable transmission

 PORTA = 0x03; // state 3

 write_time = 0; // start the timer

 while (write_time == 0) {} // wait for timer

 PORTA = 0x00 // state 1

 BGEN = 1; // disable transmission

 inhibit_time = 0; // start the timer

 } // end if PORTA

 } // end if inhibit_time

} // end while

Fig.5. Main segment of the bus-guardian

routine.

In the FlexCAN architecture we assume that the data

sources send only one message per period (denoted by

Ts). Moreover, by assuming that all the periods are of

the same length, it is

mmaxm BNCI += (3)

where N is the number of higher priority messages and

Cmax is the maximum transmission time of the higher

priority messages. For CAN 2.0A, the transmission time

of a message Cm is given by

  bmmm]d8475/)d834([C τ+++= (4)

where dm is the message size (length of the message

data field in bytes), t b is the time to transmit one bit on

the bus (for a transmission rate of 1 Mbit/s it is 1 µs)

and the symbols + and + stand for truncation of the

decimal value.

One approach is to have the write_time plus the

inhibit_time equal to the period of the data sources, i.e.

siw T=τ+τ (5)

However, because of some small variability in the

transmission times due to the error frames, the

following position is preferred

wsiw T τ−<τ<τ (6)

6. Error modes

In the case of a babbling-idiot fault of the host-

controller, the latter one starts transmitting messages

without taking into account the signals of Port A. The

following error modes can be considered for a faulty

host-controller:

Mode 1) If HC-req=0, then the bus-guardian never

enables the communication. The error is tolerated in

the FlexCAN environment.

Mode 2) If HC-req=1, then the bus-guardian

alternately enables and inhibits the communication on

the basis of the elapsing of the inhibit_time and

write_time intervals. This means that the buses will be

busy during the write_time by the messages sent by the

faulty host-controller and free during the inhibit_time.

__

void transmission_request (void) {

 PORTA = 0x01;

 while (PORTA != 0x03) {}

}

void transmission_end (void) {

 PORTA = 0x02;

}

void transmit (struct TxMessage *message) {

 transmission_request();

 CANTransmit (message);

 transmission_end();

 }

 void main (void) {

 while (TRUE) {

 transmit (message);

 }

 }

__

Fig.6. A babbling-idiot simulator code for

mode 3).

Mode 3) Another possibility is that the host-

controller takes into account Port A signals but tries to

transmit a great deal of messages overwhelming the

network. The code listed in Fig.6 exemplifies this error

mode. Note that under error mode 3), the behavior of

the network is exactly the same as mode 2.

A faulty bus-guardian can lead to the following error

modes:

Mode 4) The bus-guardian inhibits permanently the

communication by setting BG-en; in this case, the host-

controller is kept silent. This mode is tolerated in a

FlexCAN architecture, because the secondary node

takes the place of the silent primary node.

Mode 5) The bus-guardian enables permanently the

communication and the host-controller can transmit

messages at any time. The working hypothesis is the

occurrence of one fault at a time. If both bus-guardian

and host-controller become faulty, then the hypothesis is

not fulfilled.

Mode 6) While the host-controller is transmitting,

the bus-guardian suddenly inhibits the communications.

This is due to an error in the timing of the bus-guardian.

Some error frames in the network appear and the

message is transmitted as soon as the bus-guardian

allows again the communications, provided that the bus

is idle.

7. Laboratory Tests

Laboratory tests were carried out on the FlexCAN

prototype described in Section 4. As a CAN analyzer,

CANoe, a tool marketed by CANTech Inc., has been

used. In the experiment, the sensor node transmits its

messages every Ts=100ms (identifier 0x100). The three

nodes of the triplicated controller FTU read the message

and respond appropriately. The primary node (HC0)

sends its message with identifier 0x200, whilst the

secondary node (HC1) sends its message (0x20F) when

HC0 fails. The behavior of the third node (HC2) is not

described here as it is immaterial for the experiment.

The primary node embeds a bus-guardian with an

inhibit_time of 8ms and a write_time of 2ms. Fig.7

shows a CANoe trace containing the messages sent

during correct network operation (the time resolution of

the trace program is 0.1ms).

Fig.7. Messages transmitted during correct
network operation.

In the following the situation of a primary node

affected by a babbling-idiot fault is considered (error

mode 2). Even if the faulty node starts sending

messages, the behavior of the network is not impaired

as one can see from Fig.8. The effects of the babbling-

idiot fault cover just the 2ms time interval of the

write_time. During this interval (e.g., Time 20.4367 to

20. 4387), the channel is taken by the babbling-idiot

faulty node sending high priority messages (ID=00)

and no other node accesses to the bus. During the 8ms

time interval of the inhibit_time interval (e.g., Time

20.4387 to 20. 4465), the inhibition of the node

produced by the bus-guardian permits the other nodes

to send their messages. Thus, the sensor node and HC1

can send their messages although HC0 is affected by a

babbling-idiot fault. Being that some messages sent by

the faulty node are cut during their transmission, error

frames are found at the end of every write_time

interval. It is worth to note that the babbling-idiot fault

is not removed but masked; at any rate, the system

works properly.

Fig.8. Messages transmitted under a babbling-
idiot fault.

8. Conclusions

Two types of babbling-idiot faults have been

analyzed: hardware and software. Replicated

components are effective to overcome hardware

babbling-idiot faults while bus-guardians are used to

tolerate software babbling-idiot faults. The specific

implementation of bus guardians depends on the

network architecture, its protocol, and the kind of

protection desired (i.e. time domain and/or value

domain). A simple bus guardian suitable for the

FlexCAN architecture, providing protection in the time-

domain, has been presented,. The bus guardian has been

implemented and tested yielding satisfactory results.

Acknowledgements

The authors wish to thank Vector CANTech Inc. for

supplying equipment, to Mark Wicks for his continued

support of the FlexCAN architecture, to Douglas Melton

for his help with the bus-guardian design, and to J.

Kozlowsky for his help with the hardware prototypes.

References

[1] B.W.Johnson, “Design and Analysis of Fault

Tolerant Digital Systems”, Addison Wesley

Publishing, 1989.

[2] H.Kopetz, “Real-Time Systems: Design Principles

for Distributed Embedded Applications”, 1997.

Boston: Kluwer Academic Publishers.

[3] G.Heiner and T.Thurner, "Time-triggered

architecture for safety-related distributed real-time

systems in transportation systems", Twenty-Eighth

Annual International Symposium on Fault-

Tolerant Computing, 23-25 June 1998, pp. 402-

407.

[4] J.R.Pimentel and J. Kaniarz, “A CAN-Based

Application Level Error-Detection and Fault-

Containment Protocol”, Proc. of 11
th

 IFAC Symp.

on Information Control Problems in

Manufacturing (INCOM), Salvador, Brazil, 2004.

[5] “CAN Specifications version 2.0”, Robert Bosch

gmbh, available at

http://www.can.bosch.com/docu/can2spec.pdf.

[6] K.Etschberger, “Controller Area Network, Basics,

Protocols, Chips and Applications”, IXXAT Press,

Germany, 2001.

[7] “Time-Triggered Protocol TTP/C, High-Level

Specification, Document Protocol Version 1.1”,

available at

http://www.ttagroup.org/technology/specification.

htm.

[8] “FlexRay Communication System, Protocol

Specification 2.0”, available at

http://www.flexray.com/specification_request.php

.

[9] K.Hoyme and K.Driscoll, “SAFEBus”,

IEEE/AIAA. Proc. of 11
th

 Digital Avionics

Systems Conference, 1992.

[10] H.Kopetz, “A Comparison on CAN and TTP”,

available at the web page:

http://www.tttech.com/technology/docs/protocol_

comparisons/HK_1998-99 Comparison-TTP.pdf

[11] C.Temple, “Avoiding the babbling-idiot failure in

a time-triggered communication system”, Fault-

Tolerant Computing, Twenty-Eighth Annual

International Symposium, 23-25 June 1998, pp.

218 - 227.

[12] I.Broster and A.Burns, “An analysable bus-

guardian for event-triggered communication”,

24th IEEE Real-Time Systems Symposium, 3-5

Dec. 2003, pp. 410–419.

[13] J.Ferreira, E.Martins, P.Pedreiras, J.Fonseca and

L.Almeida, “Components to Enforce Fail-Silent

Behavior in Dynamic Master-Slave Systems”, 5
th

IFAC, International Symposium on Intelligent

Components and Instruments for Control

Applications, Aveiro, Portugal, July 2003.

[14] J.Ferreira, P.Pedreiras, L.Almeida, and J.Fonseca,

“Achieving fault tolerance in FTT-CAN”, Factory

Communication Systems, 2002. 4th IEEE

International Workshop on Factory

Communication Systems, Vasteras, Sweden, 28-

30 Aug. 2002, pp. 125-132.

 [15] T.Fuehrer, B.Mueller, W.Dieterle, F.Hartwich,

R.Hugel, and M.Walther, “Time-Triggered

Communication on CAN”, R.Bosch gmbh,

available at http://www.can-

cia.org/can/ttcan/fuehrer.pdf .

[16] http://www.freescale.com/webapp/sps/site/taxo

nomy.jsp?nodeId=0162468636bJwn.

[17] K.Tindell, A.Burns, and A.J.Wellings,

“Calculating Controller Area Network (CAN)

Message Response Time”, Control Engineering

Practice, 3(8), pp. 1163-1169, 1995.

