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Overcoming Difficulties in Bayesian Reasoning:
A Reply to Lewis and Keren (1999) and Mellers and McGraw (1999)

Gerd Gigerenzer and Ulrich Hoffrage
Max Planck Institute for Human Development

Bayesian reasoning can be improved by representing information in frequency formats rather than in
probabilities. This thesis opens up applications in medicine, law, statistics education, and other fields.
The beneficial effect is no longer in dispute, but rather its cause and its boundary conditions. C. Lewis
and G. Keren (1999) argued that the effect of frequency formats is due to "joint statements" rather than
to "frequency statements." However, they overlooked the fact that our thesis is about frequency formats,
not just any kind of frequency statements. We show that joint statements alone cannot account for the
effect. B. A. Mellers and A. P. McGraw (1999) proposed a boundary condition under which the beneficial
effect is reduced. In a reanalysis of our original data, we found this reduction for the problem they used
but not for any other problem. We conclude by summarizing results indicating that teaching frequency
representations fosters insight into Bayesian reasoning.

Degrees of uncertainty can be represented in various ways,
including probability and frequency formats. Let us first illustrate
a frequency format and how it improves Bayesian reasoning in
medical experts. We asked a sample of 48 physicians with an
average of 14 years of professional experience, including private
practitioners, university professors, and clinic directors (Hoffrage
& Gigerenzer, 1998), to make inferences about the presence of a
disease given a positive result for four routinely used medical
diagnostic tests. One was mammography. The relevant informa-
tion (concerning a population of women aged 40 years) was
presented to half of the physicians in a probability format, which
can be summarized as follows: The probability of breast cancer is
1%; the probability of a positive test given breast cancer is 80%;
and the probability of a positive test given no breast cancer is 10%.
The question was What is the probability that a woman who tests
positive actually has breast cancer? The other half of the physi-
cians in the study received the same information in a frequency
format: 10 of every 1,000 women have breast cancer; 8 of those 10
women with breast cancer will test positive; and 99 of the 990
women without breast cancer will also test positive. The question
was How many of those who test positive actually have breast
cancer?

When the information concerning mammography and breast
cancer was presented in a probability format, only 8% of the
physicians gave an estimate close to that yielded by Bayes's rule
(i.e., .075). When the information was presented in a frequency
format, in contrast, 46% of them arrived at the Bayesian response.
This beneficial effect of the frequency format on physicians'
judgments was obtained in each of the four diagnostic tasks. Thus,
frequency formats help to improve Bayesian reasoning not only in
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laypeople (Betsch, Biel, Eddelbuttel, & Mock, 1998; Cosmides &
Tooby, 1996; Gigerenzer & Hoffrage, 1995) but in experts as well.

We consider this result exciting both in its potential for appli-
cation and in its theoretical implication that reasoning is "per-
formed" partly outside of the mind by the representation of infor-
mation. There seems to be a consensus about the effect's existence.
The debate has now shifted to the questions of why the effect
occurs and what its boundary conditions are. These are the main
issues raised by the two pairs of commentators to whom we
respond here. Before we address these questions, we clarify what
frequency formats are because Lewis and Keren (1999; unlike
Mellers & McGraw, 1999) seem to have overlooked the fact that
frequency formats are not just any kind of frequency statements.

What Are Natural Frequencies (Frequency Formats)?

A frequency format is the outcome of natural sampling rather
than systematic sampling, and consists of frequencies that have not
been normalized with respect to the base rates (Gigerenzer &
Hoffrage, 1995, pp. 686-687). Because the term frequency format
has been repeatedly misunderstood as frequencies of any kind, in
recent publications we have adopted the (synonymous) term nat-
ural frequencies instead.

Natural sampling is the process of encountering instances in a
population sequentially. The outcome of natural sampling is nat-
ural frequencies. Figure 1A illustrates the natural frequencies
observed in a sample of 1,000 women, of which 10 have breast
cancer and 990 do not.

There are two ways to arrive at frequencies that are not natural
frequencies. The first is through systematic sampling, in which the
base rates are fixed before any observations are made. Systematic
sampling is typically used in experiments that test the effect of a
treatment. Figure IB shows an example in which 1,000 women
with and 1,000 women without breast cancer were tested. Note that
Figure IB contains absolute frequencies that were not obtained
through natural sampling. Unlike natural frequencies, they do not
contain information about the base rates of women with and
without cancer.
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Figure 1. A: natural frequencies. B: absolute frequencies that are not
natural frequencies (obtained by systematic sampling or by normalizing
natural frequencies with respect to base rates). C: relative frequencies or
probabilities. H and D stand for hypothesis and data, respectively.

There is a second way to arrive at frequencies that are not
natural frequencies: by normalizing natural frequencies with re-
spect to the base rates (i.e., by setting the base rates to the same
value, such as 1,000 [see Figure IB] or 1.0 [see Figure 1C]). For
instance, consider the 10 women with cancer in Figure 1A (left
column), of whom 8 test positive. Normalizing this natural fre-
quency results in 800 of 1,000 (see Figure IB), or .8 (see Figure
1C). Normalized natural frequencies, like absolute frequencies
obtained through systematic sampling, thus have the base-rate
information filtered out of them.

Natural frequencies such as those in Figure 1A result from the
most common form of direct observation (outside of systematic
experimentation in science). Young children can count events from
an early age, but do not understand fractions and other kinds of
normalized counts until much later in their development (Dehaene,
1997). Examples of natural frequencies in science can be found in
medical and epidemiological screening data from which base rates,
hit rates, and false-positive rates are derived. The qualifier "natu-
ral" in the terms natural sampling and natural frequencies empha-
sizes that they are based on observations made in an ecological
(rather than an experimental) setting and on raw (rather than
normalized) counts of events.

The important point is that natural frequencies facilitate Bayes-
ian computations. This is because they carry information about

bases rates, whereas normalized frequencies and probabilities do
not. If information is presented in normalized values, one has to
multiply these by the base rates to bring the base rates "back in."
Natural frequencies need not be multiplied in this way (Gigerenzer
& Hoffrage, 1995).

To summarize, natural sampling yields natural frequencies,
which carry information about base rates and thereby facilitate
Bayesian computations. Systematic sampling and normalization
do not lead to natural frequencies. Systematic sampling does not
capture information about base rates because they are fixed before
the observations are made. Normalization entails discarding the
base-rate information after the observations are made.

With this definition of natural frequencies in mind, let us first
consider Lewis and Keren's experiment and then their theoretical
argument.

Normalized Frequencies Are Not Natural Frequencies

Lewis and Keren attempt to show that it is not "the use of
frequencies by itself (p. 411) that improves Bayesian reasoning.
In their experiment, they compare natural frequencies (as in Figure
1A) with normalized frequencies (as in Figure IB; they call the
latter "conditional frequencies"), and report that the former gen-
erated more Bayesian responses. From this difference, they con-
clude that it is not the use of "frequency statements" that causes the
improvement in performance, a result they believe undermines our
argument about natural frequencies. They thereby overlook the
point of our hypothesis, namely that Bayesian reasoning is facil-
itated by natural frequencies, not by just any kind of frequency
statements.

In Experiment 2 (Gigerenzer & Hoffrage, 1995), we showed
that relative frequencies like those in Figure 1C resulted in the
same low Bayesian performance as probabilities, a result Lewis
and Keren do not mention. Lewis and Keren have since shown
the same result for the second type of normalized frequencies
(Figure IB).

Can Joint Statements Account for the Effect
of Natural Frequencies?

We have argued that natural frequencies improve Bayesian
performance because (a) they carry information about the base
rates, which facilitates Bayesian computations, and (b) these com-
putations are performed on natural numbers (Gigerenzer & Hof-
frage, 1995, Results 1-7, pp. 687-689).

In contrast, Lewis and Keren claim that the beneficial effect is
due not to natural frequencies but to the use of "joint statements"
(i.e., statements about the joint events D & H and D & not-fl) as
opposed to "conditional statements." Their experiment, however,
cannot distinguish between these two alternative explanations,
because their joint statements were natural frequencies, and what
they call conditional statements were normalized frequencies. Be-
cause natural frequencies necessarily involve joint statements, the
critical test case would be joint statements that are not natural
frequencies. A representation in terms of joint probabilities, such
as p(D & H), permits such a test.

Although Lewis and Keren include joint probabilities in their
Figure 1, they did not test joint probabilities. We did (Gigerenzer
& Hoffrage, 1995, pp. 692-695), a fact that Lewis and Keren fail
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to mention. We tested a full 2 X 2 factorial design that included
joint probabilities, standard probabilities, and the two correspond-
ing types of natural frequencies (Figure 2).

If the effect of frequency formats were mainly due to the use of
joint statements, as Lewis and Keren claim, then a probability
format with joint statements should lead to about the same perfor-
mance as a frequency format. This is not the case. The probability
format with joint statements yielded an average of only 28%
Bayesian responses, whereas the corresponding frequency format
yielded 50% (see Figure 2). The superiority of this frequency
format was observed in each of the 15 problems studied. If one
adds the other two cells of Figure 2 to the picture, one can see that
each of the frequency formats (standard and short menu, between
which Lewis and Keren do not distinguish) results in more Bayes-
ian responses than each of the two probability formats.

To summarize, contrary to Lewis and Keren's hypothesis, joint
statements alone cannot account for the beneficial effect of fre-
quency formats.

Rare Events

In contrast to Lewis and Keren, Mellers and McGraw do not
dispute that the beneficial effect of information representation that
we found is due to natural frequencies, which, as they phrase it,
help people to visualize "nested sets." However, they propose a
condition under which the effect is no longer obtained.

Mellers and McGraw distinguish between problems that include
rare as opposed to common events. They define rare events as
having probabilities of .05 or lower. The boundary condition
Mellers and McGraw propose is as follows: If all events are
common, then the advantage of natural frequencies is reduced. If
at least one of the events is rare, however, natural frequencies
should have a large effect on performance.

Menu

Short Standard
(joint)

50

28

46

16

Frequency

Format

Probability

Figure 2. The 2 X 2 factorial design in Gigerenzer and Hoffrage (1995,
Experiment 1) and the percentages of Bayesian responses in the four
conditions. The standard menu displays p(H), p(D\H), and p(D\ not-H), or
the corresponding frequencies, whereas the short menu displays p(D & H)
and p(D), or the corresponding frequencies. (Probability formats with short
menus are catted joint probabilities by the commentators.) The two prob-
ability formats are identical to the PC and PJ conditions in Lewis and
Keren's (1999) Figure 1; the frequency formats, however, are not (see
text). The percentages of Bayesian responses in each of the four conditions
are averaged across 15 problems (including the mammography and cab
problems, which the commentators examined).

Mellers and McGraw then predict that the difference between
natural frequencies and probabilities will be minimized for prob-
lems with a common base rate of 15% compared with a problem
with a rare base rate of 1%. Their experimental results are shown
in Figure 3 (broken lines). When the base rate was 15%, the two
probability formats indeed resulted in almost the same proportion
of Bayesian responses as the corresponding frequency formats.

Mellers and McGraw tested their hypothesis for only one rare
base rate and one common base rate. To test the generality of their
finding, we reanalyzed the results of all 15 problems in our
Experiment 1, which include base rates ranging from 0.005% to
80% (i.e., from very rare to very common). Figure 3 (solid lines)
shows that the interaction Mellers and McGraw predict—that the
difference between probabilities and natural frequencies would be
smaller for problems that have only common events—was not
observed. However, among the four problems with common
events (base rates of 15%, 30%, 36%, and 80%), there was one
(base rate of 15%) in which the proportion of Bayesian responses
for the two frequency formats was almost as low as for the
corresponding probability formats. This exception was the cab
problem, which elicited the same effect in Mellers and McGraw's
study.

This reanalysis of our data indicates that Mellers and McGraw's
results are no fluke. There seems to be something special about the
cab problem that suppresses or counteracts the beneficial effect of
natural frequencies. Thus, there is a boundary condition on the
effect of natural frequencies, but it seems to be even more specific
than Mellers and McGraw state; it has to do with some feature(s)
of the cab problem that reduce(s) the effect of natural frequencies.
However, common events do not seem to be a boundary condition
because the beneficial effect of natural frequencies was observed
across a broad range of rare and common events. Instead of the
predicted interaction, our reanalysis revealed a small main effect:
In each of the four forms of representation tested in Experiment 1,
Bayesian responses were, if anything, slightly more frequent when
events were common rather than rare.

To summarize, Mellers and McGraw's results are consistent
with those obtained in our Experiment 1. However, they hold for
the cab problem and not for any of the other problems, some of
which involve even larger base rates. The feature of the cab
problem responsible for this result remains to be discovered. Thus,
the boundary condition seems to be even more specific than
proposed.'

1 Why is the overall level of performance among the participants in
Mellers and McGraw's study not even half that among our University of
Salzburg students (see Figure 3)? Mellers and McGraw suggest practice as
an explanation: Whereas their student participants received only 1 problem
each, ours worked on 30 problems in all (15 problems X 2 representations).
To test this hypothesis, we reanalyzed our data and found that the perfor-
mance of our participants on the first problem was even slightly higher than
that on the remaining 29 problems, lending no support to an explanation in
terms of improvement by practice. Mellers and McGraw's second hypoth-
esis, cultural differences in basic mathematical training, seems more prom-
ising to us.
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Figure 3. The 15 problems (Gigerenzer & Hoffrage, 1995, Experiment 1) ordered from rare to common base
rates. Straight lines show the results of our Experiment 1; dashed lines show the results of Mellers and McGraw' s
(1999) study. Note that in the four problems with base rates higher than 5%, all other probabilities are also above
5%; therefore, all events are "common" in the sense of Mellers and McGraw. The percentages of Bayesian
inferences for the cab problem are slightly different from those reported in Mellers and McGraw's Table 6
because the latter were based on the numerical responses alone, whereas ours were based on the numerical
responses and the "write-aloud" protocols during the test and an interview after the test, as described in
Gigerenzer and Hoffrage (1995, p. 692).

Multiple Representations:
When Should We Use Natural Frequencies?

Lewis and Keren argue that one should represent information in
terms of probabilities rather than natural frequencies because the
former "reflect what we actually do in inferential science" (p. 414).
We disagree with the idea that there is a single best form of
information representation for all purposes. There are situations in
mathematics and beyond in which probabilities are an excellent
choice for representation. In experiments based on systematic
sampling, for instance, no natural frequencies are obtained, and
probabilities of the type p(D/H) are often all that is needed, as
Lewis and Keren correctly observe. (Few scientists actually use
Bayesian statistics to test their hypotheses.) However, when we
turn to situations in which Bayesian reasoning is important, and
intuitive understanding and successful communication are crucial,
then natural frequencies are a better choice. We provide two
examples.

Consider a typical counselor among the 20 professional AIDS
counselors we studied during actual counseling sessions with a
low-risk male client (Gigerenzer, Hoffrage, & Ebert, 1998). Like
all counselors, this one explained the uncertainties to the client in
probabilities and percentages. For instance, he said that the prev-
alence of HIV among men like the client is 0.1% or slightly higher,
and that the HIV test's sensitivity (the probability of a positive test
given HIV) and specificity (the probability of a negative test given

no HIV) are both 99.9%. When the client asked what this would
mean for the chances that he actually has HIV if he tested positive,
the counselor responded that this chance is also 99.9%.

If this counselor had been trained to represent uncertainties in
natural frequencies rather than in probabilities (which none of the
counselors we studied had been), he would easily have understood
that this answer makes no sense. Using natural frequencies, the
same counselor could have explained, "Imagine 1,000 low-risk
men like you taking an HIV test. One of these is infected and will
test positive with practical certainty. Of the remaining 999 unin-
fected men, we expect that 1 will also test positive. Thus, we
expect that of the 2 who test positive, only 1 is infected. Therefore,
if you tested positive, your chances of really being infected would
be about 1 in 2." Using natural frequencies, both counselor and
client can more easily understand what a positive test means. Here,
a frequency representation can prevent psychological distress
based on misunderstood probabilities.

Representing information in natural frequencies can also make a
difference in the courtroom, for instance, in testimony concerning
DNA fingerprinting. The lawyers on O. J. Simpson's multimillion-
dollar defense team are the only ones of whom we know who have
taken notice of research into the power of frequency formats. They
opposed the admission of conditional probabilities and likelihood
ratios, which are ratios of conditional probabilities, in the testi-
mony of DNA expert and witness for the prosecution Professor
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Bruce Weir. The defense team requested that the jurors hear the
information in frequencies instead, to which Judge Ito and the
prosecution agreed (Koehler, 1996). The request was based on the
sound argument that jurors might confuse random-match proba-
bilities with statements about the probability that Mr. Simpson was
actually the source of the samples.

These two examples illustrate real-world situations in which
using natural frequencies can foster understanding (for more, see
Gigerenzer, 1998).

Base Rates Vary, but Conditional
Probabilities Do Not. True?

Lewis and Keren argue that one can apply the same conditional
probabilities to new populations with different base rates, and that
this ease of generalization favors the standard probability format.
To support this argument, they claim that although women in
different age groups can be expected to have different base rates of
breast cancer, the "conditional rates of a positive report, given the
presence or absence of breast cancer, might be expected to remain
relatively stable across different populations of women. To apply
them to a new group, all that would be needed is the base rate of
breast cancer for the new group" (p. 414).

The problem with this argument—that base rates vary while
conditional probabilities either vary little or not at all—is that base
rates and conditional probabilities often vary together. For in-
stance, the sensitivity (hit rate) of mammography is consistently
lower in younger women, who also have lower base rates of breast
cancer, probably because of the lower contrast between cancerous
and normal glandular tissue in younger women (Fletcher, Black,
Harris, Rimer, & Shapiro, 1993). Aside from specific causal fac-
tors such as the fact that time softens tissue, which in turn im-
proves test sensitivity, there is also a more general reason for this
dependency. When tests such as those for breast cancer and HIV
are based on continuous rather than binary variables, one needs to
define what counts as a positive result. This definition depends on
the costs of the two possible errors one can make (i.e., misses and
false alarms), which in turn depend on the base rates. In other
words, the balance between sensitivity and specificity of a test is
actually chosen dependent on the base rates.

Ignoring the fact that base rates and conditional probabilities are
often dependent can lead researchers to mistake people's sensitiv-
ity to this dependency for base-rate neglect, as demonstrated for
the cab problem by Birnbaum (1983) and for the engineer-lawyer
problem by Mueser, Cowan, and Mueser (1999).

To conclude, the claim that base rates and conditional probabil-
ities are independent stands or falls with the empirical evidence.
Instead of making the general assertion that base rates shift with
population whereas conditional probabilities do not, we need to
consult the specific evidence in each case.

Teaching Frequency Representations

One of the physicians in the study mentioned in the opening
paragraph wrote to us that she now represents probabilities as
natural frequencies, and no longer has "to muddle through" statis-
tical information pretending to herself and her patients that she
understands. Others remarked that natural frequencies are "more
visual" and help them to see through the numbers (Hoffrage &

Gigerenzer, 1998). On the basis of these and other experiences in
working with experts and laypeople, we disagree with Lewis and
Keren's unsupported claims that substituting frequency for prob-
ability representations is "mechanical" and that the "effectiveness
of such attempts [to overcome cognitive biases] may be more
apparent than real" (p. 414).

More systematic evidence that natural frequencies foster insight
comes from studies on training in statistical reasoning. Two im-
portant measures of statistical comprehension are generalization to
new problems and temporal stability after training. In testing a
computer-based program for training Bayesian reasoning,
Sedlmeier (1997; Sedlmeier & Gigerenzer, 1999, Experiment 1)
examined both. One group of participants was taught how to
represent probabilities as natural frequencies. Another group re-
ceived traditional rule training, in which participants learned to
insert the appropriate probabilities into Bayes's rule. To compare
the effects of representation and rule training, Sedlmeier gave
participants test problems in which all statistical information was
expressed in probabilities. The immediate generalization effect for
the representation training was about twice as high as that for the
rule training. Five weeks after the training, the median percentage
of Bayesian responses in the rule group was down to only 15%,
whereas that in the frequency representation group remained a
high 90%.

Translating probabilities into natural frequencies thus proved
highly effective in training Bayesian reasoning, suggesting that
rather than being superficial or mechanical, natural frequencies can
foster statistical insight.

Cognitive Illusions and Frequencies

Several other "cognitive illusions" can be reduced or eliminated
by presenting information in frequency formats or by asking
questions in terms of frequencies. We emphasize that there are
different causal factors behind these effects, of which we have
studied three. First, natural frequencies facilitate Bayesian compu-
tations, as in the research discussed here. Second, posing a ques-
tion in terms of frequencies can clarify (or change) the reference
class on which a probability judgment is based. For instance, we
have argued that the "overconfidence bias" disappears with fre-
quency questions because they switch the reference class from
which the numerical judgments are derived (Gigerenzer, Hoffrage,
& Kleinbolting, 1991). Third, asking a frequency question may
induce the listener to interpret a question as being related to
mathematical probability, whereas asking "how probable" an event
is may elicit one of the legitimate nonmathematical interpretations
of probability, which are often cued by other aspects of the
problem. The so-called conjunction fallacy in the Linda problem is
an example of an illusion that is reduced by a frequency represen-
tation for this reason (Hertwig & Gigerenzer, in press).

Although in each case a cognitive illusion is reduced or elimi-
nated, one should not confuse the different causal factors behind
the frequency effect. Also, there are more than the three just
mentioned: Frequencies are easier to visualize, and they facilitate
internal representations that involve discrete elements, such as in
Johnson-Laird's (1983) mental models.
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Conclusions and Open Questions

Humans seem to be developmentally and evolutionarily pre-
pared to handle natural frequencies. In contrast, many of us go
through a considerable amount of mental agony to learn to think in
terms of fractions, percentages, and other forms of normalized
counts. An evolutionary point of view draws our attention to
information representation in the environment and, specifically, to
how representations change over time. This is a research heuristic
of which few theorists of reasoning, judgment, and decision mak-
ing take advantage. Changes in external representation, such as the
historical transition from raw counts to normalized probabilities in
expressing uncertainty, can suggest how numbers can be commu-
nicated most effectively to the unaided mind. Moreover, observing
how the mind responds to such changes can help us to understand
its design.

We hope that this reply clarifies the misunderstandings about
what natural frequencies are. Contrary to Lewis and Keren's
argument, the beneficial effect of natural frequencies cannot be
explained by joint statements alone. Mellers and McGraw's sug-
gested boundary condition was replicated in our experiment, but
only for the cab problem.

In conclusion, we would like to mention some open questions
with which we struggle. Does the beneficial effect of natural
frequencies hold when there is more than one piece of data (e.g.,
several test results rather than one mammogram; see Krauss,
Martignon, & Hoffrage, in press)? Alternatively, does the mind
resort to fast and frugal heuristics as the frequency calculations
become more complex (Gigerenzer, Todd, & the ABC Research
Group, 1999)? If so, what do these heuristics look like? What
structural properties of environments make these heuristics accu-
rate? Mellers and McGraw's distinction between rare and common
events, for instance, may point to such a structural property. Small
base rates combined with large hit rates, for instance, allow for
shortcuts in Bayesian reasoning with little decrement in accuracy
(Gigerenzer & Hoffrage, 1995).

We invite readers to view natural frequencies as a cognitive tool
with which psychologists can help experts and laypeople alike to
understand the implications of statistical information. The effect of
natural frequencies on Bayesian reasoning has practical conse-
quences for education, public policy, and risk communication as
well as implications for theories of judgment under uncertainty. In
real-world contexts such as mammography, DNA fingerprinting,
and HIV counseling, the difference in intelligibility between prob-
abilities and natural frequencies can make the difference between
despair and hope.
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