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Overcoming false-positive gene-category
enrichment in the analysis of spatially resolved
transcriptomic brain atlas data
Ben D. Fulcher 1,2✉, Aurina Arnatkeviciute2 & Alex Fornito 2

Transcriptomic atlases have improved our understanding of the correlations between

gene-expression patterns and spatially varying properties of brain structure and function.

Gene-category enrichment analysis (GCEA) is a common method to identify functional gene

categories that drive these associations, using gene-to-category annotation systems like the

Gene Ontology (GO). Here, we show that applying standard GCEA methodology to spatial

transcriptomic data is affected by substantial false-positive bias, with GO categories dis-

playing an over 500-fold average inflation of false-positive associations with random neural

phenotypes in mouse and human. The estimated false-positive rate of a GO category is

associated with its rate of being reported as significantly enriched in the literature, suggesting

that published reports are affected by this false-positive bias. We show that within-category

gene–gene coexpression and spatial autocorrelation are key drivers of the false-positive bias

and introduce flexible ensemble-based null models that can account for these effects, made

available as a software toolbox.
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T
he brain’s multi-scale organization spans at least five
orders of magnitude in space and time1,2. Understanding
how these distinct scales relate to each other has proven

challenging, largely because typical assays face a trade-off between
spatial resolution and anatomical coverage. For example, in vivo
brain-imaging techniques like magnetic resonance imaging (MRI)
afford an unparalleled capacity to measure diverse aspects of
structure and function across the entire brain, but have a limited
spatial resolution that rarely surpasses 1 mm3. By contrast,
invasive physiological recordings enable the measurement of
neural structure and dynamics with cellular resolution, but tra-
ditionally only within small subregions of the brain. In recent
years, our capacity to understand variations in molecular function
across the entire brain has been greatly enhanced by indus-
trialized, high-throughput transcriptome profiling, which has
yielded genome-wide quantification of expression levels across
the entire brain3,4. Two of the most influential genome-wide
resources are the Allen Human Brain Atlas (AHBA), which
encompasses microarray measurements of expression in >20,000
genes across 3702 tissue samples from six postmortem brains4,
and the Allen Mouse Brain Atlas (AMBA), which comprises
in situ hybridization measures of expression for >17,000 genes at
cellular resolution3.

The availability of these genome-wide expression atlases has
generated new opportunities to bridge spatial scales and uncover the
microscale molecular correlates of macroscale brain organization.
This correspondence has commonly been assessed by comparing
regional variations in molecular function (from gene-expression
maps) to independently measured macroscale structural and func-
tional properties, e.g., from imaging techniques like MRI5,6. Prior
work has characterized a relationship between gene expression and
structural connectivity in Caenorhabditis elegans7–10, mouse11–18,
and human19,20. Human research has further characterized links
between gene-expression patterns and correlations of neural
dynamics (functional connectivity) estimated from functional MRI
(fMRI)21–23 and electrocorticography24; brain morphometry and
microstructure25–30; neurotransmitter receptor densities31; and
disease-related changes in brain structure and function32–35.

In these analyses, genes are typically scored according to the
correspondence between their spatial expression map and ana-
tomical variations of the independently measured phenotype,
most commonly quantified as a Pearson correlation across a set of
spatial locations. Instead of performing inference on thousands of
genes directly, statistical tests can be performed at the level of
groups of functionally annotated sets of genes, such as those
involved in different types of biological processes. This process of
gene category enrichment analysis (GCEA) investigates which
categories are preferentially related to a spatial brain phenotype
(SBP) of interest, reducing the genome-wide multiple comparison
burden and facilitating biological interpretation. GCEA uses a
statistical hypothesis-testing framework to assess which categories
of genes are most strongly related to a given phenotype, lever-
aging annotations of genes to categories from open ontologies like
the Gene Ontology (GO)36 and KEGG37. GCEA has been applied
extensively across species, scales, and diverse aspects of brain
structure and function to gain insight into the biological processes
that are mediated by genes with similar spatial expression profiles.

In the brain-imaging literature, a wide variety of publicly
available tools have been used to perform GCEA38–47. While
software packages make enrichment analysis easy to run, there
are numerous challenges to correctly interpreting the results of
GCEA. This requires careful consideration of (i) the reliability of
gene annotations (including the rate of false-positive
annotations48); (ii) the reproducibility of results (different soft-
ware packages use different methods to perform enrichment with
respect to the GO hierarchy; both annotations and GO terms are

updated daily49); and (iii) the statistical inference procedure (the
design of multiple-hypothesis testing across many non-
independent and often hierarchically structured tests48,50).
Methodological variability can lead to vast discrepancies in results
obtained using different software packages. For example, one test
(using identical inputs to different software packages) revealed a
variation in p values spanning several orders of magnitude for
some GO categories48. Methodological developments of GCEA
are ongoing51,52.

Applications of GCEA, from the interpretation of genome-wide
association studies53, to case–control comparisons of microarray
data, are subject to the general statistical challenges outlined above.
But growing applications of GCEA to spatial transcriptional data—
at the whole-brain as well as microscopic scale54,55—are associated
with unique challenges due to the data’s spatial embedding. These
challenges have not yet been fully characterized or explored. First,
spatial embedding introduces coexpression between genes with
similar expression patterns4,56,57, which results in gene–gene
dependencies that form a generic characteristic of the expression
dataset. Second, transcriptional maps are strongly spatially auto-
correlated, such that nearby anatomical regions have more similar
patterns of gene expression than distant regions, as has been
observed in head neurons of C. elegans10, the mouse brain12,18,
and human cortex5,6,56,58–60. The neural phenotypes that are
matched to gene-expression atlas data are also commonly spatially
autocorrelated10,18,61–65. Two spatial maps with similar spatial
autocorrelation structure have a greater chance of exhibiting a high
correlation to each other than two random spatial maps. Issues
related to spatial autocorrelation of brain data have been high-
lighted in other contexts, with researchers developing methods to
better estimate null distributions in the presence of spatial auto-
correlation, e.g., using spatial permutation methods like spatial-lag
models30,66 and spin tests67 to test against an ensemble of surrogate
spatial maps, or by removing the effect of physical distance through
regression5,12,14,16–18,24,68. Despite the growing acknowledgment of
these issues, the precise impact of gene–gene coexpression and
spatial autocorrelation of expression profiles on GCEA results has
not been systematically characterized.

In this work, we evaluate the statistical biases involved in
applying standard GCEA methodologies to spatially embedded
transcriptomic datasets. We focus on whole-brain analyses here,
but note that the same principles apply to GCEA analyses on any
scale. We demonstrate that the rate at which a GO category is
judged as significantly correlated to a random phenotype is far
higher than statistical expectation, exceeding 20% for some GO
categories. Analyzing a survey of the literature, we find a pro-
gressive increase in the rate of GO categories being reported as
significant with their false-positive rate under random pheno-
types, compatible with the reporting of false-positive bias. We
show that these biases can be overcome using new ensemble-
based null models that assess statistical significance relative to
ensembles of randomized phenotypes (rather than constructing
nulls by randomizing genes). Using case studies applying GCEA
to a range of structural connectomic and cell density phenotypes
in mouse and human brains, we show that highly significant
categories under conventional GCEA are often consistent with
ensembles of randomized phenotypes. Our ensemble-based
approach to GCEA overcomes biases in investigating the tran-
scriptomic correlates of spatially varying neural phenotypes, and
is made available as a software toolbox69.

Results
We first describe a typical GCEA pipeline applied to a SBP of
interest, depicted in Fig. 1A. The SBP is a spatial map of some
measurement (e.g., taken across brain areas), such as gray matter
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volume, functional connectivity strength, or case–control differ-
ences in some property. Each gene in the atlas is scored using a
measure of similarity between its expression pattern and the SBP
(e.g., a correlation coefficient), yielding high scores for genes with
expression maps that closely resemble the SBP. GCEA then tests
whether high-scoring genes are concentrated in particular types
of GO categories by comparing the GO category scores obtained
from the data to those obtained from a null model. GCEA
algorithms typically use a “random-gene null” to assess whether a
GO category’s score is higher than would be expected if genes
were annotated to GO categories randomly48. This is similar to
shuffling gene identities, as depicted in Fig. 1B, C. This general
procedure captures the essence of applying GCEA to expression
atlas datasets. We note that some pipelines for performing GCEA
have been proposed that randomize phenotypes rather than
genes70,71, but to our knowledge they have not been applied in
the setting of spatially embedded transcriptomics. We also note
that, while here we focus on these types of spatial comparisons,
some studies focus instead on pairwise phenotypes, such as the
presence of a connection between brain areas and a measure of
correlated gene expression6,18,21.

Throughout this work, we perform GCEA on biological process
GO categories36 using brain-wide gene-expression data from the
AMBA3 for the mouse brain, and the AHBA4 for the human
cortex. As described in “Methods”, enrichment is performed as
gene-score resampling38 using Matlab software that we
developed69. Given the sensitivity of GCEA results to specific
methodological pipelines48, our aim here is to highlight general
issues with applying any GCEA pipeline to spatially embedded

transcriptional atlas data. Thus, while the quantitative results
presented here will vary across different GCEA packages and
parameters, the statistical biases we characterize will apply to all
current GCEA pipelines that assess significance relative to
random-gene null models.

Diverse phenotypes in the literature are enriched for similar
GO categories. We undertook this study after observing a strong
similarity in the results of GCEA analyses of spatially embedded
data in the literature, despite these analyses involving very dif-
ferent phenotypes, species, measurement modalities, gene-
expression processing pipelines, and software implementations
of GCEA. To evaluate this consistency, we surveyed 16 mouse
GCEA analyses (taken from 8 different studies) and 60 human
GCEA analyses (from 23 studies), all involving spatially embed-
ded atlas data from the AMBA and AHBA. Across many very
different phenotypes, these studies indeed reported similar sig-
nificant GO categories, most frequently implicating categories
related to metabolic, neuronal, and generic biological and beha-
vioral processes. The most reported GO category in our survey
was “chemical synaptic transmission” (GO:000726), which has
been reported in 15 human analyses from 10 different
studies21,26,32,72–78 and 4 different mouse analyses from 3 dif-
ferent studies14,17,79. These studies collectively implicate genes
involved in chemical synaptic transmission in the organization of
human resting-state functional connectivity21, human adolescent
cortical shrinkage and myelination26, and tract-traced structural
connectivity in the mouse brain17. Some other commonly
reported categories include “potassium ion transmembrane
transport”22,26,32,77,80,81, “learning or memory”15,77,78,82,83, and
“electron transport chain”18,19,23,26,77 (see Supplementary Data 1
for a sorted list of GO categories, annotated by studies). All of
these biological processes are sufficiently broad to be plausibly
linked to any type of brain-related phenotype, but we aimed to
investigate whether the consistency of these findings might
instead be driven by common statistical biases in GCEA that
favor the selection of some GO categories over others.

The GO enrichment signature of randomized spatial maps. We
tested for false-positive bias in the application of GCEA to spatial
transcriptomic data by characterizing the enrichment results for
purely random SBPs (generated by assigning a random number
to each brain area independently). We performed GCEA sepa-
rately for each of 10,000 independent random SBPs, noting which
GO categories were significantly related to each SBP (false dis-
covery rate, FDR < 0.05). We then computed the category false-
positive rate (CFPR) for each GO category as the proportion of
random SBPs for which a statistically significant spatial correla-
tion was identified. This method of computing CFPRs under
random SBPs is depicted schematically in Fig. 2A(ii) and labeled
“SBP-random”. As random SBPs are uninformative, an unbiased
GCEA procedure should produce CFPRs consistent with the
expected statistical false-positive level, and all GO categories
should have similar CFPRs. We estimated this expected CFPR
numerically using a “reference” case, shown in Fig. 2A(i), in
which each gene’s expression data were randomized indepen-
dently. As this randomization destroys gene–gene coexpression
structure in the gene-expression matrix, it allows us to isolate the
contribution of nonrandom gene-expression structure to CFPRs
through comparison to the “SBP-random” results. Motivated by
the strong spatial autocorrelation observed in many real SBPs6,
we also tested whether the use of spatially autocorrelated random
phenotypes would affect CFPRs. These spatially autocorrelated
SBPs, labeled “SBP-spatial” [Fig. 2A(iii)], were generated using a
spatial-lag model84, with parameters determined from the spatial

Fig. 1 Pipeline for applying gene category enrichment analysis (GCEA) to

brain-wide expression atlas data. A Given a phenotype map, we first

compute the spatial correlation coefficient between that map and each

gene. These gene scores are then agglomerated at the level of categories

using an annotation system like the Gene Ontology (GO). For continuous

scores, agglomeration is typically performed as the mean score of genes

annotated to a category. B Statistical significance of a GO category is

assessed relative to the random-gene null, which estimates a null

distribution for each GO category by annotating genes to GO categories at

random. C For every GO category, a p value is estimated using a

permutation test, by comparing the GO category score obtained from the

real data to the null distribution.
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autocorrelation properties of the gene expression data (following
Burt et al.30, see “Methods” for details).

Distributions of nonzero CFPR across GO categories are
shown on a logarithmic scale for the three experiments in Fig. 2B
performed using mouse expression data (similar quantitative
results were obtained in human, cf. Fig. S1). In the “reference”
case, consistent with the lack of signal from randomized gene
expression and random phenotypes, we observed very low CFPR
across our ensemble of 10,000 random SBPs. The vast majority of
GO categories (84% in mouse and human) were never judged as
statistically significant for any of the 10,000 random maps, and
the maximum CFPR was 0.03% in both mouse and human (mean
CFPR= 0.002% in both mouse and human).

When repeating the procedure using the same random SBPs,
but now with real gene-expression data [“SBP-random”, Fig. 2A
(ii)], the mean CFPR increased 875-fold in mouse (from 0.002 to
1.5%) and 582-fold in human (from 0.002 to 1.0%). The maximal
CFPR jumped dramatically from the reference level of 0.03 to 23%
in mouse (to 25% in human). When the ensemble of phenotypes
was constrained to exhibit generic spatial autocorrelation structure
(“SBP-spatial”), most GO categories decreased their CFPR (60% in
mouse and 68% in human). However, some categories exhibited
large increases in CFPR, driving an increase in the average CFPR
under “SBP-spatial” phenotypes from 1.5 to 2.8% in mouse
(maximal CFPR increased from 23 to 37%) and from 1.0 to 2.2%
in human (maximal CFPR increased from 25 to 36%). The

differences between the SBP-random and SBP-spatial ensembles
will be explored in more detail later.

When applied to spatial transcriptomic data, we thus find
major differences in significance testing between controlling false-
positive rates relative to randomized genes (conventional GCEA)
and controlling false-positive rates relative to randomized
phenotypes. Conventional GCEA yields significant false-positive
relationships to SBPs made up of random numbers, far beyond
statistical expectation, indicating a striking methodological bias.
This false-positive bias does not affect all categories equally: some
GO categories exhibit reference-consistent CFPR (≤0.03%), while
others are judged to be significantly correlated to random spatial
maps >20% of the time. Concerningly, the categories with the
highest CFPRs in mouse and human are dominated by brain-
related function: neurons (e.g., “regulation of synaptic plasticity”:
23% in mouse, 10% in human), metabolism (e.g., “respiratory
electron transport chain”: 19% in mouse and 10% in human), and
behavior (e.g., “learning”: 20% in mouse and 5% in human), as
listed in Table S1 (full list in Supplementary Data 2).

To assess whether GO categories commonly reported as
significant in the published literature might be affected by this
false-positive bias, we investigated whether these published
categories were more likely to have high CFPR. We performed
an equiprobable binning of GO categories by their CFPR (placing
an equal number of categories in each bin) and then analyzed the
proportion of all categories in each bin that had been reported as

Fig. 2 Some GO categories have far higher false-positive rates under randomized spatial phenotypes than statistical expectation, and these GO

categories are more likely to be reported as significant in published studies. A A schematic of three GCEA analyses involving correlations between

(i) “reference”—an ensemble of random phenotypes and randomized gene-expression data (green), (ii) “SBP-random”—an ensemble of random

phenotypes and real gene-expression data (red), and (iii) “SBP-spatial”—an ensemble of spatially autocorrelated phenotypes and real gene-expression data

(blue). For the human cortex, examples of spatial maps in each ensemble are plotted; relative to the SBP-random maps that have no spatial correlation

structure, the SBP-spatial maps are more likely to have similar values in nearby locations. B Distributions of the category false-positive rate (CFPR) across

all GO categories are shown as violin plots in mouse. Across an ensemble of 10,000 SBP-random or SBP-spatial maps, the CFPR is computed for each GO

category as the proportion of phenotypes for which that GO category was found to be significant. Results are shown for the three analyses depicted in A:

(i) “reference” (green); (ii) “SBP-random” (red); and (iii) “SBP-spatial” (blue). Note the logarithmic vertical scale (and therefore exclusion of GO categories

with CFPR= 0). C The proportion of literature-reported GO categories increases with the CFPR estimated from random phenotypes. GO categories were

labeled from a literature survey of GCEA analyses using atlas-based transcriptional data in human and mouse (see Supplementary Information for survey

details). Across eight equiprobable bins of CFPR (i.e., each bin contains the same number of GO categories), we plot the proportion of all literature-

reported GO categories that are contained in that bin. Results are shown for the SBP-random (red) and SBP-spatial (blue) ensembles in mouse (dotted)

and human (solid). The position of each bin is shown as the mean of its extremities.
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statistically significant in the literature. As shown in Fig. 2C, for
both ensembles of null phenotypes and in both mouse and
human, we find a progressive increase in the frequency of
reporting of a GO category with its CFPR. A similar increase was
also found when incorporating information about the number of
literature studies that have reported a given GO category (Fig. S2).
The increase in the reporting of GO categories with their false-
positive rate under ensembles of randomized phenotypes suggests
that the existing literature is affected by the false-positive biases of
conventional GCEA methodology.

Within-category coexpression drives false-positive bias. Since
randomizing the gene coexpression structure (“reference”) dra-
matically reduces CFPRs, we reasoned that dependencies between
genes within a GO category must drive the vast differences in
CFPR between categories. We explored how categories of the
same size differ in their gene–gene coexpression, using the
example of a low-coexpression category (“zymogen activation”,
CFPR= 0.07%) and a high-coexpression category (“regulation of
dendritic spine morphogenesis”, CFPR= 13%). As described in
Supplementary Section S1, we found that this high-coexpres-
sion category is more likely to exhibit high correlations to a
random SBP than random genes, because a chance correlation
between the random SBP and any single gene is amplified
through a similar correlation with many other genes in the
category. This mechanism, through which gene–gene dependen-
cies drive deviations from a random-gene null, results in the
dramatic differences between false-positive rates estimated from
conventional random-gene GCEA and those estimated relative to
ensembles of random phenotypes for high-coexpression GO
categories.

To test this explanation across all GO categories, we defined a
simple measure of within-category coexpression, 〈r〉, as the mean
coexpression across all pairs of genes in a GO category. As shown
in Fig. 3A, 〈r〉 and CFPR (using the SBP-random ensemble) are
positively correlated in both mouse and human. Consistent with
their coordinated function in the brain, genes associated with
metabolic and neuronal functioning in both mouse and human,
display characteristic expression patterns resulting in high within-
category coexpression, 〈r〉. For example, among the GO
categories with the highest 〈r〉 are “regulation of short-term
neuronal synaptic plasticity” (〈r〉mouse= 0.38, 〈r〉human= 0.29)
and “ATP synthesis coupled proton transport” (〈r〉mouse= 0.34,
〈r〉human= 0.29; see Supplementary Data 3 for a full list).

Our results demonstrate that within-category coexpression
plays a key role in driving false-positive bias when applying
GCEA to transcriptomic data. And because brain-related
categories exhibit high within-category coexpression, they are
most prone to this effect, thus driving deceptively sensible brain-
related enrichment results (evidenced in published GCEAs across
diverse brain phenotypes, Fig. 2C).

The role of spatial autocorrelation. We next turn to the role of
spatial autocorrelation in SBPs by investigating the SBP-spatial
ensemble of spatially autocorrelated phenotypes. We found that
adding the constraint of spatial autocorrelation (i.e., SBP-ran-
dom→ SBP-spatial) can be considered a perturbation on a
category’s CFPR under SBP-random, depending on the spatial
autocorrelation structure of genes in that category (see Supple-
mentary Section S1). For example, if the genes in a category
exhibit similar spatial autocorrelation structure to that of the
phenotype (here, the SBP-spatial ensemble), then that category’s
CFPR can be substantially inflated.

To demonstrate this, we computed a simple measure of spatial
autocorrelation for each GO category, R2

exp, that measures the

exponential distance dependence of each category’s correlated
gene expression (see “Methods”). As shown in Fig. 3B, categories
containing genes with stronger spatial autocorrelation scores,
R2
exp, are more likely to increase their CFPR under spatially

autocorrelated phenotypes (SBP-spatial) relative to random
phenotypes (SBP-random). This effect is strongest for categories
with an autocorrelation length scale close to that of the SBP-
spatial ensemble (Fig. S4), confirming the intuition that a high
correlation between a GO category and phenotype is more likely
for categories of genes with similar spatial autocorrelation
properties as the phenotype. As this effect is not taken into
account by conventional GCEA, it can drive increased CFPR, in
addition to the effects of gene–gene coexpression.

Ensemble-based null models for spatial expression data. The
above results reveal clear biases in the application of conventional
gene category enrichment methods to transcriptional atlas data,
in which controlling the false-positive rate under random genes
induces a strong false-positive bias under randomized pheno-
types. This bias is strongest in categories of genes that exhibit
high within-category coexpression and similar spatial auto-
correlation properties as the phenotype of interest. Since brain-
related GO categories are characterized by high within-category

Fig. 3 Category false-positive significance rates (CFPRs) vary with within-category gene–gene coexpression and spatial autocorrelation in mouse and

human. A CFPR (%) computed from the SBP-rand ensemble of random spatial maps increases with a measure of mean within-category coexpression, 〈r〉,

across ten equiprobable bins in mouse (blue) and human (green). The extent of each bin is displayed as a horizontal line. B The percentage of GO

categories that exhibited an increase in CFPR when using the SBP-spatial ensemble relative to the SBP-random ensemble, across ten equiprobable bins of

the spatial autocorrelation score, R2exp. This score captures the goodness of fit of each GO category’s correlated gene expression to an exponential function

with distance. More spatially autocorrelated GO categories are more likely to exhibit an increase in CFPR for spatially autocorrelated phenotypes (the SBP-

spatial ensemble). The average value across all GO categories is shown as a horizontal dotted line.
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coexpression and strong spatial autocorrelation, this false-positive
bias misleadingly favors brain-related GO categories. These
methodological issues highlight the need for new statistical
methods to enable valid inference and interpretation of GCEA for
spatially embedded transcriptional data.

In introducing new null models, we imagine a researcher who
wishes to investigate the transcriptional correlates of their SBP,
asking: “Which GO categories contain genes that are significantly
correlated to my phenotype?” The conventional GCEA metho-
dology evaluates the significance of a GO category against a null
of random genes, depicted in Fig. 4A (cf. Fig. 1B). This generates
null samples by randomizing the annotations of genes to GO
categories, and asks the question of each GO category: “Are genes
in this category more strongly correlated to my phenotype than a
random set of genes?” Through the mechanisms described above,
this randomization of gene-to-category annotations destroys
within-category gene–gene coexpression structure, thereby driv-
ing high CFPRs.

To overcome this bias, we introduce a new way of performing
GCEA that, instead of estimating statistical significance relative to
randomized gene-to-category assignments, estimates the signifi-
cance of a given SBP relative to ensembles of randomized SBPs.
Two such sets of randomized phenotypes are the SBP-random
and SBP-spatial ensembles defined above (Fig. 2A). By estimating
each GO category’s null distribution relative to an ensemble of
randomized phenotypes, ensemble-based nulls test whether a
given SBP is significantly correlated to genes in a GO category
beyond what would be expected from the null phenotypes. For
example, in testing a measured SBP relative to the SBP-random
ensemble, the researcher can ask the question of each GO
category: “Are genes in this GO category more correlated to my
phenotype than they would be to a random phenotype?” (Fig. 4B).
Ensemble-based nulls allow for additional constraints (e.g., spatial
autocorrelation) to be incorporated straightforwardly. For
example, testing against the SBP-spatial ensemble allows the
researcher to ask: “Are genes in this GO category more correlated
to my phenotype than they would be to a random spatially
autocorrelated phenotype?”, shown in Fig. 4C. While here we use
the generic SBP-spatial ensemble, the spatial autocorrelation
properties of the ensemble could be fitted to match the phenotype
of interest, to ensure that the spatially autocorrelated ensemble
exhibits a similar spatial autocorrelation structure as the
phenotype of interest, for which a range of existing methods
have been developed85. Importantly, ensemble-based nulls
preserve the properties of the transcriptomic data (e.g., within-
category coexpression and spatial autocorrelation properties of

GO categories) that can inflate CFPRs when performing GCEA
using conventional gene randomization.

Case studies in spatial brain phenotype enrichment. In this
section, we present some case studies to demonstrate how GCEA
results can change when assessing significance relative to different
null models. We tested two types of SBPs for their GO-category
enrichment: (i) regional connectivity metrics, degree, k (defined
as the number of connections attached to each region), and
betweenness, B (defined as the number of shortest paths on the
network passing through each region), derived from binary
structural connectomes in mouse and human; and (ii) cell-density
maps of parvalbumin (PV)+, somatostatin (SST)+, and vasoac-
tive intestinal peptide (VIP)+ interneurons from mouse cell-
mapping experiments86, and estimated density maps of oligo-
dendrocytes, astrocytes, glia, microglia, neurons, and excitatory
and inhibitory neurons87. We aimed to understand how the
enrichment signatures of these phenotypes differ across the null
models introduced above. Full results tables for all GCEA ana-
lyses are provided in the data repository accompanying this
article88 (see Supplementary Information).

The conventional (random-gene) null yielded significantly
enriched GO categories for 9 of the 14 GCEA analyses performed
on mouse (12) and human (2) cortex; these analyses are plotted in
Fig. 5A. However, when assessing significance relative to random
phenotypes (SBP-rand), only inhibitory cell density (mouse
cortex) exhibited significant GO enrichment. When assessing
significance relative to random spatially autocorrelated maps
(SBP-spatial), no phenotypes were significantly enriched for any
GO categories. To illustrate how substantially estimated p values
can differ across these three null approaches, we plotted results
for oligodendrocyte cell densities across the mouse cortex in
Fig. 5B. For example, “aerobic respiration” (GO:0009060) has
uncorrected p value estimates of 5 × 10−7 (random-gene null),
0.01 (SBP-random), and 0.06 (SBP-spatial). We therefore find
that GCEA significance can change markedly across null models
and, in most cases investigated here, GO categories considered
significantly correlated to a phenotype (relative to random-gene
nulls) are in fact statistically consistent with expectation
from random phenotypes. Many of the GO categories that
are assessed as being significant under the conventional random-
gene null model are nonneuronal and hard to feasibly interpret,
e.g., “keratinization” correlates with degree, k, in human
cortex (qFDR= 1 × 10−7), “regulation of kidney development”
correlates with neuron density in mouse cortex (qFDR= 0.02), and

Fig. 4 The statistical significance of a GO category can be quantified relative to conventional random-gene nulls, or ensemble-based null models

introduced here. For a given spatial brain phenotype (SBP) of interest, we depict the process through which null samples are generated for estimating

statistical significance for GCEA across three different null models. A The conventional random-gene null tests whether the observed result is more

extreme than if genes were assigned to GO categories at random (similar to the illustrated shuffling of gene identities). As this destroys within-category

gene–gene correlation structure, it leads to high category false-positive rates for random phenotypes. An alternative is to compute null distributions for

each category based on an ensemble of null phenotypes. B The SBP-random null tests whether the observed result is more extreme than if the phenotype

of interest was a random spatial map. C The SBP-spatial null tests whether the observed result is more extreme than if the phenotype of interest was a

random spatially autocorrelated map.
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“response to pheremone” correlates with VIP+ neuron density in
mouse cortex (qFDR= 0.002). Thus, the randomized phenotype
nulls can eliminate the statistical significance of physiologically
inappropriate and spurious GO categories observed under the
conventional random-gene null model.

While p values are mostly higher under the phenotype-based
nulls, this is not true for inhibitory cell density across mouse
cortex87. For this phenotype, the random-phenotype null (SBP-
rand) flagged more significant categories (149) than the
conventional random-gene null (8). That is, of the GO categories
that were significantly more correlated to inhibitory cell density
than to a random cortical phenotype, most were not more
significantly correlated than would be expected from a random
set of genes. This discrepancy occurs when an SBP, like inhibitory
cell density, aligns strongly with a dominant gene-expression
gradient, such that a random gene is far more likely to be
correlated to that SBP than to a random SBP. This drives an offset
in the random-gene null and increases estimated p values. This
effect is important given the dominance of low-dimensional gene-
expression gradients in mouse and human cortex30,89. Indeed,
when expanding our mouse cortical analyses (38 regions) to the
whole mouse brain (213 regions), we found a similar mechanism
at play, in which the strong cortex–non-cortex expression
difference (exhibited by the majority of genes: 73%, 14,137/
19,417, qFDR < 0.05, Wilcoxon rank-sum test), dominates the
enrichment signature of any phenotype that is differentially
distributed between cortical and non-cortical areas. As the GO
categories with the strongest cortical expression specificity are
related to neuronal, metabolic, and behavioral function, GCEA
results are correspondingly related to these plausible brain-related
functions. This represents another potential source of misinter-
pretation of applying GCEA to transcriptional atlas data—it is
easy to mistakenly assign specificity of enriched GO categories to
a given phenotype (e.g., connectivity degree, which is higher in
the isocortex), when this enrichment signature is actually driven
by a nonspecific expression difference between cortical and non-
cortical areas.

Our results reveal that the significance of many phenotypes in
GCEA strongly depends on the null model, with most significant
findings (relative to random genes) being consistent with
statistical expectation (relative to random phenotypes). In the
presence of dominant transcriptional gradients, the reverse can
also occur: GO categories that are not surprising relative to

random-gene annotations (e.g., when the phenotype follows the
gradient) can be more surprising relative to random phenotypes.
In these cases, a null model matching spatial autocorrelation may
offer more interpretable inference. Overall, these results highlight
the need for proper comparison and careful consideration of the
spatial embedding when applying GCEA to spatial transcriptomic
datasets.

Discussion
The ability to perform GCEA to identify groups of genes puta-
tively related to spatially varying neural phenotypes has been
facilitated by open neuroinformatics tools for accessing genome-
and brain-wide transcriptional atlases in mouse and human3–5,90,
and accessible software tools for performing GCEA38–42,46,47.
While previous work has emphasized a general need for care
when applying GCEA—including substantial inter-software
methodological variance, the reliability of gene-to-category
annotations, and ongoing statistical improvements48–50—here
we present a detailed analysis of methodological issues specifically
associated with applications involving spatial transcriptomic data:
a new and growing application of GCEA. When assessing the
significance of a GO category with respect to spatial correlations
of its member genes to an independent phenotype, we show that
it makes a substantial difference whether the null model is defined
relative to randomized genes (as is conventional) or randomized
phenotypes. While both gene- and phenotype-randomization
have been proposed previously in the literature70,71, to our
knowledge, only random-gene nulls have been used in the context
of transcriptional atlas data, and no previous study has investi-
gated the impact of this choice. We show that the conventional
random-gene null judges some GO categories as significantly
correlated with a surprisingly high proportion of randomized
spatial phenotypes. GO categories with the highest CFPRs have
high gene–gene coexpression, and CFPR is further increased
when GO categories have a similar spatial autocorrelation
structure to the phenotype of interest. Concerningly, high-CFPR
categories are more likely to be reported as significant in the
literature, suggesting that many published reports may be con-
sistent with the expectations of randomized phenotypes. The
flexible new ensemble-based framework that we introduce for
generating GO-category null distributions will enable researchers
to more accurately interpret the results of applying GCEA to
spatially embedded transcriptional data and brain phenotypes.

Fig. 5 GO category enrichment results depend strongly on the null ensemble. A Across the range of structural connectome nodal metrics (mouse and

human) and cell density phenotypes (mouse), we show those nine phenotypes that individually exhibited categories with significant enrichment according

to at least one of the null models. In all but one case, enrichment under the random-gene null is not significant under either of the random-phenotype nulls.

B Picking an example enrichment analysis—oligodendrocyte cell density, which has nine significant categories under the random-gene null—we plot the

variation in estimated p values (uncorrected) across the three null models (estimated from a Gaussian fit to the null distribution as pZ). The corrected

significance threshold, qFDR= 0.05, for the random-gene null is shown as a dashed red line; bars to the right of this line are considered significant at a false

discovery rate of 0.05.
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Applying conventional GCEA to an ensemble of randomized
phenotypes led to high rates of estimated significance: relative to
the reference level, CFPRs increased by an average of 875-fold in
mouse and 582-fold in human. GO categories varied widely in
their CFPRs, with some brain-related categories exhibiting CFPRs
over 20% (relative to a maximum CFPR of 0.03% in the reference
case). We show that this false-positive bias is primarily driven by
within-category gene–gene coexpression: a generic property of
the expression atlas, not of the specific SBP being analyzed.
Categories of genes involved in brain function tend to exhibit
spatially coordinated expression patterns (compared to the less
correlated expression patterns of non-brain genes), yielding high
gene–gene coexpression and thus high CFPR. This leads to the
dangerous consequence that applying conventional GCEA to
transcriptional atlas data can misleadingly yield significant brain-
related GO categories that are feasibly connected to the neural
phenotype of interest. For example, GO categories related to
oxidative metabolism have been linked to hub connectivity18,23, a
result that can be plausibly interpreted in light of the known
metabolic expense of brain network hubs inferred from other
modalities91–93. While results of conventional GCEA reported the
literature are not necessarily spurious, we must take care to
validate these results against alternative nulls, like the ensemble-
based approach introduced here.

Ensemble-based hypothesis testing for GCEA is a flexible fra-
mework with which to perform valid inference of the enrichment
of spatial phenotypes. In the SBP-random null model, random
numbers are assigned to all brain regions, and in the SBP-spatial
null model we instead generate an ensemble of phenotypes with a
given spatial autocorrelation structure. The framework is flexible
to other types of generative null models to test more specific
questions. For example, the SBP-spatial ensemble used here takes
parameters from the average spatial correlation properties of
transcriptional atlas data, but they could instead be fitted to
match the spatial autocorrelation properties of the phenotype of
interest, e.g., using the brainSMASH toolbox66. For data that are
sparsely sampled spatially, such that the parameters of these
models are difficult to estimate, either the SBP-random null
model can be used (which accounts for the major bias of
gene–gene coexpression), or the null ensemble could be further
constrained by, e.g., additional anatomical factors to test more
specific hypotheses. For example, a null ensemble of phenotypes
could be generated by randomizing the target phenotype sepa-
rately within specific anatomical divisions—e.g., the ensemble
could preserve differences in expression between cortical and
non-cortical areas by randomizing cortical areas separately from
subcortical areas. This flexibility to test against different null
ensembles allows inference, and subsequent interpretation, to be
tailored to the specific scientific question at hand. Furthermore,
once a null ensemble has been generated, it can be applied not
just to the univariate setting explored in this work, but similarly
to multivariate analyses such as those that score genes according
to partial least squares or canonical correlation analysis.

Ensemble-based nulls are expensive to compute, as GCEA
often requires estimating very small p values and new SBPs must
be generated for each null sample. To ease the computational
burden, here we used a Gaussian approximation for the
40,000 sample null distribution computed for each GO category,
allowing us to estimate small p values from the fitted Gaussian to
a greater precision than a direct permutation test. This approx-
imation was appropriate here for characterizing the general
mechanisms and trends, but for a specific analysis, a full
permutation-based procedure (that does not make strong para-
metric assumptions on the null distribution) would be necessary.
We note that while the initial computation of null distributions
for each GO category is expensive, it is a one-off computation for

ensembles that are independent of the phenotype being tested
(like the SBP-random and SBP-spatial ensembles studied here).
That is, once the initial generic null computation has been
computed, ensemble-based GCEA can then be applied efficiently
for any new phenotype.

Our case studies of a range of spatial phenotypes across mouse
and human cortex demonstrate the need for caution in inter-
preting the results of GCEA applied to transcriptional brain atlas
data. We found that estimated p values varied substantially
between the different null models, most typically resulting in GO
categories that are surprising relative to random gene annota-
tions, but not surprising relative to randomized phenotypes. This
difference highlights the important confounding role of variations
in within-category gene–gene coexpression. Statistical sensitivity
could be improved by reducing the number of comparisons
across GO categories by considering a narrower range of brain-
related GO categories of a given size, or by filtering on GO
categories containing genes that are not spatially coherent. To this
latter point, we found that many GO categories are made up of
genes that do not show coherent, characteristic spatial patterning
across the brain, and are therefore problematic to interpret as a
functionally homogeneous “set”. We also found that the effect of
nonspecific spatial effects, like cortical versus subcortical
expression, can dominate GCEA findings for phenotypes that,
e.g., differ between cortical and non-cortical areas, giving a false
illusion of specificity and a plausible set of brain-related func-
tional gene categories (that overlap strongly with cortical genes).
For phenotypes that follow these types of spatial gradients, ran-
dom genes are more likely to correlate with the phenotype,
resulting in p values that can be higher than those obtained
relative to random phenotypes. These discrepancies highlight the
need for careful, nuanced interpretation of GCEA results with
respect to appropriate null models.

Much of the brain’s structural organization can be accounted for
by its physical embedding, which imposes a spatial autocorrelation
structure on many brain phenotypes. Spatial autocorrelation means
that samples are not independent, and requires corrections to any
resulting statistical inference, as has been noted in neuroimaging
applications30,66,67,94, in other fields like geography95, and time-
series analysis (temporal autocorrelation)96–98. The effect of spatial
autocorrelation on GCEA is not straightforward: relative to inde-
pendent random numbers (SBP-random), applying an auto-
correlation constraint (SBP-spatial) yielded a large increase for a
minority of GO categories, driving an overall increase in average
CFPR. We showed that GO categories with a more similar spatial
autocorrelation strength and length scale as the SBP-spatial
ensemble have the greatest increase in CFPR relative to the SBP-
random ensemble (Fig. 3B and Fig. S4). Differences in CFPRs
determined by different null ensembles can be understood by
viewing each generative null model as defining a probability dis-
tribution in the space of all possible SBPs. For categories that have
similar spatial autocorrelation properties as the SBP-spatial
ensemble, the SBP-spatial ensemble will define a higher prob-
ability density around SBPs that are correlated to its genes, yielding
CFPR(SBP-spatial) > CFPR(SBP-random). Because here we use an
SBP-spatial ensemble with a fixed strength and length scale, only a
minority of categories match this quite restricted set of phenotypes
better than SBP-random (40% in mouse and 32% in human), but
for categories that match closely, CFPR can increase substantially.
For example, in mouse, the CFPR of “ionotropic glutamate receptor
signaling pathway” increases from 8.8 (SBP-random) to 29.2%
(SBP-spatial) and “dopamine receptor signaling pathway” increases
from 6.5 to 26.2%. Interestingly, maps with strong spatial auto-
correlation, but at a different length scales, can be less correlated
to each other than to random maps; this effect could explain the
large drops in CFPR under SBP-spatial of some highly spatially
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autocorrelated GO categories such as “ATP metabolic process”
(CFPR in mouse decreased from 20.1 to 10.7% under the SBP-
spatial ensemble, despite a relatively high spatial autocorrelation
score, R2= 0.37). Thus, whether the SBP-spatial ensemble is more
or less conservative than the SBP-random ensemble depends on the
specific spatial autocorrelation properties of each given GO category
and how they relate to the properties of the SBP-spatial ensemble.

Our main aim here was to characterize the mechanisms of
false-positive bias in the application of GCEA to transcriptional
data, rather than to verify specific quantitative results of GCEA.
Future work will be important to demonstrate how robust and
accurate the results of GCEA are to methodological parameters of
the GCEA analysis, as well as the choices made in processing
gene-expression data5. Refinements to the GCEA pipeline will
also be important, and may include developing inferential
methods that account for the hierarchical organization of GO
categories48,52; pruning the set of categories analyzed to those that
are brain relevant; and extending the current work to consider
analyses of pairwise inter-regional (e.g., connectivity-based)
phenotypes6,10,18. We also note that while GO annotations were
used here, the same arguments apply to other annotation systems,
like the annotation of gene markers to cell types99–101, where
similar cautions should be noted.

Finally, we make some recommendations to improve the
transparency and reproducibility of applying GCEA to tran-
scriptomic atlas data. In reporting on GCEA analyses, we note
that GO annotations are updated daily, such that GCEA tools can
produce different results to identical inputs when run at different
times. We thus recommend that researchers share the gene-score
or gene-list inputs they used as input to the GCEA pipeline with a
detailed methodological description, including all settings used in
performing enrichment. This would allow future studies to test
for reproducibility through time, as gene annotations, categories,
and category structures are updated49, and would enable testing
for robustness to other methodological implementations of
GCEA (e.g., from different software packages). In reporting the
results of GCEA, we discourage the practice of only listing
manually selected GO categories in manuscript text but, rather,
full outputs of the enrichment procedure should be provided
as supplementary files that include gene scores and raw (and
corrected) p values.

The public availability of gene transcriptional atlases provides
an opportunity to bridge spatial scales in the brain to understand
how variations in molecular function relate to large-scale prop-
erties of brain structure and function6,102. GCEA plays a crucial
methodological role in leveraging gene ontologies to interpret
these multi-scale relationships. We describe major statistical issues
in applying conventional implementations of GCEA to assess the
correlation between SBPs and the expression patterns of func-
tionally annotated categories of genes, highlighting striking dif-
ferences between nulls obtained from randomizing gene-to-
category annotations (as is conventional) versus randomizing
phenotypes. The new ensemble-based null models introduced here
will allow researchers to better interpret the results of applying
GCEA in using spatially resolved molecular maps to address
diverse scientific questions. Extensive data tables for all enrich-
ment analyses, code for reproducing all presented results, and a
toolbox for performing ensemble-based enrichment accompany
this paper.

Methods
Mouse data. We used gene-expression data from the AMBA3 using the 213-region
parcellation of Oh et al.103. Data were retrieved using the Allen Software Devel-
opment Kit alleninstitute.github.io/AllenSDK/. Gene transcription in a given brain
area was summarized as the “expression energy” (the mean ISH intensity across
voxels of that brain area)3,104. Where multiple section datasets were available for

the same gene, they were combined by first z-scoring expression data taken across
areas, and then computing the expression value of a cortical area as the mean
across these z-scored section datasets. For each of 19,419 genes, we applied a 50%
quality threshold, first on genes (keeping genes with expression data for at least
50% of brain areas), and then on brain areas (keeping brain areas with expression
data for at least 50% of genes). This resulted in a region × gene expression matrix of
size 213 × 19 417 (whole brain), and 38 × 19 417 (isocortical areas).

For the case study involving structural connectivity degree, we used axonal-
connectivity data based on 469 anterograde viral microinjection experiments in
C57BL/6J male mice at age P56, obtained from the Allen Mouse Brain Connectivity
Atlas103. We computed degree, k, from binarized ipsilateral axonal connectivity in
the right-hemisphere, including edges with p < 0.05, as inferred from the whole-
brain linear-regression model presented in Oh et al.103 (see Fulcher and Fornito18).

Human data. We used gene-expression data from the AHBA that consists of
microarray expression measures across 3702 spatially distinct tissue samples col-
lected from six neurotypical postmortem adult brains4. Considering that two of the
six brains were sampled from both left and right hemispheres, while the other four
brains had samples collected only from the left hemisphere, we focused our ana-
lyses on the left hemisphere only. The data were processed as outlined in Arnat-
kevičiūtė et al.5. Specifically, (i) probe-to-gene annotations were updated using the
Re-Annotator toolbox105; (ii) intensity-based filtering was applied in order to
exclude probes that do not exceed background noise in >50% of samples; (iii) if
more than one probe was available for a gene, a probe with the highest differential
stability score57 was selected; (iv) gene-expression samples from cortical regions
were assigned to the regions-of-interest by generating donor-specific gray matter
parcellations (180 regions per hemisphere106) and assigning samples located within
2 mm of the parcellation voxels; and (v) gene-expression measures within a given
brain were normalized first by applying a scaled robust sigmoid normalization107

for every sample across genes and then for every gene across samples. This allowed
us to evaluate the relative expression of each gene across regions, while controlling
for donor-specific differences in gene expression. Normalized expression measures
in samples assigned to the same region were averaged within each donor brain and
then aggregated into a 180 × 15 744 region × gene matrix containing expression
measures for 15,744 genes across 180 cortical regions in the left cortex. Three of the
180 regions had no gene expression samples assigned; all analyses shown here are
of the remaining 177 regions.

Structural connectivity was estimated based on the minimally processed
diffusion weighted imaging and structural data from the Human Connectome
Project108 for 972 participants (agemean= 28.7 ± 3.7, 522 females)109,110. Data were
acquired on a customized Siemens 3T “Connectome Skyra” scanner (Washington
University in St Louis, MO, USA) using a multi-shell protocol for the DWI:
1.25 mm3 isotropic voxels, repetition time (TR)= 5.52 s, echo time (TE)= 89.5 ms,
field-of-view (FOV) of 210 × 180 mm, 270 directions with b= 1000, 2000,
3000 s/mm2 (90 per b value), and 18 b= 0 volumes. Structural T1-weighted data
were collected using 0.7 mm3 isotropic voxels, TR= 2.4 s, TE= 2.14 ms, FOV of
224 × 224 mm. The full details regarding data acquisition can be found
elsewhere109. For each individual network, nodes were defined using a recently-
developed, data-driven group average parcellation of the cortex into 360 regions
(180 per hemisphere)106 using Freesurfer-extracted surfaces and subsequently
projected to volumetric space.

Processing of the DWI data were performed using the MRtrix3 (ref. 111) and
FMRIB Software Library112. Tractography was performed in each participant’s
T1 space using second order integration over fiber orientation distributions
(iFOD2)—a probabilistic algorithm that improves the quality of tract
reconstruction in the presence of crossing fibers and high degree of fiber
curvature113. To further improve the biological accuracy of the structural networks
we also applied anatomically constrained tractography, which delineates the brain
into different tissue types (cortical gray matter, subcortical gray matter, white
matter, and cerebrospinal fluid). This information is then used to ensure that
streamlines are beginning, traversing, and terminating in anatomically plausible
locations114. Tissue types were determined using FSL software112. A total of 107

streamlines were generated using a dynamic seeding approach. By evaluating the
relative difference between the estimated and current reconstruction fiber density,
it preferentially initiates seeding from areas of insufficient density115.

The resulting tractogram was then combined with the cortical parcellation for
each subject assigning streamline termination points to the closest region within
5 mm radius. Connection weights were quantified using streamline count (number
of streamlines connecting two regions). Connectomes derived from probabilistic
tractography algorithms are often thresholded due to the high probability of false-
positive connections116,117, therefore a single group-average connectome was
aggregated by selecting connections that are present in at least 30% of subjects and
retaining the strongest edges (based on the median streamline count across
subjects) to achieve a connectome density of 20%.

Spatial phenotypes. We computed degree, k, and betweenness, B, of each node
from the binary connectomes described above. Node betweenness was computed
using the Brain Connectivity Toolbox118. When estimating these quantities in the
mouse cortex, only cortico-cortical connectivity was used. Interneuron subtype
densities were measured by qBrain, quantitative whole-brain mapping of
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distributions of fluorescently labeled neural cell types86. For each brain region, we
took the mean cell density (across ten repeat experiments) for each of PV-con-
taining, SST-containing, and VIP-containing cells, using data provided from the
authors. Cell densities were taken from the atlas described in Erö et al.87, which
inferred cell densities computationally from Nissl stains, and used genetic cell-type
markers from AMBA data to estimate cell densities of astrocytes, oligodendrocytes,
glia, microglia, neurons, and excitatory and inhibitory neurons.

Gene category enrichment analysis. We performed GCEA using gene-score
resampling, where continuous scores are assigned to each gene, aggregated as the
mean across individual GO categories, and then compared to a null distribution of
category-level scores to perform statistical inference on GO categories36. We first
describe our implementation of conventional GCEA using gene-score resampling
against random-gene nulls (ensemble-based nulls are described later). We per-
formed GCEA using Matlab-based software that we developed69. We used GO
term hierarchy and annotation files were downloaded from GO on 17th April
2019. We first matched annotations to GO terms (excluding NOT and ND
annotations48). To match genes listed in the GO annotation file (MGI identifiers)
to expression data (NCBI identifiers), we used MouseMine119. In human, identi-
fication was made directly from the gene symbol. Annotations to genes that could
not be mapped in this way were ignored. Direct gene-to-category annotations were
propagated up to parents within the GO-term hierarchy by taking the is_a
keyword to indicate parent–child relationships. This process yielded a fully pro-
pagated set of GO categories and their gene annotations. We restricted our analyses
to GO categories related to biological processes with between 10 and 200 anno-
tations. We performed enrichment across all GO categories that met these criteria.

Null distributions for a GO category of a given size, s, were generated through
40,000 random samples of s gene scores. Achieving stable p value estimates from
the empirical null distribution generated through permutation testing can require
millions of null samples due to the small p values involved in GCEA. As null
distributions of category scores tend to be approximately Gaussian, we chose to
estimate p values from a Gaussian distribution fitted to a given set of null samples.
That is, p values were estimated numerically after fitting a Gaussian distribution to
the estimated null distribution. We note that null distributions are not exactly
Gaussian, and that this approximation leads to a systematic underestimate of
p values relative to a full, permutation-based approach. As our main focus was to
elucidate the mechanisms of bias of GCEA (rather than reporting precise p values),
we used this approximation throughout for computational efficiency. Correction
for multiple-hypothesis testing was achieved as a FDR120, denoted as qFDR and
computed using the mafdr function in Matlab.

Generating spatially autocorrelated maps. We generated SBP-spatial ensembles
of spatially autocorrelated SBPs using the spatial-lag model30,84. Code was written
in Matlab, adapted from the Murray Lab’s surrogates package by Joshua Burt,
available at https://bitbucket.org/murraylab/surrogates/src/master/30. Note that the
BrainSMASH package has since been developed: https://github.com/murraylab/
brainsmash66. In the spatial-lag model, for a Euclidean distance matrix constructed
for all areas, two parameters determine the generated maps: a parameter con-
trolling the strength of the spatial autocorrelation (relative to noise), ρ, and the
characteristic spatial scale, d0. We set ρ= 0.8 and estimated d0 from an exponential
fit to (Pearson) correlated gene expression (across all genes) as a function of
distance18, yielding d0= 1.46 mm in mouse brain, d0= 1.84 mm in mouse cortex,
and d0= 102.2 mm in human cortex.

The within-category coexpression score, 〈r〉. To investigate the role of within-
category coexpression in driving false-positive significance, we computed a simple
measure of within-category coexpression, 〈r〉. For each GO category, we computed
the gene × gene coexpression matrix, C, for all genes in that category as Spearman
correlation coefficients between the spatial expression pattern of each pair of genes.
The within-class coexpression metric, 〈r〉, was then computed as the mean of the
unique (upper diagonal) entries of C.

The spatial autocorrelation score, R2
exp . To investigate the role of spatially

autocorrelated SBPs in driving differential significance between GO categories, we
computed a spatial autocorrelation score, R2

exp, for each GO category. For each

category, we computed a correlated gene expression (CGE) value for each pair of
brain regions as a Pearson correlation between the expression values of genes in
that category. We then fitted a three-parameter exponential function to the var-
iation of CGE with distance, d, as CGEðdÞ ¼ A expð�d=λÞ þ B. The goodness of
this fit, measured as R2

exp, provides a measure of how well a given category of genes

exhibits a decaying distance-dependent expression similarity. R2
exp will be high for

strongly spatially autocorrelated categories of genes. For spatially autocorrelated
GO categories, the length scale, λ, provides a measure of the autocorrelation length
scale (used in Fig. S4). Note that we obtained similar results when computing a
Spearman correlation between d and CGE (as the statistic −ρ), which does not
assume the exponential functional form. Values of these fitted parameters for each
GO category are in Supplementary Data 4.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
All raw data used in this study were obtained from publicly available sources. Raw data

and our processed versions of them are available from two Zenodo data repositories

accompanying this article88,121. Instructions and code for retrieving these data from their

sources, and processing them, are in the code repositories described in the “Code

availability” section below. A summary of available data is provided here; detailed

descriptions of processing pipelines are in the “Methods” section above. The first set of

data files used are required to perform general GCEA analyses (including ensemble-based

enrichment), including information about the GO hierarchy and gene-to-category

annotations121. This repository includes GO term hierarchy (the term and term2term

tables from a the GODaily mySQL database dump), and GO term annotation files for

Mus musculus (mgi.gaf) and Homo sapiens (goa_human.gaf), which were

downloaded on 17th April 2019. Data for mapping MGI gene identifiers to NCBI Entrez

gene identifiers were obtained from MouseMine119, yielding the data file

ALL_MGI_ID_NCBI.csv (generated September 2017). The second set of data are

required to reproduce all analyses produced here, including the transcriptional atlas data,

the spatial brain phenotypes used for the case studies, and output data files from our

analyses88. This includes human gene-expression data from the Allen Human Brain Atlas

(AHBA)4 and processed according to Arnatkevičiūtė et al.5; mouse gene-expression data

from the Allen Mouse Brain Atlas (AMBA)3 and processed according to Fulcher et al.89;

human connectome data from the Human Connectome Project108; mouse connectome

data from the Allen Mouse Connectivity Atlas103; and mouse cell-type maps estimated

experimentally Kim et al.86 and computationally Erö et al.87.

Code availability
A combination of Matlab 2020a and python were used for data retrieval and processing,

and Matlab was used for all analyses. Fully documented code for reproducing all analyses

presented here is provided with this article, https://github.com/benfulcher/

GCEA_FalsePositives122. A toolbox for performing the conventional (random-gene null)

and ensemble-based GCEA described here is also available, https://github.com/

benfulcher/GeneCategoryEnrichmentAnalysis69. This repository includes instructions

for processing raw GO hierarchy and annotation data files (in the repository’s

Github wiki).
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