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Abstract

Most existing Visual Question Answering (VQA) models
overly rely on language priors between questions and an-
swers. In this paper, we present a novel method of language
attention-based VQA that learns decomposed linguistic rep-
resentations of questions and utilizes the representations to
infer answers for overcoming language priors. We introduce
a modular language attention mechanism to parse a question
into three phrase representations: type representation, object
representation, and concept representation. We use the type
representation to identify the question type and the possible
answer set (yes/no or specific concepts such as colors or num-
bers), and the object representation to focus on the relevant
region of an image. The concept representation is verified
with the attended region to infer the final answer. The pro-
posed method decouples the language-based concept discov-
ery and vision-based concept verification in the process of
answer inference to prevent language priors from dominating
the answering process. Experiments on the VQA-CP dataset
demonstrate the effectiveness of our method.

Introduction

Recent studies (Kafle and Kanan 2017; Agrawal et al. 2018;
Selvaraju et al. 2019) demonstrate that most existing Vi-
sual Question Answering (VQA) models overly rely on su-
perficial correlations between questions and answers, i.e.,
language priors, and ignore image information. For exam-
ple, they may frequently answer “white” for questions about
color, “tennis” for questions about sports, and “yes” for
questions beginning with “is there a”, no matter what im-
ages are given with the questions.

The main reason why these models are vulnerable to
language priors is that different kinds of information of
questions are entangled in the answer inference process.
Most VQA models (Fukui et al. 2016; Yang et al. 2016;
Anderson et al. 2018) consist of three parts: extracting infor-
mative representations for both images and questions, fusing
these representations to obtain joint embeddings of images
and questions, and predicting final answers with the joint
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embeddings. However, these models do not explicitly dis-
tinguish and utilize different information in questions, and
thus inevitably use the co-occurrences of the answers and
interrogative words to infer answers. Although some VQA
models (Lu et al. 2016; Ma et al. 2018) adopt the question
attention to focus on relevant words with image represen-
tations as guidance, they do not eliminate the effect of in-
terrogative words during answer inference and thus are also
susceptible to language priors.

To overcome language priors, Agrawal et al. (2018) pro-
posed a grounded visual question answering model that ex-
ploits different information in questions by using multiple
hand-designed modules. They devised a question classifier
to classify questions into yes/no questions or non-yes/no
questions, a Part-of-Speech-based concept extractor to ex-
tract concepts in yes/no questions, and an answer cluster pre-
dictor to identify the answer type of non-yes/no questions. In
this paper, we propose to learn and exploit decomposed lin-
guistic representations of different kinds of information in
questions for overcoming language priors.

A question-answer pair usually contains three kinds of in-
formation: question type, referring object, and expected con-
cept. Note that the expected concept is included in the ques-
tion for yes/no questions, and in the answer for non-yes/no
questions. Humans can effortlessly identify and utilize dif-
ferent information in questions to infer answers and are un-
doubtedly insusceptible to language priors. For instance,
if one is asked to answer a question, “Is the man’s shirt
white?”, at a glance of “is”, he/she knows that it’s a verifi-
cation question whose possible answers are “yes” and “no”.
Then he/she localizes the man’s shirt in the image via the
phrase “man’s shirt” and verifies the visual presence/absence
of “white”, the excepted concept in the question, based on
the shirt. This process is also applicable to non-yes/no ques-
tions such as “What color is the man’s shirt?”. The only
difference is that apart from knowing that the question is
about color via “What color”, several concepts (e.g.,“white”,
“black” and “blue”) that are possible to be the answer may
arise in his/her mind for further verification. It is thus de-
sirable that a VQA model capable of flexibly learning and
utilizing the decomposed representations of different infor-
mation in questions should be established for alleviating the
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Figure 1: The framework of the proposed method. It decomposes a question into three phrase representations via a language
attention module and further utilizes the phrase representations to infer answers via three specific modules: question identifica-
tion module, object referring module, and visual verification module. (a) is the answering process of the proposed method for
yes/no questions, and (b) is the answering process for non-yes/no questions.

influence of language priors.

To this end, we present a novel method of language
attention-based VQA that includes a language attention
module, a question identification module, an object refer-
ring module and a visual verification module, as shown in
Figure 1. The language attention module parses a question
into three phrase representations: type representation, ob-
ject representation, and concept representation. The decom-
posed linguistic representations are then fed into the fol-
lowing modules, respectively. By combining the hard atten-
tion mechanism and soft attention mechanism, the language
attention module eliminates the influence of interrogative
words when learning concept representations. The question
identification module uses the type representation to iden-
tify the question type and the possible answer set (yes/no or
specific concepts such as colors or numbers). A question-
answer mask (Q&A mask), denoting whether candidate an-
swers are possible to be the correct answer, is generated by
measuring the relevance between the type representation and
candidate answers. The object referring module adopts the
top-down attention mechanism (Anderson et al. 2018) to at-
tend to the relevant region of the image with the object repre-
sentation as guidance. The visual verification module mea-
sures the visual score between the attended region and the
concept representation to infer answers via a threshold com-
parison for yes/no questions. For non-yes/no question, pos-
sible answers discovered by the question identification mod-
ule serve as the concepts to be verified. The visual scores
between the attended region and candidate answers are mea-
sured and then fused with the Q&A mask to obtain the final
answer.

By identifying and utilizing different information in ques-
tions, the proposed method decouples the language-based
concept discovery and vision-based concept verification
from the answer inference process. Thus the superficial cor-
relations between questions and answers do not dominate
the answer inference process, and the model must exploit

the image content to infer the final answer from the possi-
ble answer set. Moreover, our method achieves a transpar-
ent answering process benefiting from the modular design.
The intermediate results of the four modules (decomposed
phrases, Q&A masks, attended regions and visual scores)
actually form explanations of why and how a specific an-
swer is inferred.

The contributions of this paper are summarized as fol-
lows: (1) We learn decomposed linguistic representations
of questions and decouple the language-based concept dis-
covery and vision-based concept verification to overcome
language priors. (2) We use a language attention module
combining both the hard attention mechanism and soft at-
tention mechanism to flexibly identify different information
in questions while separating concept representations from
type representations.

Related work

Visual Question Answering. VQA methods can be di-
vided into two categories: holistic and modular. The holistic
methods (Yang et al. 2016; Anderson et al. 2018; Hudson
and Manning 2018; Gao et al. 2019; Cadene et al. 2019;
Ben-Younes et al. 2019) use a single model for different
question-image pairs and are widely used in real-world im-
age VQA datasets such as (Antol et al. 2015; Goyal et al.
2017) where images and questions are diverse. The mod-
ular methods (Andreas et al. 2016; Johnson et al. 2017b;
Hu et al. 2018; Shi, Zhang, and Li 2019), which focus on
compositional reasoning, devise different modules for dif-
ferent sub-tasks and perform better in the synthetic VQA
datasets such as (Johnson et al. 2017a). Modular methods
first parse a question into a module layout and then execute
the modules to infer the answer.

Although our method adopts modular design and parses
the questions, our method belongs to the holistic methods
because it still uses only one model for different questions.
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Besides, we parse the questions to obtain phrase represen-
tations, which serve as the input of the following modules,
rather than to predict the module layout.

Overcoming language priors for VQA. To diagnose to
what extent VQA models are influenced by language pri-
ors, Agrawal et al. (2018) curated the VQA-CP dataset,
a new split of original VQA dataset (Antol et al. 2015;
Goyal et al. 2017). In this dataset, for each question category,
the answer distributions of both the train split and test split
are different such that models overly rely on language priors
perform poorly. Along with the VQA-CP dataset, they pro-
posed a grounded visual question answering (GVQA) model
that disentangles the visual concept recognition from the an-
swer space prediction to overcome language priors. They
predefined 2000 visual concepts belonging to 50 clusters,
and devised visual concept classifiers and an answer clus-
ter classifier to identify the visual concepts of an image and
plausible answers of a question, respectively.

Recently, Ramakrishnan et al. (2018) proposed an adver-
sarial regularization scheme for VQA models to mitigate
the effect of language priors. They introduced a question-
only adversary model and optimized question representa-
tions to minimize the accuracy of the question-only model
while maintaining base VQA model’s performance. Aim-
ing to emphasize the significance of visual information, they
weakened unwanted correlations between questions and an-
swers while we appropriately use information in questions to
guide the vision-based concept verification. Selvaraju et al.
(2019) proposed a human importance-aware network tun-
ing method that uses human supervision to improve visual
grounding. They forced the model to focus on the right re-
gion by optimizing the alignment between human attention
maps and gradient-based network importance. By contrast,
we decouple the concept discovery and concept verification
to guarantee that the model exploits image content to infer
answers.

Our method is similar to the work of Agrawal et al. (2018)
in that we exploit different information in questions to de-
couple the concept discovery and concept verification. How-
ever, our method differs from theirs in two aspects. First, we
use the language attention mechanism to flexibly learn de-
composed representations of questions instead of using Part-
of-Speech-based extractors to extract phrases from ques-
tions. Second, we regard candidate answers as visual con-
cepts and learn their relevance with questions and images
in an end-to-end manner, while they predefined various vi-
sual concepts and identified the concepts in images with pre-
trained classifiers. In summary, our method guarantees that
different information in questions can be flexibly identified
and appropriately utilized in a unified framework by learn-
ing decomposed linguistic representations.

Method
As shown in Figure 1, the proposed method includes four
modules: (a) a language attention module parses a ques-
tion into the type representation, the object representation,
and the concept representation; (b) a question identification
module uses the type representation to identify the question
type and possible answers; (c) an object referring module
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Figure 2: The architecture of the language attention module.

uses the object representation to attend to the relevant re-
gion of an image; (d) a visual verification module measures
the relevance between the attended region and the concept
representation to infer the answer.

The input of our method includes an image I ∈ I repre-
sented by K local features {vk}

K
k=1, a question Q ∈ Q, and

the candidate answer set A. For the question and answers,
the pre-trained GloVe (Pennington, Socher, and Manning
2014) is utilized to initialize the embedding of each word.

Language Attention Module

To obtain phrase representations of questions, a possible
solution is using off-the-shelf parsers (Socher et al. 2013)
to parse a question into different grammatical components,
such as a triplet 〈subject, predicate, object〉. However, the
phrases generated by the parsers are not always satisfactory
because the parsers do not allow a word to appear in more
than one grammatical component. For a simple question like
“Is there a dog?”, compared with utilizing the word “there”
to focus on the whole image and verify it with the concept
“dog”, a better solution is to find the region that contains
“dog” and verify the region also with “dog”. In this case,
the word “dog” should appear in both the phrase about the
referring object and the phrase about the expected concept .

Recently, Hu et al. (2017) and Yu et al. (2018) utilized the
modular soft attention mechanism, where the embeddings of
all words can be adaptively re-weighted and then aggregated
to be phrase representations, to automatically parse referring
expressions into different phrases. However, their method is
still not applicable to our task. Due to the existence of lan-
guage priors, directly using modular soft attention to learn
different phrase representations without any constraints will
lead to that the model may exploit the co-occurrence of
the interrogative words and answers when learning concept
representations. In other words, superficial correlations will
dominate the answering process. Thus it is critical to flexibly
discover different information in questions while alleviating
the effect of language priors.

Inspired by the hard attention mechanism (Malinowski et
al. 2018), where only a subset of information is selected for
further processing, we propose a language attention module
to obtain decomposed linguistic representations. The lan-
guage attention module combines the hard attention mech-
anism and soft attention mechanism to separate the concept
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representations of yes/no questions from the type represen-
tations. As shown in Figure 2, the language attention module
uses three kinds of attention, which are type attention, object
attention and concept attention, to learn the three decom-
posed representations, respectively. Specifically, we adopt a
question category identification loss to guarantee the type
attention attends to the interrogative words and a threshold
to filter the interrogative words out when learning the object
representations and concept representations. Here we also
exclude the interrogative words for the object representa-
tions of yes/no questions, because the interrogative words
are useless in object referring.

For a question Q that is a sequence of T words {wt}
T
t=1

with its embeddings {et}
T
t=1, we adopt a trainable vector

wa,t to compute the attention weights and obtain the type
representation qtype by

qtype =

T
∑

i=1

α
type
t ei, α

type
i =

exp(wT
a,tei)

∑T

j=1 exp(w
T
a,tej)

. (1)

To guarantee that the type attention focuses on interrog-
ative words, we use the interrogative word-based question
category provided in the original VQA dataset (Antol et al.
2015; Goyal et al. 2017) as supervision information to guide
the learning of type representations. Note that the question
category, that includes “is there”, “are there”, etc., is differ-
ent from the aforementioned question type that only contains
two types: yes/no questions and non-yes/no questions. Thus
we use “question category” here to avoid confusion. We de-
vise a question category identification loss given by

Lqcate
= −

exp(W T
ycate

qtype)
∑C

j=1 exp(W
T
j qtype)

, (2)

where C is the number of question categories, W is a train-
able weight matrix, and ycate ∈ {1, 2, 3, ....C} denotes the
ground truth question category of the question Q.

We further introduce a scalar β as the threshold to filter
out the words most related to the question type, to eliminate
the influence of interrogative words for the concept atten-
tion. By comparing the type attention weight of each word
with β, we can obtain a set of words {wp}

p
p=1, where the

type attention weight of each word is lower than β. These
words are supposed to be relevant to the referring object
and the expected concept. Then another two trainable vec-
tors, wa,o and wa,c, are introduced to compute the attention
weights for the object attention and the concept attention, re-
spectively. The final phrase representations are obtained by

qobj =

P
∑

p=1

αobj
p ep, αobj

p =
exp(wT

a,oep)
∑P

j=1 exp(w
T
a,oej)

,

qcon =
P
∑

p=1

αcon
p ep, αcon

p =
exp(wT

a,cep)
∑P

j=1 exp(w
T
a,cej)

.

(3)

In this manner, the object attention and the concept attention
function as the hard attention as only a subset of words are
taken into consideration.

For the answer A that is a sequence of S words {ws}
S
s=1

with its embeddings {es}
S
s=1, the Gated Recurrent Unit

(GRU) (Cho et al. 2014) is adopted to obtain the sentence-
level answer representation a.

Question Identification Module

Given the type representation qtype, we first identify the
question type via a question identification loss,

Lqtype
= CE(ytype,w

T
typeqtype), (4)

where CE(a, b) = −a log(b)− (1− a)log(1− b) denotes
the cross entropy function, wtype is a trainable vector, and
ytype denotes the ground truth type of question Q, which is
1 for yes/no questions and 0 for non-yes/no questions.

The possible answers of yes/no questions are naturally
“yes” and “no”, while the possible answers of non-yes/no
questions are identified by measuring the relevance between
the question and the candidate answers. For each non-yes/no

question, a Q&A mask mq ∈ (0, 1)|A|×1 is generated,
where each element denotes the possibility for a candidate
answer to be the correct answer, and |A| denotes the num-
ber of candidate answers. We first compute the relevance
scores between the question Q and all the candidate answers
as sqa(Q,Aj) = qtype · aj to obtain the relevance scores

sq ∈ R
|A|×1, where · denotes the dot product. Then the

sigmoid function is utilized to project the relevance scores
to the range of (0, 1) and the mask is thus generated by
mq = sigmoid(sq).

To effectively guide the mask generation, we search all
possible answers for each question category in the dataset to

obtain a ground truth Q&A mask M ∈ R
C×|A| as super-

vision information. For each question category, possible an-
swers are marked as 1 and otherwise 0. The KL-divergence
is utilized to measure the distance between the generated
mask mq of a question and the ground truth mask Mycate

determined by its question category. The final mask genera-
tion loss is given by

Lmask =

|A|
∑

j=1

Mycate,j log
Mycate,j

mq,j

. (5)

Note that M only provides weak supervision information
because the provided question categories are relatively sim-
ple. For example, the category “what is” contains many sub-
categories such as “what is the color”, “what is the ani-
mal”, “what is the number”. Each sub-category has spe-
cific possible answer set, but M does not explicitly dif-
ferentiate these sub-categories. Thus to better characterize
the relevance between questions and answers, in testing,
we round the elements in mq to the nearest tenth, that is
{0, 0.1, 0.2, ..., 0.9, 1}, instead of generating a binary mask
via a threshold comparison.

Object Referring Module

The object referring module uses the object representation
qobj to attend to the region relevant to the question in the

image. Given a set of local features of the image {vk}
K
k=1

and the object representation qobj , the top-down attention
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mechanism (Anderson et al. 2018) is adopted to weight the
local features by their relevance with the question and fur-
ther obtain the final visual representation v as

v =
K
∑

k=1

αv
kvk, α

v
k =

exp(W T
v vk ·W T

q qobj)
∑K

j=1 exp(W
T
v vj ·W T

q qobj)
, (6)

where Wv and Wq are trainable weight matrices.

Visual Verification Module

The visual verification module verifies the visual pres-
ence/absence of concepts based on the attended region to in-
fer the final answer. For yes/no questions, given the concept
representation qcon and the visual representation v for the
attended region, the visual score is computed as Sqv(I,Q) =
qcon · v. The cross entropy loss is adopted as objective as
shown in Eq. (8).

For non-yes/no questions, we first compute the visual
scores between the attended region and all candidate an-
swers by Sva(Aj , I) = aj · v and obtain a visual score vec-

tor sv ∈ R
|A|×1 . Then, we fuse the visual score vector sv ,

which represents the relevance between the image and can-
didate answers, and the Q&A mask mq , which represents
the relevance between the question and candidate answers,
to obtain the overall scores svqa = mq ◦ sv , where ◦ de-
notes the element-wise product. Thus given an image I and
a question Q, the probability for a candidate answer Aj to
be correct is

P (Aj |I,Q) =
exp(svqa,j)

∑|A|
l=1 exp(svqa,l)

. (7)

In practice, each question-image pair is assigned with one
or several similar correct answers provided by different an-
notators. Thus the answers for an question-image pair 〈I,Q〉
can be regarded as a distribution vector y ∈ (0, 1)|A|×1,
where yj indicates the occurrence probability of the answer
Aj across human labeled answers. Thus we adopt the KL-
divergence as the distance metric and the overall verification
loss is given by

Lveri =

⎧

⎪

⎨

⎪

⎩

|A|
∑

j=1

yj log
yj

P (Aj |I,Q) , ytype = 0,

CE(b, σ(Sqv(I,Q))), ytype = 1,

(8)

where σ(·) is the sigmoid function and b is the ground truth
label for yes/no questions.

In model learning, we sum up all the aforementioned
losses as the overall objective of the proposed method. In
testing, we first identify the question type via Eq. (4). Then
for yes/no question, the visual score is computed and com-
pared with 0.5 to obtain the final answer. For non-yes/no
question, the model takes as input all the candidate answers
and the answer with the highest overall score are selected to
be the answer.

Experiments

Datasets and Experimental Settings

Datasets. We evaluate the effectiveness of the proposed
method in the VQA-CP v2 dataset (Agrawal et al. 2018)

using standard VQA evaluation metric (Antol et al. 2015).
The train split and test split of VQA-CP v2 is created by
re-organizing the train split and validation split of the VQA
v2 (Goyal et al. 2017). In the dataset, the distribution of an-
swers per question category such as “what number” and “are
there”, is different in the test split from its in the train split.
Consequently, VQA models that are overly driven by lan-
guage priors perform poorly in this dataset. We also report
the results on the validation split of the original VQA v2
dataset for completeness.

Implementation Detail. We build our model on the
bottom-up and top-down attention (UpDn) method (Ander-
son et al. 2018) as (Ramakrishnan, Agrawal, and Lee 2018)
and (Selvaraju et al. 2019). The UpDn utilizes two kinds of
attention mechanisms: bottom-up attention and top-down at-
tention. The bottom-up attention generates object proposals
with Faster R-CNN (Ren et al. 2015), while the top-down
attention predicts an attention distribution over the propos-
als using the question representations as guidance. For each
image, the UpDn generates no more than 100 proposals with
its 2048-d feature. The questions are preprocessed to a max-
imum of 14 words. The extra words are discarded and the
questions shorter than 14 words are padded with vectors of
zeros. The pre-trained GloVe is used to initialize the word
embeddings with the dimension of 300 and then the GRU is
used to obtain sentence-level question embeddings with the
dimension of 512.

In our implementation, we set K as 36 for each image,
thus the dimension of features of an image is 36×2048. For
question embeddings, we replace the original GRU with our
language attention module, since the proposed method does
not utilize the RNN-based sentence-level embeddings. The
answers are preprocessed to a maximum of 3 words. An-
swers appear no more than 9 times in dataset are excluded
from candidate answer set A. We use the 65 kinds of in-
terrogative word-based question categories provided by the
VQA v2 (Goyal et al. 2017) in the language attention mod-
ule and the question identification module. To make sure the
interrogative words are filtered out for yes/no questions, we
set the threshold β in the language attention module as 0.1,
which is a little bigger than average attention weight, i.e.,
0.07. In the VQA-CP, we set the number of training epochs
as 30 and the final model is used for evaluation without
early-stopping because there is no validation set.

Results and Analysis

Comparison with the state-of-the-art. The results of our
method and state-of-the-art VQA models on the VQA-
CP v2 dataset are listed in Table 1. It is shown that our
method brings remarkably improvement for its base model,
the UpDn. By learning and exploiting decomposed lin-
guistic representations, the proposed method decouples the
language-based concept discovery and vision-based concept
verification from the answer inference process. For yes/no
questions, the language attention module explicitly separates
the concept representation from interrogative words. There-
fore the model needs to verify the visual presence/absence
of the concept in questions based on image content to infer
answers, instead of relying on the interrogative words. For
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Table 1: Results of our method and the state-of-the-art on the VQA-CP v2 and the VQA v2.

Model
VQA-CP v2 test VQA v2 val

Overall Yes/No Numbers Other Overall Yes/No Numbers Other

SAN (Yang et al. 2016) 24.96 38.35 11.14 21.74 52.41 70.06 39.28 47.84
UpDn (Anderson et al. 2018) 39.49 45.21 11.96 42.98 62.85 80.89 42.78 54.44

GVQA (SAN) (Agrawal et al. 2018) 31.30 57.99 13.68 22.14 48.24 72.03 31.17 34.65
AdvReg (UpDn) (Ramakrishnan et al. 2018) 41.17 65.49 15.48 35.48 62.75 79.84 42.35 55.16

HINT (UpDn) (Selvaraju et al. 2019) 47.7 70.04 10.68 46.31 62.35 80.49 41.75 54.01

Ours (SAN) 34.83 57.28 15.11 28.48 49.27 66.71 32.47 40.43
Ours (UpDn) 48.87 70.99 18.72 45.57 57.96 76.82 39.33 48.54

non-yes/no questions, the possible answers identified in the
question identification module are verified with the attended
region. Then the answer with the highest score is selected to
be the inferred answer. Thus the model needs to exploit the
image content to select the most relevant answer. In sum-
mary, our method guarantees that the model must exploit
the visual information of images to infer the correct answer
from the possible answer set and therefore significantly al-
leviates the influence of language priors. Particular, we ob-
serve that our method works much better than others in the
“number” subset. The main reason is that the questions of
this subset are more difficult than the questions about color,
sport, etc., considering the counting ability is needed to an-
swer them. In this case, the models are more inclined to rely
on language priors. As a result, our method performs bet-
ter since we decouple the language-based concept discovery
and vision-based concept verification to overcome the lan-
guage priors.

The proposed method outperforms the AdvReg (Ramakr-
ishnan, Agrawal, and Lee 2018) and the HINT (Selvaraju et
al. 2019) in the overall accuracy with the same base model.
By learning question representations based on which the
question-only adversary model can’t infer correct answers,
the AdvReg weakens the superficial correlations between
questions and answers. By contrast, we learn and exploit
the decomposed representations of questions to explicitly
decouple the concept discovery and concept verification to
prevent the language priors from dominating the answer in-
ference. The results show the effectiveness of the decom-
posed linguistic representations. The HINT effectively lever-
ages human attention maps to encourage the model to fo-
cus on the right regions and achieves state-of-the-art per-
formance. However, the human supervision they used is not
always available, which limits the generalization ability to
other VQA datasets. The proposed method outperforms the
HINT, without the human supervision. The ground truth of
the question type, the question category, and the Q&A mask
used in our method are from the original VQA dataset and
can be easily obtained for any other VQA datasets.

For fair comparisons with GVQA, we particularly build
our method upon the SAN (Yang et al. 2016) and obtain a
model marked as “ours (SAN)” in Table 1. The main reason
why this model outperforms the GVQA is that our method
integrates the identification and the utilization of different
information in questions into an end-to-end trained model,
and thus results in better compatibility.

Results on the original VQA dataset. The results on the
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Figure 3: Results with different thresholds on two datasets.

VQA v2 dataset are also listed in Table 1. It is shown that
all models for overcoming language priors perform worse
than their base models because they avoid overfitting the
dataset biases of VQA v2 dataset. Moreover, we observe our
method and the GVQA suffer more performance drop on
the VQA v2 dataset compared with the corresponding base
model than the AdvReg and the HINT. Intuitively, by decou-
pling the concept discovery and concept verification, the for-
mer two methods can more effectively handle the situation
that the model focuses on the right region but still predict
the wrong answers via language priors. Thus they can more
effectively prevent models from exploiting language priors.

Parameter analysis. The threshold in the language atten-
tion module is a critical hyper-parameter for the proposed
method. To measure the influence of the threshold, we vary
it from 0.1 to 1 to train different models on both datasets,
and the results are shown in Figure 3. We observe that the
threshold can control the ability of our method to overcome
language priors. As the threshold increases, our method per-
forms better on the VQA v2 but worse on the VQA-CP v2.
The reason is that when the threshold is set higher, fewer in-
terrogative words are filtered out and the model will exploit
the interrogative words to infer the answer.

Ablation studies. To evaluate the effectiveness of several
important components of our method, we re-train different
versions of our model by ablating certain components. The
results on the VQA-CP v2 dataset are listed in Table 2.

We first investigate the effectiveness of the language at-
tention module of the proposed method. To this end, we re-
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Figure 4: Qualitative comparisons between the proposed method and the UpDn. For each example, the top left shows an input
question in the test split of the VQA-CP v2 dataset, along with the image and the ground-truth (GT) answer. The top right
shows the language attention maps of the language attention module. The bottom row shows the visual attention maps for
object referring and the predicted answers of the UpDn and our method, respectively. The region with the highest weight is
marked with a green rectangle.

place the language attention module with the original GRU
and obtain a model marked as “Ours w/o LA”, where the
“w/o” represents “without”. The “Ours w/o LA” obtains
sentence-level question representations via the GRU and in-
put the representations into the following modules. Apart
from the “Ours w/o LA”, we further replace the language
attention module with the ordinary modular soft attention
mechanism and obtain a model called “Ours w/o threshold”.
In other words, we remove the threshold and the question
category identification loss of the language attention mod-
ule. As shown in Table 2, the “Ours w/o LA” performs
worse than the full model in all three subsets. This clearly
demonstrates the effectiveness learning decomposed repre-
sentations for overcoming language priors. The “Ours w/o
threshold” performs better than “Ours w/o LA” but still sig-
nificantly worse than the full model. This demonstrates sim-
ply using modular soft attention to learn decomposed repre-
sentations without any constraints results in that the model
is still vulnerable to language priors.

Then we investigate the influence of the mask generation
process in the question identification module. We exclude
the mask generation process and the obtained model is called
“Ours w/o Mask”, which selects the answer with the high-
est visual score as the final answer. From Table 2, we find
that the Q&A mask brings substantive improvement on the
“other” subset. The model without the Q&A masks performs
worse than the base model in “numbers” and “other” sub-
sets, while the full model outperforms the base model by a
large margin.

Qualitative examples. Figure 4 depicts two qualitative
examples about yes/no questions that show the effective-
ness of the proposed model in question parsing and vi-
sual grounding. It can be shown that, in both cases, our
method correctly identifies different kinds of information in
the question and localizes the relevant region in the image

Table 2: Ablation studies on the VQA-CP v2

Model
VQA-CP v2 test

Overall Yes/No Numbers Other

UpDn (Anderson et al. 2018) 39.49 45.21 11.96 42.98

Ours w/o LA 41.49 49.07 14.06 45.04
Ours w/o threshold 42.50 51.22 17.98 44.66

Ours w/o Mask 43.39 70.39 16.64 36.59

Ours 48.87 70.99 18.72 45.57

more accurately than the UpDn. As a result, our method in-
fers the right answers.

Conclusion

In this work, we have presented a novel method of language
attention-based VQA. Our method learns decomposed lin-
guistic representations of questions to overcome language
priors. Using a language attention module, we can flexi-
bly parse a question into three phrase representations. These
representations was appropriately utilized to decouple the
language-based concept discovery and vision-based concept
verification from the answer inference process. Thus super-
ficial correlations between questions and answers can not
dominate the answering process and the model must ex-
ploit the images to infer answers. Besides, our method can
achieve a more transparent answering process with informa-
tive intermediate results. Experimental results on the VQA-
CP dataset show the effectiveness of our method.
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