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Abstract

Variation in language is ubiquitous, particu-

larly in newer forms of writing such as social

media. Fortunately, variation is not random; it

is often linked to social properties of the au-

thor. In this paper, we show how to exploit

social networks to make sentiment analysis

more robust to social language variation. The

key idea is linguistic homophily: the tendency

of socially linked individuals to use language

in similar ways. We formalize this idea in a

novel attention-based neural network architec-

ture, in which attention is divided among sev-

eral basis models, depending on the author’s

position in the social network. This has the

effect of smoothing the classification function

across the social network, and makes it pos-

sible to induce personalized classifiers even

for authors for whom there is no labeled data

or demographic metadata. This model signif-

icantly improves the accuracies of sentiment

analysis on Twitter and on review data.

1 Introduction

Words can mean different things to different people.

Fortunately, these differences are rarely idiosyn-

cratic, but are often linked to social factors, such as

age (Rosenthal and McKeown, 2011), gender (Eck-

ert and McConnell-Ginet, 2003), race (Green,

2002), geography (Trudgill, 1974), and more inef-

fable characteristics such as political and cultural

attitudes (Fischer, 1958; Labov, 1963). In natural

language processing (NLP), social media data has

brought variation to the fore, spurring the develop-

ment of new computational techniques for charac-

terizing variation in the lexicon (Eisenstein et al.,

2010), orthography (Eisenstein, 2015), and syn-

tax (Blodgett et al., 2016). However, aside from the

focused task of spelling normalization (Sproat et al.,

2001; Aw et al., 2006), there have been few attempts

to make NLP systems more robust to language vari-

ation across speakers or writers.

One exception is the work of Hovy (2015), who

shows that the accuracies of sentiment analysis and

topic classification can be improved by the inclusion

of coarse-grained author demographics such as age

and gender. However, such demographic informa-

tion is not directly available in most datasets, and

it is not yet clear whether predicted age and gen-

der offer any improvements. On the other end of

the spectrum are attempts to create personalized lan-

guage technologies, as are often employed in infor-

mation retrieval (Shen et al., 2005), recommender

systems (Basilico and Hofmann, 2004), and lan-

guage modeling (Federico, 1996). But personal-

ization requires annotated data for each individual

user—something that may be possible in interactive

settings such as information retrieval, but is not typ-

ically feasible in natural language processing.

We propose a middle ground between group-level

demographic characteristics and personalization, by

exploiting social network structure. The sociologi-

cal theory of homophily asserts that individuals are

usually similar to their friends (McPherson et al.,

2001). This property has been demonstrated for lan-

guage (Bryden et al., 2013) as well as for the demo-

graphic properties targeted by Hovy (2015), which

are more likely to be shared by friends than by ran-

dom pairs of individuals (Thelwall, 2009). Social
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Figure 1: Words such as ‘sick’ can express opposite sen-

timent polarities depending on the author. We account for

this variation by generalizing across the social network.

network information is available in a wide range of

contexts, from social media (Huberman et al., 2008)

to political speech (Thomas et al., 2006) to histori-

cal texts (Winterer, 2012). Thus, social network ho-

mophily has the potential to provide a more general

way to account for linguistic variation in NLP.

Figure 1 gives a schematic of the motivation for

our approach. The word ‘sick’ typically has a nega-

tive sentiment, e.g., ‘I would like to believe he’s sick

rather than just mean and evil.’1 However, in some

communities the word can have a positive sentiment,

e.g., the lyric ‘this sick beat’, recently trademarked

by the musician Taylor Swift.2 Given labeled ex-

amples of ‘sick’ in use by individuals in a social

network, we assume that the word will have a simi-

lar sentiment meaning for their near neighbors—an

assumption of linguistic homophily that is the ba-

sis for this research. Note that this differs from the

assumption of label homophily, which entails that

neighbors in the network will hold similar opinions,

and will therefore produce similar document-level

labels (Tan et al., 2011; Hu et al., 2013). Linguis-

tic homophily is a more generalizable claim, which

could in principle be applied to any language pro-

cessing task where author network information is

available.

To scale this basic intuition to datasets with tens

of thousands of unique authors, we compress the

social network into vector representations of each

author node, using an embedding method for large

1Charles Rangel, describing Dick Cheney
2In the case of ‘sick’, speakers like Taylor Swift may em-

ploy either the positive and negative meanings, while speak-

ers like Charles Rangel employ only the negative meaning. In

other cases, communities may maintain completely distinct se-

mantics for a word, such as the term ‘pants’ in American and

British English. Thanks to Christopher Potts for suggesting this

distinction and this example.

Dataset # Positive # Negative # Neutral # Tweet

Train 2013 3,230 1,265 4,109 8,604

Dev 2013 477 273 614 1,364

Test 2013 1,572 601 1,640 3,813

Test 2014 982 202 669 1,853

Test 2015 1,038 365 987 2,390

Table 1: Statistics of the SemEval Twitter sentiment

datasets.

scale networks (Tang et al., 2015b). Applying the

algorithm to Figure 1, the authors within each triad

would likely be closer to each other than to authors

in the opposite triad. We then incorporate these

embeddings into an attention-based neural network

model, called SOCIAL ATTENTION, which employs

multiple basis models to focus on different regions

of the social network.

We apply SOCIAL ATTENTION to Twitter senti-

ment classification, gathering social network meta-

data for Twitter users in the SemEval Twitter sen-

timent analysis tasks (Nakov et al., 2013). We fur-

ther adopt the system to Ciao product reviews (Tang

et al., 2012), training author embeddings using trust

relationships between reviewers. SOCIAL ATTEN-

TION offers a 2-3% improvement over related neu-

ral and ensemble architectures in which the social

information is ablated. It also outperforms all prior

published results on the SemEval Twitter test sets.

2 Data

In the SemEval Twitter sentiment analysis tasks, the

goal is to classify the sentiment of each message

as positive, negative, or neutral. Following Rosen-

thal et al. (2015), we train and tune our systems

on the SemEval Twitter 2013 training and devel-

opment datasets respectively, and evaluate on the

2013–2015 SemEval Twitter test sets. Statistics of

these datasets are presented in Table 1. Our train-

ing and development datasets lack some of the orig-

inal Twitter messages, which may have been deleted

since the datasets were constructed. However, our

test datasets contain all the tweets used in the Se-

mEval evaluations, making our results comparable

with prior work.

We construct three author social networks based

on the follow, mention, and retweet relations be-

tween the 7,438 authors in the training dataset,
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which we refer as FOLLOWER, MENTION and

RETWEET.3 Specifically, we use the Twitter API to

crawl the friends of the SemEval users (individuals

that they follow) and the most recent 3,200 tweets

in their timelines.4 The mention and retweet links

are then extracted from the tweet text and metadata.

We treat all social networks as undirected graphs,

where two users are socially connected if there ex-

ists at least one social relation between them.

3 Linguistic Homophily

The hypothesis of linguistic homophily is that so-

cially connected individuals tend to use language

similarly, as compared to a randomly selected pair

of individuals who are not socially connected. We

now describe a pilot study that provides support for

this hypothesis, focusing on the domain of sentiment

analysis. The purpose of this study is to test whether

errors in sentiment analysis are assortative on the

social networks defined in the previous section: that

is, if two individuals (i, j) are connected in the net-

work, then a classifier error on i suggests that errors

on j are more likely.

We test this idea using a simple lexicon-based

classification approach, which we apply to the Se-

mEval training data, focusing only on messages that

are labeled as positive or negative (ignoring the neu-

tral class), and excluding authors who contributed

more than one message (a tiny minority). Using the

social media sentiment lexicons defined by Tang et

al. (2014),5 we label a message as positive if it has at

least as many positive words as negative words, and

as negative otherwise.6 The assortativity is the frac-

tion of dyads for which the classifier makes two cor-

rect predictions or two incorrect predictions (New-

man, 2003). This measures whether classification

errors are clustered on the network.

We compare the observed assortativity against the

assortativity in a network that has been randomly

3We could not gather the authorship information of 10% of

the tweets in the training data, because the tweets or user ac-

counts had been deleted by the time we crawled the social in-

formation.
4The Twitter API returns a maximum of 3,200 tweets.
5The lexicons include words that are assigned at least 0.99

confidence by the method of Tang et al. (2014): 1,474 positive

and 1,956 negative words in total.
6Ties go to the positive class because it is more common.

rewired.7 Each rewiring epoch involves a number of

random rewiring operations equal to the total num-

ber of edges in the network. (The edges are ran-

domly selected, so a given edge may not be rewired

in each epoch.) By counting the number of edges

that occur in both the original and rewired networks,

we observe that this process converges to a steady

state after three or four epochs. As shown in Fig-

ure 2, the original observed network displays more

assortativity than the randomly rewired networks in

nearly every case. Thus, the Twitter social networks

display more linguistic homophily than we would

expect due to chance alone.

The differences in assortativity across network

types are small, indicating that none of the networks

are clearly best. The retweet network was the most

difficult to rewire, with the greatest proportion of

shared edges between the original and rewired net-

works. This may explain why the assortativities of

the randomly rewired networks were closest to the

observed network in this case.

4 Model

In this section, we describe a neural network method

that leverages social network information to improve

text classification. Our approach is inspired by en-

semble learning, where the system prediction is the

weighted combination of the outputs of several ba-

sis models. We encourage each basis model to focus

on a local region of the social network, so that clas-

sification on socially connected individuals employs

similar model combinations.

Given a set of instances {xi} and authors {ai},
the goal of personalized probabilistic classification
is to estimate a conditional label distribution p(y |
x, a). For most authors, no labeled data is avail-
able, so it is impossible to estimate this distribution
directly. We therefore make a smoothness assump-
tion over a social network G: individuals who are
socially proximate in G should have similar classi-
fiers. This idea is put into practice by modeling the
conditional label distribution as a mixture over the

7Specifically, we use the double edge swap operation

of the networkx package (Hagberg et al., 2008). This opera-

tion preserves the degree of each node in the network.
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Figure 2: Assortativity of observed and randomized networks. Each rewiring epoch performs a number of rewiring

operations equal to the total number of edges in the network. The randomly rewired networks almost always display

lower assortativities than the original network, indicating that the accuracy of the lexicon-based sentiment analyzer is

more assortative on the observed social network than one would expect by chance.

predictions of K basis classifiers,

p(y | x, a) =

K
∑

k=1

Pr(Za = k | a,G)× p(y | x, Za = k).

(1)

The basis classifiers p(y | x, Za = k) can be arbi-

trary conditional distributions; we use convolutional

neural networks, as described in § 4.2. The compo-

nent weighting distribution Pr(Za = k | a,G) is

conditioned on the social network G, and functions

as an attentional mechanism, described in § 4.1. The

basic intuition is that for a pair of authors ai and

aj who are nearby in the social network G, the pre-

diction rules should behave similarly if the atten-

tional distributions are similar, p(z | ai, G) ≈ p(z |
aj , G). If we have labeled data only for ai, some

of the personalization from that data will be shared

by aj . The overall classification approach can be

viewed as a mixture of experts (Jacobs et al., 1991),

leveraging the social network as side information to

choose the distribution over experts for each author.

4.1 Social Attention Model

The goal of the social attention model is to assign

similar basis weights to authors who are nearby in

the social network G. We operationalize social prox-

imity by embedding each node’s social network po-

sition into a vector representation. Specifically, we

employ the LINE method (Tang et al., 2015b), which

estimates D(v) dimensional node embeddings va as

parameters in a probabilistic model over edges in

the social network. These embeddings are learned

solely from the social network G, without leveraging

any textual information. The attentional weights are

then computed from the embeddings using a soft-

max layer,

Pr(Za = k | a,G) =
exp

(

φ⊤
k va + bk

)

∑K
k′ exp

(

φ⊤
k′va + bk′

)
.

(2)

This embedding method uses only single-

relational networks; in the evaluation, we will show

results for Twitter networks built from networks of

follow, mention, and retweet relations. In future

work, we may consider combining all of these rela-

tion types into a unified multi-relational network. It

is possible that embeddings in such a network could

be estimated using techniques borrowed from multi-

relational knowledge networks (Bordes et al., 2014;

Wang et al., 2014).

4.2 Sentiment Classification with

Convolutional Neural Networks

We next describe the basis models, p(y | x, Z = k).
Because our target task is classification on microtext

documents, we model this distribution using convo-

lutional neural networks (CNNs; Lecun et al., 1989),

which have been proven to perform well on sentence

classification tasks (Kalchbrenner et al., 2014; Kim,

2014). CNNs apply layers of convolving filters to

n-grams, thereby generating a vector of dense lo-

cal features. CNNs improve upon traditional bag-

of-words models because of their ability to capture

word ordering information.

Let x = [h1,h2, · · · ,hn] be the input sentence,

where hi is the D(w) dimensional word vector cor-

responding to the i-th word in the sentence. We use
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one convolutional layer and one max pooling layer

to generate the sentence representation of x. The

convolutional layer involves filters that are applied

to bigrams to produce feature maps. Formally, given

the bigram word vectors hi,hi+1, the features gen-

erated by m filters can be computed by

ci = tanh(WLhi +WRhi+1 + b), (3)

where ci is an m dimensional vector, WL and WR

are m×D(w) projection matrices, and b is the bias

vector. The m dimensional vector representation of

the sentence is given by the pooling operation

s = max
i∈1,··· ,n−1

ci. (4)

To obtain the conditional label probability, we uti-

lize a multiclass logistic regression model,

Pr(Y = t | x, Z = k) =
exp(β⊤

t sk + βt)
∑T

t′=1 exp(β
⊤
t′ sk + βt′)

,

(5)

where βt is an m dimensional weight vector, βt is

the corresponding bias term, and sk is the m dimen-

sional sentence representation produced by the k-th

basis model.

4.3 Training

We fix the pretrained author and word embeddings

during training our social attention model. Let

Θ denote the parameters that need to be learned,

which include {WL,WR,b, {βt, βt}
T
t=1} for ev-

ery basis CNN model, and the attentional weights

{φk, bk}
K
k=1. We minimize the following logistic

loss objective for each training instance:

ℓ(Θ) = −
T
∑

t=1

1[Y ∗ = t] log Pr(Y = t | x, a), (6)

where Y ∗ is the ground truth class for x, and 1[·]
represents an indicator function. We train the mod-

els for between 10 and 15 epochs using the Adam

optimizer (Kingma and Ba, 2014), with early stop-

ping on the development set.

4.4 Initialization

One potential problem is that after initialization, a

small number of basis models may claim most of the

mixture weights for all the users, while other basis

models are inactive. This can occur because some

basis models may be initialized with parameters that

are globally superior. As a result, the “dead” ba-

sis models will receive near-zero gradient updates,

and therefore can never improve. The true model

capacity can thereby be substantially lower than the

K assigned experts.

Ideally, dead basis models will be avoided be-

cause each basis model should focus on a unique

region of the social network. To ensure that this

happens, we pretrain the basis models using an in-

stance weighting approach from the domain adapta-

tion literature (Jiang and Zhai, 2007). For each basis

model k, each author a has an instance weight αa,k.

These instance weights are based on the author’s so-

cial network node embedding, so that socially prox-

imate authors will have high weights for the same

basis models. This is ensured by endowing each ba-

sis model with a random vector γk ∼ N(0, σ2
■),

and setting the instance weights as,

αa,k = sigmoid(γ⊤
k va). (7)

The simple design results in similar instance
weights for socially proximate authors. During pre-
training, we train the k-th basis model by optimizing
the following loss function for every instance:

ℓk = −αa,k

T
∑

t=1

1[Y ∗ = t] log Pr(Y = t | x, Za = k).

(8)

The pretrained basis models are then assembled to-

gether and jointly trained using Equation 6.

5 Experiments

Our main evaluation focuses on the 2013–2015

SemEval Twitter sentiment analysis tasks. The

datasets have been described in § 2. We train and

tune our systems on the Train 2013 and Dev 2013

datasets respectively, and evaluate on the Test 2013–

2015 sets. In addition, we evaluate on another

dataset based on Ciao product reviews (Tang et al.,

2012).

5.1 Social Network Expansion

We utilize Twitter’s follower, mention, and retweet

social networks to train user embeddings. By query-

ing the Twitter API in April 2015, we were able
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Network # Author # Relation

FOLLOWER+ 18,281 1,287,260

MENTION+ 25,007 1,403,369

RETWEET+ 35,376 2,194,319

Table 2: Statistics of the author social networks used for

training author embeddings.

to identify 15,221 authors for the tweets in the Se-

mEval datasets described above. We induce so-

cial networks for these individuals by crawling their

friend links and timelines, as described in § 2. Un-

fortunately, these networks are relatively sparse,

with a large amount of isolated author nodes. To

improve the quality of the author embeddings, we

expand the set of author nodes by adding nodes that

do the most to densify the author networks: for

the follower network, we add additional individu-

als that are followed by at least a hundred authors

in the original set; for the mention and retweet net-

works, we add all users that have been mentioned

or retweeted by at least twenty authors in the origi-

nal set. The statistics of the resulting networks are

presented in Table 2.

5.2 Experimental Settings

We employ the pretrained word embeddings used by

Astudillo et al. (2015), which are trained with a cor-

pus of 52 million tweets, and have been shown to

perform very well on this task. The embeddings are

learned using the structured skip-gram model (Ling

et al., 2015), and the embedding dimension is set

at 600, following Astudillo et al. (2015). We re-

port the same evaluation metric as the SemEval chal-

lenge: the average F1 score of positive and negative

classes.8

Competitive systems We consider five competi-

tive Twitter sentiment classification methods. Con-

volutional neural network (CNN) has been de-

scribed in § 4.2, and is the basis model of SOCIAL

ATTENTION. Mixture of experts employs the same

CNN model as an expert, but the mixture densi-

8Regarding the neutral class: systems are penalized with

false positives when neutral tweets are incorrectly classified as

positive or negative, and with false negatives when positive or

negative tweets are incorrectly classified as neutral. This fol-

lows the evaluation procedure of the SemEval challenge.

ties solely depend on the input values. We adopt

the summation of the pretrained word embeddings

as the sentence-level input to learn the gating func-

tion.9 The model architecture of random attention

is nearly identical to SOCIAL ATTENTION: the only

distinction is that we replace the pretrained author

embeddings with random embedding vectors, draw-

ing uniformly from the interval (−0.25, 0.25). Con-

catenation concatenates the author embedding with

the sentence representation obtained from CNN, and

then feeds the new representation to a softmax clas-

sifier. Finally, we include SOCIAL ATTENTION, the

attention-based neural network method described

in § 4.

We also compare against the three top-performing

systems in the SemEval 2015 Twitter sentiment

analysis challenge (Rosenthal et al., 2015): WE-

BIS (Hagen et al., 2015), UNITN (Severyn and Mos-

chitti, 2015), and LSISLIF (Hamdan et al., 2015).

UNITN achieves the best average F1 score on Test

2013–2015 sets among all the submitted systems.

Finally, we republish results of NLSE (Astudillo et

al., 2015), a non-linear subspace embedding model.

Parameter tuning We tune all the hyperparam-

eters on the SemEval 2013 development set. We

choose the number of bigram filters for the CNN

models from {50, 100, 150}. The size of author

embeddings is selected from {50, 100}. For mix-

ture of experts, random attention and SOCIAL AT-

TENTION, we compare a range of numbers of ba-

sis models, {3, 5, 10, 15}. We found that a rela-

tively small number of basis models are usually suf-

ficient to achieve good performance. The number of

pretraining epochs is selected from {1, 2, 3}. Dur-

ing joint training, we check the performance on the

development set after each epoch to perform early

stopping.

5.3 Results

Table 3 summarizes the main empirical findings,

where we report results obtained from author em-

beddings trained on RETWEET+ network for SO-

CIAL ATTENTION. The results of different social

networks for SOCIAL ATTENTION are shown in Ta-

ble 4. The best hyperparameters are: 100 bigram

9The summation of the pretrained word embeddings works

better than the average of the word embeddings.

300



System Test 2013 Test 2014 Test 2015 Average

Our implementations

CNN 69.31 72.73 63.24 68.43

Mixture of experts 68.97 72.07 64.28* 68.44

Random attention 69.48 71.56 64.37* 68.47

Concatenation 69.80 71.96 63.80 68.52

SOCIAL ATTENTION 71.91* 75.07* 66.75* 71.24

Reported results

NLSE 72.09 73.64 65.21 70.31

WEBIS 68.49 70.86 64.84 68.06

UNITN 72.79 73.60 64.59 70.33

LSISLIF 71.34 71.54 64.27 69.05

Table 3: Average F1 score on the SemEval test sets. The best results are in bold. Results are marked with * if they are

significantly better than CNN at p < 0.05.

SemEval Test

Network 2013 2014 2015 Average

FOLLOWER+ 71.49 74.17 66.00 70.55

MENTION+ 71.72 74.14 66.27 70.71

RETWEET+ 71.91 75.07 66.75 71.24

Table 4: Comparison of different social networks with

SOCIAL ATTENTION. The best results are in bold.

filters; 100-dimensional author embeddings; K = 5
basis models; 1 pre-training epoch. To establish the

statistical significance of the results, we obtain 100

bootstrap samples for each test set, and compute the

F1 score on each sample for each algorithm. A two-

tail paired t-test is then applied to determine if the F1

scores of two algorithms are significantly different,

p < 0.05.

Mixture of experts, random attention, and CNN

all achieve similar average F1 scores on the SemEval

Twitter 2013–2015 test sets. Note that random at-

tention can benefit from some of the personalized

information encoded in the random author embed-

dings, as Twitter messages posted by the same au-

thor share the same attentional weights. However, it

barely improves the results, because the majority of

authors contribute a single message in the SemEval

datasets. With the incorporation of author social net-

work information, concatenation slightly improves

the classification performance. Finally, SOCIAL AT-

TENTION gives much better results than concatena-

tion, as it is able to model the interactions between

text representations and author representations. It

significantly outperforms CNN on all the SemEval

test sets, yielding 2.8% improvement on average F1

score. SOCIAL ATTENTION also performs substan-

tially better than the top-performing SemEval sys-

tems and NLSE, especially on the 2014 and 2015

test sets.

We now turn to a comparison of the social net-

works. As shown in Table 4, the RETWEET+ net-

work is the most effective, although the differences

are small: SOCIAL ATTENTION outperforms prior

work regardless of which network is selected. Twit-

ter’s “following” relation is a relatively low-cost

form of social engagement, and it is less public

than retweeting or mentioning another user. Thus

it is unsurprising that the follower network is least

useful for socially-informed personalization. The

RETWEET+ network has denser social connections

than MENTION+, which could lead to better author

embeddings.

5.4 Analysis

We now investigate whether language variation in

sentiment meaning has been captured by different

basis models. We focus on the same sentiment

words (Tang et al., 2014) that we used to test lin-

guistic homophily in our analysis. We are inter-

ested to discover sentiment words that are used with

the opposite sentiment meanings by some authors.

To measure the level of model-specificity for each
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Basis model More positive More negative

1 banging loss fever broken fucking dear like god yeah wow

2 chilling cold ill sick suck satisfy trust wealth strong lmao

3 ass damn piss bitch shit talent honestly voting win clever

4 insane bawling fever weird cry lmao super lol haha hahaha

5 ruin silly bad boring dreadful lovatics wish beliebers arianators kendall

Table 5: Top 5 more positive/negative words for the basis models in the SemEval training data. Bolded entries

correspond to words that are often used ironically, by top authors related to basis model 1 and 4. Underlined entries

are swear words, which are sometimes used positively by top users corresponding to basis model 3. Italic entries refer

to celebrities and their fans, which usually appear in negative tweets by top authors for basis model 5.

Word Sentiment Example

sick positive
Watch ESPN tonight to see me burning @user for a sick goal on the top ten.

#realbackyardFIFA

bitch positive
@user bitch u shoulda came with me Saturday sooooo much fun. Met Romeo santos

lmao na i met his look a like

shit positive
@user well shit! I hope your back for the morning show. I need you on my drive to

Cupertino on Monday! Have fun!

dear negative
Dear Spurs, You are out of COC, not in Champions League and come May wont be

in top 4. Why do you even exist?

wow negative
Wow. Tiger fires a 63 but not good enough. Nick Watney shoots a 59 if he birdies the

18th?!? #sick

lol negative
Lol super awkward if its hella foggy at Rim tomorrow and the games suppose to be

on tv lol Uhhhh.. Where’s the ball? Lol

Table 6: Tweet examples that contain sentiment words conveying specific sentiment meanings that differ from their

common senses in the SemEval training data. The sentiment labels are adopted from the SemEval annotations.

word w, we compute the difference between the

model-specific probabilities p(y | X = w,Z = k)
and the average probabilities of all basis models
1
K

∑K
k=1 p(y | X = w,Z = k) for positive and neg-

ative classes. The five words in the negative and pos-

itive lexicons with the highest scores for each model

are presented in Table 5.

As shown in Table 5, Twitter users correspond-

ing to basis models 1 and 4 often use some words

ironically in their tweets. Basis model 3 tends to

assign positive sentiment polarity to swear words,

and Twitter users related to basis model 5 seem to

be less fond of fans of certain celebrities. Finally,

basis model 2 identifies Twitter users that we have

described in the introduction—they often adopt gen-

eral negative words like ‘ill’, ‘sick’, and ‘suck’ posi-

tively. Examples containing some of these words are

shown in Table 6.

5.5 Sentiment Analysis of Product Reviews

The labeled datasets for Twitter sentiment analysis

are relatively small; to evaluate our method on a

larger dataset, we utilize a product review dataset

by Tang et al. (2012). The dataset consists of

257,682 reviews written by 10,569 users crawled

from a popular product review sites, Ciao.10 The

rating information in discrete five-star range is avail-

able for the reviews, which is treated as the ground

truth label information for the reviews. Moreover,

the users of this site can mark explicit “trust” rela-

tionships with each other, creating a social network.

To select examples from this dataset, we first re-

moved reviews that were marked by readers as “not

useful.” We treated reviews with more than three

stars as positive, and less than three stars as nega-

tive; reviews with exactly three stars were removed.

10http://www.ciao.co.uk
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Dataset # Author # Positive # Negative # Review

Train Ciao 8,545 63,047 6,953 70,000

Dev Ciao 4,087 9,052 948 10,000

Test Ciao 5,740 17,978 2,022 20,000

Total 9,267 90,077 9,923 100,000

Table 7: Statistics of the Ciao product review datasets.

System Test Ciao

CNN 78.43

Mixture of experts 78.37

Random attention 79.43*

Concatenation 77.99

SOCIAL ATTENTION 80.19**

Table 8: Average F1 score on the Ciao test set. The best

results are in bold. Results are marked with * and ** if

they are significantly better than CNN and random atten-

tion respectively, at p < 0.05.

We then sampled 100,000 reviews from this set, and

split them randomly into training (70%), develop-

ment (10%) and test sets (20%). The statistics of

the resulting datasets are presented in Table 7. We

utilize 145,828 trust relations between 18,999 Ciao

users to train the author embeddings. We consider

the 10,000 most frequent words in the datasets, and

assign them pretrained word2vec embeddings.11 As

shown in Table 7, the datasets have highly skewed

class distributions. Thus, we use the average F1

score of positive and negative classes as the evalu-

ation metic.

The evaluation results are presented in Table 8.

The best hyperparameters are generally the same as

those for Twitter sentiment analysis, except that the

optimal number of basis models is 10, and the op-

timal number of pretraining epochs is 2. Mixture

of experts and concatenation obtain slightly worse

F1 scores than the baseline CNN system, but ran-

dom attention performs significantly better. In con-

trast to the SemEval datasets, individual users of-

ten contribute multiple reviews in the Ciao datasets

(the average number of reviews from an author is

10.8; Table 7). As an author tends to express similar

opinions toward related products, random attention

11https://code.google.com/archive/p/

word2vec

is able to leverage the personalized information to

improve sentiment analysis. Prior work has inves-

tigated the direction, obtaining positive results us-

ing speaker adaptation techniques (Al Boni et al.,

2015). Finally, by exploiting the social network of

trust relations, SOCIAL ATTENTION obtains further

improvements, outperforming random attention by a

small but significant margin.

6 Related Work

Domain adaptation and personalization Do-

main adaptation is a classic approach to handling

the variation inherent in social media data (Eisen-

stein, 2013). Early approaches to supervised do-

main adaptation focused on adapting the classifier

weights across domains, using enhanced feature

spaces (Daumé III, 2007) or Bayesian priors (Chelba

and Acero, 2006; Finkel and Manning, 2009). Re-

cent work focuses on unsupervised domain adap-

tation, which typically works by transforming the

input feature space so as to overcome domain dif-

ferences (Blitzer et al., 2006). However, in many

cases, the data has no natural partitioning into do-

mains. In preliminary work, we constructed social

network domains by running community detection

algorithms on the author social network (Fortunato,

2010). However, these algorithms proved to be un-

stable on the sparse networks obtained from social

media datasets, and offered minimal performance

improvements. In this paper, we convert social net-

work positions into node embeddings, and use an

attentional component to smooth the classification

rule across the embedding space.

Personalization has been an active research topic

in areas such as speech recognition and information

retrieval. Standard techniques for these tasks include

linear transformation of model parameters (Legget-

ter and Woodland, 1995) and collaborative filter-

ing (Breese et al., 1998). These methods have re-

cently been adapted to personalized sentiment anal-

ysis (Tang et al., 2015a; Al Boni et al., 2015). Su-

pervised personalization typically requires labeled

training examples for every individual user. In con-

trast, by leveraging the social network structure, we

can obtain personalization even when labeled data is

unavailable for many authors.
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Sentiment analysis with social relations Previ-

ous work on incorporating social relations into sen-

timent classification has relied on the label consis-

tency assumption, where the existence of social con-

nections between users is taken as a clue that the

sentiment polarities of the users’ messages should

be similar. Speriosu et al. (2011) construct a hetero-

geneous network with tweets, users, and n-grams as

nodes. Each node is then associated with a senti-

ment label distribution, and these label distributions

are smoothed by label propagation over the graph.

Similar approaches are explored by Hu et al. (2013),

who employ the graph Laplacian as a source of reg-

ularization, and by Tan et al. (2011) who take a fac-

tor graph approach. A related idea is to label the

sentiment of individuals in a social network towards

each other: West et al. (2014) exploit the sociolog-

ical theory of structural balance to improve the ac-

curacy of dyadic sentiment labels in this setting. All

of these efforts are based on the intuition that indi-

vidual predictions p(y) should be smooth across the

network. In contrast, our work is based on the in-

tuition that social neighbors use language similarly,

so they should have a similar conditional distribu-

tion p(y | x). These intuitions are complementary:

if both hold for a specific setting, then label consis-

tency and linguistic consistency could in principle

be combined to improve performance.

Social relations can also be applied to improve

personalized sentiment analysis (Song et al., 2015;

Wu and Huang, 2015). Song et al. (2015) present

a latent factor model that alleviates the data sparsity

problem by decomposing the messages into words

that are represented by the weighted sentiment and

topic units. Social relations are further incorporated

into the model based on the intuition that linked in-

dividuals share similar interests with respect to the

latent topics. Wu and Huang (2015) build a person-

alized sentiment classifier for each author; socially

connected users are encouraged to have similar user-

specific classifier components. As discussed above,

the main challenge in personalized sentiment analy-

sis is to obtain labeled data for each individual au-

thor. Both papers employ distant supervision, using

emoticons to label additional instances. However,

emoticons may be unavailable for some authors or

even for entire genres, such as reviews. Further-

more, the pragmatic function of emoticons is com-

plex, and in many cases emoticons do not refer to

sentiment (Walther and D’Addario, 2001). Our ap-

proach does not rely on distant supervision, and as-

sumes only that the classification decision function

should be smooth across the social network.

7 Conclusion

This paper presents a new method for learning to

overcome language variation, leveraging the ten-

dency of socially proximate individuals to use lan-

guage similarly—the phenomenon of linguistic ho-

mophily. By learning basis models that focus on

different local regions of the social network, our

method is able to capture subtle shifts in meaning

across the network. Inspired by ensemble learn-

ing, we have formulated this model by employing

a social attention mechanism: the final prediction is

the weighted combination of the outputs of the ba-

sis models, and each author has a unique weight-

ing, depending on their position in the social net-

work. Our model achieves significant improvements

over standard convolutional networks, and ablation

analyses show that social network information is the

critical ingredient. In other work, language varia-

tion has been shown to pose problems for the entire

NLP stack, from part-of-speech tagging to informa-

tion extraction. A key question for future research

is whether we can learn a socially-infused ensemble

that is useful across multiple tasks.
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