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Abstract

We study the problem of approximately answering ag-
gregation queries using sampling. We observe that uniform
sampling performs poorly when the distribution of the ag-
gregated attribute is skewed. To address this issue, we intro-
duce a technique called outlier-indexing. Uniform sampling
is also ineffective for queries with low selectivity. We rely on
weighted sampling based on workload information to over-
come this shortcoming. We demonstrate that a combination
of outlier-indexing with weighted sampling can be used to
answer aggregation queries with significantly reduced ap-
proximation error compared to either uniform sampling or
weighted sampling alone. We discuss the implementation of
these techniques on Microsoft’s SQL Server, and present ex-
perimental results that demonstrate the merits of our tech-
niques.

1 Introduction

Decision support applications such as On Line Analyt-
ical Processing (OLAP) and data mining tools for ana-
lyzing large databases are gaining popularity. Executing
such applications on large volumes of data can be resource-
intensive. Fortunately, small samples of the data can be used
by data mining and statistical techniques effectively with-
out significantly compromising the accuracy of their analy-
sis. Likewise, OLAP servers that answer queries involving
aggregation can potentially benefit from the ability to use
sampling.

There are at least two factors why significant errors may
be introduced if uniform random samples are used for ap-
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proximating results of aggregation queries over relational
databases. These two factors are presence of data skew and
low selectivity of queries. A skewed database is character-
ized by the presence of outlier values that are significantly
different from the rest in terms of their contribution to the
aggregate. Unless special care is taken to handle the effect
of these outliers, uniform sampling over a skewed database
is susceptible to significant error. Uniform sampling is also
hard to exploit for selection queries with aggregates. Very
few or no tuples in the sample may satisfy the query pred-
icate. Extrapolating the aggregate from such a small set of
tuples to the entire data set can can lead to error in estimat-
ing the aggregates.

In this paper, we suggest techniques to overcome these
limitations of uniform random sampling. First, in order to
address problems arising out of skew in data, we isolate val-
ues in the data set that could contribute heavily to the error
in sampling. We refer to this technique as outlier-indexing.
Next, we exploit workload information to overcome limita-
tions in answering queries with low selectivity. This is mo-
tivated by the observation that in general no single uniform
sample can answer low selectivity queries with sufficient
accuracy. However, by using a representative workload,
we can tune our selection of samples1 (as well as outlier-
indexes) such that for queries in the workload, we can sig-
nificantly improve accuracy.

For much of this paper we illustrate our techniques for
the class of single table queries involving selection and
group-by queries with the sum aggregate. However, our
techniques naturally extend to a broader class of queries,
containing foreign key joins as well as other aggregation
functions. We discuss these extensions in Section 4.3.

1Most of the techniques that we propose can either use online samples
(i.e., computed during query processing), or precomputed samples of the
base relations (see also Section 5).



A key contribution of the paper is the experimental eval-
uation of the proposed techniques based on an implementa-
tion on Microsoft SQL Server. Our technique demonstrates
that the combination of outlier-indexing and weighted sam-
pling, based on workload information, results in significant
reduction in error compared to uniform or weighted sam-
pling alone.

The rest of the paper is organized as follows. In Sec-
tion 2 we discuss related work. In Section 3 we point out
the limitations in using uniform sampling for aggregation
queries. In Sections 4 and 5, we describe outlier-indexing
and workload-sensitive sampling respectively. We present
an experimental evaluation in Section 6 and conclude in
Section 7.

2 Related work

Sampling based methods have been used in a wide vari-
ety of scenarios in databases, such as query selectivity es-
timation in query optimization, providing sampling as a re-
lational operation, and approximate query answering [18].
We now discuss related research on the problem of approxi-
mately answering aggregation queries which is the focus of
our paper.

The work of Hellerstein, Haas, and Wang [12] uses
an online sampling technique for answering aggregation
queries that provides the user with a time-accuracy trade-
off. The paper by Hellerstein and Haas [10] introduces
novel join methods that are best suited for such an inter-
active architecture. Our techniques can be integrated with
this architecture to derive the benefits that the architecture
provides, while at the same time addressing some of its lim-
itations. One of the important limitations addressed in our
work is their assumption that there is little variability in the
data.

Acharya, Gibbons, Poosala, and Ramaswamy [2] pro-
posed the use of synopses (i.e., precomputed samples of re-
lations) for answering aggregation queries. Gibbons and
Matias [9] developed techniques for the fast incremental
maintenance of summary statistics, and considered their ap-
plication to providing approximate query answers.

A key technique introduced in our paper is weighted
sampling of the data by exploiting workload information.
Recently, Ganti, Lee, and Ramakrishnan have indepen-
dently developed a weighted sampling scheme that also ex-
ploits workload information to continuously tune a repre-
sentative sample of the data [8]. Although the work by
Acharya, Gibbons and Poosala [1] proposes a weighted
sampling scheme, they do not explicitly leverage workload
information. Instead, their sampling scheme tries to accom-
modate all possible group-by queries.

None of the above papers address the problem of data
skew that we have addressed in this paper through the tech-

nique of outlier-indexing. Outlier detection has a long his-
tory in statistics [3, 4, 11] and has also been considered in
data mining [14, 15, 16]. In particular, the work in [14] is
similar to ours in that it explores the concept of detecting
and removing deviants in time series data. The differences
are that (1) we do not deal with time series data, and (2) our
outlier detection algorithm only minimizes data skew of the
remaining data, while their algorithm attempts a more com-
plex minimization, i.e., the error of the histogram represen-
tation of the remaining data. Consequently, our algorithm
is more efficient than the one in [14]. Finally, our technique
for outlier indexing is structurally a horizonal partition (sub-
set) of the data. Thus, it is related to partial indexes [19].

3 Study of limitations

In this section, we demonstrate the limitations of uniform
sampling in answering aggregation queries. We discuss two
problems that adversely affect the accuracy of sampling-
based estimations: (1) presence of skew in aggregate values,
and, (2) the effect of low selectivity in selection queries as
well as the presence of small groups in group-by queries.

3.1 Effect of data skew

The following example demonstrates the adverse impact
of skew on the applicability of uniform sampling.

Example 1 Consider a relation R with 10; 000 tuples of
which 99% have value 1 in the aggregate column C, while
the remaining 1% of the tuples have value 1000 in C. Thus
the sum over all tuples of R is 109; 900.

Consider using a 1% uniform random sample of R (i.e.,
100 tuples) to estimate this sum. The idea is to compute
the sum of values in the sample, and multiply the result by
100 (multiplying by the inverse of the sampling fraction is
necessary since each tuple in the sample “represents” 100
tuples of R).

It is quite likely that the sample would not include any
tuple of value 1000, leading to an estimate of 10; 000 for
the sum of R. On the other hand, if perchance two or more
tuples of value 1000 were to be included in the sample, then
our estimate of the sum of R would be more than 209; 800.
In either case, the estimate would be far from the true value
which is 109; 900. Only in the event where we get exactly
one tuple of value 1000 in the sample, we would obtain a
reasonable estimate of the average value. But this event has
probability only 0:37. Therefore, with probability of 0:63,
we would get a large error in the estimate.

Although the above example demonstrated the limita-
tions for the sum aggregate, similar arguments also hold
for the aggregate avg (average). Thus a skewed database



is characterized by the existence of certain tuples that are
deviant from the rest in terms of their contribution to the
aggregate value. We refer to these tuples as outliers. The
following theorem from [7] quantifies the contribution of
these outliers to the error in estimating the sum via uniform
sampling (a similar theorem also holds for the error in esti-
mating the average via uniform sampling).

Theorem 1 Consider a relation R of size N and let
fy1; y2; : : : ; yNg be the set of values associated with the
tuples in the relation. Let U be a uniform random sample
of the yi’s of size n. Then Ye = (N=n)

P
yi2U

yi is an

unbiased estimator of the actual sum Y =
PN

i=1 yi with a
standard error (i.e., standard deviation) of

� =
NSp
n

r
1� n

N
(1)

where S is the standard deviation of the values in the rela-
tion, defined as

S =

sPN

i=1(yi � Y )2

N � 1

If there are outliers in the data then S could be very
large. In such a case, for a given error bound, we will need
to increase the sample size n. In the work of Hellerstein
et al. [12], they assume that the aggregate attributes are not
skewed. Therefore, the confidence intervals provided with
their estimate could be severely affected by the presence
of skew. Finally, note that although histograms are widely
used as statistical summaries in databases, it remains non-
trivial to leverage histograms to alleviate the resulting error
in sampling.

3.2 Effect of low selectivity and small groups

Since most queries involve selection conditions and/or
group-by’s, it is important to study their interaction with
sampling. We observe that if the selectivity of a query is
low, then it adversely impacts the accuracy of sampling-
based estimation. A selection query partitions the relation
into two sub-relations: tuples that satisfy the condition (rel-
evant sub-relation) and tuples that do not. If we sample
uniformly from the relation, the number of tuples that are
sampled from the relevant sub-relations will be proportional
to its size. If this relevant sample size is small due to low
selectivity of the query, it may lead to large error. The
same is true for group-by queries which partition the rela-
tion into numerous sub-relations (tuples that belong to spe-
cific groups). Thus for uniform sampling to perform well,
the relevant sub-relation should be large in size, which is
not the case in general (see also [1] and [8]).

In the next two sections we propose solutions to the two
problems of data skew and low selectivity of queries.

4 Handling data skew: Outlier-indexes

As seen earlier from Example 1 and Theorem 1 pre-
sented in Section 3, we know that a large variance in the
aggregate column could lead to unacceptably high errors.
The large variance is primarily due to the presence of cer-
tain outliers or deviants in the data. Thus, a natural idea
would be to deal with outliers separately, and sample from
the rest of the relation.

This leads to our idea of outlier-indexing, whereby we
identify the tuples with outlier values and store them in a
separate sub-relation.2 The basic insight is that we can now
use the following efficient scheme for estimating a query’s
result. Consider a selection query with the sum aggregate.
First, apply the query to the outlier values and thus deter-
mine the true result of the query on the part of the table
which only includes the outlier values; next, pick a uniform
random sample from the part of the table that does not in-
clude the outlier values (i.e., the non-outliers), and estimate
from the sample (as in Theorem 1) an approximation to the
true result of the query if applied to the non-outlier tuples;
finally, combine the two results to obtain an overall estimate
of the query’s true result. It is clear that for Example 1 (pre-
sented in Section 3), the proposed technique would result in
a very accurate estimate of the aggregate. In the rest of this
section we formalize and expand on this idea.

4.1 Using outlier-indexes to approximate aggre-
gation queries

Given an aggregation query Q which aggregates over
columnC of relationR, we describe a technique which uses
an outlier-index for C along with a uniform sample of R to
approximately answer Q. While we will give a precise def-
inition of the outlier-index in the next sub-section, for the
time being it is sufficient to assume that an outlier-index
RO is a sub-relation of the original relation R.

We view the relationR as being partitioned into two sub-
relations RO (outliers) and RNO (non-outliers). The query
Q can now be considered as the “union” of two sub-queries,
the first of which is Q applied to RO , while the second is Q
applied to RNO . This leads us to the following scheme for
approximately answering an aggregation query for a given
choice of the outliers RO . To illustrate the scheme, we use
the following example query:

Select sum(sales) from lineitem

2We use the word “index” here to simply indicate a distinct physical
sub-relation. Such an index is best considered as a materialized view. Of
course, a materialized view may be physically implemented as a heap or
as a B+-tree index.



Preprocessing steps.

1. Determine outliers — specify the sub-relation RO of
the relation R deemed to be the set of outliers. For
the example query above, we will create a view called
lineitem outlier which will be appropriately indexed.

2. Sample non-outliers — select a uniform random sam-
ple T of the relation RNO. For the example query, we
will obtain a uniform sample from the lineitem table
(ensuring that no tuples that appear in lineitem outlier
are sampled) and materialize the sample in a table
called lineitem samp.

Query processing steps.

1. Aggregate outliers — apply the query to the outliers
in RO accessed via the outlier-index. For the exam-
ple query, this corresponds to computing sum(sales)
for the view lineitem outlier.

2. Aggregate non-outliers — Apply the query to the
sample T and extrapolate to obtain an estimate of
the query result for RNO. For the example query,
this corresponds to computing sum(sales) for the ta-
ble lineitem samp and then multiplying the result by
the inverse of the sampling fraction (extrapolation).

3. Combine aggregates — combine the approximate re-
sult for RNO with the exact result for RO to obtain an
approximate result for R. For the example query, this
means adding sum(sales) for the view lineitem outlier
and the extrapolated sum(sales) for lineitem samp.

Since the database content changes over time, this re-
quires selection of outlier indexes and samples to be re-
freshed appropriately. The samples need to be refreshed
periodically as precomputed samples can become stale with
use. An alternative is to do the sampling completely online,
i.e., make it a part of query processing.

4.2 Selection of outliers

There are two points to be observed for our scheme: (1)
the query error is solely due to the error in estimating the
aggregate of the non-outliers from their sample, and (2) un-
like sampling, in our scheme, there is an additional over-
head of maintaining and accessing the outlier-index. Let �
be the memory (i.e., the number of tuples) allocated for the
outlier-index. We would like to select the outlier set RO so
as to minimize the approximation error of our scheme for
a class of queries subject to the constraint that RO contains
at most � tuples from the relation R. The following defini-
tion identifies an optimal choice of the outlier set RO . The
reader should relate the error � in the definition to the error
introduced in Theorem 1.

Definition 1 For any sub-relation R0 � R, let �(R0) be the
standard error in estimating the sum of the values in R 0

using uniform random sampling followed by extrapolation.
An optimal outlier-index RO(R;C; �) for a column C in a
relation R with a threshold � is defined as a sub-relation
RO � R such that

� jROj � � , and

� �(R nRO) = minR0�R;jR0j�� f�(R nR0)g
Essentially, we have defined the outlier-index as an op-

timal sub-relation RO that leads to the minimum possible
sampling error, subject to the constraint that RO has at most
� tuples in the relation R. Recall that the sampling er-
ror is the error in estimating the aggregate value over the
tuples not included in RO using the standard sample-and-
extrapolate strategy. We know from Theorem 1 that the
error is directly proportional to the standard deviation S.
Let S(R0) denote the standard deviation for a sub-relation
R0 � R. Then, as per our definition, an outlier index RO

is a sub-relation of size at most � such that the comple-
ment sub-relation R nRO has minimum standard deviation
S(RnRO). The following theorem assists in choosing such
a sub-relation efficiently.

Theorem 2 Consider a multiset R = fy1; y2; : : : ; yNg
where the yi’s are in sorted order. Let RO � R be the
subset such that

� jROj � � , and

� S(R nRO) = minR0�R;jR0j�� fS(R nR0)g
Then, there exists some 0 � � 0 � � such that RO =
fyij1 � i � � 0g [ fyij(N + � 0 + 1� �) � i � Ng

The theorem states that the subset that minimizes the
standard deviation over the remaining set consists of the
leftmost � 0 elements (for some 0 � � 0 � � ) and the right-
most � � � 0 elements from the multiset R, when the ele-
ments are arranged in a sorted order. Thus, the selection of
an outlier-index reduces to determining the value � 0. This
gives rise to the following algorithm for outlier-index selec-
tion.

Algorithm Outlier-Index(R;C; � ):

1. Read the values in column C of the relation R. Let
y1; y2; : : : ; yN be the sorted order of the values appearing
in C. Each value corresponds to a tuple.

2. For i = 1 to � + 1, compute
E(i) = S(fyi; yi+1; : : : ; yN��+i�1g).

3. Let i0 be the value of i where E(i) takes its minimum value.
Then the outlier-index is the tuples that correspond to the set
of values fyj j1 � j � � 0g[fyj j(N+� 0+1�� ) � j � Ng
where � 0 = i0 � 1.



The efficiency of the algorithm crucially depends on the
ability to compute standard deviations efficiently. It is well
known that quantities such as sum, mean, variance, standard
deviation can be efficiently maintained for a dynamic set of
numbers subject to insertions and deletions. In particular,
E(i + 1) can be computed from E(i), yi, and yN��+i in
O(1) time.

We start the algorithm by performing the sort in Step 1.
In Step 2, we first scan the sorted data to computeE(1). We
also make memory-resident copies of the first � and the last
� values of fy1; y2; : : : ; yNg. If they cannot fit into memory
then we spool this subset of tuples W to disk. Since � is
usually small, the latter situation is unlikely. After this, we
do not need access to data that is not in the set W . This
is because E(i + 1) can be incrementally computed from
E(i) since the value to be deleted (yi ) and the value to be
inserted (yN��+i) can be looked up from W . Thus, the
running time of the algorithm is dominated by the sorting in
Step 1 3.

4.3 Discussion

Error guarantees. Like other sampling schemes, it is
possible to give a per-query standard error (probabilistic)
guarantee of our estimated answer. The standard error is
estimated using Theorem 1. Estimating the standard error
requires estimators for the count as well as the standard de-
viation of the non-outlier samples. The details of these com-
putations are omitted due to lack of space.

Storage allocation. Thus far we have looked at the prob-
lem of allocating storage separately between outliers and
samples. But, we can also ask the question: given sufficient
space to storem tuples, how do we allocate storage between
samples and outlier-index in order to minimize the error?
This question is important when we use precomputed sam-
ples instead of online samples. Let S(�) denote the standard
deviation in the non-outliers for an optimal outlier-index of
size � . If we allocate the space such that we have � tuples in
the outlier-index andm�� tuples in the sample, then the er-
ror as given by Equation 1 is proportional to S(�)=

p
m� � .

Identifying an optimal allocation requires finding the value
of � for which S(�)=

p
m� � is minimized. Due to lack of

space, we omit details of our techniques that address such
optimization.

Extensions to other aggregates. For the case of the
count aggregate, outlier-indexing is not particularly ben-
eficial since there is no variance among the data values.
For the case of the aggregate average (avg), our prepro-
cessing steps (i.e., selecting outliers and samples) does not

3For small values of � , smallest and the largest � values may be deter-
mined without requiring a complete sorting of the column.

change. During query processing, an avg query is estimated
as sum/count. In general, our techniques extend to a class
of aggregates that satisfy certain algebraic properties, the
details of which are deferred due to lack of space.

Suppose we want to aggregate (sum or avg) f(t), where
f is a real valued function defined over the tuples, e.g.,
sum(price� quantity). Then, we can use the function val-
ues instead of yi’s in our algorithm and can determine the
sub-relation that minimizes the standard deviation over the
remaining set. Of course, the number of real-valued func-
tions f is potentially infinite and one cannot build an index
for each one. As future work, we are investigating whether
one can exploit workload information and build outlier-
indexes only for the frequently occurring functions. In such
cases it is also likely that the different outlier-indexes are
correlated and as a result have a lot of tuples in common.
Hence an optimization heuristic is to maintain the union of
these indexes, instead of building a separate outlier-index
for each.

Outlier-indexing does not appear to be useful for aggre-
gates that depend on the rank order of the tuples rather than
their actual values (i.e., aggregates such as min, max, and
median). For a discussion of sampling-based techniques
for computing order statistics, the reader should refer to the
work by Manku, Rajagopalan, and Lindsay [17].

Extensions to foreign-key joins. Thus far, we have been
only concerned with queries over a single relation. Con-
sider foreign-key join queries involving a fact table R and a
dimension table D, where the aggregation column is in R.
Our techniques will work if the outlier-index and sample
are computed over R, and these are joined with D at query
processing time. This example generalizes to a wider class
of queries in which multiple dimension tables are joined to
the same fact table which contains the aggregate column. It
is known that sampling-based methods (including ours) do
not work well for more general join queries [5].

5 Handling low selectivity and small groups:
Exploiting workload information

In this section, we examine the problem of low selectiv-
ity queries and small groups in group-by queries. Our ap-
proach to this problem is to use weighted sampling (instead
of uniform sampling) by leveraging information about the
workload while drawing the sample. The essential idea be-
hind our weighted sampling scheme is to sample more from
subsets of data that are small in size but are important, i.e.,
have high usage. Thus, our approach is based on the desire
to exploit the fact that the usage of a database is typically
characterized by considerable locality in the access pattern,
i.e., queries against the database access certain parts of the



data more than others. Therefore, by tuning the sample to
a representative workload (i.e., set of queries) faced by the
system, we can hope to answer queries posed to the database
system more accurately.

The technique presented in this paper for weighted sam-
pling is based on using precomputed samples. As part of our
ongoing work, we are investigating how to leverage the idea
of weighted sampling in the context of online sampling.
As mentioned earlier, our technique of outlier-indexing pre-
sented in Section 4.2 can either use online or precomputed
samples.

The rest of this section is organized as follows. First, we
describe the framework for exploiting workload informa-
tion. Second, we discuss the details of our weighted sam-
pling scheme based on workload information.

5.1 Exploiting workload information

Our use of workload information for sampling and
outlier-indexing involves the following steps:

1. Workload Collection: We obtain a workload consist-
ing of representative queries gainst the database. Mod-
ern database systems provide tools to log queries posed
against the server (e.g., the Profiler component of Mi-
crosoft SQL Sever).

2. Trace Query Patterns: The workload can be analyzed
to obtain parsed information, e.g., the set of selection
conditions that are posed.

3. Trace Tuple Usage: The execution of the workload re-
veals additional information on usage of specific tu-
ples, e.g., frequency of access to each tuple, the num-
ber of queries in the workload for which it passes the
selection condition of the query. Since tracking this
information at the level of tuples can be expensive, it
can be kept at coarser granularity, e.g., on page-level.
Alternatively, the techniques presented in [8] such as
batching of updates can be used to lower this overhead.
For our experiments, we have assumed that a tuple t i
has weight wi if the tuple ti is required to answer wi

of the queries in the workload. These weights are sub-
sequently normalized (See Section 5.2).

4. Weighted Sampling: Perform sampling by taking into
account weights of tuples (from Step 3).

5.2 Details of Weighted sampling

In this section, we describe how we can leverage the
weights derived from the tuple usage (see Step 3 above) to
draw a weighted sample and how to use the weighted sam-
ple to answer an aggregation query.

Let the weight of the tuple ti in the relation be wi (see
Step 3 above). Let the normalized weight be w 0

i defined
as wi=

PN

j=1 wj . In our weighted sampling scheme, this
tuple is accepted in the sample with probability p i = n �w0i.
Thus, while the expected sample size is n, the probability
with which each tuple is accepted in the sample varies from
tuple to tuple.

Given such a sample, we now address the question of
how to answer aggregation queries approximately. With
each tuple that is included in the sample, we store the prob-
ability pi with which it was accepted in the sample. The
inverse of this probability is the multiplication factor asso-
ciated with the tuple used while answering the query. Each
aggregate computed over this tuple gets multiplied by this
multiplication factor. In the (degenerate) case of uniform
sampling, since the probability is same for each tuple we do
not have to store it and the multiplication factor is the same
(N=n) for all tuples.

Weighted sampling works well if (1) the access pattern
of queries is local (most of the queries access a small part
of the relation) and (2) we have a workload which is a good
representative of the actual queries which will be posed in
the future.

Finally, note that just as we modified sampling by ex-
ploiting workload information, it is possible to also tune the
outlier-index based on workload information. That is, we
can modify algorithm Outlier-Index(R;C; � ) presented in
Section 4.2 so that only outliers “relevant” to the queries in
the workload are selected as part of the outlier-index. This
is part of our ongoing work.

6 Implementation and experimental results

We have implemented the techniques described in this
paper on Microsoft SQL Server 2000 and experimentally
evaluated their effectiveness. The goals of the experiments
were to compare the quality and performance of uniform
sampling, weighted sampling, and weighted sampling +
outlier-indexing. We begin by describing the implementa-
tion and the experimental setup. We then discuss our exper-
imental results.

6.1 Implementation

Outlier-indexing. We leveraged the support of materi-
alized views in Microsoft SQL Server 20004 to implement
outlier-indexing. For example, if l extendedprice is the
column on which we want to construct an outlier-index,
the following view returns all tuples in the lineitem table
satisfying a certain predicate on (l extendedprice):

4Materialized views are referred to as indexed views in SQL Server
2000.



CREATE VIEW l extendedprice otl idx AS SELECT *
from lineitem
WHERE (l extendedprice � 54819.46) OR
(l extendedprice� 71442.88)

By materializing the above view we effectively index all
tuples in lineitem satisfying the predicate (i.e., it is a par-
tial index). The predicate in the view is determined us-
ing the algorithm described in Section 4 and depends on
the storage allocated for the outlier-index. We also imple-
mented a module that automatically rewrites a query to use
the outlier-index and the sample rather than the fact table.

Uniform and weighted sampling. We modified Mi-
crosoft SQL Server to support uniform and weighted sam-
pling. Specifically, we modified the execution tree gener-
ated by the SQL Server optimizer by adding a new operator
as the root of the tree. For uniform sampling this operator
simply accepts tuples with the specified probability (i.e., the
sampling fraction) and stores the accepted tuples in a table.
For weighted sampling, the probability of accepting a tuple
is proportional to the weight associated with the tuple. In
our experiments we calculated exact weights for each tuple
for a given workload. We did this by including an additional
column in the fact table (lineitem) to hold the weight of the
tuple. It is also possible to maintain this column in a sepa-
rate (weights) table. The trade-off is that while the cost of
updating the weight associated with the tuple is reduced, the
time to pick a weighted sample goes up since the weights ta-
ble has to be “joined” in. We converted a SELECT query
in the workload into the corresponding UPDATE statement
that increments the weight of all the tuples satisfying the se-
lection predicates. Finally, we implemented a module that
automatically substitutes the sample table for the fact table
of an incoming query.

6.2 Experimental setup

Platform. All experiments were run on a Dell Precision
610 system with a Pentium III Xeon 450 Mhz processor
with 128 MB RAM and an external 23GB hard drive.

Databases. We used the well-known TPC-R benchmark
for our experiments. One of the requirements of the bench-
mark however, is that the data is generated from a uniform
distribution. Since we were interested in comparing the al-
ternatives across different data distributions, we modified
the TPC-R data generation program to generate data with
varying degree of skew. The modified program generates
data for each column in the schema from a Zipfian [20]
distribution determined by the Zipfian parameter z 5. For

5We have made this program (which runs on x86/Windows NT plat-
form) available for public download from [6].

our experiments we generated 100MB TPC-R databases by
varying z over values 1, 1.5, 2, 2.5, and 3. The ratio of
the maximum value to the minimum value of the aggre-
gation column varied between 76 and 106 for the different
databases. The values in the aggregation column are chosen
independently of their frequencies.

Workloads. For our experiments on outlier-indexing, we
generated several workloads over the TPC-R schema using
a random query generation program. The program gener-
ates queries with (1) foreign key joins between tables, (2)
aggregations on the fact table (lineitem), and optionally (3)
grouping, and (4) selection. We used the sum aggregation
function. Due to lack of space, we present results only for a
few of the workloads that we experimented with.

Parameters. We varied the following parameters in our
experiments: (1) skew of the data (z) was varied over 1, 1.5,
2, 2.5, and 3 (2) the sampling fraction (f) was varied over
a wide range from 1% to 100%, and (3) the storage for the
outlier-index was varied over 1%, 5%, 10%, and 20%. All
numbers reported are the average over 3 runs.

Error metric. For each query in the workload we com-
puted the relative error by dividing the difference between
the approximate estimate for the aggregate (sum) and the
accurate value of the aggregate by the latter. For queries
with a group-by clause, we use the following error metric.
Consider a query that has k groups in the answer obtained
from actually executing the query. We build a k dimensional
vector where the ith dimension contains the relative error in
the aggregate expression for that ith group. The error is the
mean of all the points in the vector. Thus, we report the av-
erage relative error over all groups. The error metric for a
workload is average error over all queries in the workload.

6.3 Comparison of uniform sampling, weighted
sampling and weighted sampling + outlier-
indexing

We experimentally compared (1) uniform sampling (US-
AMP), (2) weighted sampling (WSAMP) and (3) weighted
sampling + outlier-indexing (WSAMP+OTLIDX). Due to
lack of space we only report results on the quality of these
approaches, i.e., our experimental comparsions are focussed
on the the accuracy of the estimates. Also, due to lack of
space, we only report experiments for which the storage
for outlier-indexing was 10% of the size of the data set.
We plan to make additional experimental results available
at http://research.microsoft.com/dmx.

To test the effectiveness of weighted sampling and
outlier-indexing when the queries in the workload have low
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selectivity, we generated a workload where each query con-
sisted of a fact and dimension table, and all selection con-
ditions on the dimension table were picked at random from
a fixed range of the dimension table to simulate locality in
workload. The “width” of the range was fixed at 20% of the
size of the dimension table.

Varying the data skew. In this experiment, we vary the
data skew, while keeping the sampling fraction constant
(5%). Figure 1 shows that weighted sampling does con-
sistently better than uniform sampling across all data skews,
and that weighted sampling + outlier-indexing performs sig-
nificantly better than weighted sampling alone.

Varying the sampling fraction. In our next experiment,
we varied the sampling fraction while fixing the data skew
(z=2). From Figure 2 we once again observe that weighted
sampling gives lower error than uniform sampling across
all sampling fractions. As expected, the greatest benefit oc-
curs at low sampling fractions (e.g., 1%). Once again, use
of outlier-indexing in addition to weighted sampling further
improves accuracy significantly.

Varying the selectivity of queries. In our third experi-
ment, we vary selectivity of queries between 1% and 100%.

Varying selectivity
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Figure 3. Error versus selectivity of queries

We fixed data skew (z=2) and the sampling fraction (f=1%).
Figure 3 shows that at very low selectivity, weighted sam-
pling noticeably alleviates the drawback of uniform sam-
pling. However, as expected, when the workload refer-
ences large portions of the data (e.g., at 100% selectivity)
uniform and weighted sampling are not significantly differ-
ent. Moreover, we see that weighted sampling + outlier-
indexing performs consistently well across different selec-
tivities, although as expected, its relative improvement over
weighted sampling is smaller at lower selectivities.

6.4 Results on a real data set: MS Sales

We tested the effectiveness of outlier-indexing and
weighted sampling on a real data set. We used an inter-
nal database in Microsoft called MS Sales which tracks
the sales of products by the company over the fiscal year.
We performed our analysis on a subset of about 1 GB of
this data (fact + dimension tables). We used 25 representa-
tive queries involving aggregation, grouping, and selection
which were picked from the log of queries executed against
the database. We varied the sampling fraction over a range
of values from 1% to 90% and compared uniform sampling
and uniform sampling + outlier-indexing, where the size of
the outlier-index was restricted to be no more than 10% of
the data set. We found that compared to uniform sampling
at 1%, uniform sampling + outlier-indexing significantly re-
duced the error (by 70% to 140%). We also found that using
weighted sampling further reduced the error by about 20%.
The maximum benefits of outlier-indexes appeared to be at
the lowest sampling fraction (1%), although the same trends
appeared to hold at higher sampling fractions as well.

7 Conclusion and future work

We explored some of the problems encountered when us-
ing uniform sampling as a means for approximate query an-
swering. We observe that skew in the aggregation attribute



can lead to large errors. We proposed outlier-indexing
to improve the accuracy in such cases. Our experiments
demonstrated that our technique indeed improves accuracy
significantly, at only a small additional cost. Another im-
portant issue examined in this paper is the problem of low
selectivity of queries, and we outlined approaches based
on workload information. Combination of outlier-indexing
and weighted sampling based on workload information has
proved to be a significant step forward.

We are currently investigating the problem of building a
single outlier-index for different aggregates and aggregate
expressions. As mentioned in this paper, tuning the selec-
tion of the outlier-index using the workload information is
another interesting issue. We are also investigating exten-
sions of our techniques to a wider class of join queries.
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