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Abstract The biological removal of monoaromatic com-
pounds from contaminated environments, usually arising
from industrial activity, is challenging because of the
inherent toxicity of these compounds to microorganisms,
particularly at the concentrations that can be encountered in
industrial waste streams. A wide range of bioprocess
designs have been proposed and tested with the aim of
achieving high removal efficiencies, with varying degrees
of technical success, and potential for practical implemen-
tation. This review reports on the progress on variations of
well-known themes made in the last 3–4 years, as well as
new bioprocess technologies that address the cytotoxicity
of monoaromatics directly. Areas for further research are
also proposed.
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Introduction

Reducing or eliminating inhibition of microbial activity is a
critical consideration when designing bioprocesses for the

treatment of xenobiotic compounds such as monoaromatics.
Substrate inhibition can result in reduced reaction rates, and
even complete cessation of microbial activity, as well as
amplified toxicity arising from substrate interaction effects
in the degradation of xenobiotic mixtures. The inhibition
characteristics of environmental pollutants can be expressed
in terms of effective concentrations from toxicity analysis
(e.g., EC50) and inhibition constants derived from dedicated
kinetic models such as, for instance, the Haldane equation,
which is one of the most commonly used expressions for
characterizing substrate inhibition:

rS ¼ k
S

S þ Ks þ S2
KI

where:

k Kinetic parameter [ML−3T−1]
S Substrate concentration [ML−3]
Ks Saturation constant [ML−3]
KI Inhibition constant [ML−3]

The partition coefficient of chemicals in an octanol-
water biphasic mixture (Kow) is also often used to predict
the biosorption and acute toxicity potential of chemicals
because it is a good indicator of a molecule’s solubility in
cell membranes. For this reason, the acute toxicity of
structurally related chemicals (e.g., chlorophenols) is often
positively correlated to their Kow coefficients. Relevant
toxicity properties and Kow values for individual BTEX
compounds and typical representatives of substituted
phenols are presented in Table 1a and b. In practice,
wastewaters from olive mills and kraft pulp mills can
contain up to 190–350 mg/L chlorophenols 12 g poly-
phenols/L, and 4.3 g/L phenol (Smets and Barkay 2005;
Khoufi et al. 2006), which are far above the toxicity
threshold of these contaminants, as shown in Table 1b.
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With regard to the inhibitory effect of substrates in
mixtures, limited information is available in the scientific
literature because the majority of kinetic studies have been
performed using single target compounds. A variety of
interactive effects are possible with mixed substrates,
however, as recently demonstrated by Littlejohns and
Daugulis (2008) who identified and quantified the substrate
interaction mechanisms of inhibition, enhancement, and
cometabolism during the biodegradation of BTEX mixtures
by a bacterial consortium.

Every bioremediation process will benefit from the
presence of microorganisms with the capability to tolerate
and rapidly mineralize the target xenobiotic molecules, and
a number of past efforts have studied: microbial tolerance
to solvents and monoaromatic compounds (Inoue and
Horikoshi 1989; Isken and de Bont 1998; Heipieper et al.
2007), mechanisms for such tolerance (Ramos et al. 2002;
Sikkema et al. 1994; Sikkema et al. 1995; Weber and de
Bont 1996; Neumann et al. 2005) microbial growth within
organic phases (MacLeod and Daugulis 2005) and hori-
zontal gene transfer to provide microbial adaptation to
xenobiotics (Smets and Barkay 2005; Top and Springael
2003; Springael and Top 2004). Although improving the
microbial properties (e.g., toxicity resistance through gene
transfer, selection and/or adaptation) has tremendous
potential, the application of “super-bugs” remains limited
by stability and versatility issues. For example, long times
may be required for stable phenotypes to emerge, and the
complexity and variability (in number of components and
their concentrations) of the waste streams to be treated can
complicate an adaptation process that must respond rapidly
to generate an effective and dynamic microbial community.
Certainly microbial adaptation plays an important role in
the biodegradation of xenobiotic compounds, however,
appropriate technological solutions are essential to obtain
process performance suitable for real applications; in other
words acceptable performance can arise from a combina-
tion of the two elements of adaptation and efficient
technological solutions. This review focuses on the tech-
nology platforms needed to support microbial activity
regardless of the intrinsic properties of the microorganisms.

Ex situ bioremediation technologies for the removal of
monoaromatics such as BTEX and substituted phenols have
been extensively investigated in recent years (Farhadian et
al. 2008) and these processes have generally yielded
satisfactory removal capability at the laboratory scale.
Nevertheless, the widespread application of bioremediation
technologies is strongly hampered by the serious inhibitory
effects exerted by high substrate concentrations. A partic-
ularly challenging application is the treatment of industrial
wastewaters, which can be characterized by concentration
levels significantly higher (orders of magnitude) than those
considered to be inhibitory, as illustrated above. In those

cases, modified treatment configurations designed to
minimize the impact of toxicity on microbial activity and
maximize the volumetric removal rate have been investigated.
Avariety of approaches have been suggested for this purpose.
In the present review, monoaromatic treatment technologies
have been grouped into three types: conventional methods,
two-phase systems, and integrated chemical–biological treat-
ment, as summarized in Table 2. Reported data refer to
research papers published in the last 3–4 years.

In the case of conventional methods, biofilm reactors
have been distinguished from immobilized cells reactors by
considering that in the former case the biocatalyst grows
onto a support (attachment mechanism) where it is not
completely immobilized (the thickness of the biofilm layer
depends on the hydrodynamics of the system) while in the
latter case the biomass is confined (i.e., completely
immobilized) into a support via an entrapment mechanism.
A common strategy for dealing with substrate toxicity is to
increase the biomass concentration (by, for example, using
biofilm, immobilized cell and granular sludge reactors) with
the concomitant beneficial effect of increasing the process
kinetics and reducing the substrate/biomass ratio. In the
case of sequencing batch reactors (SBRs) substrate toxicity
is reduced by taking advantage of the “induction” effect of
developing alternative metabolic pathways arising from the
dynamic operating conditions characteristic of SBR sys-
tems. Two-phase systems, now almost universally called
“Two Phase Partitioning Bioreactors” (TPPBs), deal direct-
ly with substrate inhibition by reducing aqueous phase
concentrations via sequestration into a second, immiscible
phase, and re-release of the substrate based on metabolic
demand and the maintenance of thermodynamic equilibri-
um. Process alternatives for TPPBs include liquid–liquid
configurations, encapsulated liquid systems, and the use of
solid sequestering phases, such as polymers. Combined
treatment processes utilize synergistic physical/chemical
methods to initially modify (detoxify) the monoaromatic
substrates, followed by biological treatment, with the aim
of enhancing overall performance efficiency.

Conventional methods

General strategies for the biological removal of inhibitory
substrates

This review focuses on recent findings; well-known
biotechnologies (e.g., activated sludge process) commonly
used for the treatment of certain toxic effluents will not be
considered. However, before presenting the specific fea-
tures of selected technologies, it is first necessary to briefly
summarize the general strategies for the biological treat-
ment of toxic effluents.

Appl Microbiol Biotechnol (2011) 90:1589–1608 1591



Microbial kinetic theories suggest that, when effective
microorganisms are available, well-mixed biological pro-
cesses can be operated continuously (or semi-continuously
in the case of SBRs) at a dilution rate low enough to keep the
concentrations of inhibitory pollutants in the reactor below
their inhibition thresholds (or at least below an acceptable
limit). A low dilution rate can however be costly, requiring a
large reactor volume, or can be difficult to achieve in practice
because the low substrate concentration provided to the
microorganisms reduces microbial activity and favors the
generation of a form of biomass (e.g., filamentous bacteria)
that can be difficult to remove and recycle using conven-
tional clarification. Membranes, biofilms, or immobilized
biomass can be used to keep a high biomass concentration in
the reactor and circumvent this problem. Efficient biomass
retention thus allows high volumetric removal rates (i.e.,
small reactor volumes), even under partially inhibitory
substrate conditions in which the high number of micro-
organisms compensates for low individual activity.

A second issue associated with “conventional” biologi-
cal treatment is the management of toxic shocks (sudden
toxicity pulses) generated by inadvertent changes in
wastewater flow or composition. The effects of shocks
can be partially and momentarily mitigated using a
combination of (1) a buffering or surge tank or controlled
substrate delivery (SBR); (2) high mixing to ensure quick
substrate dispersion into the reactor volume; (3) diffusion-
limited protection using microbial biofilms or granules and/

or dedicated carriers, with the efficiency of these strategies
depending on the shock intensity and its duration. Because
substrate dilution and/or dispersion are needed for the
biological treatment of inhibitory effluents, reactors config-
urations allowing well-mixed conditions should always be
preferred regardless the type of biomass retention used
(biofilm, attached, recycled). Packed-bed bioreactors,
which are traditionally operated as plug-flow, are therefore
generally not recommended unless the liquid broth is
circulated to provide mixing.

Biofilm reactors

Biofilm reactors are extensively used in the treatment of
industrial wastewater, leachate, and groundwater, and can
be operated under aerobic, anoxic, and anaerobic con-
ditions. The growth of biomass onto support materials
facilitates high biomass concentrations advantageous for
the degradation of poorly biodegradable and/or inhibitory
contaminants. Packing media can be inert (plastic, stone,
sand, wood, ceramics, etc.) and adsorptive such as the
ubiquitous granular activated carbon (GAC). An adsorptive
matrix can reduce bulk concentrations of substrates and
potentially protect microorganisms by reducing microbial
inhibition caused by toxic contaminants, thereby increasing
the removal efficiency and also improving the system
response to variations in influent contaminant concentra-
tion. The use of adsorptive media can however be limited

Table 2 Methods and reactor configurations to reduce the impact of toxic substrates

Method Reactor configuration Strategy

Conventional Biofilm Increase of biomass concentration

Fixed bed High biomass concentration

Expanded bed, Fluidized bed, Pulsed bed High biomass concentration, high contact surface

Adsorptive support (GAC) Sorption as additional removal mechanism

Immobilized cell Confinement, protection and no losses
of the biomass

Membrane, fixed bed High biomass concentration

Fluidized bed High biomass concentration, high contact surface

Adsorptive immobilizing agent
(added of GAC, GAC)

Sorption as additional removal
mechanism

Sequencing batch reactors Dynamic operating conditions, flexibility
in operation

Granular sludge High biomass “density”

Two-phase systems Two-phase partitioning bioreactors Partitioning of the substrate into sequestering phase,
which releases substrate to cells based on their
metabolic demand

Liquid–liquid Organic solvents as partitioning phase

Encapsulated Organic solvents in polymer matrices

Solid–liquid Polymers as partitioning phase

Integrated chemical/biological
treatment

Different reactor configurations depending
on the process sequence

Combination of methods: physical/chemical
followed by biological treatment

1592 Appl Microbiol Biotechnol (2011) 90:1589–1608



by the associated costs and by the deterioration of the
adsorption capacity caused by the progressive accumulation
of the contaminants onto the solid matrix.

Biofilm reactors have been configured as fixed-bed (e.g.,
biofilters for the treatment of gaseous streams), expanded-
bed, or fluidized-bed contactors. The latter two configu-
rations are usually preferred for the treatment of toxic
aqueous streams because, as discussed above, they provide
well-mixed conditions and higher mass transfer rates that
are required at high substrate loadings.

Fixed bed

Recent applications of fixed-bed reactors for the treatment
of monoaromatics in water have been limited to the
removal of phenol (Tziotzios et al. 2007, Bajaj et al.
2009), a compound significantly less toxic than substituted
phenols and BTEX (see Tables 1a and b). The operating
mode and the specific surface area of the support material
can significantly affect reactor performance. For instance,
Tziotzios et al. (2007) reported shorter reaction times in a
pilot-scale aerobic reactor packed with gravel support
media instead of plastic tubes, and a marked positive effect
of recirculation on process kinetics. High phenol removal
efficiencies (up to 94%) were also achieved in anaerobic
fixed bed reactors but these systems were sensitive to
influent loads and required 1 month without feed to recover
(Bajaj et al. 2009).

Biofilm bioreactors using GAC as the support material
were also applied in batch and column studies for the
removal of phenol, chlorophenol, and o-cresol and mod-
elled assuming fixed bed operation (Quintelas et al. 2010).
These authors observed removal efficiencies that were
strongly affected by the initial concentrations of the
inhibitory substrates. Thus, removal efficiencies were
reduced in proportion to the toxicity levels, from 99.5%
to 93.4% for phenol, from 99.3% to 61.6% for chlorophe-
nol and from 98.7% to 73.7% for o-cresol when the
pollutants initial concentrations were increased from 100 to
1,000, 1,600, and 1,700 mg/L, respectively.

GAC was utilized as a support for the attachment of the
yeast Candida tropicalis in a fluidized bed bioreactor
operated in a non-turbulent flow regime to reduce biomass
detachment and wash out (Galíndez-Mayer et al. 2008).
The reactor was applied to the removal of phenol and 4-
chlorophenol at increasing volumetric loadings. The
removal efficiency of phenol was strongly affected by
the influent load and a drastic decrease was observed for
values ≥60 mg phenol/(Lh) while 4-chlorophenol in a mixture
with phenol was efficiently degraded at significantly lower
volumetric loads in the range of 1–4 mg/(Lh).

As seen above, the operation of fixed-bed reactors can be
limited by mass transfer. Therefore, high liquid circulation

and oxygen supply rates are needed to continuously and
homogeneously supply substrates and to keep the immobi-
lized biomass active and uniformly distributed within the
reactor bed. To overcome oxygen mass transfer limitations
in submerged fixed-bed systems, Gómez-De Jesús et al.
(2009) proposed a prototype of a packed bed bioreactor
equipped with a net draft tube riser for liquid oxygenation
and recirculation. This bioreactor operates with axial and
radial flow by oxygenating the liquid in a wire-mesh draft
tube located in the center of the packed bed. The prototype,
packed with a porous support of a volcanic stone fragments,
was successfully tested for oxygen mass transfer efficiency
and was applied to the removal of 2,4,6-trichlorophenol
using phenol as the primary substrate. Complete removal of
phenol (at an influent concentration 92 mg/L) and 2,4,6-
trichlorophenol removal efficiencies ≥98% (at influent
concentrations in the range of 25–139 mg/L) were achieved.

Fluidized bed

Fluidized bed biological reactors support higher
contaminant-biomass and gas–liquid mass transfer than
fixed-bed bioreactors. In the case of aerobic processes, this
minimizes the formation of anaerobic zones in the deep
layers of the biofilm. Moreover, fluidization produces low
particle attrition and reduces the hydraulic short-circuiting
arising from the formation of preferential flow paths and
bed clogging by the growing biomass. Considerable
research has been done on the development and testing on
of GAC-based fluidized bed bioreactors. Recent investiga-
tions on monoaromatics have focused on optimizing
operating conditions (Carbajo et al. 2010) and testing
innovative biomass carriers (Sevillano et al. 2008). Carbajo
et al. (2010) thus reported efficient phenol removal (≥95%)
in an anaerobic fluidized bed reactor operated in continuous
and batch regimes. However, phenol removal efficiency
declined with increasing loading under continuous treat-
ment and with increasing initial concentrations during batch
operation. Finally, increased bed viscosity and biomass
adhesion to the reactor walls was observed at the highest
influent load (3.0 kg/m3 d) tested.

A critical aspect limiting the applicability of fluidized
bed reactors is the high energy requirement for fluidization.
Therefore, several researchers have investigated the use of
alternative attachment media characterized by high specific-
surface area and low density. Sevillano et al. (2008) thus
proposed a cyclodextrin polymer (β-cyclodextrin cross-
linked with epichlorohydrin) as a biofilm carrier. In
addition to having a low density, this material possessed
favorable sorption properties for phenolic compounds. It is
worth noting that this feature can be advantageously
exploited only during the start-up phase (or perhaps during
transient loadings) because of the saturation of the
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cyclodextrin. The system provided good removal efficiency
(~90%) at phenol loadings of 0.7–1 kg/m3 d. However, a
sudden decrease in removal efficiency was observed when
the influent load was increased and was attributed to the
inhibitory nature of phenol in combination with the low
HRT applied.

Fluidization is often provided by pneumatic agitation
during aerobic treatment in order to take advantage of the
energy needed for aeration. An alternative technological
solution is provided by airlift bioreactors, which are
compartmented pneumatically agitated bioreactors contain-
ing a riser section, where a gas phase is injected (often air),
and a downcomer section containing no or little gas phase
relative to the riser. By introducing gas specifically in the
riser, a density gradient is established between the liquid
phases contained in the riser and downcomer sections,
which drives the liquid flow circulation between these
sections. This flow regime minimizes shear stress and,
consequently, favors microbial growth. Additional advan-
tages of airlift reactors are their simplicity in construction
and operation and reduced energy demand. Internal loop
airlift reactors were for instance successfully applied to the
degradation of phenol by C. tropicalis (Feng et al. 2007),
and phenol and m-cresol in single and dual substrate
systems by a mixed microbial culture dominated by
Pseudomonas sp. (Saravanan et al 2008, 2009). The slower
degradation rate observed for m-cresol in single-compound
tests was attributed to the higher toxicity of this compound.
This hypothesis was confirmed by the delayed degradation
of m-cresol in the mixture tests performed at a high
concentration (300 mg/L) of the two compounds.

Airlift bioreactor can be used with free-swimming,
flocculated, granulated, attached, or immobilized bio-
mass. They can be used with either fixed (the carriers are
generally located inside the downcomer) or fluidized
biofilm (the carriers are located inside the riser). In
addition, although airlift reactors are generally utilized
for aerobic processes, these systems are suitable for
integrated anaerobic/aerobic processes by manipulating
oxygen transfer in the various reactor sections. For
instance, Zhao et al. (2009) applied an internal loop airlift
bioreactor for the treatment of phenolic wastewater by
adding porous polyurethane microbial carriers. An aerobic
zone was thus created in the liquid bulk containing
suspended biomass by aeration, whereas an anaerobic
zone was formed inside the biofilm. This configuration has
been found to improve the flexibility and the spectrum of
applications of airlift bioreactors, including the removal of
aromatic pollutants. Accurate control of the air flow rate is
required, however, to maintain fluidization and high
dissolved oxygen levels in the aerobic zone without
causing a loss/reduction of anaerobic conditions inside
the biofilm.

Pulsed-plate bioreactors

An intermediate configuration between the fixed-and
fluidized-bed reactors is the recently proposed pulsed-
plate bioreactor (Shetty et al. 2007a, b, 2011). Its principle
of operation involves the application of a pulsation to a
fixed-bed biofilm reactor to improve mass transfer and
reduce the problems of preferential fluid paths, short-
circuiting and clogging. The slow movements of the bed
cause the renewal of the interfacial area, favor the
distribution of the substrate, and eliminate gaseous metab-
olites that can cause dead zones. The advantage of the
pulsed-plate bioreactor with respect to the fluidized bed
system is the lower energy demand. Biodegradation of
phenol was investigated in a pulsed-plate column with the
space between the plates packed with glass particles utilized
as support for Nocardia hydrocarbonoxydans (Shetty et al.
2007a, b, 2011). These investigations mainly focused on
evaluating the optimal operating conditions of frequency
and amplitude of the pulsation (Shetty et al. 2007a) and
dilution rate as a function of the influent phenol concentra-
tion (Shetty et al. 2007b).

Immobilized cell bioreactors

The immobilization of microorganisms into dedicated
material is a common strategy employed for improving
the removal of biorefractory and inhibitory compounds, and
this approach has significant advantages in comparison to
conventional suspended biomass systems. The first positive
feature is the minimization of biomass losses as the cells are
confined within a specific volume of the reactor. Moreover,
the biomass concentration can be easily increased and the
immobilization matrix can act, to some extent, as a
protective barrier against the toxic effects of substrates (Li
and Wang 2008, Juang and Kao 2009, Li and Loh 2007,
Wang et al 2009). Immobilized cells can be utilized in fixed
and fluidized bed reactors and in the recently described
pulsed-bed bioreactor. Various support media for immobi-
lization have been investigated, including membranes,
alginate beads, sintered glass, gels, foams, GAC, but recent
studies have mainly focused on membrane bioreactors.

Membrane contactors

Membrane bioreactors are commonly used for the treatment
of both domestic and industrial wastewater. In their
classical configuration, the membrane merely acts as a
physical barrier to remove microorganisms and pollutants
from the effluent. Thus, the membrane also provides a very
efficient mean for retaining and actively controlling the
biomass concentration inside the system in order to support
a high volumetric removal capacity. These applications are
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well described in the literature and will not be reviewed
here. Instead, we will focus on recent applications utilizing
the membrane’s ability to offer a suitable support for
microbial growth.

For instance, cells can be immobilized within the fibers
of hollow-fiber membrane and/or grow attached onto the
surface. This technology has been successfully used for
treating high-strength phenol-laden streams and was recent-
ly proposed in applications utilizing Pseudomonas putida
BCRC14365 (Juang et al. 2008; Juang and Kao 2009) with
a polypropylene membrane and P. putida ATCC49451 (Li
and Loh. 2007) with a polysulfone membrane. These
studies aimed at evaluating the contribution of the
immobilized biofilm on the biodegradation process (Juang
and Kao 2009) and at minimizing the fouling caused by
biofilm overgrowth on the shell side by adding the
dispersing agent tetrasodium pyrophosphate (Juang et al.
2008). A fortuitous aspect of hollow-fiber membranes
applied to phenol biodegradation in this study was the
ability to deal with high-salinity water (Juang and Wu
2007) with a significant increase of the applicable influent
load at NaCl concentration up to 1.52 M.

To limit toxicity effects without reducing the applicable
influent load, Wang and Li (2007) developed an activated
carbon-filled polyethersulfone composite hollow-fiber sys-
tem used to immobilize P. putida for phenol removal. The
incorporation of GAC enhanced the sorption capacity of the
hollow fiber membranes but GAC bioregeneration was
required for long-term operation in order to maintain high
removal efficiency. This adsorptive deterioration was
observed both during batch tests (Wang and Li 2007) and
in a continuous system (Li and Wang 2008) where a
progressive reduction of the removal efficiency was
detected with increasing phenol loading. If bioregeneration
is applied (i.e., regeneration of the activated carbon using
the indigenous biomass after exhaustion of the phenol in
solution), the required times could be very long (and not
suitable for application) due to the strong adsorptive
properties of GAC and the poor release of the adsorbed
compound from the solid to the liquid phase.

An alternative configuration for membranes is the spiral
module characterized by high membrane surface area per
unit volume. Yordanova et al. (2009) investigated phenol
biodegradation by Aspergillus awamori NRRL 3112 immo-
bilized on a modified polyacrylonitrile membrane spirally
wound in a lab-scale bioreactor with recirculation. Signif-
icant advantages in terms of stability and process efficiency
were observed in comparison to the suspended cell system.

Gel immobilizing agents

Calcium alginate beads have been extensively utilized as an
immobilizing matrix and were recently applied to phenol

biodegradation by C. tropicalis NCIM 3556 in a packed-
bed column reactor (Varma and Gaikwad 2010). Calcium
alginate is characterized by its high biocompatibility, low
cost, easy availability, and simplicity of preparation (Shao
et al. 2009) but can be subject to abrasion and gel
deterioration as found by Ahamad and Kunhi (2011) who
compared the performance of phenol degradation by
Pseudomonas sp. CP4 cells entrapped in Ca alginate and
agar gel beads in a fluidized bed reactor. Better efficiency
was observed with the agar gel system that was able to
degrade the highest phenol concentrations in the influent,
up to 4,000 mg/L.

As an alternative to calcium alginate, El-Naas et al.
(2009) proposed a polyvinyl alcohol (PVA) gel, a synthetic
polymer possessing high mechanical resistance and greater
durability. The PVA matrix was employed to immobilize
cells of P. putida in a bubble column reactor for phenol
removal and the effect of operating parameters and influent
concentration toxicity on process performance were exam-
ined. The biodegradation rate was strongly affected by the
substrate concentration with a pattern following Haldane
kinetics (El-Naas et al. 2009). The PVA was also used in
conjunction with P. putida for phenol biodegradation in a
continuous spouted bed bioreactor (El-Naas et al. 2010). A
cyclic motion of the particles within the bed was generated
using a single air jet injected at the bottom of the reactor.
The enhanced mixing reduced the effects of substrate
inhibition.

GAC-composites as cell supports and substrate adsorbents

Activated carbon has been used together with immobiliz-
ing agents PVA and xanthan gum (Kwon et al. 2009).
The carbon content in the beads had to be limited to 1%
because higher fractions decreased the mechanical
strength of the beads. The composite polymer-activated
carbon beads were then tested for phenol removal by
immobilized Pseudomonas fluorescence KNU417 in a
packed-bed bioreactor. The performance of microorgan-
isms immobilized into PVA beads was compared to the
performance of microorganisms immobilized into PVA-
GAC beads. The beneficial effect of the activated carbon
was limited to the start-up phase and similar removal
efficiencies were recorded after stabilization. These data
suggest (as it was observed in membrane and biofilm
reactors) that the addition of activated carbon can be
beneficial to prevent sudden shocks.

Foam matrices

As an immobilizing agent, polyurethane foam contains
macropores that provide low diffusional resistance and can
efficiently support biomass growth. In a recent application,
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Ribeiro de Nardi et al. (2007) investigated the biodegrada-
tion of BTEX by a bacterial consortium immobilized into
polyurethane in a horizontal flow anaerobic immobilized
biomass reactor. The authors reported BTEX removal
efficiencies in the range of 41–77%. The same system
was applied to the removal of BTEX by a denitrifying
immobilized consortium by Ribeiro Gusmão et al. (2007),
who observed the independent parallel removal of benzene,
toluene, and xylene with high removal efficiencies (>90%).
The advantages of cell immobilization onto polyurethane
foam with respect to suspended biomass systems were also
highlighted by Wang et al. (2009) in terms of improved
performance and resistance to shock loadings for nitroben-
zene removal. The immobilized cell reactor also supported
higher removal efficiency in the presence of salinity,
phenol, and aniline.

Sequencing batch reactors

In SBRs, microorganisms are periodically exposed to
cycling operating conditions. This substrate regime, to a
certain extent, directs the composition and metabolic
properties of the microbial cultures operating in the
biological processes. This feature arises from the con-
trolled, short term, unsteady state conditions that can favor
the induction of enzymes able to develop specific metabolic
pathways, and is of particular relevance in the biodegrada-
tion of biorefractory compounds (Venkata Mohan et al.
2005, Tomei et al. 2008). In addition, SBR reactors are
characterized by high operational flexibility and a favorable
cost-effectiveness ratio for small-scale treatment facilities
(Sahinkaya and Dilek 2007).

Recent applications of SBRs have been reported for
mixtures of substituted phenols. Tomei et al. (2008)
investigated the kinetics of biodegradation of a 4-
nitrophenol and 3,4-dimethylphenol in a conventional
suspended biomass SBR finding an improvement in the
degradation kinetics of the more slowly degradable com-
pound (3,4-dimethylphenol) as a mixture in comparison
with single compound tests. The kinetics of 4-chlorophenol
and 2,4-dichlorophenol (which are supposedly more toxic
than dimethylphenol) in batch and SBR reactors were
investigated by Sahinkaya and Dilek (2007) and significant
substrate inhibition was observed in single compound tests.
In mixture, 4-chlorophenol degradation was strongly and
competitively inhibited by the presence of 2,4-dichlorophe-
nol. It was possible to reduce this effect by prolonging the
feed times in the SBR. The inhibitory effect of 4-
chlorophenol was also observed by Monsalvo et al.
(2009) during the biodegradation of a mixture of phenol
and 4-chlorophenol, and a beneficial effect was provided by
an increase in temperature with more efficient degradation
kinetics at 35°C.

To improve SBR operation during the treatment of
wastewater containing inhibitory compounds, Moussavi et
al. (2009) proposed a moving-bed sequencing batch reactor
using mixed biomass attached onto cylindrically shaped
particles of polystyrene. The objective was to combine the
advantages of discontinuous operation with the perfor-
mance of the moving bed biofilm reactors. The system was
applied to a high-load phenolic wastewater and showed
effective performance for influent phenol concentrations up
to 3000 mg/L. A subsequent upgrade of this system, the
moving bed sequential continuous inflow reactor (MSCR)
was proposed by Moussavi and Heidarizad (2010). In the
MSCR, the cyclic operational mode was maintained but the
influent was added continuously at low flow rate. The
system was applied to the biodegradation of a mixture of
phenol, formaldehyde, and COD in wastewater, and
removal efficiencies higher than 97% were obtained with
the system showing a rapid recovery in the presence of
hydraulic shock loads.

Granular sludge reactors

Granular sludge is made of self-immobilizing cells and can
be considered to be a special case of biofilm systems (Adav
et al. 2008). Granulation was first applied to strictly
anaerobic systems and later extended to aerobic systems in
the late 1990s. Aerobic granules are mainly developed in
SBR reactors and are densely packed microbial aggregates
with densities much higher than that of activated sludge.
Granules have excellent settling properties and can withstand
high organic loads and toxic influents. The mechanisms of
granulation are still poorly understood but experimental
evidence suggests that accurate control of the hydraulics of
the system is necessary to achieve the hydrodynamic shear
force necessary to stabilize the three dimensional structure of
the granules. Moreover, to achieve efficient operation,
significant energy input (i.e., high recycle flows) is required
to maintain a high degree of fluidization.

Recent applications of granular sludge targeted the
treatment of high-strength phenol wastewaters. Ho et al.
(2010) thus studied the inhibitory effect of high-phenol
concentrations in batch tests and found the upper concen-
tration limit for biodegradation inhibition to be >3,000
mg/L. Moussavi and Heidarizad (2010) utilized an aerobic
granular SBR for the biodegradation of phenol in saline
wastewater obtaining removal efficiencies ≥98% for
influent concentrations in the range of 100–2,000 mg/L.

Granules degrading phenol were microbiologically ana-
lyzed by Adav et al. (2007), and accumulation of active
biomass on the external layer was observed, from which C.
tropicalis was isolated. The isolated strain was able to
effectively degrade phenol and the inhibitory effect was
detected at concentrations >1,000 mg/L.
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Other applications of aerobic granules have been studied
for the biodegradation of chlorinated phenols. Carucci et al
(2010) investigated 4-chlorophenol removal in a granular
SBR and reported very high removal efficiencies (99%) at
an influent concentration of 50 mg/l. Wang et al. (2007)
studied 2,4-dichlorophenol biodegradation in an aerobic
granular SBR and reported a removal efficiency of 94% at
an influent concentration of 105 mg/l.

Evaluation of applicability

Many of the conventional configurations presented above
have provided satisfactory treatment of monoaromatic
substrates at the laboratory scale in terms of substrate
removal efficiency. The practical implementation of these
technologies, however, may not be entirely straightfor-
ward. Except for the configurations based on the use of
adsorptive media (as supports or immobilizing agents),
there is no physical reduction of the contaminant
concentration and therefore the biomass, even if it
experiences more favorable conditions in comparison to
conventional suspended biomass reactors, is always
exposed to high substrate levels. As a consequence, the
effect of substrate toxicity can be attenuated but not
completely eliminated. The operation of most of the
bioprocesses describe here will also remain limited by
the high risk of complete process failure (biomass loss)
during episodes of toxic shocks. The addition of an
adsorptive medium (generally activated carbon) can
reduce the concentration level (at least temporarily) but
generates the additional problem of producing a new
polluted matrix that has to be treated or disposed of.
Moreover, the immobilized cell bioreactors investigated
utilized pure cultures, which will limit the likelihood of
such systems being applied in practice, especially for
wastewater treatment, which invariably involve mixed
microbial populations. Studies aimed at the use of mixed
population immobilized systems may, therefore, be a
fruitful area of research.

Many of the conventional methods described required
complex materials and equipment, and the need for
accurate operational control relative to the most basic
of systems (e.g., activated sludge) likely making these
approaches not particularly robust and potentially quite
expensive. These various technologies (e.g., membrane
systems, immobilized cells) may therefore be economical
only when used in bioprocesses that generate a saleable
product (i.e., when product inhibition is ameliorated).
Simple and inexpensive technologies are needed for the
biological treatment of toxic pollutants. In the following,
alternative technological solutions considering these pre-
requisites are presented and analyzed in terms of potential
applicability.

Two-phase partitioning bioreactors

Over the past 25 years, the concept of introducing a second
immiscible phase into a bioreactor to enhance bioprocess
performance has evolved from a rudimentary idea to
numerous applications in biotechnology and environmental
engineering. TPPB systems are all designed to address a
common constraint of bioprocesses, namely, that the
presence of toxic molecules in such systems can limit
process performance. TPPBs, by means of an immiscible
second phase, selectively partition toxic molecules either to
the microorganisms in degradative reactions, or away from
the microorganisms in synthesis reactions to eliminate
toxicity and improve process performance. Below, we
provide a brief historical perspective of the evolution of
TPPB systems, describe the features and performance of
three TPPB modifications (liquid–liquid, encapsulated, and
solid–liquid) as applied to the biodegradation of mono-
aromatics and suggest future directions for this technology
platform.

Biphasic systems were originally conceived to reduce
end-product inhibition in the production of toxic fermenta-
tion products (e.g., ethanol, butanol) and, because immis-
cible organic solvents were used, this processing strategy
(originally conceived in the 1980s) was called Extractive
Fermentation (Kollerup and Daugulis 1985). By expanding
the possible methods (e.g., pervaporation) available for
removing inhibitory fermentation products directly from
bioreactors, the term in situ product removal (ISPR)
became a widely accepted expression for this strategy by
the 1990s (Freeman et al. 1993). In the mid-1990s biphasic
processing began to be applied to degradative systems in
which toxic substrates were added to an immiscible organic
solvent phase, to partition to a cell-containing aqueous
phase based on cellular demand and on maintaining the
thermodynamic equilibrium of the system. At this time, the
term “Two Phase Partitioning Bioreactor” became the most
widely used expression to describe such systems, and the
use of this phrase has followed a very steep trajectory: from
the ISI Web of Science database the first recorded use of the
term “Partitioning Bioreactor” occurred in 1996, and as of
the time of writing (December 2010), 195 articles have
been published that use this phrase (35 articles in 2010),
with 2061 citations in total (more than 500 in 2010). If
“Partitioning Bioreactor” were a researcher s/he would have
an h-index of 25. Research on TPPBs is being conducted in
more than 20 countries around the world.

Although TPPBs continue to be effectively utilized to
reduce inhibition in the production of toxic fermentation
products (Gao and Daugulis 2009; Nielsen et al. 2010),
TPPBs have overwhelmingly been applied to the treatment
of inhibitory substrates, and this technology platform has
been patented (Daugulis and Collins 2001). This review
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focuses primarily on TPPB research published during the
last 3–4 years in treating inhibitory monoaromatics,
however, it is also striking to see the breadth of applications
(i.e., to non-monoaromatics), and the large number of
TPPB systems that have been studied over the past decade,
as described in a recent excellent review (Quijano et al.
2009a). Although the motivation for these studies and those
on monoaromatics that will be discussed in more detail here
has, in most cases, been to reduce substrate toxicity, the use
of a sequestering/delivery phase in TPPBs can also enhance
substrate delivery of poorly water soluble compounds by
providing a large substrate source for mass transfer, and can
also positively influence the oxygen transfer rate.

Liquid–liquid TPPBs

Immiscible organic liquids have overwhelmingly been the
choice as the sequestering/partitioning phase in the biotreat-
ment of toxic substrates in TPPBs (Quijano et al. 2009a).
Silicone oil has been used in the vast majority of cases,
with occasional selection of other organic solvents (e.g.,
bis-2-ethylhexyl sebacate and heptamethyl nonane (HMN))
and even ionic liquids (Baumann et al. 2005). Strategies for
selecting TPPB solvents have been described in detail
(Bruce and Daugulis 1991). Silicone oil (like HMN) has the
desirable properties of being biocompatible with most
microorganisms while also being essentially inert in terms
of biodegradation (i.e., non-bioavailable), two features that
are essential in biodegradative applications, particularly for
mixed microbial populations. Notwithstanding the above
potential advantages, silicone oil is far from ideal as a
partitioning phase due to its high cost (circa €150–200/kg
for the preferred low viscosity grade), high viscosity,
tendency to cause foaming, adhesion to reactor internals
and to biomass, and its potential to foul chromatography
columns during analysis. Numerous other immiscible
organic solvents have also been successfully used
(Quijano et al. 2009a; Munoz et al. 2008), albeit often
only with pure cultures to ensure non-biodegradability.
Liquid polymer (Barton and Daugulis 1992) and cloud
point systems (Wang et al. 2008) are two other liquid–
liquid partitioning bioreactor systems that have been
successfully demonstrated.

High concentrations of toxic monoaromatics have been
successfully degraded in liquid–liquid TPPBs, in all cases
at substantially superior rates than in single phase systems,
due either to reduced toxicity achieved by the sequestering
phase or enhanced substrate delivery (increased mass
transfer) or both. Recent reports have included the
degradation of pentachlorophenol (using dioctyl sebacate
as the sequestering phase (Zilouei et al. 2008)), phenol
(using kerosene (Juang and Tseng 2010; Juang et al. 2010)),
benzene, toluene and phenol (using 2-undecanone (Hamed

et al. 2004), toluene (using D-2-ethylhexyladipate (Darracq
et al. 2010), 4-nitrophenol (using 2-undecanone (Tomei et
al. 2008)), benzene (using n-hexadecane (Singh and
Fulekar 2010), toluene (using n-hexadecane (Farhadian et
al. 2010), and isopropylbenzene (using silicone oil (Aldric
and Thonart 2008)). The quantitative improvements pro-
vided by TPPBs relative to single phase systems have been
characterized in several ways: for example, feed benzene
concentrations could be increased fivefold (880 to 4,400
mg/l) with similar performance (Hamed et al. 2004),
degradation rate constants were increased threefold for the
bioremediation of 4-nitrophenol in a TPPB relative to
single phase operation (Tomei et al. 2008) and the
volumetric removal rate for pentachlorophenol was in-
creased by more than 100 times (1 to 142 mg/L h) via the
use of a TPPB (Zilouei et al. 2008). In two instances
(Darracq et al. 2010; Tomei et al. 2008), some degradation
of the solvent delivery phase was observed, perhaps due to
the fact that these systems used widely mixed populations
of organisms, and again highlights one of the potential
drawbacks of two-liquid phase systems for biotreatment
applications. The potential biodegradability of the seques-
tering phase is less a problem in systems in which toxic
fermentation products are removed via ISPR, because in
such situations pure cultures are invariably used, and non-
biodegradable solvents can usually be found.

An interesting operational consideration for liquid–liquid
TPPBs is whether substrate mass transfer (from the solvent
to the aqueous phase) or microbial kinetics is the rate
limiting step in these systems. Two studies (Rehmann and
Daugulis 2008b; Zilouei et al. 2008) have shown that mass
transfer is not limiting, at least under the conditions studied,
and this is likely due to the extensive dispersion of the
solvent phase (and correspondingly small bubbles) in well-
mixed bioreactors. A related practical matter is how the
sequestering phase affects oxygen transfer, and a large
number of studies have been conducted to examine the
impact of the presence of an organic solvent on either kLa,
or oxygen transfer rate (OTR). Enhancement of oxygen
transfer has invariably been found for aqueous-organic
TPPBs. In assessing such reports, it is important to make
the distinction between these two metrics of oxygen
transfer (kLa and OTR) because, as has been discussed in
earlier work on the subject (Nielsen et al. 2003; 2005),
these two terms can sometimes be confused. Although in
single aqueous phase systems, the kLa and OTR have
tended to be used almost interchangeably as an indicator of
oxygen transfer efficiency (as they can when the oxygen
driving force is fixed), lower kLa values for TPPB systems
do not imply a reduced OTR, merely that the system has
taken longer to reach saturation due to the additional sink
provided by the presence of an organic phase, whose
oxygen solubility can be many fold higher than water.

1598 Appl Microbiol Biotechnol (2011) 90:1589–1608



Recent contributions in examining oxygen transfer in
TPPBs include those by Quijano et al. 2009a, b; Torres-
Martínez et al. 2010; and Quijano et al. 2010a, b, c. Liquid–
liquid TPPBs have therefore not only been shown to
detoxify numerous xenobiotic substrates, they also have
the fortuitous and unforeseen benefit of enhancing the OTR
in biotreatment applications.

In summary, liquid–liquid TPPBs have been shown to be
superior to single-phase biotreatment systems due to their
capacity to overcome substrate toxicity directly. The use of
silicone oil will likely be the solvent of choice for many
researchers; however, its use in bioremediation applications
will probably be limited to academic studies, demonstra-
tions of concept, and fundamental investigations (e.g.,
modeling, mass transfer) rather than full-scale implementa-
tion due to the high cost of this material, and the other
limitations identified above. This is in contrast to ISPR
applications of TPPBs (e.g., extractive fermentation) in
which pure cultures are invariably used and alternative
solvents (other than silicone oil) can usually be found.
Moreover, the use of any immiscible organic liquid as the
partitioning phase in commercial remediation applications
may be impractical if direct contact between the solvent and
the contaminated air, water, or soil site is required, due to
the potential transfer of the solvent (via dissolution or
adhesion) to the material being treated.

Encapsulated liquid-phase TPPBs

In situations in which direct contact between an immiscible
carrier phase and the degrading organism is undesirable
(i.e., in cases in which the partitioning phase is biodegradable
or cytotoxic), encapsulation of the solvent phase has been
shown to function effectively. For example, liquid-core
capsules composed of a dibutyl sebacate contained within a
crosslinked alginate/polyacrylamide membrane showed re-
duced toxicity relative to single-phase biodegradation of
atrazine (Wyss et al. 2006). Also, to reduce substrate and/or
solvent toxicity, chitosan-coated PVA beads containing
silicone oil were shown to enhance biodegradative perfor-
mance (Sarma et al. 2010). Phenol degradation has also been
demonstrated in a partitioning bioreactor in which the
sequestering phase was either 1-nonanol (Zhao et al.
2010a) or modified montmorillonite encapsulated in poly-
sulfone (Zhao et al. 2010b). In the latter case, phenol
degradation was almost doubled (125.8 to 208.4 mg/L h) by
operating as a TPPB rather than in single-phase mode.

The use of such encapsulation methodologies to
separate a solvent from cells may have somewhat limited
applicability in bioremediation processes, however. As
noted above, TPPBs have been used for both biosyn-
thetic applications (e.g., ISPR for toxic fermentation
products) and biodegradative ones. In biosynthetic appli-

cations, there is greater flexibility in the selection of the
partitioning phase, particularly considering its cost and/or
complexity, since biosynthetic systems that produce a
commercial product can generate a revenue stream. On
the other hand, biotreatment processes are often driven
by criteria such as simplicity and low cost, and in such
cases it may not be feasible to use encapsulated
complexes as the partitioning phase in TPPBs, particu-
larly when simpler, and less expensive, alternatives (e.g.,
polymers) are available.

Solid–liquid TPPBs

The first demonstration that solid polymer beads can
replace immiscible organic solvents (Amsden et al. 2003)
has spawned numerous subsequent studies of solid-liquid
TPPBs successfully applied in both biosynthetic and
bioremediation systems. The main advantages in substitut-
ing polymers for immiscible organic solvents are their
completely inert nature (non-bioavailable and non-
cytotoxic) and their exceedingly low cost. As an example,
thermoplastic elastomers such as DuPont’s Hytrel, cost less
than €5 per kg. These features are extremely important in
bioremediation, where mixed populations of organisms are
invariably employed, and where costs need to be very
tightly controlled. The fact that uptake by amorphous
commercial polymers occurs by absorption rather than by
adsorption confirms that the same mechanisms apply to
solid–liquid TPPBs, namely, equilibrium uptake and release
of toxic substrates, and delivery based on metabolic
demand. The use of inexpensive, non-volatile, non-
flammable, biocompatible and easily shaped polymers as
the sequestering phase in a bioreactor is an enormous
advance in designing high-efficiency and low-cost biopro-
cesses that eliminate cell toxicity and is key to the
development of “green”, solvent-free processing strategies.

Monoaromatics that have been biodegraded using
polymer-based TPPBs include toluene (Daugulis and
Boudreau 2008; He et al. 2009), phenolic mixtures (Prpich
et al. 2006), BTEX compounds (Littlejohns and Daugulis
2008a), phenol (Amsden and Lau 2008), 4-nitrophenol
(Tomei et al. 2009; Tomei et al. 2010), as well as hexane
(Hernandez et al. 2010) and pinene (Montes et al. 2011). As
expected, enhanced bioremediation performance was dem-
onstrated in all cases relative to single-phase operation. By
way of example, Tomei et al. (2010) found that a feed
concentration of 1,000 mg/L 4-nitrophenol caused com-
plete cessation of microbial growth due to substrate
toxicity in single-phase operation, and that by adding
only 5% (v/v) polymers and operating as a TPPB, the
same reactor allowed rapid and complete biodegradation
of this substrate. These authors also showed no long-term
build up of substrate within the polymer matrix and
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multiple re-use of the polymer beads with no decrease in
performance of the sequestering phase. Selection criteria
for the use of polymers have been formulated (Rehmann
et al. 2007), and modification of the polymer to enhance
performance through sonication (Isaza and Daugulis
2010) or through admixing polymers with magnetic beads
(to facilitate removal of the sequestering phase from
contaminated water and soil sites) has also been demon-
strated (Yeom et al. 2010a). Polymeric wastes, such as
shredded automobile tires have also been shown to work
effectively as a sequestering phase in solid–liquid TPPBs
(Prpich et al. 2008).

The enhancement of OTR, seen for two-liquid TPPBs, has
also been confirmed for solid–liquid systems (Littlejohns and
Daugulis 2007), making these systems similar in this aspect.
Two liquid-phase systems do have an advantage over
polymer-based TPPBs in substrate mass transfer (Littlejohns
and Daugulis 2009; Hernandez et al. 2010), since some
instances have been reported (Rehmann and Daugulis 2008c)
in which the rate of substrate delivery from polymers was
determined to be rate limiting; this could potentially be
overcome with polymers of higher diffusivity or with small
polymer beads with reduced diffusional path lengths. Given
the past emphasis on the use of silicone oil in liquid–liquid
TPPBs, it would be interesting to undertake a comparison
between the use of this material in TPPBs with silicone
rubber (Littlejohns and Daugulis 2007), a material which is
identical in chemical composition, polydimethylsiloxane, but
which is merely a (much cheaper) solid.

Although both liquid–liquid and solid–liquid TPPBs
have shown significantly enhanced performance in all cases
relative to single-phase systems, some assessment of the
relative merits of these two types of TPPBs should perhaps
be made. In terms of substrate detoxification, and hence
reactor capability, liquid–liquid and solid–liquid TPPBs
have demonstrated performance which in most cases has
been indistinguishable (Boudreau and Daugulis 2006;
Tomei et al. 2009), although solid–liquid TPPBs have been
shown to be superior to liquid–liquid systems from an
operability standpoint (Morrish and Daugulis 2008). Par-
ticularly in situations in which mixed cultures are used
(certainly the case for practical bioremediation applica-
tions), two-liquid phase systems are limited to using
perhaps only silicone oil or HMN. For this reason, the use
of polymers has clear advantages as many thousands of
commercial polymers are available with varying properties
and affinities for target molecules, and the use of mixtures
of polymers tailored to a particular mixture of target
substrates is easily accomplished (Morrish and Daugulis
2008). From a practical standpoint, the use of polymers is
also superior in terms of storage, handling of spills, safety,
and recovery and reuse of the sequestering phase relative to
the use of organic solvents. Critically, commercial poly-

mers, including waste plastics and rubbers (such as
automobile tires) will have the enormous advantage of
being far less costly than solvents. In situations requiring
direct contact with contaminated sources (e.g., contaminated
soil) polymers again would appear to be superior, as well as
eliminating concerns about flammability, viscosity, and
losses through adhesion to particles (e.g., soil) or
bioreactor internals. Unless the pollutants are available
in a near-pure form (e.g., as stored or stockpiled
pesticides and banned chemicals) and can be added
directly to a TPPB, contacting and completely recovering
an immiscible solvent from a contaminated source would
be very difficult to achieve in practice without significant
solvent losses and contamination of the environment by
the solvent. Remediation of actual contaminated air,
water and soil environments by uptake of the target
pollutant by direct contact with polymer beads, followed
by destruction of the toxic substrate in a solid–liquid
TPPB has previously been demonstrated (Prpich et al.
2006; Prpich et al. 2008; Rehmann et al 2008a; Rehmann
and Daugulis 2008d; Yeom et al. 2010a).

In the recent review of TPPBs in environmental
biotechnology, Munoz and co-workers provided several
conclusions and prospects for real-world applications of
TPPBs (Quijano et al. 2009a): (1) TPPBs, have demon-
strated superior performance to conventional biological
techniques, (2) The use of liquid-liquid TPPBs is con-
strained by foaming, high-viscosity and high cost of the
sequestering phase, (3) Solid–liquid TPPBs can poten-
tially and satisfactorily address these limitations. We
would also suggest that the added advantages of direct
application to contaminated sites, and the potential of
tailoring polymers and/or using waste polymers provide a
bright future for solid–liquid TPPBs in environmental
applications.

Overall assessment

The area of TPPBs has matured over the past 15 years to
the point where general design strategies have been
formulated to aid in specifying TPPB operating protocols
(Yeom et al. 2010b; 2010c), modelling under steady-state
and dynamic conditions has been performed for liquid–
liquid TPPBs (Fazaelipoor 2007; Nielsen et al. 2007) as
well as solid–liquid systems (Littlejohns et al. 2010), scale-
up has been examined (Marques et al. 2010) and economics
assessed (Mahanty et al. 2010). One of us (AJD) is
currently undertaking the design and fabrication of new
polymers with targeted properties for use in TPPB systems
for both biodegradative and biosynthetic applications. The
TPPB technology platform, particularly in solid–liquid
mode, has enormous scientific and practical potential in
biosynthetic as well as environmental applications.
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Integrated chemical-biological treatment

Rationale and principle

Despite the significant improvements arising from micro-
bial acclimatization or controlled substrate delivery, it is not
always possible or economical to treat industrial wastewater
biologically. For instance, the biodegradation of certain
pollutants may require very long cell retention times (e.g.,
40 days for xenobiotic degradation) due to competitive
substrate uptake and slow growth at low substrate concen-
trations. This requirement often means poor sludge settle-
ability and high oxygen demand during aerobic treatment.
Another drawback is the potential instability caused by
fluctuating influent properties, especially when process
performance relies on a diverse microbial community
containing sensitive microorganisms (e.g., methanogenic
archaea during anaerobic treatment, bacterial nitrifiers
during combined nitrogen–carbon removal, or algae during
photosynthetic oxygenation in ponds). In these situations, a
chemical pre-treatment step can serve to convert the
recalcitrant and/or toxic pollutants into biodegradable and
biocompatible products before biological treatment (Scott
and Ollis 1995, 1996, 1997; Esplugas and Ollis 1997). This
integrated approach is considered as more cost-efficient and
environmentally friendly than full chemical treatment for
several reasons: (1) chemical wastewater treatment often
requires higher amounts of energy (e.g., UVC-irradiation,
sonication, ozonation) and chemicals (e.g., Fe(II), TiO2,
H2O2, etc) than biological treatments processes, (2)
chemical treatment often only partially mineralizes organic
pollutants into products that must be further degraded
(meaning integration is often a de facto necessity), and (3)
because of the high energy and material consumption
highlighted above, it has been argued that intensive
chemical treatment can have an overall negative impact
on the environment due to the associated release of
greenhouse gases to the atmosphere (Jones et al. 2007).

Design and optimization

The design of an integrated chemical–biological process is
generally based on the assumption that the chemical
process is more costly and must be applied only until a
significant enhancement in biodegradability is achieved.
Under this assumption, an integrated process is optimized
by determining the minimum chemical dose (e.g., UV,
H2O2, or ozone dose) needed to allow subsequent biolog-
ical treatment with acclimatized microorganisms under,
possibly, substrate dilution in a continuous process. In the
case of biorecalcitrant pollutants, the minimum dose is
typically the dose that allows pollutant removal below
targeted values for discharge (Zapata et al. 2010b;

Mendoza-Marín et al. 2010). In the case of toxic pollutants,
the dose depends on the process and microorganisms used
for biological treatment (Essam et al. 2007b).

A mathematic approach based on mass balance analysis
and experimental kinetic data was utilized to co-optimize
phenol removal in an integrated UV-H2O2/biological
process (Edalatmanesh et al. 2008). Unfortunately, the
constructed model was not experimentally validated and
has little predictive power in real applications because the
mechanisms and rates of the chemical and biological
reactions involved in the removal of organic pollutants are
significantly affected by environmental conditions, waste-
water composition, and scale effects. For instance, Essam et
al. (2006a) reported that the simulated solar irradiation of a
mixture of chlorophenols yielded toxic and biorecalcitrant
products that were not detected when the pollutants were
irradiated individually. Zapata et al. (2010a) observed that
the irradiation time necessary to completely remove the
aromatic pesticides imidacloprid and pyrimethanil from
simulated wastewater by solar photo-Fenton treatment
increased threefold when the photoreactor volume was
scaled-up from 75 to 1,060 L, mainly due to wastewater
salinity and temperature effects. Using the same process,
Zapata et al. (2010b) also reported differences in the
treatment efficiencies when a real wastewater was used
instead of a simulated wastewater containing aromatic
pesticides.

Because of the difficulty in predicting the efficiency of
partial chemical treatments and the toxicity and biodegrad-
ability of the products formed, systematic experimental
optimization remains necessary. For this purpose, Sarria et
al. (2002) proposed to initially assess the wastewater
toxicity and inherent biodegradability at various dilutions
in order to determine if direct biological treatment of
diluted substrate with acclimatized microorganisms is
feasible. If this could not be accomplished, a pre-
treatment would then be applied until significant toxicity
reduction and/or biodegradability enhancement is achieved.
Practically, such an optimization scheme requires the ability
to monitor removal efficiency, toxicity, and biodegradabil-
ity. “Generic” parameters such as the dissolved organic
carbon concentration (DOC) and the chemical oxygen
demand (COD) are therefore commonly used to evaluate
removal efficiency and track potential degradation prod-
ucts. From these parameters, the average oxidation state
(AOS) of the organic carbon in solution can also be
calculated as:

AOS ¼ 4 DOC � CODð Þ
TOC

where the COD and TOC are expressed in molar concen-
trations (the AOS varies from −4 for CH4 to +4 for CO2).
Most aromatic pollutants undergo sequential oxidation
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reactions during chemical treatments and each reaction
converts its reactants into more oxidized products. Conse-
quently, as the pollutant concentrations, the DOC, and the
COD decrease, the AOS typically increases during chem-
ical treatment and becomes an indicator of the amount of
degradation products formed and their oxidation state.
Interestingly, the AOS also tends to correlate positively
with the biodegradability of organic compounds. This
correlation is explained by the fact that the chemical
oxidation of aromatic pollutants often induces structural
changes such as ring opening, hydroxylation, or dehaloge-
nation (Suarez-Ojeda et al. 2007; Goi et al. 2004, Essam et
al. 2007b) that also increase biodegradability (Goi et al.
2004, Loonen et al. 1999). Unfortunately, the same
reactions can also cause the formation of toxic or
biorecalcitrant compounds, explaining why the AOS cannot
be used as a substitute for bioassays. For instance, Mehrvar
and Tabrizi (2006) reported that UV–H2O2 treatment of
alkylbenzene sulfonate actually decreased the biodegrad-
ability of the effluent in a sequencing batch reactor
inoculated with activated sludge microflora. Likewise,
Olmez-Hanci et al. 2010 reported that UV–H2O2 treatment
of a simulated wastewater containing diethyl phthalate
caused pollutant removal but no detoxification to activated
sludge.

In order to provide the best conditions possible for
microbial degradation to take place (e.g., microbial accli-
mation and substrate dilution), inherent biodegradation
assays (e.g., 28 days Zahn–Wellens assays) are often
preferred during the testing of integrated treatments. The
BOD/COD and BOD/TOC ratios are also commonly used
as indicators of biodegradability, with a BOD5/COD>0.4
being considered as typical of easily biodegradable organic
matter (Scott and Ollis 1997). Considerable care should
however be taken when using the BOD5 assay (no time is
given for acclimation to occur), especially if biorecalcitrant
compounds are found together with biodegradable com-
pounds present at much higher concentrations.

Alternative monitoring strategies can be used in specific
applications. For instance, Essam et al. (2006a, 2007a) used
a mass balance analysis based on chloride and COD
concentrations in order to determine the dechlorination
efficiency of solar-based pre-treatment and the level of
chlorination of the degradation products formed from
chlorophenols. Because the toxicity and aerobic biodegrad-
ability of chlorinated aromatics is inversely correlated to the
number of chlorine atoms each compound contains (see
cited studies and references), the pre-treatment yielding the
lower amount of chlorinated products (UV–H2O2–TiO2)
also yielded the higher amount biodegradable products and
overall highest efficiency.

Numerous bioassays have been used to monitor toxicity
during integrated chemical–biological treatment, Vibrio

fischeri bioluminescence and activated sludge respirometry
being the most popular. However, many authors have
repeatedly failed to demonstrate toxicity reduction during
chemical treatment using the V. fischeri toxicity assay,
which can easily be explained by the fact that this marine
bacterium is naturally poorly equipped to resist a demand-
ing freshwater environment. This discussion is however
rather irrelevant as different toxicity assays should be used
with different purposes; activated sludge respirometry
would logically be more suitable to determine inhibition
risks during biological treatment with activated sludge
microorganisms whereas a more sensitive assay should
be used to assess the overall detoxification efficiency of
the process with regard to the recipient ecosystem used
for wastewater discharge. Finding the optimum dose for
chemical treatment can however be difficult because risk
prevention during the treatment of unpredictable or
variable wastewater composition could require over-
dosing the chemical treatment (Zapata et al. 2010b),
whereas overdosing may also cause toxicity to increase
(Zapata et al. 2010a).

Recent progress

Progress in the development of integrated chemical-
biological processes were extensively reviewed by Scott
and Ollis 1997 (Scott and Ollis 1997) and more recently by
Mantzavinos and Psillakis (2004) and Tabrizi and Mehrvar
(2004). Since these reviews, notable progress has been
made in process scale-up, real wastewater treatment, and
further demonstration for numerous types of pollutants and
wastewater. For instance, Malato et al. (2007) demonstrated
the removal of biorecalcitrant α-methylphenylglycine at
pilot scale using integrated solar-Fenton/biological treat-
ment with immobilized biomass whereas Zapata et al.
(2010a, b), as described above, demonstrated the removal
of aromatic pesticides from simulated and real wastewater
at various scales using the same process. Pilot-scale photo-
Fenton treatment was thus able to significantly reduce the
toxicity of an artificial mixture of five pesticides (two
aromatics) to V. fischeri and activated sludge while
increasing its inherent biodegradability from 50% to 95%.
Overall, the integrated treatment supported a DOC removal
of 84% at industrial scale, with 35% corresponding to the
chemical step. Using the same process, Mendoza-Marín et
al. (2010) reported that solar photo-Fenton treatment of
simulated and real agro-industrial wastewaters containing
the aromatic pesticides dichlorophenoxyacetic acid and
diuron increased the effluent BOD5/COD from 0.3 to 0.6,
thereby allowing an overall DOC removal efficiency of
82.5% after biological treatment (50% due to the solar
photo-Fenton process). Vilar et al. (2011) reported that solar
photo-Fenton treatment of a landfill leachate containing
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caffeic acid (286–579 mg/l) increased the effluent BOD5/
COD ratio from 0.16 to 0.37 and its inherent biodegrad-
ability from 44 to 49% up to 89% depending on the H2O2

dose used. Salles et al. (2010) showed the electrochemical
pre-treatment of aromatic pesticide Phosmet reduced
toxicity to V. fischeri and increased biodegradability
(BOD5/COD ratio), thereby allowing subsequent treatment
with activated sludge microflora (total mineralization of
97%). Suarez-Ojeda et al. (2007) reported near complete
COD removal during the treatment of a high-strength o-
cresol laden wastewater using an integrated catalytic wet
air oxidation (with activated carbon as catalyst/biological
treatment (activated sludge) process (the pre-treated
wastewater made 30% of the effluent fed to the biological
reactor).

Overall assessment

The evidence reported herein and the information provided
in earlier reviews show that the efficiency of integrated
treatment has been validated for a wide range of pollutants
and process configurations, including at industrial scale and
using real effluents. However, research in the area still
overwhelmingly focuses on the use of advanced oxidation
processes combined with aerobic biological treatment. This
is rather surprising considering that the greatest advantages
of integrated treatment could be found when chemical pre-
treatment are combined with “sensitive” biological process-
es in a more holistic approach aiming not only to remove a
pollutant, but also reduce aeration costs, conserve energy,
minimize sludge production, or combine nutrient and
carbon removal; in other words, integrated treatments have
hitherto been considered for hazardous pollutant removal
only, regardless of the other issues faced during wastewater
treatment. For instance, Essam et al. (2006b, c; 2007b)
showed that chemical detoxification of phenolics-laden
wastewaters was critical to allow subsequent biological
treatment using a consortium of algae and bacteria. This
fully solar-powered integrated approach improves energy
efficiency during detoxification due to photosynthetic
aeration as well as nutrient removal due to nitrogen
assimilation by microalgae (Muñoz and Guieysse 2006).
There is also a lack of studies comparing the efficiency of
various integrated treatments for the same application.
Such comparisons would be interesting as the integra-
tion of certain processes can be more difficult and
costly due the requirements of water conditioning prior
to biological treatment (e.g., pH neutralization after
photo-Fenton and Fenton treatments, cooling after wet
oxidation). For example, Essam et al. (2007a) compared
the efficiencies of various simulated solar UV, UV–H2O2,
UV–TiO2, and UV–TiO2–H2O2 pre-treatments for chlor-

ophenol removal, and found that the type of chemical
treatment used has a profound influence on the toxicity
and biodegradability of the degradation products formed.
Finally, there is a lack of chronic toxicity monitoring
during integrated treatment. This is rather critical as
various chemical treatments have been shown to produce
such type of toxicants.

Conclusions

Improving the design and operation of biological treatment
processes for monoaromatics in real-life applications
presents many challenges, including working within the
following constraints: substrate toxicity; mixed populations
of organisms; the need for robust operation in the face of
dynamic conditions of feed composition, concentration and
environmental parameters such as temperature; low cost
operation.

Single-substrate and single-organism studies are useful
in characterizing process fundamentals such as kinetics, but
do not fully meet all of the challenges required for practical
implementation. Process designs that provide potential
operational improvements such as higher biomass levels
(i.e., biofilm reactors) or protection from adverse conditions
(cell entrapment) are also useful contributions but do not
completely resolve the fundamental limiting characteristic
of monoaromatics, which is cytotoxicity. Based on our
review, it appears that solid–liquid TPPBs and integrated
physical/chemical systems, which can potentially address
all of the above constraints, are the most promising
approaches for the biological treatment of monoaromatics.
In spite of their operational success, however, neither of
these approaches has yet been applied commercially at full
scale and a number of research opportunities still exist.

For example, in the case of TPPBs, the implementation
of effective and low-cost materials with appropriate
transport properties such as high diffusivity and the design
of contacting shapes such as beads, plates and films within
an industrial context (mechanically agitated, airlift, packed
bed, sequencing batch, etc.) has not been fully explored. In
the case of combined treatment strategies, the matching of
several available physical treatments of a particular con-
taminant stream to a biological one, and the assessment of
toxicities also require additional research to reduce treat-
ment costs and risks. We would also argue that current
research focuses almost exclusively on substrate removal
without taking into account the entire spectrum of process
considerations (e.g., nutrient removal, sludge disposal) and
sustainability issues (e.g., energy efficiency, green house
gases emissions) that must now increasingly be considered
when determining best practice. Nevertheless, the perfor-
mance of these approaches to date in biologically treating
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recalcitrant compounds such as monoaromatics is exceed-
ingly promising.

Acknowledgment AJD is grateful to Timothy Simon for helpful
discussions.
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