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Abstract

Parabolic partial differential equations (PDEs) are widely used in the mathemati-
cal modeling of natural phenomena and man-made complex systems. In particular,
parabolic PDEs are a fundamental tool to approximately determine fair prices of
financial derivatives in the financial engineering industry. The PDEs appearing in
financial engineering applications are often nonlinear (e.g., in PDE models which
take into account the possibility of a defaulting counterparty) and high-dimensional
since the dimension typically corresponds to the number of considered financial as-
sets. A major issue in the scientific literature is that most approximation methods
for nonlinear PDEs suffer from the so-called curse of dimensionality in the sense that
the computational effort to compute an approximation with a prescribed accuracy
grows exponentially in the dimension of the PDE or in the reciprocal of the prescribed
approximation accuracy and nearly all approximation methods for nonlinear PDEs in
the scientific literature have not been shown not to suffer from the curse of dimension-
ality. Recently, a new class of approximation schemes for semilinear parabolic PDEs,
termed full history recursive multilevel Picard (MLP) algorithms, were introduced
and it was proven that MLP algorithms do overcome the curse of dimensionality for
semilinear heat equations. In this paper we extend and generalize those findings to a
more general class of semilinear PDEs which includes as special cases the important
examples of semilinear Black-Scholes equations used in pricing models for financial
derivatives with default risks. In particular, we introduce an MLP algorithm for the
approximation of solutions of semilinear Black-Scholes equations and prove, under the
assumption that the nonlinearity in the PDE is globally Lipschitz continuous, that the
computational effort of the proposed method grows at most polynomially in both the
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dimension and the reciprocal of the prescribed approximation accuracy. We thereby
establish, for the first time, that the numerical approximation of solutions of semilinear
Black-Scholes equations is a polynomially tractable approximation problem.

Keywords: curse of dimensionality; high-dimensional PDEs; semilinear PDEs; semilinear Kol-
mogorov PDEs; multilevel Picard method.
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1 Introduction

Parabolic partial differential equations (PDEs) are key mathematical tools to model
natural phenomena and man-made complex systems. In particular, parabolic PDEs are
used in the financial industry to model fair prices of financial derivatives. The use of
PDEs for option pricing originated in the work of Black, Scholes, & Merton (see [12, 80])
which suggested that the price of a financial derivative satisfies a linear parabolic PDE,
nowadays known as Black-Scholes equation. The derivation of their theory is based
on several assumptions which are not met in the financial practice and consequently
various changes and extensions to the original pricing model have been developed.
One key modification of the initial Black-Scholes model is to include the possibility of a
defaulting counterparty (cf., e.g., Burgard & Kjaer [17], Crepey et al. [28], Duffie et al.
[37], and Henry-Labordere [56]). Such extended models suggest that the price process
of a financial derivative satisfies a certain semilinear PDE (cf. (1.1) in Theorem 1.1
below and Subsections 4.2–4.3 below). Typically, semilinear parabolic PDEs can not be
solved explicitly and it is therefore a very active topic of research to solve such PDEs
approximately (see below for a rough overview of the literature).

The PDEs appearing in financial engineering applications are often high-dimensional
since the dimension corresponds to the number of financial assets (such as stocks,
commodities, interest rates, or exchange rates) in the involved hedging portfolio. A major
issue in the scientific literature is that most approximation methods for nonlinear PDEs
suffer from the so-called curse of dimensionality (see Bellman [8]) in the sense that the
computational effort to compute an approximation with a prescribed accuracy ε > 0

grows exponentially in the dimension d ∈ N of the PDE or in the reciprocal 1/ε of the
prescribed approximation accuracy (cf., e.g., E et al. [40, Section 4] for a discussion
of the curse of dimensionality in the PDE approximation literature) and nearly all
approximation methods for nonlinear PDEs have not been shown not to suffer from the
curse of dimensionality. Recently, a new class of approximation schemes for semilinear
parabolic PDEs, termed full history recursive multilevel Picard (MLP) algorithms, were
introduced in E et al. [39, 40] and it was proven, under restrictive assumptions on the
regularity of the solution of the PDE that they overcome the curse of dimensionality
for semilinear heat equations. Building on this work, [63] proposed for semilinear heat
equations an adaption of the original MLP scheme in [39, 40]. Under the assumption that
the nonlinearity in the PDE is globally Lipschitz continuous [63, Theorem 1.1] proves that
the proposed scheme does indeed overcome the curse of dimensionality in the sense that
the computational effort to compute an approximation with a prescribed accuracy ε > 0

grows at most polynomially in both the dimension d ∈ N of the PDE and the reciprocal
1/ε of the prescribed approximation accuracy.

In this paper we generalize the MLP algorithm of [63] and the main result of this
article, Theorem 3.24 below, proves that the MLP algorithm proposed in this paper
overcomes the curse of dimensionality for a more general class of semilinear PDEs which
includes as special cases the important examples of semilinear Black-Scholes equations
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used in pricing models for financial derivatives with default risks. In particular, we show
for the first time that the solution of a semilinear Black-Scholes PDE with a globally
Lipschitz continuous nonlinearity can be approximated with a computational effort which
grows at most polynomially in both the dimension and the reciprocal of the prescribed
approximation accuracy. Put differently, we show that the approximation of solutions
of such semilinear Black-Scholes equations is a polynomially tractable approximation
problem (cf., e.g., Novak & Wozniakowski [85]). To illustrate the main result of this
paper, Theorem 3.24 below, we present in the following theorem, Theorem 1.1 below,
a special case of Theorem 3.24. Theorem 1.1 demonstrates that the MLP algorithm
proposed in this article overcomes the curse of dimensionality for the approximation of
solutions of certain semilinear Black-Scholes equations.

Theorem 1.1. Let T ∈ (0,∞), p,P, q ∈ [0,∞), α, β ∈ R, Θ = ∪∞n=1Z
n, let f : R → R

be a Lipschitz continuous function, for every d ∈ N let ‖·‖Rd : Rd → [0,∞) be the
Euclidean norm on Rd, let ξd ∈ Rd, d ∈ N, and gd ∈ C2(Rd,R), d ∈ N, satisfy that

supd∈N,x∈Rd
( |gd(x)|
dP(1+‖x‖p

Rd
)

+
‖ξd‖Rd
dq

)
< ∞, let ud ∈ C1,2([0, T ] × Rd,R), d ∈ N, be polyno-

mially growing functions which satisfy for all d ∈ N, t ∈ (0, T ), x = (x1, x2, . . . , xd) ∈ Rd
that ud(T, x) = gd(x) and

(
∂ud
∂t

)
(t, x) +

[
d∑
i=1

|β|2|xi|2
2

(
∂2ud
∂(xi)2

)
(t, x)

]
+

[
d∑
i=1

αxi
(
∂ud
∂xi

)
(t, x)

]
+ f(ud(t, x)) = 0, (1.1)

let (Ω,F ,P) be a probability space, let Rθ : Ω → [0, 1], θ ∈ Θ, be independent U[0,1]-
distributed random variables, let Rθ = (Rθt )t∈[0,T ] : [0, T ] × Ω → [0, T ], θ ∈ Θ, be the
stochastic processes which satisfy for all t ∈ [0, T ], θ ∈ Θ that Rθt = t + (T − t)Rθ, let
W d,θ = (W d,θ,i)i∈{1,2,...,d} : [0, T ]×Ω→ Rd, θ ∈ Θ, d ∈ N, be independent standard Brow-
nian motions, assume that (W d,θ)d∈N,θ∈Θ and (Rθ)θ∈Θ are independent, for every d ∈ N,
θ ∈ Θ, t ∈ [0, T ], s ∈ [t, T ], x = (x1, x2, . . . , xd) ∈ Rd let Xd,θ,x

t,s = (Xd,θ,x,i
t,s )i∈{1,2,...,d} : Ω→

Rd be the function which satisfies for all i ∈ {1, 2, . . . , d} that

Xd,θ,x,i
t,s = xi exp

((
α− β2

2

)
(s− t) + β

(
W d,θ,i
s −W d,θ,i

t

))
, (1.2)

let V d,θM,n : [0, T ]×Rd × Ω→ R, M,n ∈ Z, θ ∈ Θ, d ∈ N, be functions which satisfy for all

d,M, n ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that V d,θM,0(t, x) = 0 and

V d,θM,n(t, x) =

n−1∑
k=0

(T − t)
Mn−k

[
Mn−k∑
m=1

f
(
V
d,(θ,k,m)
M,k

(
R

(θ,k,m)
t , X

d,(θ,k,m),x

t,R
(θ,k,m)
t

))

− 1N(k)f
(
V
d,(θ,k,−m)
M,k−1

(
R

(θ,k,m)
t , X

d,(θ,k,m),x

t,R
(θ,k,m)
t

))]
+

[
Mn∑
m=1

gd(X
d,(θ,n,−m),x
t,T )

Mn

]
,

(1.3)

and for every d, n,M ∈ N, t ∈ [0, T ], x ∈ Rd let Cd,M,n ∈ N0 be the number of realizations
of one-dimensional standard normal random variables which are used to compute one
realization of V d,0M,n(t, x) (see (4.42) below for a precise definition). Then there exist
functions N = (Nd,ε)d∈N,ε∈(0,1] : N× (0, 1]→ N and c = (cδ)δ∈(0,∞) : (0,∞)→ (0,∞) such
that for all d ∈ N, ε ∈ (0, 1], δ ∈ (0,∞) it holds that Cd,Nd,ε,Nd,ε ≤ cδ d1+(P+qp)(2+δ)ε−(2+δ)

and (
E
[
|ud(0, ξd)− V d,0Nd,ε,Nd,ε

(0, ξd)|2
])1/2 ≤ ε. (1.4)

Theorem 1.1 is an immediate consequence of Theorem 4.4 below. Theorem 4.4, in
turn, is a consequence of Theorem 3.24 below, the main result of this paper. We now
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provide some explanations for Theorem 1.1. In Theorem 1.1 we present a stochas-
tic approximation scheme (cf. (V d,0M,n)M,n,d∈N in Theorem 1.1 above) which is able to
approximate in the strong L2-sense the initial values (ud(0, ξd))d∈N of the solutions of
uncorrelated semilinear Black-Scholes equations (cf. (1.1) in Theorem 1.1 above) with
a computational effort which grows at most polynomially in both the dimension d ∈ N
and the reciprocal 1/ε of the prescribed approximation accuracy ε > 0. The time horizon
T ∈ (0,∞), the drift parameter α ∈ R, the diffusion parameter β ∈ R, as well as the
Lipschitz continuous nonlinearity f : R→ R of the semilinear Black-Scholes equations
in Theorem 1.1 above (cf. (1.1) in Theorem 1.1 above) are fixed over all dimensions (cf.
Theorem 4.3 for a more general result with dimension-dependent drift and diffusion co-
efficients and dimension-dependent nonlinearities which may additionally depend on the
time and the space variable). The approximation points ξd ∈ Rd, d ∈ N, and the terminal
conditions gd : Rd → R, d ∈ N, of the PDEs in (1.1) in Theorem 1.1 above are both allowed
to grow in a certain polynomial fashion determined by the constants p,P, q ∈ [0,∞).
The idea for the full history multilevel Picard scheme (cf. (V d,θM,n)M,d∈N,n∈N0,θ∈Θ in Theo-
rem 1.1 above) is based on a reformulation of the semilinear PDEs in (1.1) as stochastic
fixed point equations. More precisely, the Feynman-Kac formula (see Proposition 3.22
below and, e.g., Beck et al. [5, Theorem 1.1, Theorem 3.7, & Corollary 3.9]) and the fact
that for all t ∈ [0, T ] it holds that Rθt , θ ∈ Θ, are independent U[t,T ]-distributed random
variables ensure that the solutions ud : [0, T ] × Rd → R, d ∈ N, of the PDEs in (1.1)
and the solution processes Xd,θ

t,· (x) = (Xd,θ
t,s (x))s∈[t,T ] : [t, T ]× Ω→ Rd, t ∈ [0, T ], x ∈ Rd,

d ∈ N, θ ∈ Θ, of the stochastic differential equations (SDEs) associated to the PDEs in
(1.1) satisfy that for all d ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd it holds that

ud(t, x) = E
[
g
(
Xd,θ,x
t,T

)
+ (T − t)f

(
ud(R

θ
t , X

d,θ,x

t,Rθt
)
)]
. (1.5)

Moreover, note that (1.3) assures that for all d,M, n ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd it holds
that

E
[
V d,θM,n(t, x)

]
=

n−1∑
k=0

(T − t)E
[
f
(
V
d,(θ,1)
M,k

(
R

(θ,1)
t , X

d,(θ,1),x

t,R
(θ,1)
t

))
− 1N(k)f

(
V
d,(θ,−1)
M,k−1

(
R

(θ,1)
t , X

d,(θ,1),x

t,R
(θ,1)
t

))]
+ E

[
gd(X

d,θ,x
t,T )

]
= E

[
gd(X

d,θ,x
t,T ) + (T − t)f

(
V d,θM,n−1

(
Rθt , X

d,θ,x

t,Rθt

))]
.

(1.6)

Combining this with (1.5) illustrates that, roughly speaking, for every d,M ∈ N, θ ∈ Θ

the sequence of random fields V d,θM,n : Ω× [0, T ]×Rd → R, n ∈ N0, behave, in expectation,
like Picard iterations for the stochastic fixed point equation in (1.5) above. In each
iteration in (1.3) the expectation of the Picard iteration for the stochastic fixed point
equation in (1.5) is approximated with a multilevel Monte Carlo approach on a telescopic
expansion over the full history of the previous iterations. According to the multilevel
Monte Carlo paradigm the number of samples in each level is chosen such that computa-
tionally inexpensive summands (corresponding to small k ∈ {0, 1, 2, . . . , n− 1} in (1.6)) of
the telescope expansion get sampled more often than computationally expensive ones
(corresponding to large k ∈ {0, 1, 2, . . . , n− 1} in (1.6)). Roughly speaking, the conclusion
of Theorem 1.1 above states that for every d ∈ N, ε ∈ (0, 1] there exists a natural number
N ∈ N such that (i) it holds that V d,0N,N (0, ξd) approximates ud(0, ξd) in the strong L2-sense
with accuracy ε and such that (ii) it holds that the computational effort to compute
V d,0N,N (0, ξd) is essentially of the order d1+2(P+pq)ε−2 (cf. (1.4) in Theorem 1.1 above for
the precise formulation). Remarkably, this is exactly the computational complexity of
standard Monte Carlo approximations of the solutions of the PDEs in (1.1) in the special
case where the nonlinearity f vanishes (cf., e.g., Graham & Talay [51]).
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We now point out a selection of other approaches from the scientific literature to
numerically approximate solutions of nonlinear parabolic PDEs. Deterministic approx-
imation methods, such as finite element and sparse-grid methods, can be found, for
example, in [34, 98, 99, 101]. There are also a number of approximation methods for
nonlinear parabolic PDEs in the scientific literature whose derivation is based on proba-
bilistic concepts. Several methods leverage a connection between parabolic PDEs and
backward stochastic differential equations (BSDEs). For example, [2, 9, 10, 13, 15, 16,
20, 21, 22, 23, 29, 30, 31, 32, 42, 43, 35, 36, 44, 45, 46, 47, 48, 49, 50, 60, 73, 74, 75,
76, 77, 78, 82, 83, 86, 87, 88, 89, 93, 94, 95, 100, 106, 107, 108] use discretizations of
the associated first-order BSDEs and [14, 24, 41, 53, 72, 109] use discretizations of the
associated second-order BSDEs to conceive approximation methods for parabolic PDEs.
Other probabilistic approaches include approximation methods based on branching
diffusion processes (cf., e.g., [19, 56, 58, 59, 79, 92, 97, 102, 105]) and approximation
methods based on nested Monte Carlo simulations (cf., e.g., [103, 104]). Recently, a
further class of methods based on deep learning has turned out to be very successful
in approximating solutions of high-dimensional PDEs (cf., e.g., [3, 6, 7, 11, 18, 38, 54,
55, 57, 61, 69, 84, 91, 96]), although theoretical results assuring their convergence are
still lacking (cf, e.g., [52, 62] for partial error analysis results of deep learning based
methods). Lastly, we refer to, e.g., to [39, 40, 63, 64] for other MLP approximation
methods, which are closely related to the method proposed in this paper.

The remainder of this paper is structured as follows. In Section 2 we prove a well-
known distributional flow property for the composition of independent solutions fields of
a stochastic differential equation (SDE) (see Lemma 2.20 below). This distributional flow
property will be a key assumption in the abstract treatment of the stochastic fixed point
equations which we study in Section 3. Section 3 also (i) introduces the MLP algorithm
in Subsection 3.1, (ii) provides a complexity analysis in the setting of stochastic fixed
point equations in Subsections 3.2–3.5, and (iii) carries over this complexity analysis to
the case of semilinear Kolmogorov PDEs in Subsection 3.6; see Theorem 3.24 below. In
the last section of this article, Section 4 below, we apply the result for general semilinear
Kolmogorov PDEs in Theorem 3.24 to semilinear heat PDEs (see Subsection 4.1) and
semlinear Black-Scholes PDEs (see Subsection 4.2 and Subsection 4.3). Such PDEs are
widely used in derivative pricing models which aim to incorporate default risks of the
involved derivative counterparty into the pricing process.

2 On a distributional flow property for stochastic differential
equations (SDEs)

In our analysis of the proposed MLP algorithm in Section 3 below we will make use of
random fields which satisfy a certain flow-type condition (see (3.3) in Setting 3.1 below).
The main purpose of this section is to establish, under suitable assumptions, that solution
processes of SDEs enjoy this flow-type property; see Lemma 2.20 in Subsection 2 below
for details. In our proof of Lemma 2.20 we employ a series of elementary and well-known
results which we establish in Subsections 2.1–2.7 below. Many of these elementary
results are not only used in the proof of Lemma 2.20, but are also employed in our error
analysis of the proposed MLP algorithm in Section 3.

2.1 Time-discrete Gronwall inequalities

In this subsection we present in Lemma 2.2 and Corollary 2.3 two elementary and
well-known time-discrete Gronwall inequalities (cf., e.g., Agarwal [1]).

Lemma 2.1. Let K ∈ N, α ∈ [0,∞), (βk)k∈{0,1,2,...,K−1} ⊆ [0,∞), (εk)k∈{0,1,2,...,K} ⊆
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[0,∞] satisfy for all k ∈ {0, 1, 2, . . . ,K − 1} that εk <∞ and

εK ≤ α+

[
K−1∑
k=0

βkεk

]
. (2.1)

Then it holds that εK <∞.

Proof of Lemma 2.1. Note that the hypothesis that ∀ k ∈ {0, 1, 2, . . . ,K − 1} : εk < ∞
implies that

α+

[
K−1∑
k=0

βkεk

]
<∞. (2.2)

This and (2.1) establishes that εK <∞. The proof of Lemma 2.1 is thus completed.

Lemma 2.2. Let N ∈ N, α ∈ [0,∞), (βn)n∈{0,1,2,...,N−1} ⊆ [0,∞), (εn)n∈{0,1,2,...,N} ⊆
[0,∞] satisfy for all n ∈ {0, 1, 2, . . . , N} that

εn ≤ α+

[
n−1∑
k=0

βkεk

]
(2.3)

(cf. Lemma 2.1). Then it holds for all n ∈ {0, 1, 2, . . . , N} that

εn ≤ α

[
n−1∏
k=0

(1 + βk)

]
≤ α exp

(
n−1∑
k=0

βk

)
<∞. (2.4)

Proof of Lemma 2.2. Throughout this proof let (un)n∈{0,1,2,...,N} ⊆ [0,∞] be the extended
real numbers which satisfy for all n ∈ {0, 1, 2, . . . , N} that

un = α+

[
n−1∑
k=0

βkuk

]
. (2.5)

We claim that for all n ∈ {0, 1, 2, . . . , N} it holds that

un = α

[
n−1∏
k=0

(1 + βk)

]
. (2.6)

We now prove (2.6) by induction on n ∈ {0, 1, 2, . . . , N}. For the base case n = 0 observe
that (2.5) ensures that

u0 = α. (2.7)

This proves (2.6) in the base case n = 0. For the induction step {0, 1, 2, . . . , N − 1} 3
(n − 1) → n ∈ {1, 2, . . . , N} observe that (2.5) implies that for all n ∈ {1, 2, . . . , N} with

un−1 = α
[∏n−2

k=0(1 + βk)
]

it holds that

un = α+

[
n−1∑
k=0

βkuk

]
= α+

[
n−2∑
k=0

βkuk

]
+ βn−1un−1

= un−1 + βn−1un−1 = (1 + βn−1)un−1 = α

[
n−1∏
k=0

(1 + βk)

]
.

(2.8)

Induction thus establishes (2.6). Moreover, note that (2.3), (2.5), and induction prove
that for all n ∈ {0, 1, 2, . . . , N} it holds that

εn ≤ un. (2.9)
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This and (2.6) establish that for all n ∈ {0, 1, 2, . . . , N} it holds that

εn ≤ α

[
n−1∏
k=0

(1 + βk)

]
. (2.10)

The fact that for all x ∈ R it holds that (1 + x) ≤ exp(x) therefore ensures that for all
n ∈ {0, 1, 2, . . . , N} it holds that

εn ≤ α

[
n−1∏
k=0

(1 + βk)

]
≤ α

[
n−1∏
k=0

exp(βk)

]
= α exp

(
n−1∑
k=0

βk

)
. (2.11)

The proof of Lemma 2.2 is thus completed.

Corollary 2.3. Let N ∈ N ∪ {∞}, α, β ∈ [0,∞), (εn)n∈N0∩[0,N ] ⊆ [0,∞] satisfy for all
n ∈ N0 ∩ [0, N ] that

εn ≤ α+ β

[
n−1∑
k=0

εk

]
(2.12)

(cf. Lemma 2.1). Then it holds for all n ∈ N0 ∩ [0, N ] that

εn ≤ α(1 + β)n ≤ α eβn <∞. (2.13)

Proof of Corollary 2.3. Note that Lemma 2.2 establishes Corollary 2.3. The proof of
Corollary 2.3 is thus completed.

2.2 A priori moment bounds for solutions of SDEs

In this subsection we establish in the elementary result in Lemma 2.7 below for
every p ∈ [0,∞) a bound on the p-th absolute moment of the solution of an SDE with a
deterministic initial value, a one-sided linear growth condition on the drift coefficient
of the SDE, and a linear growth condition on the diffusion coefficient of the SDE (cf.
(2.39) in Lemma 2.7 below). Our proof of Lemma 2.7 employs standard Lyapunov-type
techniques from the literature to establish the desired a priori moment bound (cf., e.g.,
Beck et al. [4, Subsection 3.1] and Cox et al. [25, Section 2.2]). These Lyapunov-type
techniques are the subject of the elementary and essentially well-known results in
Lemma 2.4–Lemma 2.6 below.

Lemma 2.4. Let d,m ∈ N, T,C1, C2 ∈ [0,∞), let 〈·, ·〉 : Rd × Rd → R be the Euclidean
scalar product onRd, let ‖·‖ : Rd → [0,∞) be the Euclidean norm onRd, let |||·||| : Rd×m →
[0,∞) be the Frobenius norm onRd×m, and let µ : [0, T ]×Rd → Rd, σ : [0, T ]×Rd → Rd×m,
and Vp : Rd → (0,∞), p ∈ [2,∞), be functions which satisfy for all t ∈ [0, T ], x ∈ Rd,
p ∈ [2,∞) that

max{〈x, µ(t, x)〉 , |||σ(t, x)|||2} ≤ C1 + C2 ‖x‖2 and Vp(x) = (1 + ‖x‖2)
p/2. (2.14)

Then

(i) it holds for all p ∈ [2,∞) that Vp ∈ C∞(Rd, (0,∞)) and

(ii) it holds for all t ∈ [0, T ], x ∈ Rd, p ∈ [2,∞) that

1
2 Trace

(
σ(t, x)[σ(t, x)]∗(HessVp)(x)

)
+ 〈µ(t, x), (∇Vp)(x)〉

≤ p(p+1)
2

(
p−2
p + C2

)
Vp(x) + (p+ 1)|C1|

p/2.
(2.15)
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Proof of Lemma 2.4. Throughout this proof let σi,j : [0, T ] × Rd → R, i ∈ {1, 2, . . . , d},
j ∈ {1, 2, . . . ,m}, be the functions which satisfy for all t ∈ [0, T ], x ∈ Rd that

σ(t, x) =


σ1,1(t, x) σ1,2(t, x) . . . σ1,m(t, x)

σ2,1(t, x) σ2,2(t, x) . . . σ2,m(t, x)
...

...
. . .

...
σd,1(t, x) σd,2(t, x) . . . σd,m(t, x)

 ∈ Rd×m. (2.16)

Note that the chain rule, the fact that the function Rd 3 x 7→ 1+‖x‖2 ∈ (0,∞) is infinitely
often differentiable, and the fact that for every p ∈ [2,∞) the function (0,∞) 3 s 7→
s
p
2 ∈ (0,∞) is infinitely often differentiable establish item (i). It thus remains to prove

item (ii). For this, observe that the chain rule ensures that for all x = (x1, . . . , xd) ∈ Rd,
i, j ∈ {1, 2, . . . , d}, p ∈ [2,∞) it holds that

(∇Vp)(x) = p
2

(
1 + ‖x‖2

) p
2−1

· (2x) = pVp(x)
[

1
1+‖x‖2

]
x (2.17)

and

(
∂2Vp
∂xi∂xj

)(x) = ∂
∂xi

[
p
(

1 + ‖x‖2
) p

2−1

xj

]
= p

[
∂
∂xi

(
1 + ‖x‖2

) p
2−1
]
xj + p

(
1 + ‖x‖2

) p
2−1 [

∂
∂xi

xj

]
= p(p2 − 1)

(
1 + ‖x‖2

) p
2−2

· (2xi)xj + p
(

1 + ‖x‖2
) p

2−1

1{i}(j)

= p(p− 2)Vp(x)
xixj

(1+‖x‖2)2
+ pVp(x)

1{i}(j)

1+‖x‖2

= pVp(x)
[
(p− 2)

xixj
(1+‖x‖2)2

+
1{i}(j)

1+‖x‖2

]
.

(2.18)

This implies that for all t ∈ [0, T ], x = (x1, . . . , xd) ∈ Rd, p ∈ [2,∞) it holds that

1
2 Trace

(
σ(t, x)[σ(t, x)]∗(HessVp)(x)

)
+ 〈µ(t, x), (∇Vp)(x)〉

= 1
2

 m∑
k=1

d∑
i,j=1

σi,k(t, x)σj,k(t, x)(
∂2Vp
∂xi∂xj

)(t, x)

+ 〈µ(t, x), (∇Vp)(x)〉

=
pVp(x)

2

 m∑
k=1

d∑
i,j=1

σi,k(t, x)σj,k(t, x)
(

(p− 2)
xixj

(1+‖x‖2)2
+

1{i}(j)

1+‖x‖2

)+ 2〈µ(t,x),x〉
1+‖x‖2


=

pVp(x)
2

 (p−2)

(1+‖x‖2)2

 m∑
k=1

[
d∑
i=1

σi,k(t, x)xi

]2
+ |||σ(t,x)|||2

1+‖x‖2 + 2〈µ(t,x),x〉
1+‖x‖2

 .

(2.19)

In addition, note that the Cauchy Schwarz inequality assures that for all t ∈ [0, T ],
x = (x1, . . . , xd) ∈ Rd it holds that

m∑
k=1

[
d∑
i=1

σi,k(t, x)xi

]2

≤
m∑
k=1

[
d∑
i=1

|σi,k(t, x)|2
][

d∑
i=1

|xi|2
]

= |||σ(t, x)|||2 ‖x‖2 ≤ |||σ(t, x)|||2(1 + ‖x‖2).

(2.20)
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This, (2.14), and (2.19) demonstrate that for all t ∈ [0, T ], x ∈ Rd, p ∈ [2,∞) it holds that

1
2 Trace

(
σ(t, x)[σ(t, x)]∗(HessVp)(x)

)
+ 〈µ(t, x), (∇Vp)(x)〉

≤ p
2

[
(p−2)|||σ(t,x)|||2

1+‖x‖2 + |||σ(t,x)|||2

1+‖x‖2 + 2〈µ(t,x),x〉
1+‖x‖2

]
Vp(x)

≤ p
2 (p− 2 + 1 + 2) (C1+C2‖x‖2)

1+‖x‖2 Vp(x)

≤ p(p+1)
2

(
C1

[
Vp(x)

1+‖x‖2

]
+ C2Vp(x)

)
= p(p+1)

2

(
C1(1 + ‖x‖2)

p/2−1 + C2Vp(x)
)
.

(2.21)

Young’s inequality (with p = p/2, q = p/(p−2) =
p/2

p/2−1 for p ∈ (2,∞) in the usual notation of

Young’s inequality) hence proves that for all t ∈ [0, T ], x ∈ Rd, p ∈ (2,∞) it holds that

1
2 Trace

(
σ(t, x)[σ(t, x)]∗(HessVp)(x)

)
+ 〈µ(t, x), (∇Vp)(x)〉

≤ p(p+1)
2

 |C1|p/2
p/2

+

∣∣∣(1 + ‖x‖2)p/2−1
∣∣∣p/(p−2)

p/(p−2)
+ C2Vp(x)


= (p+ 1)|C1|

p/2 +
(
p(p+1)

2

(
p−2
p + C2

))
Vp(x).

(2.22)

Moreover, note that (2.21) ensures that for all t ∈ [0, T ], x ∈ Rd it holds that

1
2 Trace

(
σ(t, x)[σ(t, x)]∗(HessV2)(x)

)
+ 〈µ(t, x), (∇V2)(x)〉 ≤ 3 (C1 + C2V2(x)) . (2.23)

Combining this and (2.22) establishes item (ii). The proof of Lemma 2.4 is thus completed.

Lemma 2.5. Let d,m ∈ N, T, ρ ∈ [0,∞), ξ ∈ Rd, let 〈·, ·〉 : Rd × Rd → R be the Eu-
clidean scalar product on Rd, let µ ∈ C([0, T ] × Rd,Rd), σ ∈ C([0, T ] × Rd,Rd×m),
V ∈ C2(Rd, (0,∞)) satisfy for all t ∈ [0, T ], x ∈ Rd that

1
2 Trace

(
σ(t, x)[σ(t, x)]∗(HessV )(x)

)
+ 〈µ(t, x), (∇V )(x)〉 ≤ ρ, (2.24)

let (Ω,F ,P, (Ft)t∈[0,T ]) be a filtered probability space which satisfies the usual conditions,
let W : [0, T ] × Ω → Rm be a standard (Ω,F ,P, (Ft∈[0,T ]))-Brownian motion, and let
X : [0, T ]× Ω→ Rd be an (Ft)t∈[0,T ]/B(Rd)-adapted stochastic process with continuous
sample paths which satisfies that for all t ∈ [0, T ] it holds P-a.s. that

Xt = ξ +

∫ t

0

µ(r,Xr)dr +

∫ t

0

σ(r,Xr)dWr. (2.25)

Then it holds for all t ∈ [0, T ] that

E[V (Xt)] ≤ V (ξ) + tρ. (2.26)

Proof of Lemma 2.5. Throughout this proof assume w.l.o.g. that T > 0 and let V : [0, T ]×
Rd → (0,∞) be the function which satisfies for all t ∈ [0, T ], x ∈ Rd that

V(t, x) = V (x)− tρ+ Tρ. (2.27)

Note that the fact that V ∈ C2(Rd, (0,∞)) ensures that for all t ∈ [0, T ], x ∈ Rd it holds
that

(I) V ∈ C2([0, T ]×Rd, (0,∞)),

(II) (∂V∂t )(t, x) = −ρ,

EJP 25 (2020), paper 101.
Page 9/73

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP423
http://www.imstat.org/ejp/


Overcoming the curse of dimensionality for pricing with default risks

(III) (∇xV)(t, x) = (∇V )(x), and

(IV) (HessxV)(t, x) = (HessV )(x).

Observe that items (II)–(IV) and (2.24) show that for all t ∈ [0, T ], x ∈ Rd it holds that

(∂V∂t )(t, x) + 1
2 Trace

(
σ(t, x)[σ(t, x)]∗(HessxV)(t, x)

)
+ 〈µ(t, x), (∇xV)(t, x)〉

= −ρ+ 1
2 Trace

(
σ(t, x)[σ(t, x)]∗(HessV )(x)

)
+ 〈µ(t, x), (∇V )(x)〉

≤ −ρ+ ρ = 0.

(2.28)

Combining this with Beck et al. [4, Lemma 3.1] (with d = d, m = m, T = T , O = Rd,
µ = µ, σ = σ, V = V, τ = t, X = X for t ∈ [0, T ] in the notation of Beck et al. [4, Lemma
3.1]) demonstrates that for all t ∈ [0, T ] it holds that

E[V(t,Xt)] ≤ E[V(0, X0)] = V (ξ) + Tρ. (2.29)

Therefore, we obtain that for all t ∈ [0, T ] it holds that

E[V (Xt)] = E[V (Xt)− tρ+ Tρ] + tρ− Tρ = E[V(t,Xt)] + tρ− Tρ
≤ V (ξ) + Tρ+ tρ− Tρ = V (ξ) + tρ.

(2.30)

The proof of Lemma 2.5 is thus completed.

Lemma 2.6. Let d,m ∈ N, T, ρ1, ρ2 ∈ [0,∞), ξ ∈ Rd, let 〈·, ·〉 : Rd × Rd → R be the
Euclidean scalar product on Rd, let µ ∈ C([0, T ] × Rd,Rd), σ ∈ C([0, T ] × Rd,Rd×m),
V ∈ C2(Rd, (0,∞)) satisfy for all t ∈ [0, T ], x ∈ Rd that

1
2 Trace

(
σ(t, x)[σ(t, x)]∗(HessV )(x)

)
+ 〈µ(t, x), (∇V )(x)〉 ≤ ρ1V (x) + ρ2, (2.31)

let (Ω,F ,P, (Ft)t∈[0,T ]) be a filtered probability space which satisfies the usual conditions,
let W : [0, T ] × Ω → Rm be a standard (Ω,F ,P, (Ft∈[0,T ]))-Brownian motion, and let
X : [0, T ]× Ω→ Rd be an (Ft)t∈[0,T ]/B(Rd)-adapted stochastic process with continuous
sample paths which satisfies that for all t ∈ [0, T ] it holds P-a.s. that

Xt = ξ +

∫ t

0

µ(r,Xr)dr +

∫ t

0

σ(r,Xr)dWr. (2.32)

Then it holds for all t ∈ [0, T ] that

E[V (Xt)] ≤ eρ1t (V (ξ) + tρ2) . (2.33)

Proof of Lemma 2.6. Throughout this proof assume w.l.o.g. that ρ1 > 0 (cf. Lemma 2.5)
and that T > 0 and let V : [0, T ] × Rd → (0,∞) be the function which satisfies for all
t ∈ [0, T ], x ∈ Rd that

V(t, x) = e−ρ1t
(
V (x) + ρ2

ρ1

)
. (2.34)

Note that the fact that V ∈ C2(Rd, (0,∞)) ensures that for all t ∈ [0, T ], x ∈ Rd it holds
that

(I) V ∈ C2([0, T ]×Rd, (0,∞)),

(II) (∂V∂t )(t, x) = −ρ1e
−ρ1t(V (x) + ρ2

ρ1
),

(III) (∇xV)(t, x) = e−ρ1t(∇V )(x), and

(IV) (HessxV)(t, x) = e−ρ1t(HessV )(x).
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Observe that items (II)–(IV) and (2.31) assure that for all t ∈ [0, T ], x ∈ Rd it holds that

(∂V∂t )(t, x) + 1
2 Trace

(
σ(t, x)[σ(t, x)]∗(HessxV)(t, x)

)
+ 〈µ(t, x), (∇xV)(t, x)〉

= e−ρ1t
(
−ρ1

(
V (x) + ρ2

ρ1

)
+ 1

2 Trace
(
σ(t, x)[σ(t, x)]∗(HessV )(x)

)
+ 〈µ(t, x), (∇V )(x)〉

)
≤ e−ρ1t (−ρ1V (x)− ρ2 + ρ1V (x) + ρ2) = 0.

(2.35)

Combining this with Beck et al. [4, Lemma 3.1] (with d = d, m = m, T = T , O = Rd,
µ = µ, σ = σ, V = V, τ = t, X = X for t ∈ [0, T ] in the notation of Beck et al. [4, Lemma
3.1]) demonstrates that for all t ∈ [0, T ] it holds that

E[V(t,Xt)] ≤ E[V(0, X0)] = V (ξ) + ρ2
ρ1
. (2.36)

Therefore, we obtain that for all t ∈ [0, T ] it holds that

E[V (Xt)] = E
[
eρ1t

(
e−ρ1t

[
V (Xt) + ρ2

ρ1

])
− ρ2

ρ1

]
= eρ1tE[V(t,Xt)]− ρ2

ρ1

≤ eρ1t
[
V (ξ) + ρ2

ρ1

]
− ρ2

ρ1
= eρ1tV (ξ) +

(
eρ1t − 1

)
ρ2
ρ1
.

(2.37)

The fact that for all a ∈ R it holds that ea − 1 ≤ aea hence ensures that for all t ∈ [0, T ] it
holds that

E[V (Xt)] ≤ eρ1tV (ξ) + (ρ1te
ρ1t)ρ2ρ1 = eρ1t (V (ξ) + tρ2) . (2.38)

The proof of Lemma 2.6 is thus completed.

Lemma 2.7. Let d,m ∈ N, T,C1, C2 ∈ [0,∞), ξ ∈ Rd, let 〈·, ·〉 : Rd × Rd → R be the
Euclidean scalar product on Rd, let ‖·‖ : Rd → [0,∞) be the Euclidean norm on Rd,
let |||·||| : Rd×m → [0,∞) be the Frobenius norm on Rd×m, let µ ∈ C([0, T ] × Rd,Rd),
σ ∈ C([0, T ]×Rd,Rd×m) satisfy for all t ∈ [0, T ], x ∈ Rd that

max{〈x, µ(t, x)〉 , |||σ(t, x)|||2} ≤ C1 + C2 ‖x‖2 , (2.39)

let (Ω,F ,P, (Ft)t∈[0,T ]) be a filtered probability space which satisfies the usual conditions,
let W : [0, T ] × Ω → Rm be a standard (Ω,F ,P, (Ft∈[0,T ]))-Brownian motion, and let
X : [0, T ]× Ω→ Rd be an (Ft)t∈[0,T ]/B(Rd)-adapted stochastic process with continuous
sample paths which satisfies that for all t ∈ [0, T ] it holds P-a.s. that

Xt = ξ +

∫ t

0

µ(r,Xr)dr +

∫ t

0

σ(r,Xr)dWr. (2.40)

Then it holds for all p ∈ [0,∞), t ∈ [0, T ] that

E[‖Xt‖p] ≤
(

(1 + ‖ξ‖2)
p/2 + tmin{p/2,1}(p+ 1)|C1|

p/2
)

exp
(
p(p+3)

2

(
1(2,∞)(p) + C2

)
t
)

≤ max{T, 1}
(

(1 + ‖ξ‖2)
p/2 + (p+ 1)|C1|

p/2
)

exp
(
p(p+3)(1+C2)T

2

)
<∞.

(2.41)

Proof of Lemma 2.7. Throughout this proof let (ρ
(p)
1 )p∈[2,∞),(ρ

(p)
2 )p∈[2,∞) ⊆ [0,∞) satisfy

for all p ∈ [2,∞) that

ρ
(p)
1 = p(p+1)

2

(
p−2
p + C2

)
and ρ

(p)
2 = (p+ 1)|C1|

p/2 (2.42)
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and let Vp : Rd → (0,∞), p ∈ [2,∞), be the functions which satisfy for all p ∈ [2,∞),
x ∈ Rd that

Vp(x) = (1 + ‖x‖2)
p/2. (2.43)

Observe that Lemma 2.4 and (2.39) assure that for all t ∈ [0, T ], x ∈ Rd, p ∈ [2,∞) it
holds that Vp ∈ C∞(Rd, (0,∞)) and

1
2 Trace

(
σ(t, x)[σ(t, x)]∗(HessVp)(x)

)
+ 〈µ(t, x), (∇Vp)(x)〉 ≤ ρ(p)

1 Vp(x) + ρ
(p)
2 . (2.44)

Lemma 2.6 hence implies that for all t ∈ [0, T ], p ∈ [2,∞) it holds that

E[‖Xt‖p] ≤ E[Vp(Xt)] ≤ eρ
(p)
1 t
(
Vp(ξ) + tρ

(p)
2

)
=
(

(1 + ‖ξ‖2)
p/2 + t(p+ 1)|C1|

p/2
)

exp
(
p(p+1)

2

(
p−2
p + C2

)
t
)

≤
(

(1 + ‖ξ‖2)
p/2 + tmin{p/2,1}(p+ 1)|C1|

p/2
)

exp
(
p(p+3)

2

(
1(2,∞)(p) + C2

)
t
)
.

(2.45)

This, Jensen’s inequality, and the fact that for all p ∈ [0, 2] it holds that 3p/2 ≤ p+ 1 assure
that for all t ∈ [0, T ], p ∈ [0, 2) it holds that

E[‖Xt‖p] = E

[(
‖Xt‖2

)p/2]
≤
(
E
[
‖Xt‖2

])p/2
≤
[(

(1 + ‖ξ‖2) + t(2 + 1)|C1|
)

exp
(

2(2+1)
2 C2t

)]p/2
≤
(

(1 + ‖ξ‖2)
p/2 + t

p/23
p/2|C1|

p/2
)

exp
(

3p
2 C2t

)
≤
(

(1 + ‖ξ‖2)
p/2 + tmin{p/2,1}(p+ 1)|C1|

p/2
)

exp
(

(p+3)p
2

(
1(2,∞)(p) + C2

)
t
)
.

(2.46)

Combining this with (2.45) implies (2.41). The proof of Lemma 2.7 is thus completed.

2.3 Temporal regularity properties for solutions of SDEs

For the proof of our strong L2-error estimates for Euler-Maruyama approximations
in Subsection 2.4 we need Corollary 2.9 below, which asserts that, under suitable
conditions (see Corollary 2.9 below for details), solutions of SDEs have a certain temporal
regularity property. To prove Corollary 2.9 we employ (without providing a proof) a
well-known temporal regularity property for solutions of SDEs from the literature stated
in Lemma 2.8 below (cf., e.g., Da Prato et al. [33, Proposition 3], Cox et al. [26, Corollary
3.8], and Jentzen et al. [67, Proposition 4.1]). Additionally, we offer in Lemma 2.11 below
a self-contained proof of an explicit temporal regularity estimate for solutions of SDEs
with deterministic initial values which will be used in Subsection 2.8.

Lemma 2.8 (Temporal regularity of solutions of time-homogeneous SDEs). Let d,m ∈ N,
T ∈ (0,∞), let ‖·‖ : Rd → [0,∞) be the Euclidean norm on Rd, let (Ω,F ,P, (Ft)t∈[0,T ]) be
a filtered probability space which satisfies the usual conditions, let W : [0, T ]× Ω→ Rm

be a standard (Ω,F ,P, (Ft)t∈[0,T ])-Brownian motion, let µ : Rd → Rd, σ : Rd → Rd×m be
globally Lipschitz continuous functions, and letX : [0, T ]×Ω→ Rd be an (Ft)t∈[0,T ]/B(Rd)-

adapted stochastic process with continuous sample paths which satisfies thatE
[
‖X0‖2

]
<

∞ and which satisfies that for all t ∈ [0, T ] it holds P-a.s. that

Xt = X0 +

∫ t

0

µ(Xs) ds+

∫ t

0

σ(Xs) dWs. (2.47)
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Then it holds that

sup

{(
E[‖Xt −Xs‖2]

)1/2
|t− s|1/2

∈ [0,∞] : t, s ∈ [0, T ], t 6= s

}
<∞. (2.48)

Corollary 2.9 (Temporal regularity of solutions of time-inhomogeneous SDEs). Let d,m ∈
N, T ∈ (0,∞), L ∈ [0,∞), let ‖·‖ : Rd → [0,∞) be the Euclidean norm on Rd, let
(Ω,F ,P, (Ft)t∈[0,T ]) be a filtered probability space which satisfies the usual conditions,
let W : [0, T ]×Ω→ Rm be a standard (Ω,F ,P, (Ft)t∈[0,T ])-Brownian motion, let µ : [0, T ]×
Rd → Rd and σ : [0, T ]×Rd → Rd×m be globally Lipschitz continuous functions, and let
X : [0, T ]× Ω→ Rd be an (Ft)t∈[0,T ]/B(Rd)-adapted stochastic process with continuous

sample paths which satisfies that E
[
‖X0‖2

]
<∞ and which satisfies that for all t ∈ [0, T ]

it holds P-a.s. that

Xt = X0 +

∫ t

0

µ(s,Xs) ds+

∫ t

0

σ(s,Xs) dWs. (2.49)

Then it holds that

sup

{(
E[‖Xt −Xs‖2]

)1/2
|t− s|1/2

∈ [0,∞] : t, s ∈ [0, T ], t 6= s

}
<∞. (2.50)

Proof of Corollary 2.9. Throughout this proof let |||·||| : Rd+1 → [0,∞) be the Euclidean
norm on Rd+1, let Y : [0, T ]× Ω→ Rd+1 be the stochastic process which satisfies for all
t ∈ [0, T ] that

Yt =

(
t

Xt

)
, (2.51)

and let µ̃ : Rd+1 → Rd+1 and σ̃ : Rd+1 → R(d+1)×m be the functions which satisfy for all
y = (y1, y2, . . . , yd+1) ∈ Rd+1 that

µ̃(y) =

(
1

µ
(

min{max{y1, 0}, T}, (y2, . . . , yd+1)
)) ∈ Rd+1 and (2.52)

σ̃(y) =

(
0

σ
(

min{max{y1, 0}, T}, (y2, . . . , yd+1)
)) ∈ R(d+1)×m. (2.53)

Observe that the hypothesis that µ and σ are globally Lipschitz continuous functions and
the fact that R 3 y 7→ min{max{y, 0}, T} ∈ R is a globally Lipschitz continuous function
assure that µ̃ and σ̃ are globally Lipschitz continuous functions. Moreover, note that it
holds for all t ∈ [0, T ], x ∈ Rd that

µ̃((t, x)) =

(
1

µ(t, x)

)
and σ̃((t, x)) =

(
0

σ(t, x)

)
. (2.54)

This and (2.49) assure that for all t ∈ [0, T ] it holds P-a.s. that

Yt =

(
t

Xt

)
=

( ∫ t
0

1 ds

X0 +
∫ t

0
µ(s,Xs) ds+

∫ t
0
σ(s,Xs) dWs

)

=

(
0

X0

)
+

∫ t

0

(
1

µ(s,Xs)

)
ds+

∫ t

0

(
0

σ(s,Xs)

)
dWs = Y0 +

∫ t

0

µ̃(Ys)ds+

∫ t

0

σ̃(Ys)dWs.

(2.55)
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The fact that µ̃ and σ̃ are globally Lipschitz continuous functions and Lemma 2.8 (with
d = d + 1, m = m, T = T , µ = µ̃, σ = σ̃, X = Y in the notation of Lemma 2.8) hence
prove that

sup
t,s∈[0,T ],t6=s

(
E[|||Yt − Ys|||2]

)1/2
|t− s|1/2

<∞. (2.56)

Hence, we obtain that

sup
t,s∈[0,T ],t6=s

(
E[‖Xt −Xs‖2]

)1/2
|t− s|1/2

≤ sup
t,s∈[0,T ],t6=s

(
E[|t− s|2 + ‖Xt −Xs‖2]

)1/2
|t− s|1/2

= sup
t,s∈[0,T ],t6=s

(
E[|||Yt − Ys|||2]

)1/2
|t− s|1/2

<∞.

(2.57)

The proof of Corollary 2.9 is thus completed.

The following very elementary and well-known result will be helpful in the proof of
Lemma 2.11 below and will be repeatedly used throughout this paper.

Lemma 2.10 (A consequence of Hölders inequality). Let (Ω,F , µ) be a measure space
and let f : Ω→ [0,∞] be an F/B([0,∞])-measurable function. Then[∫

Ω

f(ω)µ(dω)

]2

≤ µ(Ω)

∫
Ω

|f(ω)|2 µ(dω). (2.58)

Proof of Lemma 2.10. Note that Hölders inequality demonstrates that[∫
Ω

f(ω)µ(dω)

]2

≤

[(∫
Ω

12 µ(dω)

)1/2(∫
Ω

|f(ω)|2 µ(dω)

)1/2
]2

= µ(Ω)

∫
Ω

|f(ω)|2 µ(dω).

(2.59)

The proof of Lemma 2.10 is thus completed.

Lemma 2.11 (Explicit temporal regularity for solutions of SDEs with deterministic initial
values). Let d,m ∈ N, T ∈ (0,∞), L ∈ [0,∞), ξ ∈ Rd, let ‖·‖ : Rd → [0,∞) be the
Euclidean norm on Rd, let |||·||| : Rd×m → [0,∞) be the Frobenius norm on Rd×m, let
(Ω,F ,P, (Ft)t∈[0,T ]) be a filtered probability space which satisfies the usual conditions,
let W : [0, T ]×Ω→ Rm be a standard (Ω,F ,P, (Ft)t∈[0,T ])-Brownian motion, let µ : [0, T ]×
Rd → Rd, σ : [0, T ]×Rd → Rd×m be functions which satisfy for all t, s ∈ [0, T ], x, y ∈ Rd
that

max
{
‖µ(t, x)− µ(s, y)‖ , |||σ(t, x)− σ(s, y)|||

}
≤ L

(
|t− s|+ ‖x− y‖

)
, (2.60)

and let X : [0, T ] × Ω → Rd be an (Ft)t∈[0,T ]/B(Rd)-adapted stochastic process with
continuous sample paths which satisfies that for all t ∈ [0, T ] it holds P-a.s. that

Xt = ξ +

∫ t

0

µ(s,Xs) ds+

∫ t

0

σ(s,Xs) dWs. (2.61)

Then it holds that

sup

{(
E[‖Xt −Xs‖2]

)1/2
|t− s|1/2

∈ [0,∞] : t, s ∈ [0, T ], t 6= s

}
≤ (1 + ‖ξ‖) exp

(
10
(

max{‖µ(0, 0)‖ , |||σ(0, 0)|||, L, 1}+ LT
)2

(T + 1)(L+ 1)
)
<∞.

(2.62)

EJP 25 (2020), paper 101.
Page 14/73

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP423
http://www.imstat.org/ejp/


Overcoming the curse of dimensionality for pricing with default risks

Proof of Lemma 2.11. Throughout this proof let 〈·, ·〉 : Rd × Rd → R be the Euclidean
scalar product on Rd and let C ∈ (0,∞) be given by

C = 2
(
max{‖µ(0, 0)‖ , |||σ(0, 0)|||, L, 1}+ LT

)2
. (2.63)

Note that (2.60) and the triangle inequality assure that for all t ∈ [0, T ], x ∈ Rd it holds
that

‖µ(t, x)‖ ≤ ‖µ(0, 0)‖+ L
(
|t|+ ‖x‖

)
≤ C + L

(
|t|+ ‖x‖

)
and (2.64)

|||σ(t, x)||| ≤ |||σ(0, 0)|||+ L
(
|t|+ ‖x‖

)
≤ C + L

(
|t|+ ‖x‖

)
. (2.65)

This assures that for all t ∈ [0, T ], x ∈ Rd it holds that

〈x, µ(t, x)〉
≤ ‖x‖ ‖µ(t, x)‖ ≤ ‖x‖ (‖µ(0, 0)‖+ L(t+ ‖x‖))

≤ ‖x‖max{‖µ(0, 0)‖+ LT,L}(1 + ‖x‖) ≤ 2 max{‖µ(0, 0)‖+ LT,L}(1 + ‖x‖2)

≤ C(1 + ‖x‖2).

(2.66)

In addition, note that (2.65) implies that for all t ∈ [0, T ], x ∈ Rd it holds that

|||σ(t, x)|||2

≤ (|||σ(0, 0)|||+ L(t+ ‖x‖))2 ≤ (max{|||σ(0, 0)|||+ LT,L})2(1 + ‖x‖)2

≤ 2(max{|||σ(0, 0)|||+ LT,L})2(1 + ‖x‖2)

≤ C(1 + ‖x‖2).

(2.67)

Moreover, observe that (2.61), Lemma 2.10, Tonelli’s theorem, and Itô’s isometry demon-
state that for all t ∈ [0, T ], s ∈ [t, T ] it holds that

(
E[‖Xt −Xs‖2]

)1/2
=

(
E

[∥∥∥∥∫ s

t

µ(r,Xr) dr +

∫ s

t

σ(r,Xr) dWr

∥∥∥∥2
])1/2

≤

(
E

[∥∥∥∥∫ s

t

µ(r,Xr) dr

∥∥∥∥2
])1/2

+

(
E

[∥∥∥∥∫ s

t

σ(r,Xr) dWr

∥∥∥∥2
])1/2

≤ |t− s|1/2
(∫ s

t

E
[
‖µ(r,Xr)‖2

]
dr

)1/2

+

(∫ s

t

E
[
‖σ(r,Xr)‖2

]
dr

)1/2

.

(2.68)

The triangle inequality, (2.64), and (2.65) therefore ensure that for all t ∈ [0, T ], s ∈ [t, T ]

it holds that(
E[‖Xt −Xs‖2]

)1/2
≤ (|t− s|1/2 + 1)

(
|t− s|1/2C + L

(∫ s

t

E
[
(|r|+ ‖Xr‖)2

]
dr

)1/2
)

≤ (|t− s|1/2 + 1)

(
|t− s|1/2C + L

[(∫ s

t

r2dr

)1/2

+

(∫ s

t

E
[
‖Xr‖2

]
dr

)1/2
])

.

(2.69)

Furthermore, note that (2.66), (2.67), (2.61), and Lemma 2.7 (with d = d, m = m, T = T ,
C1 = C, C2 = C, ξ = ξ, µ = µ, σ = σ, X = X in the notation of Lemma 2.7) assure that
for all t ∈ [0, T ] it holds that

E
[
‖Xt‖2

]
≤
(

(1 + ‖ξ‖2) + t3C
)

exp (5Ct) ≤
(

(1 + ‖ξ‖2) + 3CT
)

exp (5CT ) . (2.70)
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This, (2.69), the fact that C ≥ 1, the fact that for all x ∈ [0,∞) it holds that max{x, 1+x} ≤
ex, and the fact that for all x, y ∈ [0,∞) it holds that

√
x+ y ≤

√
x+
√
y demonstrate that

for all t ∈ [0, T ], s ∈ [t, T ] it holds that(
E[‖Xt −Xs‖2]

)1/2
≤ (T

1/2 + 1)

(
|t− s|1/2C + L|t− s|1/2

[
T +

[
((1 + ‖ξ‖2) + 3CT ) exp (5CT )

]1/2])
≤ |t− s|1/2

[
1 + ‖ξ‖2

]1/2
exp(T

1/2 + C + L)
(
1 + T + [(1 + 3CT ) exp (5CT )]

1/2 )
≤ |t− s|1/2(1 + ‖ξ‖) exp(T

1/2 + C + L)2 exp (4CT )

≤ |t− s|1/2(1 + ‖ξ‖) exp
(
C(T

1/2 + 1 + L+ 1 + 4T
)

≤ |t− s|1/2(1 + ‖ξ‖) exp
(
5C(T + 1)(L+ 1)

)
.

(2.71)

This implies (2.62). The proof of Lemma 2.11 is thus completed.

2.4 Strong error estimates for Euler-Maruyama approximations

Our proof of the flow-type property of solutions of SDEs in Subsection 2.8 below
makes use of Euler-Maruyama approximations of solutions. For that reason we present in
this subsection explicit strong L2-error estimates for Euler-Maruyama approximations in
Proposition 2.12 and Corollary 2.13 below. The results in this subsection are essentially
well-known (cf., e.g., Kloeden & Platen [71, Chapter 10] and Milstein [81]).

Proposition 2.12 (Strong convergence of the Euler-Maruyama method). Let d,m,N ∈
N, T ∈ (0,∞), L ∈ [0,∞), let ‖·‖ : Rd → [0,∞) be the Euclidean norm on Rd, let
|||·||| : Rd×m → [0,∞) be the Frobenius norm on Rd×m, let (Ω,F ,P, (Ft)t∈[0,T ]) be a filtered
probability space which satisfies the usual conditions, let W : [0, T ]× Ω→ Rm be a stan-
dard (Ω,F ,P, (Ft)t∈[0,T ])-Brownian motion, let ζ : Ω → Rd be an F0/B(Rd)-measurable

function which satisfies that E
[
‖ζ‖2

]
<∞, let µ : [0, T ]×Rd → Rd, σ : [0, T ]×Rd → Rd×m

be functions which satisfy for all t, s ∈ [0, T ], x, y ∈ Rd that

max
{
‖µ(t, x)− µ(s, y)‖ , |||σ(t, x)− σ(s, y)|||

}
≤ L

(
|t− s|+ ‖x− y‖

)
, (2.72)

let X : [0, T ]×Ω→ Rd be an (Ft)t∈[0,T ]/B(Rd)-adapted stochastic process with continuous

sample paths which satisfies that E
[
‖X0‖2

]
<∞ and which satisfies that for all t ∈ [0, T ]

it holds P-a.s. that

Xt = X0 +

∫ t

0

µ(s,Xs) ds+

∫ t

0

σ(s,Xs) dWs, (2.73)

let t0, t1, . . . , tN ∈ [0, T ] satisfy that

0 = t0 ≤ t1 ≤ t2 ≤ . . . ≤ tN = T, (2.74)

and let X : {0, 1, . . . , N} × Ω → Rd be the stochastic process which satisfies for all
n ∈ {1, 2, . . . , N} that

X0 = ζ and Xn = Xn−1 + µ(tn−1,Xn−1)(tn − tn−1) + σ(tn−1,Xn−1)(Wtn −Wtn−1
).

(2.75)
Then it holds that(
E
[
‖XT −XN‖2

])1/2
≤
[(
E
[
‖X0 − ζ‖2

])1/2
+ max
k∈{1,2,...,N}

|tk − tk−1|
1/2

]
· exp

(
(1 + L)2(1 +

√
T )4
)(

1 + sup
s,r∈[0,T ],s6=r

(E[‖Xs−Xr‖2])1/2

|s−r|1/2

)
<∞.

(2.76)
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Proof of Proposition 2.12. Throughout this proof assume w.l.o.g. that t0 < t1 < t2 <

. . . < tN , let (hn)n∈{1,2,...,N} ⊆ (0, T ], H ∈ (0, T ], K ∈ [0,∞] satisfy for all n ∈ {1, 2, . . . , N}
that hn = |tn − tn−1|, H = maxk∈{1,2,...,N} |tk − tk−1|, and

K = sup
s,r∈[0,T ],s 6=r

(
E[‖Xs −Xr‖2]

)1/2
|s− r|1/2

, (2.77)

let t : [0, T ]→ {t0, t1, t2, . . . , tN} be the function which satisfies for all s ∈ [0, T ] that

t(s) = max ({t0, t1, . . . , tN} ∩ [0, s]) , (2.78)

and let n : [0, T ]→ {0, 1, 2, . . . , N} be the function which satisfies for all s ∈ [0, T ] that

n(s) = max ({n ∈ {0, 1, 2, . . . , N} : tn ≤ s}) . (2.79)

Note that the hypothesis that E
[
‖X0‖2

]
<∞, the fact that µ and σ are globally Lipschitz

continuous functions, (2.73), and Corollary 2.9 imply that K < ∞. Next observe that
(2.75) and induction assure that for all n ∈ {0, 1, 2, . . . , N} it holds P-a.s. that

Xn = X0 +

[
n∑
k=1

µ(tk−1,Xk−1)(tk − tk−1)

]
+

[
n∑
k=1

σ(tk−1,Xk−1)(Wtk −Wtk−1
)

]

= ζ +

∫ tn

0

µ
(
t(s),Xn(s)

)
ds+

∫ tn

0

σ
(
t(s),Xn(s)

)
dWs.

(2.80)

This and (2.73) imply that for all n ∈ {0, 1, 2, . . . , N} it holds P-a.s. that

Xtn −Xn = X0 − ζ +

∫ tn

0

µ
(
s,Xs

)
− µ

(
t(s),Xn(s)

)
ds+

∫ tn

0

σ
(
s,Xs

)
− σ

(
t(s),Xn(s)

)
dWs

= X0 − ζ +

∫ tn

0

µ
(
s,Xs

)
− µ

(
t(s), Xt(s)

)
ds+

∫ tn

0

σ
(
s,Xs

)
− σ

(
t(s), Xt(s)

)
dWs

+

∫ tn

0

µ
(
t(s), Xt(s)

)
− µ

(
t(s),Xn(s)

)
ds+

∫ tn

0

σ
(
t(s), Xt(s)

)
− σ

(
t(s),Xn(s)

)
dWs.

(2.81)

The triangle inequality hence proves that for all n ∈ {0, 1, 2, . . . , N} it holds that(
E
[
‖Xtn −Xn‖

2
])1/2

≤
(
E
[
‖X0 − ζ‖2

])1/2
+

(
E

[∥∥∥∥∫ tn

0

µ
(
s,Xs

)
− µ

(
t(s), Xt(s)

)
ds

∥∥∥∥2
])1/2

+

(
E

[∥∥∥∥∫ tn

0

σ
(
s,Xs

)
− σ

(
t(s), Xt(s)

)
dWs

∥∥∥∥2
])1/2

+

(
E

[∥∥∥∥∫ tn

0

µ
(
t(s), Xt(s)

)
− µ

(
t(s),Xn(s)

)
ds

∥∥∥∥2
])1/2

+

(
E

[∥∥∥∥∫ tn

0

σ
(
t(s), Xt(s)

)
− σ

(
t(s),Xn(s)

)
dWs

∥∥∥∥2
])1/2

.

(2.82)

Lemma 2.10, Tonelli’s Theorem, and Itô’s isometry therefore imply that for all n ∈
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{0, 1, 2, . . . , N} it holds that(
E
[
‖Xtn −Xn‖

2
])1/2

≤
(
E
[
‖X0 − ζ‖2

])1/2
+

(
T

∫ tn

0

E
[∥∥µ(s,Xs

)
− µ

(
t(s), Xt(s)

)∥∥2
]
ds

)1/2

+

(∫ tn

0

E
[∣∣∣∣∣∣σ(s,Xs

)
− σ

(
t(s), Xt(s)

)∣∣∣∣∣∣2] ds)1/2

+

(
T

∫ tn

0

E
[∥∥µ(t(s), Xt(s)

)
− µ

(
t(s),Xn(s)

)∥∥2
]
ds

)1/2

+

(∫ tn

0

E
[∣∣∣∣∣∣σ(t(s), Xt(s)

)
− σ

(
t(s),Xn(s)

)∣∣∣∣∣∣2] ds)1/2

.

(2.83)

This and (2.72) show that for all n ∈ {0, 1, 2, . . . , N} it holds that(
E
[
‖Xtn −Xn‖

2
])1/2

≤
(
E
[
‖X0 − ζ‖2

])1/2
+ L
√
T

( ∫ T

0

E
[(
|s− t(s)|+

∥∥Xs −Xt(s)

∥∥)2] ds)1/2

+ L

(∫ T

0

E
[(
|s− t(s)|+

∥∥Xs −Xt(s)

∥∥)2] ds)1/2

+ L
√
T

(∫ tn

0

E
[∥∥Xt(s) −Xn(s)

∥∥2
]
ds

)1/2

+ L

(∫ tn

0

E
[∥∥Xt(s) −Xn(s)

∥∥2
]
ds

)1/2

.

(2.84)

This, the triangle inequality, and the fact that for all s ∈ [0, T ] it holds that |s− t(s)| ≤ H
imply that for all n ∈ {0, 1, 2, . . . , N} it holds that(

E
[
‖Xtn −Xn‖

2
])1/2

≤
(
E
[
‖X0 − ζ‖2

])1/2
+ L(1 +

√
T )

[
√
TH +

(∫ T

0

E
[∥∥Xs −Xt(s)

∥∥2
]
ds

)1/2
]

+ L(1 +
√
T )

(
n∑
k=1

hk E
[∥∥Xtk−1

−Xk−1

∥∥2
])1/2

.

(2.85)

The fact that for all x, y ∈ [0,∞) it holds that (x+ y)2 ≤ 2x2 + 2y2 hence proves that for
all n ∈ {0, 1, 2, . . . , N} it holds that

E
[
‖Xtn −Xn‖

2
]

≤ 2

((
E
[
‖X0 − ζ‖2

])1/2
+ L(1 +

√
T )

[
√
TH +

(∫ T

0

E
[∥∥Xs −Xt(s)

∥∥2
]
ds

)1/2
])2

+ 2L2(1 +
√
T )2

(
n∑
k=1

hk E
[∥∥Xtk−1

−Xk−1

∥∥2
])

.

(2.86)

The discrete Gronwall-type inequality in Lemma 2.2 (withN =N , α= 2
( (
E
[
‖X0 − ζ‖2

])1/2
+ L(1 +

√
T )[
√
TH + (

∫ T
0
E
[
‖Xs −Xt(s)‖2

]
ds)1/2]

)2
, (βn)n∈{0,1,2,...,N−1} =
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(2L2(1 +
√
T )2hn+1)n∈{0,1,2,...,N−1}, (εn)n∈{0,1,2,...,N} = (E

[
‖Xtn −Xn‖

2
]
)n∈{0,1,2,...,N} in

the notation of Lemma 2.2) and the fact that
∑N
k=1 hk = T therefore show that

E
[
‖XtN −XN‖

2
]

≤ 2

((
E
[
‖X0 − ζ‖2

])1/2
+ L(1 +

√
T )

[
√
TH +

(∫ T

0

E
[∥∥Xs −Xt(s)

∥∥2
]
ds

)1/2
])2

· exp
(

2L2(1 +
√
T )2T

)
.

(2.87)

This and the fact that for all s ∈ [0, T ] it holds that |s− t(s)| ≤ H imply that(
E
[
‖XT −XN‖2

])1/2
≤
√

2

((
E
[
‖X0 − ζ‖2

])1/2
+ L(1 +

√
T )
[√

TH +
(
TK2H

)1/2])
exp

(
L2(1 +

√
T )2T

)
.

(2.88)

The fact that H ≤
√
T
√
H hence assures that(

E
[
‖XT −XN‖2

])1/2
≤
√

2

((
E
[
‖X0 − ζ‖2

])1/2
+ L(1 +

√
T )
√
T (
√
T + 1)

√
H(1 +K)

)
exp
(
L2(1 +

√
T )2T

)
≤
√

2

((
E
[
‖X0 − ζ‖2

])1/2
+
√
H exp

(
L(1 +

√
T )2
√
T
))

exp
(
L2(1 +

√
T )2T

)
(1 +K)

≤
((
E
[
‖X0 − ζ‖2

])1/2
+
√
H

)
exp
(

(1 + L)2(1 +
√
T )4
)

(1 +K).

(2.89)

This implies (2.76). The proof of Proposition 2.12 is thus completed.

Corollary 2.13. Let d,m,N ∈ N, T ∈ (0,∞), t ∈ [0, T ], s ∈ [t, T ], L ∈ [0,∞), let
‖·‖ : Rd → [0,∞) be the Euclidean norm on Rd, let |||·||| : Rd×m → [0,∞) be the Frobenius
norm on Rd×m, let (Ω,F ,P, (Fr)r∈[0,T ]) be a filtered probability space which satisfies the
usual conditions, let W : [0, T ] × Ω → Rm be a standard (Ω,F ,P, (Fr)r∈[0,T ])-Brownian

motion, let ζ : Ω → Rd be an Ft/B(Rd)-measurable function with E
[
‖ζ‖2

]
< ∞, let

µ : [0, T ]×Rd → Rd, σ : [0, T ]×Rd → Rd×m be functions which satisfy for all r, h ∈ [0, T ],
x, y ∈ Rd that

max
{
‖µ(r, x)− µ(h, y)‖ , |||σ(r, x)− σ(h, y)|||

}
≤ L

(
|r − h|+ ‖x− y‖

)
, (2.90)

let X : [t, s]×Ω→ Rd be an (Fr)r∈[t,s]/B(Rd)-adapted stochastic process with continuous

sample paths which satisfies that E
[
‖Xt‖2

]
<∞ and which satisfies that for all r ∈ [t, s]

it holds P-a.s. that

Xr = Xt +

∫ r

t

µ(h,Xh) dh+

∫ r

t

σ(h,Xh) dWh, (2.91)

let r0, r1, . . . , rN ∈ [0, T ] satisfy that

t = r0 ≤ r1 ≤ r2 ≤ . . . ≤ rN = s, (2.92)
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and let X : {0, 1, . . . , N} × Ω → Rd be the stochastic process which satisfies for all
n ∈ {1, 2, . . . , N} that

X0 = ζ and Xn = Xn−1 + µ(rn−1,Xn−1)(rn − rn−1) + σ(rn−1,Xn−1)(Wrn −Wrn−1
).

(2.93)
Then it holds that(

E
[
‖Xs −XN‖2

])1/2
≤
[(
E
[
‖Xt − ζ‖2

])1/2
+ max
k∈{1,2,...,N}

|rk − rk−1|
1/2

]
exp
(

(1 + L)2(1 +
√
T )4
)

·
(

1 + sup
({

(E[‖Xr−Xh‖2])1/2

|r−h|1/2 ∈ [0,∞] : (r, h ∈ [t, s], r 6= h)
}
∪ {0}

))
<∞.

(2.94)

Proof of Corollary 2.13. Throughout this proof assume w.l.o.g. that s > t. Observe that
Proposition 2.12 (with d = d, m = m, N = N , T = s − t, L = L, (Ω,F ,P, (Fr)r∈[0,T ]) =

(Ω,F ,P, (Ft+r)r∈[0,s−t]), (Wr)r∈[0,T ] = (Wt+r −Wt)r∈[0,s−t], ζ = ζ, (µ(r, x))r∈[0,T ],x∈Rd =

(µ(t + r, x))r∈[0,s−t],x∈Rd , (σ(r, x))r∈[0,T ],x∈Rd = (σ(t + r, x))r∈[0,s−t],x∈Rd , (Xr)r∈[0,T ] =

(Xt+r)r∈[0,s−t], (tn)n∈{0,1,...,N} = (rn − t)n∈{0,1,...,N}, (Xn)n∈{0,1,...,N} = (Xn)n∈{0,1,...,N} in
the notation of Proposition 2.12) establishes that(

E
[∥∥Xt+(s−t) −XN

∥∥2
])1/2

≤
[(
E
[
‖Xt+0 − ζ‖2

])1/2
+ max
k∈{1,2,...,N}

|rk − t− (rk−1 − t)|
1/2

]
· exp

(
(1 + L)2(1 +

√
|s− t|)4

)(
1 + sup

r,h∈[0,s−t],r 6=h

(E[‖Xt+r−Xt+h‖2])1/2

|r−h|1/2

)
<∞.

(2.95)

This implies (2.94). The proof of Corollary 2.13 is thus completed.

2.5 On identically distributed random variables

The next elementary and well-known result, Lemma 2.14 below, provides a sufficient
condition for two random variables to have the same distribution.

Lemma 2.14. Let (Ω,F ,P) be a probability space, let (E, d) be a metric space, let
X,Y : Ω → E be random variables which satisfy that for all globally bounded and
Lipschitz continuous functions g : E → R it holds that

E[g(X)] = E[g(Y )] . (2.96)

Then it holds that X and Y are identically distributed random variables.

Proof of Lemma 2.14. Throughout this proof for every n ∈ N let hn : [0,∞) → [0, 1] be
the function which satisfies for all r ∈ [0,∞) that

hn(r) = max{1− nr, 0}, (2.97)

for every closed and non-empty set A ⊆ E let DA : E → [0,∞) be the function which
satisfies for all e ∈ E that

DA(e) = inf
a∈A

d(e, a), (2.98)

and for every n ∈ N and every closed and non-empty set A ⊆ E let fA,n : E → [0, 1] be
the function which satisfies for all e ∈ E that

fA,n(e) = hn(DA(e)). (2.99)
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Note that the triangle inequality assures that for all closed and non-empty sets A ⊆ E
and all e1, e2 ∈ E, a ∈ A, ε ∈ (0,∞) with DA(e1) ≥ DA(e2) and d(e2, a) ≤ DA(e2) + ε it
holds that

|DA(e1)−DA(e2)| = DA(e1)−DA(e2) ≤ d(e1, a)− d(e2, a) + ε

≤ d(e1, e2) + d(e2, a)− d(e2, a) + ε = d(e1, e2) + ε.
(2.100)

The fact that for all closed and non-empty sets A ⊆ E and all e ∈ E, ε ∈ (0,∞) there
exists a ∈ A such that d(e, a) ≤ DA(e)+ε hence assures that for all closed and non-empty
sets A ⊆ E and all e1, e2 ∈ E it holds that

|DA(e1)−DA(e2)| ≤ d(e1, e2). (2.101)

Moreover note that for all n ∈ N, r1, r2 ∈ [0,∞) with r1 ≤ r2 it holds that

|hn(r1)− hn(r2)| = |hn(r2)− hn(r1)| = hn(r1)− hn(r2)

= max{1− nr1, 0} −max{1− nr2, 0}
= max

{
1− nr1 −max{1− nr2, 0},−max{1− nr2, 0}

}
≤ max{1− nr1 − (1− nr2), 0} = max{n(r2 − r1), 0} = n|r1 − r2|.

(2.102)

Combining this with (2.101) establishes that for all closed and non-empty sets A ⊆ E

and all n ∈ N, e1, e2 ∈ E it holds that

|fA,n(e1)− fA,n(e2)| = |hn(DA(e1))− hn(DA(e2))| ≤ n|DA(e1)−DA(e2)| ≤ nd(e1, e2).

(2.103)
This demonstrates that for every closed and non-empty set A ⊆ E and every n ∈ N it
holds that fA,n : E → [0, 1] is a globally bounded and Lipschitz continuous function. Next
observe that the fact that for all closed and non-empty sets A ⊆ E and all e ∈ A it holds
that DA(e) = 0 assures that for all closed and non-empty sets A ⊆ E and all n ∈ N, e ∈ A
it holds that

fA,n(e) = hn(DA(e)) = hn(0) = 1. (2.104)

Moreover, note the fact that for all closed and non-empty sets A ⊆ E and all e ∈ E \A
there exists n ∈ N such that DA(e) > 1

n and the fact that for all n ∈ N it holds that hn is
a non-increasing function assure that for all closed and non-empty sets A ⊆ E and all
e ∈ E \A there exist n ∈ N such that for all m ∈ {n, n+ 1, . . .} it holds that

fA,m(e) = hm(DA(e)) ≤ hm( 1
n ) = max{1− m

n , 0} = 0. (2.105)

Combining this and (2.104) establishes that for all closed and non-empty sets A ⊆ E and
all e ∈ E it holds that

lim
n→∞

fA,n(e) = 1A(e). (2.106)

The theorem of dominated convergence, the fact that for all closed and non-empty sets
A ⊆ E and all n ∈ N it holds that fA,n : E → [0, 1] is a globally bounded and Lipschitz
continuous function, and (2.96) therefore imply that for all closed and non-empty sets
A ⊆ E it holds that

P(X ∈ A) = E[1A(X)] = lim
n→∞

E[fA,n(X)] = lim
n→∞

E[fA,n(Y )] = E[1A(Y )] = P(Y ∈ A).

(2.107)
The fact that B(E) = S({A ⊆ E : A is closed}), the fact that {A ⊆ E : A is closed} is
closed under intersections, and the uniqueness theorem for measures (see, e.g., Klenke
[70, Lemma 1.42]) hence assure that for all B ∈ B(E) it holds that

P(X ∈ B) = P(Y ∈ B). (2.108)

The proof of Lemma 2.14 is thus completed.
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2.6 On random evaluations of random fields

This subsection collects elementary and well-known results about random variables
originating from evaluations of random fields at random indices.

Lemma 2.15. Let (Ω,F), (S,S), (E, E) be measurable spaces, let U = (U(s))s∈S =

(U(s, ω))s∈S,ω∈Ω : S×Ω→ E be an (S⊗F)/E -measurable function, and letX : Ω→ S be an
F/S-measurable function. Then it holds that the function U(X) = (U(X(ω), ω))ω∈Ω : Ω→
E is F/E-measurable.

Proof of Lemma 2.15. Throughout this proof let X : Ω → S × Ω be the function which
satisfies for all ω ∈ Ω that

X (ω) = (X(ω), ω). (2.109)

Observe that the hypothesis that X : Ω→ S is an F/S-measurable function assures that
X : Ω→ S × Ω is an F/(S ⊗ F)-measurable function. Combining this with the fact that
U : S × Ω→ E is an (S ⊗ F)/E-measurable function demonstrates that

U(X) = U ◦ X (2.110)

is an F/E-measurable function. The proof of Lemma 2.15 is thus completed.

A proof for the next two elementary and well-known results (see Lemma 2.16 and
Lemma 2.17 below) can, e.g., be found in [63, Lemma 2.3 and Lemma 2.4].

Lemma 2.16. Let (Ω,F ,P) be a probability space, let (S, δ) be a separable metric space,
let U = (U(s))s∈S : S × Ω → [0,∞) be a continuous random field, let X : Ω → S be a
random variable, and assume that U and X are independent. Then it holds that

E[U(X)] =

∫
S

E[U(s)] (X(P)B(S))(ds). (2.111)

Lemma 2.17. Let (Ω,F ,P) be a probability space, let (S, δ) be a separable metric
space, let U = (U(s))s∈S : S × Ω → R be a continuous random field, let X : Ω →
S be a random variable, assume that U and X are independent, and assume that∫
S
E[|U(s)|] (X(P)B(S))(ds) < ∞. Then it holds that (X(P)B(S))({s ∈ S : E[|U(s)|] =

∞}) = 0, E[|U(X)|] <∞, and

E[U(X)] =

∫
S

E[U(s)] (X(P)B(S))(ds). (2.112)

2.7 Brownian motions and right-continuous filtrations

The next result, Lemma 2.18 below, states that a Brownian motion with respect
to a filtration is also a Brownian motion with respect to the smallest right-continuous
filtration containing the original filtration (cf. (2.113)). Lemma 2.18 and its proof are
very similar to Prévôt & Röckner [90, Proposition 2.1.13].

Lemma 2.18. Let m ∈ N, T ∈ (0,∞), let (Ω,F ,P, (Ft)t∈[0,T ]) be a filtered probability
space, let W : [0, T ]× Ω→ Rm be a standard (Ω,F ,P, (Ft)t∈[0,T ])-Brownian motion, and
let Ht ⊆ F , t ∈ [0, T ], satisfy for all t ∈ [0, T ] that

Ht =

{
∩s∈(t,T ] Fs : t < T

FT : t = T.
(2.113)

Then it holds that W is a standard (Ω,F ,P, (Ht)t∈[0,T ])-Brownian motion.
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Proof of Lemma 2.18. Throughout this proof let ‖·‖ : Rd → [0,∞) be the Euclidean norm
on Rd, for every n ∈ N let hn : [0,∞) → [0, 1] be the function which satisfies for all
r ∈ [0,∞) that

hn(r) = max{1− nr, 0}, (2.114)

for every closed and non-empty set A ⊆ Rd let DA : Rd → [0,∞) be the function which
satisfies for all x ∈ Rd that

DA(x) = inf
a∈A
‖x− a‖ , (2.115)

and for every n ∈ N and every closed and non-empty set A ⊆ Rd let fA,n : Rd → [0, 1] be
the function which satisfies for all x ∈ Rd that

fA,n(x) = hn(DA(x)). (2.116)

Observe that the fact that W has continuous sample paths, the fact that for all t ∈ [0, T ),
s ∈ (t, T ], k ∈ N it holds that Ws −Wmin{t+1/k,s} and Ht are independent, Klenke [70,
Theorem 5.4], and the theorem of dominated convergence assure that for all t ∈ [0, T ),
s ∈ (t, T ], B ∈ Ht and all globally bounded and continuous functions g : Rd → R it holds
that

E[g(Ws −Wt)1B ] = E

[(
lim
k→∞

g(Ws −Wmin{t+1/k,s})

)
1B

]
= lim
k→∞

E
[
g(Ws −Wmin{t+1/k,s})1B

]
= lim
k→∞

E
[
g(Ws −Wmin{t+1/k,s})

]
E[1B ]

= E

[
lim
k→∞

g(Ws −Wmin{t+1/k,s})

]
P(B) = E[g(Ws −Wt)]P(B).

(2.117)

Next note that the fact that closed and non-empty sets A ⊆ Rd and all x ∈ Rd it holds
that DA(x) = 0⇔ x ∈ A assures that for all closed and non-empty sets A ⊆ Rd and all
x ∈ Rd it holds that

lim
n→∞

fA,n(x) = 1A(x). (2.118)

Moreover, note that the fact that for every n ∈ N it holds that hn : [0,∞) → [0, 1] is a
continuous function and the fact that for every closed and non-empty set A ⊆ Rd it holds
that DA : Rd → [0,∞) is a continuous function assure that for every n ∈ N and every
closed and non-empty set A ⊆ Rd it holds that fA,n : Rd → [0, 1] is a continuous function.
Combining this, (2.117), (2.118), and the theorem of dominated convergence shows that
for all t ∈ [0, T ), s ∈ (t, T ], B ∈ Ht and all closed and non-empty sets A ⊆ Rd it holds that

P({Ws −Wt ∈ A} ∩B) = E[1A(Ws −Wt)1B ] = lim
n→∞

E[ fA,n(Ws −Wt)1B ]

= lim
n→∞

(
E[ fA,n(Ws −Wt)]P(B)

)
= E[1A(Ws −Wt)]P(B)

= P({Ws −Wt ∈ A})P(B).

(2.119)

This proves that for all t ∈ [0, T ), s ∈ (t, T ], B ∈ Ht it holds that (1B)−1({}, {0}, {1}, {0, 1})
and (Ws − Wt)

−1({A ⊆ Rd : A is a closed set}) are independent. The fact that {A ⊆
Rd : A is a closed set} is closed under intersections, the fact that S({A ⊆ Rd : A is a
closed set}) = B(Rd), and Klenke [70, Theorem 2.16] hence assure that for all t ∈ [0, T ),
s ∈ (t, T ], B ∈ Ht it holds that Ws −Wt and B are independent. This implies that for
all t ∈ [0, T ], s ∈ [t, T ] it holds that Ws −Wt and Ht are independent. Combining this
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with the hypothesis that W is a Brownian motion, and the fact that W : [0, T ]× Ω→ Rm

is an (Ht)t∈[0,T ]/B(Rm)-adapted stochastic process establishes that W : [0, T ]× Ω→ Rm

is a standard (Ω,F ,P, (Ht)t∈[0,T ])-Brownian motion. The proof of Lemma 2.18 is thus
completed.

2.8 On a distributional flow property for solutions of SDEs

In this subsection we prove a distributional flow property for solutions of SDEs in
Lemma 2.20 below. The idea for the proof of Lemma 2.20 is based on the observation that
if we replace solution processes of SDEs by Euler-Maruyama approximations the flow-
type condition trivially holds (cf. the argument below (2.146) in the proof of Lemma 2.20
below). To prove Lemma 2.20 below we also need, besides several auxiliary results of
the previous subsections, the following well-known statement (see Lemma 2.19 below).

Lemma 2.19. Let d,m ∈ N, T ∈ (0,∞), t ∈ [0, T ], s ∈ [t, T ], let (Ω,F ,P, (Fr)r∈[0,T ]) be a
filtered probability space which satisfies the usual conditions, let W : [0, T ]×Ω→ Rm be
a standard (Ω,F ,P, (Fr)r∈[0,T ])-Brownian motion, let µ : [0, T ]×Rd → Rd and σ : [0, T ]×
Rd → Rd×m be globally Lipschitz continuous functions, let X = (Xr(x))r∈[t,s],x∈Rd : [t, s]×
Rd × Ω → Rd be a continuous random field which satisfies for every x ∈ Rd that
(Xr(x))r∈[t,s] : [t, s]×Ω→ Rd is an (Fr)r∈[t,s]/B(Rd)-adapted stochastic process and which
satisfies that for all r ∈ [t, s], x ∈ Rd it holds P-a.s. that

Xr(x) = x+

∫ r

t

µ(h,Xh(x)) dh+

∫ r

t

σ(h,Xh(x)) dWh, (2.120)

and let ξ : Ω→ Rd be an Ft/B(Rd)-measurable function with E
[
‖ξ‖2

]
<∞. Then for all

r ∈ [t, s] it holds P-a.s. that

Xr(ξ) = ξ +

∫ r

t

µ
(
h,Xh(ξ)

)
dh+

∫ r

t

σ
(
h,Xh(ξ)

)
dWh. (2.121)

Proof of Lemma 2.19. Throughout this proof assume w.l.o.g. that s > t, let
(uN,rn )n∈{0,1,2,...,N},N∈N,r∈(t,s] ⊆ [t, s] satisfy for all N ∈ N, n ∈ {0, 1, 2, . . . , N}, r ∈ (t, s]

that uN,rn = t+ n(r−t)
N , for every N ∈ N, r ∈ (t, s] let XN,r = (XN,rn (x))n∈{0,1,2,...,N},x∈Rd :

{0, 1, 2, . . . , N} × Rd × Ω → Rd be the continuous random field which satisfies for all
n ∈ {1, 2, . . . , N}, x ∈ Rd that XN,r0 (x) = x and

XN,rn (x) = XN,rn−1(x)+µ
(
uN,rn−1,X

N,r
n−1(x)

) (r−t)
N +σ

(
uN,rn−1,X

N,r
n−1(x)

)
(WuN,rn

−WuN,rn−1
), (2.122)

let ‖·‖ : Rd → [0,∞) be the Euclidean norm on Rd, let |||·||| : Rd×m → [0,∞) be the
Frobenius norm on Rd×m, and let L ∈ [0,∞) satisfy for all r, h ∈ [0, T ], x, y ∈ Rd that

max
{
‖µ(r, x)− µ(h, y)‖ , |||σ(r, x)− σ(h, y)|||

}
≤ L

(
|r − h|+ ‖x− y‖

)
. (2.123)

Note that (2.120), (2.122), (2.123), Corollary 2.13 (with d = d, m = m, N = N , T = T ,
t = t, s = r, L = L, (Ω,F ,P, (Fh)h∈[0,T ]) = (Ω,F ,P, (Fh)h∈[0,T ]), W = W , ζ = x, µ = µ,
σ = σ, (Xh)h∈[t,s] = (Xh)h∈[t,r], (rn)n∈{0,1,...,N} = (uN,rn )n∈{0,1,...,N}, (Xn)n∈{0,1,...,N} =

(XN,rn (x))n∈{0,1,...,N} for N ∈ N, x ∈ Rd, r ∈ (t, s] in the notation of Corollary 2.13),
and Lemma 2.11 (with d = d, m = m, T = r − t, ξ = x, L = L, (Ω,F ,P, (Fh)h∈[0,T ]) =

(Ω,F ,P, (Ft+r)r∈[0,r−t]), (Wh)h∈[0,T ] = (Wt+h −Wt)h∈[0,r−t], (µ(h, x))h∈[0,T ],x∈Rd = (µ(t+

h, x))h∈[0,r−t],x∈Rd , (σ(h, x))h∈[0,T ],x∈Rd = (σ(t + h, x))h∈[0,r−t],x∈Rd , (Xh)h∈[0,T ] =

(Xt+h)h∈[0,r−t] for x ∈ Rd, r ∈ (t, s] in the notation of Lemma 2.11) assure that for
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all x ∈ Rd, N ∈ N, r ∈ (t, s] it holds that(
E
[∥∥Xr(x)−XN,rN (x)

∥∥2
])1/2

≤
[(
E
[
‖Xt(x)− x‖2

])1/2
+ max
k∈{1,2,...,N}

|uN,rk − uN,rk−1|
1/2

]
· exp

(
(1 + L)2(1 +

√
T )4
)(

1 + sup
h,l∈[t,r],h6=l

(E[‖Xh(x)−Xl(x)‖2])1/2

|h−l|1/2

)

≤
√
|r − t|√
N

exp
(

(1 + L)2(1 +
√
T )4
)

·
(

1 + (1 + ‖x‖) exp
(

10
(

max{‖µ(t, 0)‖ , |||σ(t, 0)|||, L, 1}+ LT
)2

(T + 1)(L+ 1)
))

≤ (1 + ‖x‖)√
N

exp
(

12
(

max{‖µ(t, 0)‖ , |||σ(t, 0)|||, L, 1}+ LT
)2

(1 + L)2(1 +
√
T )4
)
.

(2.124)

This ensures that for all r ∈ [t, s], x ∈ Rd it holds that lim supN→∞E[‖Xr(x)−XN,rN (x)‖2] =

0. This and the fact that for all r ∈ [t, s], x ∈ Rd, N ∈ N it holds that XN,rN (x) : Ω → Rd

is S(Wh −Wt : h ∈ [t, r])/B(Rd)-measurable imply that for all r ∈ [t, s], x ∈ Rd it holds
that Xr(x) : Ω→ Rd is S(S(Wh−Wt : h ∈ [t, r])∪{A ∈ F : P(A) = 0})/B(Rd)-measurable.
Combining this with the fact that ξ : Ω → Rd is an Ft/B(Rd)-measurable function and
the fact that W : [0, T ] × Ω → Rm is a standard (Ω,F ,P, (Fr)r∈[0,T ])-Brownian motion

demonstrates for all r ∈ [t, s], N ∈ N it holds that (Xr(x) − XN,rN (x))x∈Rd and ξ are
independent. Lemma 2.16 and (2.124) hence assure that for all N ∈ N, r ∈ (t, s] it holds
that

E
[∥∥Xr(ξ)−XN,rN (ξ)

∥∥2
]

=

∫
Rd
E
[∥∥Xr(x)−XN,rN (x)

∥∥2
]

(ξ(P)B(Rd))(dx)

≤
∫
Rd

[
exp(12(max{‖µ(0,0)‖,|||σ(0,0)|||,L,1}+LT )2(1+L)2(1+

√
T )4)√

N
(1 + ‖x‖)

]2

(ξ(P)B(Rd))(dx)

≤
[

exp(24(max{‖µ(t,0)‖,|||σ(t,0)|||,L,1}+LT )2(1+L)2(1+
√
T )4)

N

]
2
(

1 + E
[
‖ξ‖2

])
.

(2.125)

Next observe that the hypothesis that µ and σ are globally Lipschitz continuous func-

tions, the hypothesis that E
[
‖ξ‖2

]
<∞, and the existence theorem for the solutions of

SDEs (see, e.g., Karatzas & Shreve [68, Proposition 5.2.9]) prove that there exists an
(Fr)r∈[t,s]/B(Rd)-adapted stochastic process Y : [t, s]× Ω→ Rd with continuous sample
paths which satisfies that for all r ∈ [t, s] it holds P-a.s. that

Yr = ξ +

∫ r

t

µ(h, Yh) dr +

∫ r

t

σ(h, Yh) dWh. (2.126)

Moreover, observe that (2.122) ensures that for all N ∈ N, n ∈ {1, 2, . . . , N}, r ∈ (t, s]

and all functions ζ : Ω→ Rd it holds that XN,r0 (ζ) = ζ and

XN,rn (ζ) = XN,rn−1(ζ)+µ
(
uN,rn−1,X

N,r
n−1(ζ)

) (r−t)
N +σ

(
uN,rn−1,X

N,r
n−1(ζ)

)
(WuN,rn

−WuN,rn−1
). (2.127)

Combining this, (2.123), the fact that E
[
‖Yt‖2

]
= E

[
‖ξ‖2

]
<∞, and (2.126) with Corol-

lary 2.13 (with d = d, m = m, N = N , T = T , t = t, s = r, L = L, (Ω,F ,P, (Fh)h∈[0,T ]) =
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(Ω,F ,P, (Fh)h∈[0,T ]), W = W , ζ = ξ, µ = µ, σ = σ, (Xh)h∈[t,s] = (Yh)h∈[t,r], (rn)n∈{0,1,...,N}
= (uN,rn )n∈{0,1,...,N}, (Xn)n∈{0,1,...,N} = (XN,rn (ξ))n∈{0,1,...,N} for N ∈ N, r ∈ (t, s] in the
notation of Corollary 2.13) demonstrates that for all N ∈ N, r ∈ (t, s] it holds that(

E
[∥∥Yr −XN,rN (ξ)

∥∥2
])1/2

≤
[(
E
[
‖Yt − ξ‖2

])1/2
+ max
k∈{1,2,...,N}

|uN,rk − uN,rk−1|
1/2

]
· exp

(
(1 + L)2(1 +

√
T )4
)(

1 + sup
h,l∈[t,r],h6=l

(E[‖Yh−Yl‖2])1/2

|h−l|1/2

)

=

√
|r−t| exp((1+L)2(1+

√
T )4)√

N

(
1 + sup

h,l∈[t,r],h6=l

(E[‖Yh−Yl‖2])1/2

|h−l|1/2

)
<∞.

(2.128)

The triangle inequality and (2.125) hence show that for all r ∈ (t, s] it holds that(
E
[∥∥Xr(ξ)− Yr

∥∥2
])1/2

≤ lim sup
N→∞

[(
E
[∥∥Xr(ξ)−XN,rN (ξ)

∥∥2
])1/2

+
(
E
[∥∥XN,rN (ξ)− Yr

∥∥2
])1/2]

≤
[
lim sup
N→∞

(
E
[∥∥Xr(ξ)−XN,rN (ξ)

∥∥2
])1/2]

+

[
lim sup
N→∞

(
E
[∥∥XN,rN (ξ)− Yr

∥∥2
])1/2]

= 0.

(2.129)

Combining this with the fact that (Xr(ξ))r∈[t,s] and (Yr)r∈[t,s] are continuous random
fields demonstrates that

P
(
∀ r ∈ [t, s] : Xr(ξ) = Yr

)
= P

(
∀ r ∈ (t, s] ∩Q : Xr(ξ) = Yr

)
= 1. (2.130)

This and (2.126) prove that for all r ∈ [t, s] it holds P-a.s. that

Xr(ξ) = ξ +

∫ r

t

µ
(
h,Xh(ξ)

)
dh+

∫ r

t

σ
(
h,Xh(ξ)

)
dWh. (2.131)

The proof of Lemma 2.19 is thus completed.

Lemma 2.20. Let d,m ∈ N, T ∈ (0,∞), let µ : [0, T ]×Rd → Rd and σ : [0, T ]×Rd → Rd×m

be globally Lipschitz continuous functions, let (Ω,F ,P) be a complete probability space,
let (F1

t )t∈[0,T ] and (F2
t )t∈[0,T ] be filtrations on (Ω,F ,P) which satisfy the usual conditions,

assume that F1
T and F2

T are independent, for every i ∈ {1, 2} let W i : [0, T ] × Ω → Rm

be a standard (Ω,F ,P, (Fit)t∈[0,T ])-Brownian motion, and for every i ∈ {1, 2} let Xi =

(Xi
t,s(x))s∈[t,T ],t∈[0,T ],x∈Rd : {(t, s) ∈ [0, T ]2 : t ≤ s}×Rd×Ω→ Rd be a continuous random

field which satisfies for every t ∈ [0, T ], x ∈ Rd that (Xi
t,s(x))s∈[t,T ] : [t, T ] × Ω → Rd is

an (Fis)s∈[t,T ]/B(Rd)-adapted stochastic process and which satisfies that for all t ∈ [0, T ],
s ∈ [t, T ], x ∈ Rd it holds P-a.s. that

Xi
t,s(x) = x+

∫ s

t

µ
(
r,Xi

t,r(x)
)
dr +

∫ s

t

σ
(
r,Xi

t,r(x)
)
dW i

r . (2.132)

Then it holds for all r, s, t ∈ [0, T ], x ∈ Rd, B ∈ B(Rd) with t ≤ s ≤ r that P(X1
t,t(x) = x) =

1 and
P
(
X1
s,r(X

2
t,s(x)) ∈ B

)
= P

(
X1
t,r(x) ∈ B

)
. (2.133)

Proof of Lemma 2.20. Throughout this proof let r, s, t ∈ [0, T ], x ∈ Rd satisfy that t ≤ s ≤
r, let (uNn )n∈{0,1,2,...,N},N∈N ⊆ [t, s], (vNn )n∈{0,1,2,...,N},N∈N ⊆ [s, r] satisfy for all N ∈ N,
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n ∈ {0, 1, 2, . . . , N} that uNn = t + n(s−t)
N and vNn = s + n(r−s)

N , for every N ∈ N let
XN : {0, 1, 2, . . . , 2N} × Ω→ Rd and YN ,ZN : {0, 1, 2, . . . , N} × Ω→ Rd be the stochastic
processes which satisfy for all n ∈ {1, 2, . . . , N} that

XN0 = x, XNn = XNn−1 + µ(uNn−1,XNn−1) (s−t)
N + σ(uNn−1,XNn−1)(W 1

uNn
−W 1

uNn−1
), (2.134)

XNN+n = XNN+n−1 + µ(vNn−1,XNn−1) (r−s)
N + σ(vNn−1,XNN+n−1)(W 1

vNn
−W 1

vNn−1
), (2.135)

YN0 = x, YNn = YNn−1 + µ(uNn−1,YNn−1) (s−t)
N + σ(uNn−1,YNn−1)(W 2

uNn
−W 2

uNn−1
), (2.136)

ZN0 = YNN , and ZNn = ZNn−1 + µ(vNn−1,ZNn−1) (r−s)
N + σ(vNn−1,ZNn−1)(W 1

vNn
−W 1

vNn−1
),

(2.137)

let Gh ⊆ F , h ∈ [0, T ], and Hh ⊆ F , h ∈ [0, T ], be the sigma-algebras which satisfy for all
h ∈ [0, T ] that

Gh = S(F1
h ∪ F2

h) and Hh =

{
∩l∈(h,T ]Gl : h < T

GT : h = T,
(2.138)

let 〈·, ·〉 : Rd ×Rd → R be the Euclidean scalar product on Rd, let ‖·‖ : Rd → [0,∞) be
the Euclidean norm on Rd, and let |||·||| : Rd×m → [0,∞) be the Frobenius norm on Rd×m.
Note that the hypothesis that (F1

t )t∈[0,T ] and (F2
t )t∈[0,T ] are filtrations on (Ω,F ,P) which

satisfy the usual conditions and (2.138) imply that (Ht)t∈[0,T ] is a filtration on (Ω,F ,P)

which satisfies the usual conditions. Moreover, observe that (2.132) assures that

P(X1
t,t(x) = x) = 1. (2.139)

Furthermore, note that the hypothesis that µ and σ are globally Lipschitz continuous,
(2.132), (2.134), (2.135), (2.136), and Corollary 2.13 demonstrate that there exists a real
number C ∈ (0,∞) which satisfies that for all N ∈ N it holds that(
E
[∥∥X1

t,r(x)−XN2N
∥∥2
])1/2

≤ C√
N

and
(
E
[∥∥X2

t,s(x)− YNN
∥∥2
])1/2

≤ C√
N
. (2.140)

This implies that

lim sup
N→∞

(
E
[∥∥X1

t,r(x)−XN2N
∥∥2
])1/2

≤ lim sup
N→∞

C√
N

= 0. (2.141)

Moreover, observe that the hypothesis that µ and σ are globally Lipschitz continuous
implies that

sup
h∈[0,T ],y∈Rd

〈y, µ(h, y)〉+ |||σ(h, y)|||2

1 + ‖y‖2
<∞. (2.142)

Lemma 2.7 therefore demonstrates that

E
[∥∥X2

t,s(x)
∥∥2
]
<∞. (2.143)

Next note that the fact that for all h ∈ [0, T ], l ∈ [h, T ] it holds that W 1
l − W 1

h , F1
h,

and F2
h are independent assures that for all h ∈ [0, T ], l ∈ [h, T ] it holds that W 1

l −
W 1
h and Gh are independent. This, the fact that W 1 : [0, T ] × Ω → Rd is a Brownian

motion, and the fact that W 1 : [0, T ]×Ω→ Rd is an (Gh)h∈[0,T ]/B(Rd)-adapted stochastic
process imply that W 1 : [0, T ] × Ω → Rd is a standard (Ω,F ,P, (Gh)h∈[0,T ])-Brownian
motion. Lemma 2.18 and (2.138) hence ensure that W 1 : [0, T ]× Ω→ Rd is a standard
(Ω,F ,P, (Hh)h∈[0,T ])-Brownian motion. Combining this, the fact that (Ω,F ,P, (Hh)h∈[0,T ])

is a filtered probability space which satisfies the usual conditions, the fact that for all
y ∈ Rd it holds that (X1

s,h(y))h∈[s,r] : [s, r] × Ω → Rd is an (Hh)h∈[s,r]/B(Rd)-adapted
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stochastic process, (2.132), the fact that X2
t,s(x) : Ω→ Rd is Hs/B(Rd)-measurable, and

(2.143) with Lemma 2.19 (with d = d, m = m, T = T , t = s, s = r, (Ω,F ,P, (Fh)h∈[0,T ]) =

(Ω,F ,P, (Hh)h∈[0,T ]), W = W 1, µ = µ, σ = σ, (Xh(y))h∈[t,s],y∈Rd = (X1
s,h(y))h∈[s,r],y∈Rd ,

ξ = X2
t,s(x) in the notation of Lemma 2.19) proves that for all h ∈ [s, r] it holds P-a.s. that

X1
s,h(X2

t,s(x)) = X2
t,s(x) +

∫ h

s

µ
(
l,X1

s,l(X
2
t,s(x))

)
dl +

∫ h

s

σ
(
l,X1

s,l(X
2
t,s(x))

)
dW 1

l . (2.144)

The fact that (Ω,F ,P, (Hh)h∈[0,T ]) is a filtered probability space which satisfies the usual
conditions, the fact that W 1 : [0, T ]×Ω→ Rd is a standard (Ω,F ,P, (Hh)h∈[0,T ])-Brownian
motion, the fact that YNN : Ω→ Rd is Hs/B(Rd)-measurable, the hypothesis that µ and σ
are globally Lipschitz continuous functions, the fact that (X1

s,h(X2
t,s(x)))h∈[s,r] : [s, r]×Ω→

Rd is an (Hh)h∈[s,r]/B(Rd)-adapted stochastic process with continuous sample paths,
(2.143), (2.137), and Corollary 2.13 (with d = d, m = m, N = N , T = T , t = s, s =

r, L = suph,l∈[0,T ],y,z∈Rd : (h,y)6=(l,z)
‖µ(h,y)−µ(l,z)‖+|||σ(h,y)−σ(l,z)|||

|h−l|+‖y−z‖ , (Ω,F ,P, (Fh)h∈[0,T ]) =

(Ω,F ,P, (Hh)h∈[0,T ]), W = W 1, ζ = YNN , µ = µ, σ = σ, (Xh)h∈[t,s] = (X1
s,h(X2

t,s(x)))h∈[s,r],

(rn)n∈{0,1,...,N} = (vNn )n∈{0,1,...,N}, (Xn)n∈{0,1,...,N} = (ZNn )n∈{0,1,...,N} for N ∈ N in the
notation of Corollary 2.13) hence demonstrate that there exists a real number K ∈ (0,∞)

which satisfies that for all N ∈ N it holds that(
E
[∥∥X1

s,r(X
2
t,s(x))−ZNN

∥∥2
])1/2

≤ K
[(
E
[∥∥X2

t,s(x)− YNN
∥∥2
])1/2

+
1√
N

]
. (2.145)

This and (2.140) imply that

lim sup
N→∞

(
E
[∥∥X1

s,r(X
2
t,s(x))−ZNN

∥∥2
])1/2

≤ lim sup
N→∞

K

[
C√
N

+
1√
N

]
= 0. (2.146)

Furthermore, observe that (2.134)–(2.137) assure that for all N ∈ N it holds that XN2N
and ZNN have the same distribution. This, (2.141), and (2.146) imply that for all globally
bounded and Lipschitz continuous functions g : Rd → R it holds that

E
[
g(X1

s,r(X
2
t,s(x)))

]
= lim
N→∞

E
[
g(ZNN )

]
= lim
N→∞

E
[
g(XN2N )

]
= E

[
g(X1

t,r(x))
]
. (2.147)

Lemma 2.14 hence assures that X1
s,r(X

2
t,s(x)) and X1

t,r(x) are identically distributed.
Combining this with (2.139) completes the proof of Lemma 2.20.

3 Full history recursive multilevel Picard (MLP) approximation
algorithms

In this section we present the proposed MLP scheme and perform a rigorous complex-
ity analysis. First, we introduce our MLP scheme (cf. (3.5) in Subsection 3.1 below) as
an approximation algorithm for a solution (cf. u in Setting 3.1 in Subsection 3.1 below)
of a certain type of stochastic fixed point equation (cf. (3.4) in Subsection 3.1 below) in
Subsection 3.1. Subsequently, the goal of Subsections 3.2–3.4 is to obtain an estimate for
the L2-error between the MLP scheme and the solution of the stochastic fixed point equa-
tion (see Proposition 3.15 and Corollary 3.16 in Subsection 3.4 below). In Subsection 3.5
we estimate the computational effort needed to simulate realizations of the MLP scheme
and combine this with the L2-error estimate in Corollary 3.16 to obtain a computational
complexity analysis for the MLP algorithm in Proposition 3.18. Finally, in Subsection 3.6,
we exploit a connection between stochastic fixed point equations and viscosity solutions
of semilinear Kolmogorov PDEs (see Proposition 3.22 in Subsection 3.6.1 below) to carry
over the complexity analysis of Subsection 3.5 to semilinear Kolmogorov PDEs. This
culminates in Theorem 3.24, the main result of this paper, which demonstrates that our
proposed MLP algorithm overcomes the curse of dimensionality in the approximation of
certain semilinear Kolmogorov PDEs.
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3.1 Stochastic fixed point equations and MLP approximations

Setting 3.1. Let d ∈ N, T ∈ (0,∞), L ∈ [0,∞), Θ = ∪∞n=1Z
n, u ∈ C([0, T ] × Rd,R),

g ∈ C(Rd,R), f ∈ C([0, T ]×Rd ×R,R) satisfy for all t ∈ [0, T ], x ∈ Rd, v, w ∈ R that

|f(t, x, v)− f(t, x, w)| ≤ L|v − w|, (3.1)

let (Ω,F ,P) be a probability space, let Rθ : Ω → [0, 1], θ ∈ Θ, be independent U[0,1]-
distributed random variables, let Rθ = (Rθt )t∈[0,T ] : [0, T ] × Ω → [0, T ], θ ∈ Θ, be the
stochastic processes which satisfy for all t ∈ [0, T ], θ ∈ Θ that

Rθt = t+ (T − t)Rθ, (3.2)

let Xθ = (Xθ
t,s(x))s∈[t,T ],t∈[0,T ],x∈Rd : {(t, s) ∈ [0, T ]2 : t ≤ s} × Rd × Ω → Rd, θ ∈ Θ, be

independent continuous random fields which satisfy for all r, s, t ∈ [0, T ], x ∈ Rd, θ, ϑ ∈ Θ,
B ∈ B(Rd) with t ≤ s ≤ r and θ 6= ϑ that P(Xθ

t,t(x) = x) = 1 and

P
(
Xθ
s,r(X

ϑ
t,s(x)) ∈ B

)
= P

(
Xθ
t,r(x) ∈ B

)
, (3.3)

assume that (Xθ)θ∈Θ and (Rθ)θ∈Θ are independent, assume for all t ∈ [0, T ], x ∈ Rd that

E
[
|g(X0

t,T (x))|+
∫ T
t
|f(r,X0

t,r(x), u(r,X0
t,r(x)))| dr

]
<∞ and

u(t, x) = E

[
g
(
X0
t,T (x)

)
+

∫ T

t

f
(
r,X0

t,r(x), u(r,X0
t,r(x))

)
dr

]
, (3.4)

and let V θM,n : [0, T ] × Rd × Ω → R, M,n ∈ Z, θ ∈ Θ, be functions which satisfy for all

M,n ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that V θM,0(t, x) = 0 and

V θM,n(t, x) =
1

Mn

[
Mn∑
m=1

g
(
X

(θ,n,−m)
t,T (x)

)]

+

n−1∑
k=0

(T − t)
Mn−k

[
Mn−k∑
m=1

f
(
R

(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x), V
(θ,k,m)
M,k

(
R

(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x)
))

− 1N(k)f
(
R

(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x), V
(θ,k,−m)
M,k−1

(
R

(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x)
))]

.

(3.5)

3.2 A priori bounds for solutions of stochastic fixed point equations

In our L2-error analysis (see Subsection 3.4 below) of the MLP scheme introduced
in Setting 3.1 we need to estimate expectations involving the solution of the stochastic
fixed point equation. This estimate is carried out in Lemma 3.3 below. In order to prove
Lemma 3.3 we need the elementary and well-known time-reversed Gronwall inequality
in Lemma 3.2.

Lemma 3.2 (Time-reversed time-continuous Gronwall inequality). Let T, α, β ∈ [0,∞)

and let ε : [0, T ]→ [0,∞] be a B([0, T ])/B([0,∞])-measurable function which satisfies for

all t ∈ [0, T ] that
∫ T

0
ε(r) dr <∞ and ε(t) ≤ α+ β

∫ T
t
ε(r) dr. Then

(i) it holds for all t ∈ [0, T ] that ε(t) ≤ α exp(β(T − t)) and

(ii) it holds that supt∈[0,T ] ε(t) ≤ α exp(βT ) <∞.

Proof of Lemma 3.2. Throughout this proof let Φ: [0, T ]→ [0, T ] and ε : [0, T ]→ [0,∞] be
the functions which satisfy for all t ∈ [0, T ] that

Φ(t) = T − t and ε(t) = ε(Φ(t)) = ε(T − t). (3.6)
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Observe that the integral transformation theorem (see, e.g., Klenke [70, Theorem 4.10])
implies that for all t ∈ [0, T ] it holds that∫ t

0

ε(r) dr =

∫
[0,t]

ε(Φ(r)) Borel[0,t](dr) =

∫
Φ([0,t])

ε(s) Φ(Borel[0,t])B(Φ([0,t]))(ds)

=

∫
[T−t,T ]

ε(s) Borel[T−t,T ](ds) =

∫ T

T−t
ε(s) ds.

(3.7)

Hence, we obtain that ∫ T

0

ε(r) dr =

∫ T

0

ε(r) dr <∞. (3.8)

Moreover, observe that (3.6), (3.7), and the hypothesis that for all t ∈ [0, T ] it holds that

ε(t) ≤ α+ β
∫ T
t
ε(r) dr assure that for all t ∈ [0, T ] it holds that

ε(t) = ε(T − t) ≤ α+ β

∫ T

T−t
ε(r) dr = α+ β

∫ t

0

ε(r) dr. (3.9)

Combining this and (3.8) with Gronwall’s integral inequality (cf, e.g., Grohs et al. [52,
Lemma 2.11]) demonstrates that for all t ∈ [0, T ] it holds that

ε(t) ≤ α exp(βt). (3.10)

Hence, we obtain that for all t ∈ [0, T ] it holds that

ε(t) = ε(T − (T − t)) = ε(T − t) ≤ α exp(β(T − t)) ≤ α exp(βT ). (3.11)

This establishes items (i)–(ii). The proof of Lemma 3.2 is thus completed.

Lemma 3.3. Assume Setting 3.1, let ξ ∈ Rd, C ∈ [0,∞] satisfy that

C =
(
E
[
|g(X0

0,T (ξ))|2
])1/2

+
√
T

(∫ T

0

E
[
|f(t,X0

0,t(ξ), 0)|2
]
dt

)1/2

, (3.12)

and assume that
∫ T

0

(
E
[
|u(t,X0

0,t(ξ))|2
])1/2

dt <∞. Then

(i) it holds for all t ∈ [0, T ] that
(
E
[
|u(t,X0

0,t(ξ))|2
])1/2 ≤ C exp(L(T − t)) and

(ii) it holds that supt∈[0,T ]

(
E
[
|u(t,X0

0,t(ξ))|2
])1/2 ≤ C exp(LT ).

Proof of Lemma 3.3. Throughout this proof assume w.l.o.g. that C <∞ and let µt : B(Rd)

→ [0, 1], t ∈ [0, T ], be the probability measures which satisfy for all t ∈ [0, T ], B ∈ B(Rd)

that

µt(B) = P(X0
0,t(ξ) ∈ B) = P(X1

0,t(ξ) ∈ B) =
(
(X1

0,t(ξ))(P)B(Rd)

)
(B) (3.13)

(cf. (3.3) or item (iv) in Lemma 3.6). Note that (3.4) and the triangle inequality ensure
that for all t ∈ [0, T ] it holds that

(
E
[
|u(t,X0

0,t(ξ))|2
])1/2

=

(∫
Rd
|u(t, z)|2 µt(dz)

)1/2

=

(∫
Rd

∣∣∣E[g(X0
t,T (z)

)
+
∫ T
t
f
(
r,X0

t,r(z), u(r,X0
t,r(z))

)
dr
]∣∣∣2 µt(dz))1/2

≤
(∫

Rd

∣∣E[g(X0
t,T (z)

)]∣∣2 µt(dz))1/2

+

(∫
Rd

∣∣∣E[∫ Tt f
(
r,X0

t,r(z), u(r,X0
t,r(z))

)
dr
]∣∣∣2 µt(dz))1/2

.

(3.14)
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Jensen’s inequality hence assures that for all t ∈ [0, T ] it holds that

(
E
[
|u(t,X0

0,t(ξ))|2
])1/2 ≤ (∫

Rd
E
[∣∣g(X0

t,T (z)
)∣∣2] µt(dz))1/2

+

(∫
Rd
E

[(∫ T
t

∣∣f(r,X0
t,r(z), u(r,X0

t,r(z))
)∣∣ dr)2

]
µt(dz)

)1/2

.

(3.15)

Furthermore, observe that (3.13), the fact that X0 and X1 are independent and contin-
uous random fields, (3.3), and Lemma 2.16 demonstrate that for all t ∈ [0, T ] it holds
that(∫

Rd
E
[∣∣g(X0

t,T (z)
)∣∣2] µt(dz))1/2

=
(
E
[∣∣g(X0

t,T (X1
0,t(ξ))

)∣∣2])1/2 =
(
E
[∣∣g(X0

0,T (ξ)
)∣∣2])1/2 .

(3.16)

In addition, note that Minkowski’s integral inequality (cf., e.g., Jentzen & Kloeden [65,
Proposition 8 in Appendix A.1]), (3.13), the fact that X0 and X1 are independent and
continuous random fields, (3.3), and Lemma 2.16 imply that for all t ∈ [0, T ] it holds that

(∫
Rd
E

[(∫ T
t

∣∣f(r,X0
t,r(z), u(r,X0

t,r(z))
)∣∣ dr)2

]
µt(dz)

)1/2

≤
∫ T

t

(∫
Rd
E
[∣∣f(r,X0

t,r(z), u(r,X0
t,r(z))

)∣∣2] µt(dz))1/2

dr

=

∫ T

t

(
E
[∣∣f(r,X0

t,r(X
1
0,t(ξ)), u(r,X0

t,r(X
1
0,t(ξ)))

)∣∣2])1/2 dr
=

∫ T

t

(
E
[∣∣f(r,X0

0,r(ξ), u(r,X0
0,r(ξ))

)∣∣2])1/2 dr.
(3.17)

Moreover, observe that (3.1) ensures that for all t ∈ [0, T ], x ∈ Rd, v ∈ R it holds that

|f(t, x, v)| ≤ |f(t, x, 0)|+ |f(t, x, v)− f(t, x, 0)| ≤ |f(t, x, 0)|+ L|v|. (3.18)

This, (3.17), and the triangle inequality imply that for all t ∈ [0, T ] it holds that

(∫
Rd
E

[(∫ T
t

∣∣f(r,X0
t,r(z), u(r,X0

t,r(z))
)∣∣ dr)2

]
µt(dz)

)1/2

≤
∫ T

t

(
E
[∣∣f(r,X0

0,r(ξ), 0
)∣∣2])1/2 dr + L

∫ T

t

(
E
[
|u(r,X0

0,r(ξ))|2
])1/2

dr.

(3.19)

Furthermore, note that Lemma 2.10 assures that for all t ∈ [0, T ] it holds that

∫ T

t

(
E
[∣∣f(r,X0

0,r(ξ), 0
)∣∣2])1/2 dr =

[∫ T

t

(
E
[∣∣f(r,X0

0,r(ξ), 0
)∣∣2])1/2 dr]2

1/2

≤

(
(T − t)

∫ T

t

E
[∣∣f(r,X0

0,r(ξ), 0
)∣∣2] dr)1/2

≤
√
T

(∫ T

0

E
[∣∣f(r,X0

0,r(ξ), 0
)∣∣2] dr)1/2

.

(3.20)
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Combining this with (3.12), (3.15), (3.16), and (3.19) implies that for all t ∈ [0, T ] it holds
that (

E
[
|u(t,X0

0,t(ξ))|2
])1/2

≤
(
E
[∣∣g(X0

0,T (ξ)
)∣∣2])1/2 +

√
T

(∫ T

0

E
[∣∣f(r,X0

0,r(ξ), 0
)∣∣2] dr)1/2

+ L

∫ T

t

(
E
[
|u(r,X0

0,r(ξ))|2
])1/2

dr.

= C + L

∫ T

t

(
E
[
|u(r,X0

0,r(ξ))|2
])1/2

dr.

(3.21)

The hypothesis that
∫ T

0

(
E
[
|u(t,X0

0,t(ξ))|2
])1/2

dt <∞ and Lemma 3.2 (with T = T , α = C,

β = L, (ε(t))t∈[0,T ] =
(
(E[|u(t,X0

0,t(ξ))|2])1/2
)
t∈[0,T ]

in the notation of Lemma 3.2) hence
establish items (i)–(ii). The proof of Lemma 3.3 is thus completed.

3.3 Properties of MLP approximations

In this subsection we establish in Lemma 3.6 below some elementary properties
of the MLP approximations (cf. (3.5) in Setting 3.1 above) introduced in Setting 3.1
above. For this we need two elementary and well-known results on identically distributed
random variables (see Lemma 3.4 and Lemma 3.5 below).

Lemma 3.4. Let d,N ∈ N, let (Ω,F ,P) be a probability space, let Xk : Ω → Rd, k ∈
{1, 2, . . . , N}, be independent random variables, let Yk : Ω → Rd, k ∈ {1, 2, . . . , N}, be
independent random variables, and assume for every k ∈ {1, 2, . . . , N} that Xk and Yk are
identically distributed. Then it holds that

(∑N
k=1Xk

)
: Ω→ Rd and

(∑N
k=1 Yk

)
: Ω→ Rd

are identically distributed random variables.

Proof of Lemma 3.4. Throughout this proof let X,Y : Ω→ RNd be the random variables
which satisfy that

X = (X1, . . . , XN ) and Y = (Y1, . . . , YN ) (3.22)

and let f ∈ C(RNd,Rd) be the function which satisfies for all v1, v2, . . . , vN ∈ Rd that
f(v1, v2, . . . , vN ) =

∑N
k=1 vk. Observe that the hypothesis that (Xk)k∈{1,2,...,N} are inde-

pendent, the hypothesis that (Yk)k∈{1,2,...,N} are independent, and the hypothesis that
for every k ∈ {1, 2, . . . , N} it holds that Xk and Yk are identically distributed random
variables assure that for all (Bk)k∈{1,2,...,N} ⊆ B(Rd) it holds that

P
(
X ∈ (B1 ×B2 × . . .×BN )

)
= P(∀ k ∈ {1, 2, . . . , N} : Xk ∈ Bk)

=

N∏
k=1

P(Xk ∈ Bk) =

N∏
k=1

P(Yk ∈ Bk)

= P(∀ k ∈ {1, 2, . . . , N} : Yk ∈ Bk)

= P
(
Y ∈ (B1 ×B2 × . . .×BN )

)
.

(3.23)

This, the fact that

B(RNd) = S
(

(B1 ×B2 × . . .×BN ) ∈ P(RLNd) :
(
∀ k ∈ {1, 2, . . . , N} : Bk ∈ B(Rd)

))
,

(3.24)

and the uniqueness theorem for measures (see, e.g., Klenke [70, Lemma 1.42]) imply
that it holds for all B ∈ B(RNd) that

P
(
X ∈ B

)
= P

(
Y ∈ B

)
. (3.25)
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Hence, we obtain that for all B ∈ B(Rd) it holds that

P
(∑N

k=1Xk ∈ B
)

= P (f(X) ∈ B) = P
(
X ∈ f−1(B)

)
= P

(
Y ∈ f−1(B)

)
= P (f(Y) ∈ B) = P

(∑N
k=1Yk ∈ B

)
.

(3.26)

This shows that
(∑N

k=1Xk

)
: Ω→ Rd and

(∑N
k=1 Yk

)
: Ω→ Rd are identically distributed

random variables. The proof of Lemma 3.4 is thus completed.

Lemma 3.5. Let (Ω,F ,P) be a probability space, let (S, δ) be a separable metric space,
let (E, δ) be a metric space, let U, V : S × Ω → E be continuous random fields, let
X,Y : Ω → S be random variables, assume that U and X are independent, assume
that V and Y are independent, assume for all s ∈ S that U(s) and V (s) are identically
distributed, and assume that X and Y are identically distributed. Then it holds that
U(X) = (U(X(ω), ω))ω∈Ω : Ω → E and V (Y ) = (V (Y (ω), ω))ω∈Ω : Ω → E are identically
distributed random variables.

Proof of Lemma 3.5. First, note that Grohs et al. [3, Lemma 2.4], the fact that U and V
are continuous random fields, and Lemma 2.15 ensure that U(X) and V (Y ) are random
variables. Next observe the hypothesis that U and X are independent, the hypothesis
that V and Y are independent, the hypothesis that for all s ∈ S it holds that U(s) and
V (s) are identically distributed, the hypothesis that X and Y are identically distributed
and Lemma 2.17 demonstrate that for all globally bounded and Lipschitz continuous
functions g : E → R it holds that

E[g(U(X))] =

∫
S

E[g(U(s))] (X(P)B(S))(ds)

=

∫
S

E[g(V (s))] (Y (P)B(S))(ds) = E[g(V (Y ))] .

(3.27)

Combining this with Lemma 2.14 assures that U(X) and V (Y ) are identically distributed.
The proof of Lemma 3.5 is thus completed.

Lemma 3.6 (Properties of MLP approximations). Assume Setting 3.1 and let M ∈ N.
Then

(i) for all θ ∈ Θ, n ∈ N0 it holds that V θM,n : [0, T ]×Rd ×Ω→ R is a continuous random
field,

(ii) for all θ ∈ Θ, n ∈ N0 it holds that V θM,n : [0, T ] × Rd × Ω → R is (B([0, T ] × Rd) ⊗
S((R(θ,ϑ))ϑ∈Θ, (X

(θ,ϑ))ϑ∈Θ))/B(R)-measurable,

(iii) for all θ ∈ Θ, n ∈ N0, t ∈ [0, T ], x ∈ Rd it holds that(
(N ∩ [0, n])×N

)
3 (k,m) 7→

g(X
(θ,n,−m)
t,T (x)) : k = n[

f
(
R

(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x), V
(θ,k,m)
M,k

(
R

(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x)
))

− 1N(k)f
(
R

(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x), V
(θ,k,−m)
M,k−1

(
R

(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x)
))] : k < n

(3.28)

is an independent family of random variables,

(iv) for all t ∈ [0, T ], s ∈ [t, T ], x ∈ Rd it holds that Xθ
t,s(x) : Ω → Rd, θ ∈ Θ, are

identically distributed random variables, and
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(v) for all n ∈ N0, t ∈ [0, T ], x ∈ Rd it holds that V θM,n(t, x) : Ω → Rd, θ ∈ Θ, are
identically distributed random variables.

Proof of Lemma 3.6. We first prove item (i) by induction on n ∈ N0. For the base
case n = 0 observe that the hypothesis that for all θ ∈ Θ it holds that V θM,0 = 0

demonstrates that for all θ ∈ Θ it holds that V θM,0 : [0, T ]×Rd × Ω→ Rd is a continuous
random field. This establishes item (i) in the base case n = 0. For the induction step
N0 3 (n − 1) → n ∈ N let n ∈ N and assume that for every k ∈ N0 ∩ [0, n), θ ∈ Θ it
holds that V θM,k : [0, T ] × Rd × Ω → Rd is a continuous random field. Combining this,
the hypothesis that g and f are continuous functions, and the fact that for all θ ∈ Θ

it holds that Rθ : [0, T ] × Ω → [0, T ] and Xθ : {(t, s) ∈ [0, T ]2 : t ≤ s} × Rd × Ω → Rd

are continuous random fields with (3.5), Grohs et al. [3, Lemma 2.4], and Lemma 2.15
proves that for all θ ∈ Θ it holds that V θM,n : [0, T ] × Rd × Ω → Rd is a continuous
random field. Induction thus establishes item (i). Next we prove item (ii) by induction
on n ∈ N0. For the base case n = 0 observe that the hypothesis that for all θ ∈ Θ

it holds that V θM,0 = 0 demonstrates that for all θ ∈ Θ it holds that V θM,0 : [0, T ] ×
Rd × Ω → R is

(
B([0, T ]×Rd)⊗S((R(θ,ϑ))ϑ∈Θ, (X

(θ,ϑ))ϑ∈Θ)
)
/B(R)-measurable. This

implies item (ii) in the base case n = 0. For the induction step N0 3 (n − 1) →
n ∈ N let n ∈ N and assume that for all k ∈ N0 ∩ [0, n), θ ∈ Θ it holds that V θM,k

is
(
B([0, T ]×Rd)⊗S((R(θ,ϑ))ϑ∈Θ, (X

(θ,ϑ))ϑ∈Θ)
)
/B(R)-measurable. Combining this, the

fact that f and g are Borel measurable, and the fact that for all θ ∈ Θ it holds that
Xθ : {(t, s) ∈ [0, T ]2 : t ≤ s} ×Rd × Ω → Rd is a continuous random field with (3.5) and
Lemma 2.15 proves that for all θ ∈ Θ, t ∈ [0, T ], x ∈ Rd it holds that

S(V θM,n(t, x))

⊆ S
(

(X
(θ,n,−m)
t,T (x))m∈{1,2,...,Mn}, (R

(θ,k,m)
t )m∈{1,2,...,Mn−k},k∈N0∩[0,n),

(X
(θ,k,m)

t,R
(θ,k,m)
t

(x))m∈{1,2,...,Mn−k},k∈N0∩[0,n), (X
(θ,k,m,ϑ))m∈{1,2,...,Mn−k},k∈N0∩[0,n),ϑ∈Θ,

(R(θ,k,m,ϑ))m∈{1,2,...,Mn−k},k∈N0∩[0,n),ϑ∈Θ, (X
(θ,k,−m,ϑ))m∈{1,2,...,Mn−k},k∈N∩[0,n),ϑ∈Θ,

(R(θ,k,−m,ϑ))m∈{1,2,...,Mn−k},k∈N∩[0,n),ϑ∈Θ

)
⊆ S

(
(R(θ,ϑ))ϑ∈Θ, (X

(θ,ϑ))ϑ∈Θ

)
.

(3.29)

Moreover, observe that item (i) and Grohs et al. [3, Lemma 2.4] ensure that for all
θ ∈ Θ it holds that V θM,n is

(
B([0, T ]×Rd)⊗S(V θM,n)

)
/B(R)-measurable. Combining

this with (3.29) demonstrates that for all θ ∈ Θ it holds that V θM,n is (B([0, T ] × Rd) ⊗
S((R(θ,ϑ))ϑ∈Θ, (X

(θ,ϑ))ϑ∈Θ))/B(R)-measurable. Induction thus establishes item (ii). Fur-
thermore, observe that item (ii), the hypothesis that (Xθ)θ∈Θ are independent, the
hypothesis that (Rθ)θ∈Θ are independent, the hypothesis that (Xθ)θ∈Θ and (Rθ)θ∈Θ are
independent, and Lemma 2.15 prove item (iii). Next observe that (3.3), the hypothesis
that (Xθ)θ∈Θ are independent, Lemma 2.17 (with S = Rd, U = g(Xθ

s,s(·)), X = Xϑ
t,s(x)

for g ∈ C(Rd,R), t ∈ [0, T ], s ∈ [t, T ], x ∈ Rd, θ, ϑ ∈ Θ in the notation of Lemma 2.17),
and the fact that for all t ∈ [0, T ], x ∈ Rd, θ ∈ Θ it holds that P(Xθ

t,t(x) = x) = 1 assure
that for all t ∈ [0, T ], s ∈ [t, T ], x ∈ Rd, θ, ϑ ∈ Θ with θ 6= ϑ and all globally bounded and
continuous functions g : Rd → R it holds that

E
[
g(Xθ

t,s(x))
]

= E
[
g(Xθ

s,s(X
ϑ
t,s(x)))

]
=

∫
Rd
E
[
g(Xθ

s,s(z))
]

((Xϑ
t,s(x))(P)B(Rd))(dz)

=

∫
Rd
g(z)((Xϑ

t,s(x))(P)B(Rd))(dz) = E
[
g(Xϑ

t,s(x))
]
.

(3.30)
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Combining this with Lemma 2.14 demonstrates that for all t ∈ [0, T ], s ∈ [t, T ], x ∈ Rd,
θ, ϑ ∈ Θ it holds that Xθ

t,s(x) : Ω → Rd and Xϑ
t,s(x) : Ω → Rd are identically distributed

random variables. This establishes item (iv). Next we prove item (v) by induction on
n ∈ N0. For the base case n = 0 observe that the hypothesis that for all θ ∈ Θ it holds
that V θM,0 = 0 demonstrates that for all t ∈ [0, T ], x ∈ Rd it holds that V θM,0(t, x) : Ω→ Rd,
θ ∈ Θ, are identically distributed random variables. This establishes item (v) in the
base case n = 0. For the induction step N0 3 (n − 1) → n ∈ N let n ∈ N and as-
sume that for all k ∈ N0 ∩ [0, n), t ∈ [0, T ], x ∈ Rd it holds that V θM,k(t, x) : Ω → Rd,

θ ∈ Θ, are identically distributed random variables. This, the hypothesis that (Xθ)θ∈Θ

are independent, the hypothesis that (Rθ)θ∈Θ are independent, the hypothesis that
(Xθ)θ∈Θ and (Rθ)θ∈Θ are independent, item (ii), Lemma 3.4, and Lemma 3.5 (with S =

[0, T ]×Rd, E = R, U =
(
f(s, y, V

(θ,k,m)
M,k (s, y))− 1N(k)f(s, y, V

(θ,k,−m)
M,k−1 (s, y))

)
(s,y)∈[0,T ]×Rd ,

V =
(
f(s, y, V

(ϑ,k,m)
M,k (s, y)) − 1N(k)f(s, y, V

(ϑ,k,−m)
M,k−1 (s, y))

)
(s,y)∈[0,T ]×Rd , X =

(R
(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x)), Y = (R
(ϑ,k,m)
t , X

(ϑ,k,m)

t,R
(ϑ,k,m)
t

(x)) for θ, ϑ ∈ Θ, t ∈ [0, T ], x ∈ Rd,
k ∈ N0 ∩ [0, n), m ∈ N with θ 6= ϑ in the notation of Lemma 3.5) assure that for all
t ∈ [0, T ], x ∈ Rd, k ∈ N0 ∩ [0, n), m ∈ N it holds that(

f
(
R

(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x), V
(θ,k,m)
M,k

(
R

(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x)
))

− 1N(k)f
(
R

(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x), V
(θ,k,−m)
M,k−1

(
R

(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x)
)))

θ∈Θ

(3.31)

are identically distributed random variables. Items (iii)–(iv), (3.5), and Lemma 3.4
therefore ensure that for all t ∈ [0, T ], x ∈ Rd it holds that V θM,n(t, x) : Ω→ Rd, θ ∈ Θ, are
identically distributed random variables. Induction thus establishes item (v). The proof
of Lemma 3.6 is thus completed.

3.4 Analysis of approximation errors of MLP approximations

Proposition 3.15 and Corollary 3.16 in Subsection 3.4.5 below present estimates for
the L2-approximation error of the MLP scheme (cf. (3.5) in Setting 3.1 above) introduced
in Setting 3.1 with respect to the solution of the stochastic fixed point equation (cf. (3.4)
in Setting 3.1 above) for every iteration (cf. n ∈ N in (3.5) in Subsection 3.1 above)
and every Monte Carlo accuracy (cf. M ∈ N in (3.5) in Subsection 3.1 above) of the
MLP scheme. The essential idea for the proof of those statements is to decompose the
L2-approximation error into a bias and a variance part and to analyze them separately
(see Subsections 3.4.1–3.4.3). This approach leads to a recursive inequality (cf. (3.89) in
the proof of Proposition 3.15 below) which can be treated using an elementary Gronwall
inequality, proven in Subsection 3.4.4 (see Lemma 3.12). For the proofs of the statements
in this subsection we need some elementary and well-known results (see Lemma 3.7,
Lemma 3.10, and Lemma 3.14) which we state and prove where they are used.

3.4.1 Expectations of MLP approximations

Lemma 3.7. Assume Setting 3.1, let θ ∈ Θ, t ∈ [0, T ], let U1 : [t, T ] × Ω → [0,∞] and
U2 : [t, T ] × Ω → R be continuous random fields which satisfy for all i ∈ {1, 2} that Ui
and Rθ are independent and

∫ T
t
E[|U2(r)|] dr < ∞. Then it holds for all i ∈ {1, 2} that

Borel[t,T ]({r ∈ [t, T ] : E[|U2(r)|] =∞}) = 0, E
[
|U2(Rθt )|

]
<∞, and

(T − t)E
[
Ui(R

θ
t )
]

=

∫ T

t

E[Ui(r)] dr. (3.32)

Proof of Lemma 3.7. Throughout this proof assume w.l.o.g. that t < T . Observe that (3.2)
implies that Rθt is U[t,T ]-distributed. Combining this with the fact that U1 is continuous,
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the fact that U1 and Rθt are independent, and Lemma 2.16 assures that

(T − t)E
[
U1(Rθt )

]
= (T − t)

∫
[t,T ]

E[U1(r)] (Rθt (P)B([t,T ]))(dr)

= (T − t)
∫

[t,T ]

E[U1(r)] (U[t,T ])(dr)

=
(T − t)
(T − t)

∫ T

t

E[U1(r)] dr =

∫ T

t

E[U1(r)] dr.

(3.33)

In addition, note that the fact that Rθt is U[t,T ]-distributed, the fact that U2 is continuous,

the fact that U2 and Rθt are independent, the hypothesis that
∫ T
t
E[|U2(r)|] dr <∞, and

Lemma 2.17 ensure that Borel[t,T ]({r ∈ [t, T ] : E[|U2(r)|] = ∞}) = 0, E
[
|U2(Rθt )|

]
< ∞,

and

(T − t)E
[
U2(Rθt )

]
= (T − t)

∫
[t,T ]

E[U2(r)] (Rθt (P)B([t,T ]))(dr)

= (T − t)
∫

[t,T ]

E[U2(r)] (U[t,T ])(dr)

=
(T − t)
(T − t)

∫ T

t

E[U2(r)] dr =

∫ T

t

E[U2(r)] dr.

(3.34)

Combining this with (3.33) establishes (3.32). The proof of Lemma 3.7 is thus completed.

Lemma 3.8 (Expectations of MLP approximations). Assume Setting 3.1 and assume for
all t ∈ [0, T ], x ∈ Rd that

∫ T
t
E
[
|f(r,X0

t,r(x), 0)|
]
dr <∞. Then

(i) for all M ∈ N, n ∈ N0, t ∈ [0, T ], s ∈ [t, T ], x ∈ Rd it holds that

E
[
|V 0
M,n(s,X0

t,s(x))|
]

+ (T − t)E
[
|V 0
M,n(R0

t , X
0
t,R0

t
(x))|

]
+ (T − t)E

[
|f
(
R0
t , X

0
t,R0

t
(x), V 0

M,n(R0
t , X

0
t,R0

t
(x))

)
|
]

= E
[
|V 0
M,n(s,X0

t,s(x))|
]

+

∫ T

t

E
[
|V 0
M,n(r,X0

t,r(x))|
]
dr

+

∫ T

t

E
[
|f
(
r,X0

t,r(x), V 0
M,n(r,X0

t,r(x))
)
|
]
dr <∞

(3.35)

and

(ii) for all M,n ∈ N, t ∈ [0, T ], x ∈ Rd it holds that

E
[
V 0
M,n(t, x)

]
= E

[
g(X0

t,T (x)) +

∫ T

t

f
(
r,X0

t,r(x), V 0
M,n−1(r,X0

t,r(x))
)
dr

]
. (3.36)

Proof of Lemma 3.8. Throughout this proof let M ∈ N, x ∈ Rd. Observe that Lemma 3.7,
items (i)–(ii) in Lemma 3.6, and the fact that for all n ∈ N it holds that V 0

M,n, X0, and R0

are independent demonstrate that for all n ∈ N0, t ∈ [0, T ] it holds that

(T − t)E
[
|V 0
M,n(R0

t , X
0
t,R0

t
(x))|

]
+ (T − t)E

[∣∣f(R0
t , X

0
t,R0

t
(x), V 0

M,n(R0
t , X

0
t,R0

t
(x))

)∣∣]
=

∫ T

t

E
[
|V 0
M,n(r,X0

t,r(x))|
]
dr +

∫ T

t

E
[∣∣f(r,X0

t,r(x), V 0
M,n(r,X0

t,r(x))
)∣∣] dr. (3.37)
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Next we claim that for all n ∈ N0, t ∈ [0, T ], s ∈ [t, T ] it holds that

E
[
|V 0
M,n(s,X0

t,s(x))|
]

+

∫ T

t

E
[
|V 0
M,n(r,X0

t,r(x))|
]
dr

+

∫ T

t

E
[
|f(r,X0

t,r(x), V 0
M,n(r,X0

t,r(x)))|
]
dr <∞.

(3.38)

We now prove (3.38) by induction on n ∈ N0. For the base case n = 0 observe that
the hypothesis that V 0

M,0 = 0 and the hypothesis that for all t ∈ [0, T ] it holds that∫ T
t
E
[
|f(r,X0

t,r(x), 0)|
]
dr <∞ imply that for all t ∈ [0, T ], s ∈ [t, T ] it holds that

E
[
|V 0
M,0(s,X0

t,s(x))|
]

+

∫ T

t

E
[
|V 0
M,0(r,X0

t,r(x))|
]
dr

+

∫ T

t

E
[∣∣f(r,X0

t,r(x), V 0
M,0(r,X0

t,r(x))
)∣∣] dr =

∫ T

t

E
[
|f(r,X0

t,r(x), 0)|
]
dr <∞.

(3.39)

This establishes (3.38) in the case n = 0. For the induction step N0 3 (n− 1)→ n ∈ N
let n ∈ N and assume that for all k ∈ N0 ∩ [0, n), t ∈ [0, T ], s ∈ [t, T ] it holds that

E
[
|V 0
M,k(s,X0

t,s(x))|
]

+

∫ T

t

E
[
|V 0
M,k(r,X0

t,r(x))|
]
dr

+

∫ T

t

E
[∣∣f(r,X0

t,r(x), V 0
M,k(r,X0

t,r(x))
)∣∣] dr <∞. (3.40)

Note that (3.5) and the triangle inequality ensure that for all t ∈ [0, T ], s ∈ [t, T ] it holds
that

E
[
|V 0
M,n(s,X0

t,s(x))|
]

≤ 1

Mn

[
Mn∑
m=1

E
[∣∣g(X(0,n,−m)

s,T (X0
t,s(x))

)∣∣] ]

+

n−1∑
k=0

(T − s)
Mn−k

[
Mn−k∑
m=1

E
[∣∣∣f(R(0,k,m)

s , X
(0,k,m)

s,R
(0,k,m)
s

(X0
t,s(x)), V

(0,k,m)
M,k

(
R(0,k,m)
s , X

(0,k,m)

s,R
(0,k,m)
s

(X0
t,s(x))

))∣∣∣]
+ 1N(k)E

[∣∣∣f(R(0,k,m)
s , X

(0,k,m)

s,R
(0,k,m)
s

(X0
t,s(x)), V

(0,k,−m)
M,k−1

(
R(0,k,m)
s , X

(0,k,m)

s,R
(0,k,m)
s

(X0
t,s(x))

))∣∣∣]].
(3.41)

Furthermore, observe that (3.3), (3.4), and item (iv) in Lemma 3.6 assure that for all
m ∈ Z, t ∈ [0, T ], s ∈ [t, T ] it holds that

E
[∣∣g(X(0,n,m)

s,T (X0
t,s(x))

)∣∣] = E
[∣∣g(X(0,n,m)

t,T (x)
)∣∣] = E

[∣∣g(X0
t,T (x)

)∣∣] <∞. (3.42)

Moreover, note that Lemma 3.7, the hypothesis that (Xθ)θ∈Θ are independent, the
hypothesis that (Rθ)θ∈Θ are independent, the hypothesis that (Xθ)θ∈Θ and (Rθ)θ∈Θ are
independent, items (i)–(ii) & (iv)–(v) in Lemma 3.6, (3.3), and Lemma 2.16 demonstrate
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that for all i, j, l,m ∈ Z, k ∈ N0, t ∈ [0, T ], s ∈ [t, T ] it holds that

(T − s)E
[∣∣∣f(R(0,j,m)

s , X
(0,j,m)

s,R
(0,j,m)
s

(X0
t,s(x)), V

(0,j,i)
M,k

(
R(0,j,m)
s , X

(0,j,m)

s,R
(0,j,m)
s

(X0
t,s(x))

))∣∣∣]
=

∫ T

s

E
[∣∣∣f(r,X(0,j,m)

s,r (X0
t,s(x)), V

(0,j,i)
M,k

(
r,X(0,j,m)

s,r (X0
t,s(x))

))∣∣∣] dr
=

∫ T

s

∫
Rd
E
[∣∣f(r, y, V (0,j,i)

M,k (r, y)
)∣∣] ((X(0,j,m)

s,r (X0
t,s(x)))(P)B(Rd))(dy) dr

=

∫ T

s

∫
Rd
E
[∣∣f(r, y, V 0

M,k(r, y)
)∣∣] (X0

t,r(x)(P)B(Rd))(dy) dr

=

∫ T

s

E
[∣∣f(r,X0

t,r(x), V 0
M,k(r,X0

t,r(x))
)∣∣] dr.

(3.43)

Combining this with (3.40), (3.41), and (3.42) establishes that for all t ∈ [0, T ], s ∈ [t, T ]

it holds that

E
[
|V 0
M,n(s,X0

t,s(x))|
]

≤

(
n−1∑
k=0

1

Mn−k

Mn−k∑
m=1

[∫ T

s

E
[∣∣f(r,X0

t,r(x), V 0
M,k

(
r,X0

t,r(x)
))∣∣] dr

+ 1N(k)

∫ T

s

E
[∣∣f(r,X0

t,r(x), V 0
M,k−1

(
r,X0

t,r(x)
))∣∣] dr])+

1

Mn

[
Mn∑
m=1

E
[∣∣g(X0

t,T (x)
)∣∣] ]

=

[
n−1∑
k=0

∫ T

s

E
[∣∣f(r,X0

t,r(x), V 0
M,k

(
r,X0

t,r(x)
))∣∣] dr

+ 1N(k)

∫ T

s

E
[∣∣f(r,X0

t,r(x), V 0
M,k−1

(
r,X0

t,r(x)
))∣∣] dr]+ E

[∣∣g(X0
t,T (x)

)∣∣]
≤ 2

[
n−1∑
k=0

∫ T

t

E
[∣∣f(r,X0

t,r(x), V 0
M,k

(
r,X0

t,r(x)
))∣∣] dr]+ E

[∣∣g(X0
t,T (x)

)∣∣] <∞.
(3.44)

Hence, we obtain that for all t ∈ [0, T ] it holds that

∫ T

t

E
[
|V 0
M,n(r,X0

t,r(x))|
]
dr ≤ (T − t) sup

s∈[t,T ]

E
[
|V 0
M,n(s,X0

t,s(x))|
]

≤ (T − t)

(
2

[
n−1∑
k=0

∫ T

t

E
[∣∣f(r,X0

t,r(x), V 0
M,k

(
r,X0

t,r(x)
))∣∣] dr]+ E

[∣∣g(X0
t,T (x)

)∣∣]) <∞.

(3.45)

The hypothesis that for all t ∈ [0, T ] it holds that
∫ T
t
E
[
|f(r,X0

t,r(x), 0)|
]
dr < ∞ and

the fact that for all t ∈ [0, T ], x ∈ Rd, v ∈ R it holds that |f(t, x, v)| ≤ |f(t, x, 0)| + L|v|
therefore assure that for all t ∈ [0, T ] it holds that

∫ T

t

E
[∣∣f(r,X0

t,r(x), V 0
M,n(r,X0

t,r(x))
)∣∣] dr

≤
∫ T

t

E
[
|f(r,X0

t,r(x), 0)|
]
dr + L

∫ T

t

E
[
|V 0
M,n(r,X0

t,r(x))|
]
dr <∞.

(3.46)
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This, (3.44), and (3.45) establish that for all t ∈ [0, T ], s ∈ [t, T ] it holds that

E
[
|V 0
M,n(s,X0

t,s(x))|
]

+

∫ T

t

E
[
|V 0
M,n(r,X0

t,r(x))|
]
dr

+

∫ T

t

E
[∣∣f(r,X0

t,r(x), V 0
M,n(r,X0

t,r(x))
)∣∣] dr <∞. (3.47)

Induction thus proves (3.38). Combining (3.37) and (3.38) establishes item (i). Next
observe that (3.5), (3.38), items (i)–(ii) & (iv)–(v) in Lemma 3.6, the hypothesis that
(Xθ)θ∈Θ are independent, the hypothesis that (Rθ)θ∈Θ are independent, the hypothesis
that (Xθ)θ∈Θ and (Rθ)θ∈Θ are independent, and Lemma 3.5 ensure that for all n ∈ N,
t ∈ [0, T ] it holds that

E
[
V 0
M,n(t, x)

]
=

1

Mn

(
Mn∑
m=1

E
[
g
(
X

(0,n,−m)
t,T (x)

)])

+

n−1∑
k=0

(T − t)
Mn−k

[
Mn−k∑
m=1

E

[
f
(
R

(0,k,m)
t , X

(0,k,m)

t,R
(0,k,m)
t

(x), V
(0,k,m)
M,k

(
R

(0,k,m)
t , X

(0,k,m)

t,R
(0,k,m)
t

(x)
))]

− 1N(k)E

[
f
(
R

(0,k,m)
t , X

(0,k,m)

t,R
(0,k,m)
t

(x), V
(0,k,−m)
M,k−1

(
R

(0,k,m)
t , X

(0,k,m)

t,R
(0,k,m)
t

(x)
))] ]

= (T − t)

(
n−1∑
k=0

E
[
f
(
R0
t , X

0
t,R0

t
(x), V 0

M,k(R0
t , X

0
t,R0

t
(x))

)]
− 1N(k)E

[
f
(
R0
t , X

0
t,R0

t
(x), V 0

M,k−1(R0
t , X

0
t,R0

t
(x))

)])
+ E

[
g
(
X0
t,T (x)

)]
= (T − t)E

[
f
(
R0
t , X

0
t,R0

t
(x), V 0

M,n−1(R0
t , X

0
t,R0

t
(x))

)]
+ E

[
g
(
X0
t,T (x)

)]
.

(3.48)

Lemma 3.7, items (i)–(ii) in Lemma 3.6, the fact that for all n ∈ N0 it holds that V 0
M,n, X0,

and R0 are independent, (3.38), and Fubini’s theorem therefore imply that for all n ∈ N,
t ∈ [0, T ] it holds that

E
[
V 0
M,n(t, x)

]
=

∫ T

t

E
[
f
(
r,X0

t,r(x), V 0
M,n−1(r,X0

t,r(x))
)]
dr + E

[
g(X0

t,T (x))
]

= E

[
g(X0

t,T (x)) +

∫ T

t

f
(
r,X0

t,r(x), V 0
M,n−1(r,X0

t,r(x))
)
dr

]
.

(3.49)

This establishes item (ii). The proof of Lemma 3.8 is thus completed.

3.4.2 Biases of MLP approximations

Lemma 3.9 (Biases of MLP approximations). Assume Setting 3.1 and assume for all
t ∈ [0, T ], x ∈ Rd that

∫ T
t
E
[
|f(r,X0

t,r(x), 0)|
]
dr < ∞. Then it holds for all M,n ∈ N,

t ∈ [0, T ], x ∈ Rd that

∣∣u(t, x)− E
[
V 0
M,n(t, x)

]∣∣2 ≤ L2T

∫ T

t

E
[∣∣u(r,X0

t,r(x))− V 0
M,n−1(r,X0

t,r(x))
∣∣2] dr. (3.50)
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Proof of Lemma 3.9. Note that Lemma 3.8, the hypothesis that for all t ∈ [0, T ], x ∈ Rd it

holds that
∫ T
t
E
[
|f(r,X0

t,r(x), 0)|
]
dr <∞, (3.1), (3.4), and Tonelli’s theorem demonstrate

that for all M,n ∈ N, t ∈ [0, T ], x ∈ Rd it holds that∣∣u(t, x)− E
[
V 0
M,n(t, x)

]∣∣
=

∣∣∣∣∣E
[
g
(
X0
t,T (x)

)
+

∫ T

t

f
(
r,X0

t,r(x), u(r,X0
t,r(x))

)
dr

]

− E

[
g(X0

t,T (x)) +

∫ T

t

f
(
r,X0

t,r(x), V 0
M,n−1(r,X0

t,r(x))
)
dr

] ∣∣∣∣∣
=

∣∣∣∣∣E
[∫ T

t

f
(
r,X0

t,r(x), u(r,X0
t,r(x))

)
− f

(
r,X0

t,r(x), V 0
M,n−1(r,X0

t,r(x))
)
dr

] ∣∣∣∣∣
≤ E

[∫ T

t

∣∣f(r,X0
t,r(x), u(r,X0

t,r(x))
)
− f

(
r,X0

t,r(x), V 0
M,n−1(r,X0

t,r(x))
)∣∣ dr]

≤ E

[∫ T

t

L
∣∣u(r,X0

t,r(x))− V 0
M,n−1(r,X0

t,r(x))
∣∣ dr]

= L

∫ T

t

E
[∣∣u(r,X0

t,r(x))− V 0
M,n−1(r,X0

t,r(x))
∣∣] dr.

(3.51)

Lemma 2.10 and Jensen’s inequality hence show that for all M,n ∈ N, t ∈ [0, T ], x ∈ Rd
it holds that ∣∣u(t, x)− E

[
V 0
M,n(t, x)

]∣∣2
≤ L2

(∫ T

t

E
[∣∣u(r,X0

t,r(x))− V 0
M,n−1(r,X0

t,r(x))
∣∣] dr)2

≤ L2(T − t)
∫ T

t

(
E
[∣∣u(r,X0

t,r(x))− V 0
M,n−1(r,X0

t,r(x))
∣∣])2 dr

≤ L2T

∫ T

t

E
[∣∣u(r,X0

t,r(x))− V 0
M,n−1(r,X0

t,r(x))
∣∣2] dr.

(3.52)

The proof of Lemma 3.9 is thus completed.

3.4.3 Estimates for the variances of MLP approximations

Lemma 3.10. Let n ∈ N, let (Ω,F ,P) be a probability space, and letX1, X2, . . . , Xn : Ω→
R be independent random variables which satisfy for all i ∈ {1, 2, . . . , n} that E[|Xi|] <∞.
Then it holds that

Var

(
n∑
i=1

Xi

)
= E

[∣∣E[∑n
i=1Xi

]
−
∑n
i=1Xi

∣∣2]
=

n∑
i=1

E
[
|E[Xi]−Xi|2

]
=

n∑
i=1

Var (Xi) .

(3.53)

Proof of Lemma 3.10. Note that the fact that for all independent random variables
Y, Z : Ω→ R with E[|Y |+ |Z|] <∞ it holds that E[|Y Z|] <∞ and E[Y Z] = E[Y ]E[Z] (cf.,
e.g., Klenke [70, Theorem 5.4]) and the hypothesis that Xi : Ω→ R, i ∈ {1, 2, . . . , n}, are
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independent random variables assure that

E
[∣∣E[∑n

i=1Xi

]
−
∑n
i=1Xi

∣∣2]
= E

[∣∣∑n
i=1

(
E[Xi]−Xi

)∣∣2]
= E

 n∑
i,j=1

(E[Xi]−Xi)(E[Xj ]−Xj)


=

[
n∑
i=1

E
[
|E[Xi]−Xi|2

]]
+

 n∑
i,j=1,i6=j

E
[
E[Xi]−Xi

]
E
[
E[Xj ]−Xj

]
=

n∑
i=1

E
[
|E[Xi]−Xi|2

]
.

(3.54)

The proof of Lemma 3.10 is thus completed.

Lemma 3.11 (Estimates for the variances of MLP approximations). Assume Setting 3.1
and assume for all t ∈ [0, T ], x ∈ Rd that

∫ T
t
E
[
|f(r,X0

t,r(x), 0)|
]
dr <∞. Then it holds for

all M,n ∈ N, t ∈ [0, T ], x ∈ Rd that

E
[∣∣V 0

M,n(t, x)− E
[
V 0
M,n(t, x)

]∣∣2]
≤ 1

Mn

(
E
[
|g(X0

t,T (x))|2
]

+ T

∫ T

t

E
[
|f(r,X0

t,r(x), 0)|2
]
dr
)

+

n−1∑
k=1

2L2T
Mn−k

(∫ T

t

E
[∣∣u(r,X0

t,r(x))− V 0
M,k(r,X0

t,r(x))
∣∣2] dr

+

∫ T

t

E
[∣∣u(r,X0

t,r(x))− V 0
M,k−1(r,X0

t,r(x))
∣∣2] dr).

(3.55)

Proof of Lemma 3.11. Throughout this proof let M,n ∈ N, t ∈ [0, T ], x ∈ Rd. Observe
that Lemma 3.10, item (i) in Lemma 3.8, the fact that for all θ ∈ Θ it holds that
E
[
|g(X0

t,T (x))|
]
<∞, item (iii) in Lemma 3.6, and (3.5) imply that

E
[∣∣V 0

M,n(t, x)− E
[
V 0
M,n(t, x)

]∣∣2] = Var(V 0
M,n(t, x))

=

[
Mn∑
m=1

Var
(

1
Mn g

(
X

(0,n,−m)
t,T (x)

))]

+
n−1∑
k=0

Mn−k∑
m=1

Var

(
(T−t)
Mn−k

[
f
(
R

(0,k,m)
t , X

(0,k,m)

t,R
(0,k,m)
t

(x), V
(0,k,m)
M,k

(
R

(0,k,m)
t , X

(0,k,m)

t,R
(0,k,m)
t

(x)
))

− 1N(k)f
(
R

(0,k,m)
t , X

(0,k,m)

t,R
(0,k,m)
t

(x), V
(0,k,−m)
M,k−1

(
R

(0,k,m)
t , X

(0,k,m)

t,R
(0,k,m)
t

(x)
))])

.

(3.56)

Moreover, note that item (iv) in Lemma 3.6 and the fact that for all Z ∈ L1(P;R) it holds
that Var(Z) ≤ E[|Z|2] ensure that

Mn∑
m=1

Var
(

1
Mn g

(
X

(0,n,−m)
t,T (x)

))
= Mn Var

(
1
Mn g(X0

t,T (x))
)

= Mn

M2n Var
(
g(X0

t,T (x))
)
≤ 1

Mn

(
E
[
|g(X0

t,T (x))|2
] )
.

(3.57)
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In addition, note that items (i)–(ii) & (iv)–(v) in Lemma 3.6, the hypothesis that (Xθ)θ∈Θ

are independent, the hypothesis that (Rθ)θ∈Θ are independent, the hypothesis that
(Xθ)θ∈Θ and (Rθ)θ∈Θ are independent, the fact that for all Z ∈ L1(P;R) it holds that
Var(Z) ≤ E[|Z|2], and Lemma 3.5 show that for all k ∈ N0 ∩ [0, n) it holds that

Mn−k∑
m=1

Var

(
(T−t)
Mn−k

[
f
(
R

(0,k,m)
t , X

(0,k,m)

t,R
(0,k,m)
t

(x), V
(0,k,m)
M,k

(
R

(0,k,m)
t , X

(0,k,m)

t,R
(0,k,m)
t

(x)
))

− 1N(k)f
(
R

(0,k,m)
t , X

(0,k,m)

t,R
(0,k,m)
t

(x), V
(0,k,−m)
M,k−1

(
R

(0,k,m)
t , X

(0,k,m)

t,R
(0,k,m)
t

(x)
))])

= Mn−k Var

(
(T−t)
Mn−k

[
f
(
R0
t , X

0
t,R0

t
(x), V 0

M,k

(
R0
t , X

0
t,R0

t
(x)
))

− 1N(k)f
(
R0
t , X

0
t,R0

t
(x), V 1

M,k−1

(
R0
t , X

0
t,R0

t
(x)
))])

= Mn−k(T−t)2
M2(n−k) Var

(
f
(
R0
t , X

0
t,R0

t
(x), V 0

M,k

(
R0
t , X

0
t,R0

t
(x)
))

− 1N(k)f
(
R0
t , X

0
t,R0

t
(x), V 1

M,k−1

(
R0
t , X

0
t,R0

t
(x)
)))

≤ (T−t)2
Mn−k E

[∣∣∣f(R0
t , X

0
t,R0

t
(x), V 0

M,k

(
R0
t , X

0
t,R0

t
(x)
))

− 1N(k)f
(
R0
t , X

0
t,R0

t
(x), V 1

M,k−1

(
R0
t , X

0
t,R0

t
(x)
))∣∣∣2].

(3.58)

Lemma 3.7, the fact that X0 and R0 are independent, and the hypothesis that for all
θ ∈ Θ it holds that V θM,0 = 0 therefore demonstrate that

Mn∑
m=1

Var

(
(T−t)
Mn f

(
R

(0,0,m)
t , X

(0,0,m)

t,R
(0,0,m)
t

(x), V
(0,0,m)
M,0

(
R

(0,0,m)
t , X

(0,0,m)

t,R
(0,0,m)
t

(x)
)))

≤ (T − t)2

Mn
E
[
|f(R0

t , X
0
t,R0

t
(x), 0)|2

]
=

(T − t)
Mn

∫ T

t

E
[
|f(r,X0

t,r(x), 0)|2
]
dr.

(3.59)

In addition, observe that (3.1), (3.58), the fact that for all x, y ∈ [0,∞) it holds that
|x+ y|2 ≤ 2(|x|2 + |y|2), items (i)–(ii) & (v) in Lemma 3.6, the hypothesis that (Xθ)θ∈Θ are
independent, the hypothesis that (Rθ)θ∈Θ are independent, the hypothesis that (Xθ)θ∈Θ

and (Rθ)θ∈Θ are independent, and Lemma 3.5 assure that for all k ∈ N ∩ [1, n) it holds
that

Mn−k∑
m=1

Var

(
(T−t)
Mn−k

[
f
(
R

(0,k,m)
t , X

(0,k,m)

t,R
(0,k,m)
t

(x), V
(0,k,m)
M,k

(
R

(0,k,m)
t , X

(0,k,m)

t,R
(0,k,m)
t

(x)
))

− f
(
R

(0,k,m)
t , X

(0,k,m)

t,R
(0,k,m)
t

(x), V
(0,k,−m)
M,k−1

(
R

(0,k,m)
t , X

(0,k,m)

t,R
(0,k,m)
t

(x)
))])

≤ (T−t)2
Mn−k E

[
L2
∣∣V 0
M,k

(
R0
t , X

0
t,R0

t
(x)
)
− V 1

M,k−1

(
R0
t , X

0
t,R0

t
(x)
)∣∣2]

≤ 2L2(T−t)2
Mn−k

(
E
[∣∣V 0

M,k

(
R0
t , X

0
t,R0

t
(x)
)
− u
(
R0
t , X

0
t,R0

t
(x)
)∣∣2]

+ E
[∣∣V 0

M,k−1

(
R0
t , X

0
t,R0

t
(x)
)
− u
(
R0
t , X

0
t,R0

t
(x)
)∣∣2]).

(3.60)
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Lemma 3.7, items (i)–(ii) in Lemma 3.6, the hypothesis that (Xθ)θ∈Θ are independent, the
hypothesis that (Rθ)θ∈Θ are independent, and the hypothesis that (Xθ)θ∈Θ and (Rθ)θ∈Θ

are independent hence ensure that for all k ∈ N ∩ [1, n) it holds that

Mn−k∑
m=1

Var

(
(T−t)
Mn−k

[
f
(
R

(0,k,m)
t , X

(0,k,m)

t,R
(0,k,m)
t

(x), V
(0,k,m)
M,k

(
R

(0,k,m)
t , X

(0,k,m)

t,R
(0,k,m)
t

(x)
))

− f
(
R

(0,k,m)
t , X

(0,k,m)

t,R
(0,k,m)
t

(x), V
(0,k,−m)
M,k−1

(
R

(0,k,m)
t , X

(0,k,m)

t,R
(0,k,m)
t

(x)
))])

≤ 2L2(T−t)
Mn−k

(∫ T

t

E
[∣∣V 0

M,k

(
r,X0

t,r(x)
)
− u
(
r,X0

t,r(x)
)∣∣2] dr

+

∫ T

t

E
[∣∣V 0

M,k−1

(
r,X0

t,r(x)
)
− u
(
r,X0

t,r(x)
)∣∣2] dr).

(3.61)

Combining this with (3.56), (3.57), and (3.59) establishes that

E
[∣∣V 0

M,n(t, x)− E
[
V 0
M,n(t, x)

]∣∣2]
≤ 1

Mn

(
E
[
|g(X0

t,T (x))|2
] )

+ (T−t)
Mn

∫ T

t

E
[
|f(r,X0

t,r(x), 0)|2
]
dr

+

n−1∑
k=1

2L2(T−t)
Mn−k

(∫ T

t

E
[∣∣V 0

M,k

(
r,X0

t,r(x)
)
− u
(
r,X0

t,r(x)
)∣∣2] dr

+

∫ T

t

E
[∣∣V 0

M,k−1

(
r,X0

t,r(x)
)
− u
(
r,X0

t,r(x)
)∣∣2] dr)

≤ 1
Mn

(
E
[
|g(X0

t,T (x))|2
]

+ T

∫ T

t

E
[
|f(r,X0

t,r(x), 0)|2
]
dr
)

+

n−1∑
k=1

2L2T
Mn−k

(∫ T

t

E
[∣∣u(r,X0

t,r(x))− V 0
M,k(r,X0

t,r(x))
∣∣2] dr

+

∫ T

t

E
[∣∣u(r,X0

t,r(x))− V 0
M,k−1(r,X0

t,r(x))
∣∣2] dr).

(3.62)

The proof of Lemma 3.11 is thus completed.

3.4.4 On a geometric time-discrete Gronwall inequality

Lemma 3.12. Let α, β ∈ [0,∞), M ∈ (0,∞), (εn,q)n,q∈N0
⊆ [0,∞] satisfy for all n, q ∈ N0

that

εn,q ≤
α

Mn+q
+ β

[
n−1∑
k=0

εk,q+1

Mn−(k+1)

]
. (3.63)

Then it holds for all n, q ∈ N0 that

εn,q ≤
α(1 + β)n

Mn+q
<∞. (3.64)

Proof of Lemma 3.12. Throughout this proof assume w.l.o.g. that β > 0. We prove (3.64)
by induction on n ∈ N0. For the base case n = 0 observe that (3.63) assures that for all
q ∈ N0 it holds that

ε0,q ≤
α

M0+q
=

α

M0+q
(1 + β)0 <∞. (3.65)
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This proves (3.64) in the base case n = 0. For the induction step N0 3 (n− 1)→ n ∈ N
observe that (3.63) ensures that for all n ∈ N, q ∈ N0 with ∀ k ∈ N0∩ [0, n), p ∈ N0 : εk,p ≤
α (1+β)k

Mk+p it holds that

εn,q ≤
α

Mn+q
+ β

[
n−1∑
k=0

εk,q+1

Mn−(k+1)

]
≤ α

Mn+q
+ β

[
n−1∑
k=0

α (1+β)k

Mk+q+1

Mn−(k+1)

]

=
α

Mn+q
+ β

[
n−1∑
k=0

α(1 + β)k

Mn−(k+1)+(k+q+1)

]
=

α

Mn+q
+ β

[
n−1∑
k=0

α(1 + β)k

Mn+q

]

=
α

Mn+q

(
1 + β

[
n−1∑
k=0

(1 + β)k

])
=

α

Mn+q

(
1 + β

(1 + β)n − 1

(1 + β)− 1

)
=

α

Mn+q
(1 + β)n.

(3.66)

Induction hence establishes (3.64). The proof of Lemma 3.12 is thus completed.

3.4.5 Error estimates for MLP approximations

Corollary 3.13. Assume Setting 3.1 and assume for all t ∈ [0, T ], x ∈ Rd that∫ T
t
E
[
|f(r,X0

t,r(x), 0)|
]
dr <∞. Then it holds for all M,n ∈ N, t ∈ [0, T ], x ∈ Rd that

E
[
|u(t, x)− V 0

M,n(t, x)|2
]

≤ 1
Mn

(
E
[
|g(X0

t,T (x))|2
]

+ T

∫ T

t

E
[
|f(r,X0

t,r(x), 0)|2
]
dr
)

+

n−1∑
k=0

4L2T
Mn−(k+1)

∫ T

t

E
[∣∣u(r,X0

t,r(x))− V 0
M,k(r,X0

t,r(x))
∣∣2] dr.

(3.67)

Proof of Corollary 3.13. Throughout this proof let M,n ∈ N, t ∈ [0, T ], x ∈ Rd, C ∈ [0,∞],
(ek)k∈N0∩[0,n) ⊆ [0,∞] satisfy for all k ∈ N0 ∩ [0, n) that

C = E
[
|g(X0

t,T (x))|2
]

+ T

∫ T

t

E
[
|f(r,X0

t,r(x), 0)|2
]
dr (3.68)

and

ek =

∫ T

t

E
[∣∣u(r,X0

t,r(x))− V 0
M,k(r,X0

t,r(x))
∣∣2] dr. (3.69)

Note that item (i) in Lemma 3.8, the bias variance decomposition of the mean square
error (cf., e.g., Jentzen & von Wurstemberger [66, Lemma 2.2]), the hypothesis that
for all s ∈ [0, T ], z ∈ Rd it holds that

∫ T
s
E
[
|f(r,X0

s,r(z), 0)|
]
dr < ∞, Lemma 3.9, and

Lemma 3.11 demonstrate that

E
[
|u(t, x)− V 0

M,n(t, x)|2
]

= E
[∣∣V 0

M,n(t, x)− E[V 0
M,n(t, x)]

∣∣2]+
∣∣u(t, x)− E[V 0

M,n(t, x)]
∣∣2

≤ C
Mn +

n−1∑
k=1

2L2T
Mn−k (ek + ek−1) + L2Ten−1

≤ C
Mn +

[
n−1∑
k=1

2L2T
Mn−k ek

]
+

n−1∑
k=0

2L2T
Mn−(k+1) ek ≤ C

Mn +

n−1∑
k=0

4L2T
Mn−(k+1) ek.

(3.70)

The proof of Corollary 3.13 is thus completed.
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Lemma 3.14. Let T ∈ [0,∞), q ∈ N and let U : [0, T ] → [0,∞] be a B([0, T ])/B([0,∞])-
measurable function. Then∫ T

0

tq−1

(q − 1)!

∫ T

t

U(r) dr dt =

∫ T

0

tq

q!
U(t) dt. (3.71)

Proof of Lemma 3.14. Observe that Tonelli’s theorem assures that∫ T

0

tq−1

(q − 1)!

∫ T

t

U(r) dr dt

=

∫ T

0

∫ T

0

tq−1

(q − 1)!
U(r)1{(t,r)∈[0,T ]2 : t≤r}(t, r) dr dt

=

∫ T

0

∫ T

0

tq−1

(q − 1)!
U(r)1{(t,r)∈[0,T ]2 : t≤r}(t, r) dt dr

=

∫ T

0

∫ r

0

tq−1

(q − 1)!
dtU(r) dr =

∫ T

0

rq

q!
U(r) dr.

(3.72)

The proof of Lemma 3.14 is thus completed.

Proposition 3.15. Assume Setting 3.1, let ξ ∈ Rd, C ∈ [0,∞] satisfy that

C =

(E[|g(X0
0,T (ξ))|2

])1/2
+
√
T

(∫ T

0

E
[
|f(t,X0

0,t(ξ), 0)|2
]
dt

)1/2
 exp(LT ), (3.73)

and assume for all t ∈ [0, T ], x ∈ Rd that
∫ T

0

(
E
[
|u(r,X0

0,r(ξ))|2
])1/2

dr +∫ T
t
E
[
|f(r,X0

t,r(x), 0)|
]
dr <∞. Then it holds for all M ∈ N, n ∈ N0 that

(
E
[
|u(0, ξ)− V 0

M,n(0, ξ)|2
])1/2 ≤ C(1 + 2LT )n exp(M2 )

Mn/2
. (3.74)

Proof of Proposition 3.15. Throughout this proof assume w.l.o.g. that C <∞, let M ∈ N,
let εn,q ∈ [0,∞], n, q ∈ N0, be the extended real numbers which satisfy for all n, q ∈ N0

that

εn,0 = E
[
|u(0, ξ)− V 0

M,n(0, ξ)|2
]

and (3.75)

εn,q+1 =
1

T q+1

∫ T

0

tq

q!
E
[
|u(t,X0

0,t(ξ))− V 0
M,n(t,X0

0,t(ξ))|2
]
dt, (3.76)

and let µt : B(Rd) → [0, 1], t ∈ [0, T ], be the probability measures which satisfy for all
t ∈ [0, T ], B ∈ B(Rd) that

µt(B) = P(X0
0,t(ξ) ∈ B) = P(X1

0,t(ξ) ∈ B) =
(
(X1

0,t(ξ))(P)B(Rd)

)
(B) (3.77)

(cf. item (iv) in Lemma 3.6). Note that the fact that for all x, y ∈ [0,∞) it holds that
(x+ y)2 ≥ x2 + y2 assures that

C2 ≥

[
E
[
|g(X0

0,T (ξ))|2
]

+ T

∫ T

0

E
[
|f(t,X0

0,t(ξ), 0)|2
]
dt

]
exp(2LT )

≥ E
[
|g(X0

0,T (ξ))|2
]

+ T

∫ T

0

E
[
|f(t,X0

0,t(ξ), 0)|2
]
dt.

(3.78)

Next observe that items (i)–(ii) in Lemma 3.6, the hypothesis that (Xθ)θ∈Θ are indepen-
dent, the hypothesis that (Rθ)θ∈Θ are independent, the hypothesis that (Xθ)θ∈Θ and
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(Rθ)θ∈Θ are independent, Tonelli’s theorem, Corollary 3.13, and Lemma 2.16 ensure that
for all n ∈ N, t ∈ [0, T ] it holds that

E
[
|u(t,X0

0,t(ξ))− V 0
M,n(t,X0

0,t(ξ))|2
]

=

∫
Rd
E
[
|u(t, z)− V 0

M,n(t, z)|2
]
µt(dz)

≤
∫
Rd

[
1
Mn

(
E
[
|g(X0

t,T (z))|2
]

+ T

∫ T

t

E
[
|f(r,X0

t,r(z), 0)|2
]
dr
)

+

n−1∑
k=0

4L2T
Mn−(k+1)

∫ T

t

E
[∣∣u(r,X0

t,r(z))− V 0
M,k(r,X0

t,r(z))
∣∣2] dr]µt(dz)

= 1
Mn

(∫
Rd
E
[
|g(X0

t,T (z))|2
]
µt(dz) + T

∫ T

t

∫
Rd
E
[
|f(r,X0

t,r(z), 0)|2
]
µt(dz) dr

)
+

n−1∑
k=0

4L2T
Mn−(k+1)

∫ T

t

∫
Rd
E
[∣∣u(r,X0

t,r(z))− V 0
M,k(r,X0

t,r(z))
∣∣2] µt(dz) dr.

(3.79)

Moreover, observe that (3.77), (3.78), the fact that X0 and X1 are independent and
continuous random fields, (3.3), and Lemma 2.16 imply that for all t ∈ [0, T ] it holds that∫

Rd
E
[
|g(X0

t,T (z))|2
]
µt(dz) + T

∫ T

t

∫
Rd
E
[
|f(r,X0

t,r(z), 0)|2
]
µt(dz) dr

= E
[
|g(X0

t,T (X1
0,t(ξ)))|2

]
+ T

∫ T

t

E
[
|f(r,X0

t,r(X
1
0,t(ξ)), 0)|2

]
dr

= E
[
|g(X0

0,T (ξ))|2
]

+ T

∫ T

t

E
[
|f(r,X0

0,r(ξ), 0)|2
]
dr ≤ C2.

(3.80)

In addition, note that (3.77), items (i)–(ii) in Lemma 3.6, the hypothesis that (Xθ)θ∈Θ

are independent, the hypothesis that (Rθ)θ∈Θ are independent, and the hypothesis that
(Xθ)θ∈Θ and (Rθ)θ∈Θ are independent, (3.3), Lemma 2.16, and Lemma 3.5 assure that
for all n ∈ N0, t ∈ [0, T ], r ∈ [t, T ] it holds that∫

Rd
E
[∣∣u(r,X0

t,r(z))− V 0
M,n(r,X0

t,r(z))
∣∣2] µt(dz)

= E
[∣∣u(r,X0

t,r(X
1
0,t(ξ)))− V 0

M,n(r,X0
t,r(X

1
0,t(ξ)))

∣∣2]
= E

[∣∣u(r,X0
0,r(ξ))− V 0

M,n(r,X0
0,r(ξ))

∣∣2] .
(3.81)

Combining this with (3.79) and (3.80) ensures that for all n ∈ N, t ∈ [0, T ] it holds that

E
[
|u(t,X0

0,t(ξ))− V 0
M,n(t,X0

0,t(ξ))|2
]

≤ C2

Mn
+

n−1∑
k=0

4L2T
Mn−(k+1)

∫ T

t

E
[∣∣u(r,X0

0,r(ξ))− V 0
M,k(r,X0

0,r(ξ))
∣∣2] dr. (3.82)

The fact that P(X0
0,0(ξ) = ξ) = 1, the fact that for all n ∈ N it holds that V 0

M,n, X0, and
R0 are independent, Lemma 3.5, and (3.75) hence imply that for all n ∈ N it holds that

εn,0 = E
[
|u(0, X0

0,0(ξ))− V 0
M,n(0, X0

0,0(ξ))|2
]

≤ C2

Mn
+

n−1∑
k=0

4L2T 2

Mn−(k+1)T

∫ T

0

E
[∣∣u(r,X0

0,r(ξ))− V 0
M,k(r,X0

0,r(ξ))
∣∣2] dr

=
C2

Mn(0!)
+ 4L2T 2

[
n−1∑
k=0

εk,1
Mn−(k+1)

]
.

(3.83)

EJP 25 (2020), paper 101.
Page 46/73

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP423
http://www.imstat.org/ejp/


Overcoming the curse of dimensionality for pricing with default risks

Moreover, observe that Lemma 3.14 (with T = T , q = q, (U(r))r∈[0,T ] = (E[|u(r,X0
0,r(ξ))−

V 0
M,n(r,X0

0,r(ξ))|2])r∈[0,T ] for n ∈ N0, q ∈ N in the notation of Lemma 3.14) and (3.76)
demonstrate that for all n ∈ N0, q ∈ N it holds that

1

T q

(∫ T

0

tq−1

(q − 1)!

∫ T

t

E
[∣∣u(r,X0

0,r(ξ))− V 0
M,n(r,X0

0,r(ξ))
∣∣2] dr dt)

=
T

T q+1

(∫ T

0

tq

q!
E
[∣∣u(t,X0

0,t(ξ))− V 0
M,n(t,X0

0,t(ξ))
∣∣2] dt)

= Tεn,q+1.

(3.84)

This, (3.76), and (3.82) imply that for all n, q ∈ N it holds that

εn,q =
1

T q

(∫ T

0

tq−1

(q − 1)!
E
[
|u(t,X0

0,t(ξ))− V 0
M,n(t,X0

0,t(ξ))|2
]
dt

)

≤ C2

T qMn

(∫ T

0

tq−1

(q − 1)!
dt

)

+

n−1∑
k=0

4L2T
Mn−(k+1)T q

(∫ T

0

tq−1

(q − 1)!

∫ T

t

E
[∣∣u(r,X0

0,r(ξ))− V 0
M,k(r,X0

0,r(ξ))
∣∣2] dr dt)

=
C2

T qMn

T q

q!
+ 4L2T

[
n−1∑
k=0

Tεk,q+1

Mn−(k+1)

]
=

C2

Mn(q!)
+ 4L2T 2

[
n−1∑
k=0

εk,q+1

Mn−(k+1)

]
.

(3.85)

Furthermore, note the fact that
∫ T

0

(
E
[
|u(r,X0

0,r(ξ))|2
])1/2

dr <∞ and Lemma 3.3 prove
that

sup
t∈[0,T ]

E
[
|u(t,X0

0,t(ξ))|2
]
≤ C2. (3.86)

The fact that P(X0
0,0(ξ) = ξ) = 1 and the fact that V 0

M,0 = 0 hence assure that

ε0,0 = |u(0, ξ)|2 = E
[
|u(0, X0

0,0(ξ))|2
]
≤ C2 =

C2

M00!
. (3.87)

Moreover, observe that (3.86) and the fact that V 0
M,0 = 0 ensure that for all q ∈ N it holds

that

ε0,q =
1

T q

∫ T

0

tq−1

(q − 1)!
E
[
|u(t,X0

0,t(ξ))|2
]
dt ≤ C2

T q

∫ T

0

tq−1

(q − 1)!
dt =

C2

T q
T q

q!
=

C2

M0(q!)
.

(3.88)

Combining this, (3.83), (3.85), and (3.87) demonstrates that for all n, q ∈ N0 it holds that

εn,q ≤
C2

Mn(q)!
+ 4L2T 2

[
n−1∑
k=0

εk,q+1

Mn−(k+1)

]

=
C2Mq

Mn+q(q)!
+ 4L2T 2

[
n−1∑
k=0

εk,q+1

Mn−(k+1)

]
≤ C2 exp(M)

Mn+q
+ 4L2T 2

[
n−1∑
k=0

εk,q+1

Mn−(k+1)

]
.

(3.89)
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Lemma 3.12 (with α = C2 exp(M), β = 4L2T 2, M = M , (εn,q)n,q∈N0
= (εn,q)n,q∈N0

in the
notation of Lemma 3.12) therefore proves that for all n, q ∈ N0 it holds that

εn,q ≤
C2 exp(M)(1 + 4L2T 2)n

Mn+q
. (3.90)

This implies that for all n ∈ N0 it hold that

E
[
|u(0, ξ)− V 0

M,n(0, ξ)|2
]

= εn,0 ≤
C2(1 + 4L2T 2)n exp(M)

Mn
. (3.91)

The fact that for all x, y ∈ [0,∞) it holds that
√
x+ y ≤

√
x +
√
y hence demonstrates

that for all n ∈ N0 it holds that

(
E
[
|u(0, ξ)− V 0

M,n(0, ξ)|2
])1/2 ≤ C(

√
1 + 4L2T 2)n exp(M2 )

Mn/2
≤
C(1 + 2LT )n exp(M2 )

Mn/2
.

(3.92)
The proof of Proposition 3.15 is thus completed.

Corollary 3.16. Assume Setting 3.1, let ξ ∈ Rd, C ∈ [0,∞] satisfy that

C =

(E[|g(X0
0,T (ξ))|2

])1/2
+
√
T

(∫ T

0

E
[
|f(t,X0

0,t(ξ), 0)|2
]
dt

)1/2
 exp(LT ), (3.93)

and assume for all t ∈ [0, T ], x ∈ Rd that
∫ T

0

(
E
[
|u(r,X0

0,r(ξ))|2
])1/2

dr +∫ T
t
E
[
|f(r,X0

t,r(x), 0)|
]
dr <∞. Then it holds for all N ∈ N that

(
E
[
|u(0, ξ)− V 0

N,N (0, ξ)|2
])1/2 ≤ C [√e(1 + 2LT )√

N

]N
. (3.94)

Proof of Corollary 3.16. Proposition 3.15 establishes Corollary 3.16. The proof of Corol-
lary 3.16 is thus completed.

3.5 Complexity analysis for MLP approximation algorithms

In this subsection we consider the computational effort of the MLP scheme (cf. (3.5)
in Setting 3.1 above) introduced in Setting 3.1 and combine it with the L2-error estimate
in Corollary 3.16 to obtain a complexity analysis for the MLP scheme in Proposition 3.18
below. In Lemma 3.17 we think for all M,n ∈ N of CM,n as the number of realizations
of 1-dimensional random variables needed to simulate one realization of V θM,n(t, x) for

any θ ∈ Θ, t ∈ [0, T ], x ∈ Rd. The recursive inequality in (3.95) in Lemma 3.17 is based
on (3.5) and the assumption that the number of realizations of 1-dimensional random
variables needed to simulate Xθ

t,r(x) for any θ ∈ Θ, t ∈ [0, T ], r ∈ [t, T ], x ∈ Rd is bounded
by αd.

Lemma 3.17. Let d ∈ N, α ∈ [1/d,∞), (CM,n)M,n∈Z ⊆ [0,∞) satisfy for all n,M ∈ N that
CM,0 = 0 and

CM,n ≤ αdMn +

n−1∑
k=0

[
M (n−k)(αd+ 1 + CM,k + 1N(k)CM,k−1)

]
. (3.95)

Then it holds for all n,M ∈ N that CM,n ≤ αd (5M)n.
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Proof of Lemma 3.17. First, observe that (3.95) and the hypothesis that for all M ∈ N it
holds that CM,0 = 0 imply that for all n ∈ N, M ∈ N ∩ [2,∞) it holds that

(M−nCM,n) ≤ αd+

n−1∑
k=0

[
M−k(αd+ 1 + CM,k + 1N(k)CM,k−1)

]
= αd+ (αd+ 1)

[
n−1∑
k=0

M−k

]
+

[
n−1∑
k=0

M−kCM,k

]
+

[
n−2∑
k=0

M−(k+1)CM,k

]

= αd+ (αd+ 1) (1−M−n)
(1−M−1) +

[
n−1∑
k=0

M−kCM,k

]
+

1

M

[
n−2∑
k=0

M−kCM,k

]

≤ αd+ (αd+ 1) 1
(1− 1

2 )
+
(
1 + 1

M

) [n−1∑
k=0

M−kCM,k

]

= 3αd+ 2 +
(
1 + 1

M

) [n−1∑
k=1

M−kCM,k

]
.

(3.96)

The discrete Gronwall inequality in Corollary 2.3 (with N =∞, α = 3αd+2, β =
(
1 + 1

M

)
,

(εn)n∈N0
= (M−(n+1)CM,(n+1))n∈N0

for M ∈ N ∩ [2,∞) in the notation of Corollary 2.3)
hence ensures that for all n ∈ N0, M ∈ N ∩ [2,∞) it holds that

(M−(n+1)CM,n+1) ≤ (3αd+ 2)
(
2 + 1

M

)n
. (3.97)

This establishes that for all n ∈ N, M ∈ N ∩ [2,∞) it holds that

CM,n ≤ (3αd+ 2)
(
2 + 1

M

)n−1
Mn ≤ (5αd)3n−1Mn ≤ αd(5M)n. (3.98)

Moreover, observe that the fact that C1,0 = 0 and (3.95) demonstrate that for all n ∈ N it
holds that

C1,n ≤ αd+

n−1∑
k=0

(αd+ 1 + C1,k + 1N(k)C1,k−1) ≤ αd+ n(αd+ 1) + 2

n−1∑
k=1

C1,k. (3.99)

Hence, we obtain for all n ∈ N, k ∈ N ∩ (0, n] that

C1,k ≤ αd+ k(αd+ 1) + 2

k−1∑
l=1

C1,l ≤ αd+ n(αd+ 1) + 2

k−1∑
l=1

C1,l. (3.100)

Combining this with the discrete Gronwall inequality in Corollary 2.3 (with N = n− 1,
α = αd+ n(αd+ 1), β = 2, (εk)k∈N0∩[0,N ] = (C1,k+1)k∈N0∩[0,n) for n ∈ N in the notation of
Corollary 2.3) proves that for all n ∈ N, k ∈ N0 ∩ [0, n) it holds that

C1,k+1 ≤ (αd+ n(αd+ 1))3k. (3.101)

The fact that for all n ∈ N it holds that (1 + 2n)3n−1 ≤ 5n hence shows that for all n ∈ N
it holds that

C1,n ≤ (αd+ n(αd+ 1))3n−1 = αd
(
1 + n

(
1 + 1

αd

))
3n−1 ≤ αd (1 + 2n)3n−1 ≤ αd 5n.

(3.102)
Combining this with (3.98) completes the proof of Lemma 3.17.
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Proposition 3.18. Assume Setting 3.1, let ξ ∈ Rd, C ∈ [0,∞), α ∈ [1,∞), (CM,n)M,n∈Z ⊆
N0 satisfy for all n,M ∈ N that

CM,0 = 0, CM,n ≤ αdMn +

n−1∑
k=0

[
M (n−k)(αd+ 1 + CM,k + 1N(k)CM,k−1)

]
, (3.103)

and C =

(E[|g(X0
0,T (ξ))|2

])1/2
+
√
T

(∫ T

0

E
[
|f(t,X0

0,t(ξ), 0)|2
]
dt

)1/2
 exp(LT ),

(3.104)

and assume for all t ∈ [0, T ], x ∈ Rd that
∫ T

0

(
E
[
|u(r,X0

0,r(ξ))|2
])1/2

dr +∫ T
t
E
[
|f(r,X0

t,r(x), 0)|
]
dr <∞. Then there exists a function N : (0,∞)→ N such that for

all ε, δ ∈ (0,∞) it holds that(
E
[
|u(0, ξ)− V 0

Nε,Nε(0, ξ)|
2
])1/2 ≤ ε and (3.105)

CNε,Nε ≤ αd max{1, C2+δ}
[

sup
n∈N

(4+8LT )(3+δ)(n+1)

n(nδ/2)

]
(min{1, ε})−(2+δ) <∞. (3.106)

Proof of Proposition 3.18. Throughout this proof let κ ∈ (0,∞) be given by

κ =
√
e(1 + 2LT ), (3.107)

let N : (0,∞)→ N be the function which satisfies for all ε ∈ (0,∞) that

Nε = min

{
n ∈ N : C

[
κ√
n

]n
≤ ε
}
, (3.108)

and let δ ∈ (0,∞). Note that (3.108) and Corollary 3.16 assure that for all ε ∈ (0,∞) it
holds that (

E
[
|u(0, ξ)− V 0

Nε,Nε(0, ξ)|
2
])1/2 ≤ C [ κ√

Nε

]Nε
≤ ε. (3.109)

Moreover, observe that (3.108) ensures that for all ε ∈ (0,∞) with Nε ≥ 2 it holds that

C

[
κ√

Nε − 1

]Nε−1

> ε. (3.110)

Lemma 3.17 and (3.103) hence show that for all ε ∈ (0,∞) with Nε ≥ 2 it holds that

CNε,Nε ≤ αd (5Nε)
Nε ≤ αd (5Nε)

Nε

[
C

[
κ√

Nε − 1

]Nε−1

ε−1

]2+δ

= αdC2+δε−(2+δ)

[
(5Nε)

Nεκ(Nε−1)(2+δ)

(Nε − 1)(Nε−1)(1+δ/2)

]
≤ αdC2+δε−(2+δ) sup

n∈N∩[2,∞)

[
(5n)nκ(n−1)(2+δ)

(n− 1)(n−1)(1+δ/2)

]
.

(3.111)

Next note that for all n ∈ N ∩ [2,∞) it holds that

nn

(n− 1)(n−1)
=

(
n

n− 1

)n−1

n =

(
1 +

1

n− 1

)n−1

n ≤ e n. (3.112)
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Furthermore, observe that the fact that κ ≥
√
e and the fact that

√
5e ≤ 4 imply that for

all n ∈ N ∩ [2,∞) it holds that

5n e κ(n−1)(2+δ) ≤ (
√

5)n(2+δ) (
√
e)2+δ κ(n−1)(2+δ)

≤ (
√

5)n(2+δ) κ2+δ κ(n−1)(2+δ)

= (
√

5κ)n(2+δ)

= (
√

5e(1 + 2LT ))n(2+δ)

≤ (4(1 + 2LT ))n(2+δ) = (4 + 8LT )n(2+δ).

(3.113)

Combining this, (3.112), and the fact that for all n ∈ N it holds that n ≤ (4 + 8LT )n

demonstrates that

sup
n∈N∩[2,∞)

[
(5n)nκ(n−1)(2+δ)

(n− 1)(n−1)(1+δ/2)

]
= sup
n∈N∩[2,∞)

[
nn

(n− 1)(n−1)

5nκ(n−1)(2+δ)

(n− 1)((n−1)δ)/2

]
≤ sup
n∈N∩[2,∞)

[
e n 5nκ(n−1)(2+δ)

(n− 1)((n−1)δ)/2

]
≤ sup
n∈N∩[2,∞)

[
n(4 + 8LT )n(2+δ)

(n− 1)((n−1)δ)/2

]
≤ sup
n∈N∩[2,∞)

[
(4 + 8LT )n(3+δ)

(n− 1)((n−1)δ)/2

]
.

(3.114)

In addition, observe that

sup
n∈N∩[2,∞)

[
(4 + 8LT )n(3+δ)

(n− 1)((n−1)δ)/2

]
= (4 + 8LT )3+δ sup

n∈N

[
(4 + 8LT )n(3+δ)

n(nδ)/2

]
= (4 + 8LT )3+δ sup

n∈N

[
(4 + 8LT )(3+δ)

nδ/2

]n
<∞.

(3.115)

This, (3.111), and (3.114) prove that for all ε ∈ (0,∞) with Nε ≥ 2 it holds that

CNε,Nε ≤ αdC2+δε−(2+δ) sup
n∈N

[
(4 + 8LT )(n+1)(3+δ)

n(nδ)/2

]
<∞. (3.116)

Next note that the hypothesis that C1,0 = 0, (3.103), and the fact that 3 ≤
supn∈N

[
(4+8LT )(n+1)(3+δ)

n(nδ)/2

]
<∞ assure that for all ε ∈ (0,∞) with Nε = 1 it holds that

CNε,Nε = C1,1 ≤ 2αd+ 1 ≤ 3αd

≤ αd max{1, C2+δ}
[

sup
n∈N

(4 + 8LT )(n+1)(3+δ)

n(nδ)/2

]
(min{1, ε})−(2+δ) <∞.

(3.117)

This and (3.116) demonstrate that for all ε ∈ (0,∞) it holds that

CNε,Nε ≤ αd max{1, C2+δ}
[

sup
n∈N

(4 + 8LT )(n+1)(3+δ)

n(nδ)/2

]
(min{1, ε})−(2+δ) <∞. (3.118)

Combining this with (3.109) completes the proof of Proposition 3.18.

3.6 MLP approximations for semilinear partial differential equations (PDEs)

In order to carry over the complexity analysis for the approximation of solutions of
stochastic fixed point equations in Subsection 3.5 to the approximation of solutions of
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semilinear Kolmogorov PDEs we present in Subsection 3.6.1 a result establishing a one
to one correspondence between viscosity solutions of semilinear Kolmogorov PDEs and
solutions of stochastic fixed point equations (see Proposition 3.22 in Subsection 3.6.1
below). This correspondence combined with the complexity analysis in Proposition 3.18
yields Proposition 3.23 in Subsection 3.6.2 below. Considering this complexity analysis
over variable dimensions shows that our proposed MLP algorithm overcomes the curse
of dimensionality in the approximation of solutions of certain semilinear Kolmogorov
PDEs (see Theorem 3.24 in Subsection 3.6.3 below, the main result of this paper, for
details).

3.6.1 Viscosity solutions of semilinear PDEs and stochastic fixed point equa-
tions

In this subsection we briefly recall the notion of viscosity solutions in the case of a
suitable class of parabolic PDEs (see, e.g., Crandall, Ishii, & Lions [27] and cf. Def-
inition 3.21 below) and we display in Proposition 3.22 a well-known correspondence
between viscosity solutions of semilinear Kolmogorov PDEs and solutions of stochastic
fixed point equations. The following presentations are modified extracts from Beck et
al. [5].

Definition 3.19 (Symmetric matrices). Let d ∈ N. Then we denote by Sd ⊆ Rd×d the set
given by

Sd = {A ∈ Rd×d : A = A∗} (3.119)

and we call Sd the set of all real symmetric (d × d)-matrices (we call Sd the set of all
symmetric (d× d)-matrices).

Definition 3.20 (Degenerate elliptic functions). Let d ∈ N, T ∈ (0,∞), let O ⊆ Rd be
an open set, and let F ∈ C((0, T ) × O ×R ×Rd × Sd,R) (cf. Definition 3.19). Then we
say that F is a degenerate elliptic function on (0, T )×O ×R×Rd × Sd (we say that F
is a degenerate elliptic function) if and only if for all t ∈ (0, T ), x ∈ O, r ∈ R, p ∈ Rd,
A,B ∈ Sd with ∀ v ∈ Rd : v∗(Av) ≤ v∗(Bv) it holds that

F (t, x, r, p, A) ≤ F (t, x, r, p, B). (3.120)

Definition 3.21 (Viscosity solution). Let d ∈ N, T ∈ (0,∞), let O ⊆ Rd be a non-empty
open set, and let F ∈ C((0, T ) × O ×R ×Rd × Sd,R) be a degenerate elliptic function
(cf. Definitions 3.19 and 3.20). Then we say that u is a viscosity solution of(

∂
∂tu
)
(t, x) + F (t, x, u(t, x), (∇xu)(t, x), (Hessx u)(t, x)) = 0 (3.121)

for (t, x) ∈ (0, T ) × O if and only if u ∈ C((0, T ) × O,R) is a continuous function from
(0, T )×O to R which satisfies for all t ∈ (0, T ), x ∈ O, ϕ ∈ C1,2((0, T )×O,R), k ∈ {0, 1}
with ϕ(t, x) = u(t, x) and (−1)k(ϕ− u) ≤ 0 that

(−1)k
[(

∂
∂tϕ
)
(t, x) + F (t, x, ϕ(t, x), (∇xϕ)(t, x), (Hessx ϕ)(t, x))

]
≤ 0. (3.122)

Proposition 3.22. Let d,m ∈ N, L, T ∈ (0,∞), let 〈·, ·〉 : Rd ×Rd → R be the Euclidean
scalar product onRd, let ‖·‖ : Rd → [0,∞) be the Euclidean norm onRd, let |||·||| : Rd×m →
[0,∞) be the Frobenius norm on Rd×m, let µ : [0, T ]×Rd → Rd and σ : [0, T ]×Rd → Rd×m

be globally Lipschitz continuous functions, let f ∈ C([0, T ]×Rd ×R,R), g ∈ C(Rd,R) be
at most polynomially growing functions, assume for all t ∈ [0, T ], x ∈ Rd, v, w ∈ R that

|f(t, x, v)− f(t, x, w)| ≤ L|v − w|, (3.123)

let (Ω,F ,P, (Ft)t∈[0,T ]) be a filtered probability space which satisfies the usual conditions,
and let W : [0, T ]× Ω→ Rd be a standard (Ft)t∈[0,T ]-Brownian motion. Then
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(i) for every t ∈ [0, T ], x ∈ Rd there exists an up to indistinguishability unique
(Fs)s∈[t,T ]-adapted stochastic process (Xt,s(x))s∈[t,T ] : [t, T ] × Ω → Rd with con-
tinuous sample paths which satisfies that for all s ∈ [t, T ] it holds P-a.s. that

Xt,s(x) = x+

∫ s

t

µ(r,Xt,r(x)) dr +

∫ s

t

σ(r,Xt,r(x)) dWr, (3.124)

(ii) there exists a unique at most polynomially growing function u ∈ C([0, T ]×Rd,R)

which satisfies that u|(0,T )×Rd : (0, T )×Rd → R is a viscosity solution of

(∂u∂t )(t, x) + 1
2 Trace

(
σ(t, x)[σ(t, x)]∗(Hessx u)(t, x)

)
+ 〈µ(t, x), (∇xu)(t, x)〉+ f(t, x, u(t, x)) = 0 (3.125)

for (t, x) ∈ (0, T ) × Rd (cf. Definition 3.21) and which satisfies for all x ∈ Rd that
u(T, x) = g(x),

(iii) there exists a unique at most polynomially growing function v ∈ C([0, T ]×Rd,R)

which satisfies for all t ∈ [0, T ], x ∈ Rd that E
[
|g(Xt,T (x))| +∫ T

t
|f(s,Xt,s(x), v(s,Xt,s(x)))| ds

]
<∞ and

v(t, x) = E

[
g
(
Xt,T (x)

)
+

∫ T

t

f
(
s,Xt,s(x), v(s,Xt,s(x))

)
ds

]
, (3.126)

and

(iv) it holds for all t ∈ [0, T ], x ∈ Rd that u(t, x) = v(t, x).

Proof of Proposition 3.22. First, observe that the hypothesis that µ and σ are globally
Lipschitz continuous functions implies that

sup
t∈[0,T ],x∈Rd

|〈x, µ(t, x)〉|+ |||σ(t, x)|||2

1 + ‖x‖2
<∞. (3.127)

Combining this, the hypothesis that f and g are at most polynomially growing functions,
the hypothesis that µ and σ are globally Lipschitz continuous functions, and (3.123) with
Beck et al. [5, Corollary 3.9] establishes items (i)–(iv). The proof of Proposition 3.22 is
thus completed.

3.6.2 MLP approximations in fixed space dimensions

Proposition 3.23. Let d,m ∈ N, T ∈ (0,∞), L,K, p, C1, C2,C ∈ [0,∞), α ∈ [1,∞),
ξ ∈ Rd, Θ = ∪∞n=1Z

n, let 〈·, ·〉 : Rd ×Rd → R be the Euclidean scalar product on Rd, let
‖·‖ : Rd → [0,∞) be the Euclidean norm on Rd, let |||·||| : Rd×m → [0,∞) be the Frobenius
norm on Rd×m, assume that

C = 4KeT (L+2+p(p+2)(C2+1))
(

(1 + ‖ξ‖2)
p/2 + (2p+ 1)|C1|

p/2
)
, (3.128)

let g ∈ C(Rd,R), f ∈ C([0, T ]×Rd ×R,R) satisfy for all t ∈ [0, T ], x ∈ Rd, v, w ∈ R that

max{|g(x)|, |f(t, x, 0)|} ≤ K(1 + ‖x‖p) and |f(t, x, v)− f(t, x, w)| ≤ L|v − w|,
(3.129)

let µ : [0, T ] × Rd → Rd and σ : [0, T ] × Rd → Rd×m be globally Lipschitz continuous
functions which satisfy for all t ∈ [0, T ], x ∈ Rd that

max{〈x, µ(t, x)〉 , |||σ(t, x)|||2} ≤ C1 + C2 ‖x‖2 , (3.130)

EJP 25 (2020), paper 101.
Page 53/73

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP423
http://www.imstat.org/ejp/


Overcoming the curse of dimensionality for pricing with default risks

let (Ω,F ,P) be a complete probability space, let Rθ : Ω→ [0, 1], θ ∈ Θ, be independent
U[0,1]-distributed random variables, let Rθ = (Rθt )t∈[0,T ] : [0, T ]× Ω→ [0, T ], θ ∈ Θ, be the
stochastic processes which satisfy for all t ∈ [0, T ], θ ∈ Θ that

Rθt = t+ (T − t)Rθ, (3.131)

let (Fθt )t∈[0,T ], θ ∈ Θ, be filtrations on (Ω,F ,P) which satisfy the usual conditions, as-
sume that (FθT )θ∈Θ is an independent family of sigma-algebras, assume that (FθT )θ∈Θ

and
(
Rθ
)
θ∈Θ

are independent, for every θ ∈ Θ let W θ : [0, T ] × Ω → Rm be a standard

(Ω,F ,P, (Fθt )t∈[0,T ])-Brownian motion, for every θ ∈ Θ letXθ = (Xθ
t,s(x))s∈[t,T ],t∈[0,T ],x∈Rd :

{(t, s) ∈ [0, T ]2 : t ≤ s}×Rd×Ω→ Rd be a continuous random field which satisfies for ev-
ery t ∈ [0, T ], x ∈ Rd that (Xθ

t,s(x))s∈[t,T ] : [t, T ]× Ω→ Rd is an (Fθs)s∈[t,T ]/B(Rd)-adapted
stochastic process and which satisfies that for all t ∈ [0, T ], s ∈ [t, T ], x ∈ Rd it holds
P-a.s. that

Xθ
t,s(x) = x+

∫ s

t

µ
(
r,Xθ

t,r(x)
)
dr +

∫ s

t

σ
(
r,Xθ

t,r(x)
)
dW θ

r , (3.132)

let V θM,n : [0, T ]×Rd×Ω→ R, M,n ∈ Z, θ ∈ Θ, be functions which satisfy for all M,n ∈ N,

θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that V θM,0(t, x) = 0 and

V θM,n(t, x)

=
1

Mn

[
Mn∑
m=1

g
(
X

(θ,n,−m)
t,T (x)

)]

+

n−1∑
k=0

(T − t)
Mn−k

[
Mn−k∑
m=1

f
(
R

(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x), V
(θ,k,m)
M,k

(
R

(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x)
))

− 1N(k)f
(
R

(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x), V
(θ,k,−m)
M,k−1

(
R

(θ,k,m)
t , X

(θ,k,m)

t,R
(θ,k,m)
t

(x)
))]

,

(3.133)

and let (CM,n)M,n∈Z ⊆ N0 satisfy for all n,M ∈ N that CM,0 = 0 and

CM,n ≤ αdMn +

n−1∑
k=0

[
M (n−k)(αd+ 1 + CM,k + 1N(k)CM,k−1)

]
. (3.134)

Then

(i) there exists a unique at most polynomially growing function u ∈ C([0, T ]×Rd,R)

which satisfies that u|(0,T )×Rd : (0, T )×Rd → R is a viscosity solution of

(∂u∂t )(t, x) + 1
2 Trace

(
σ(t, x)[σ(t, x)]∗(Hessx u)(t, x)

)
+ 〈µ(t, x), (∇xu)(t, x)〉+ f(t, x, u(t, x)) = 0 (3.135)

for (t, x) ∈ (0, T ) × Rd (cf. Definition 3.21) and which satisfies for all x ∈ Rd that
u(T, x) = g(x),

(ii) it holds for all M ∈ N, n ∈ N0 that

(
E
[
|u(0, ξ)− V 0

M,n(0, ξ)|2
])1/2 ≤ C(1 + 2LT )n exp(M2 )

Mn/2
<∞, (3.136)

and
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(iii) there exists a function N : (0,∞)→ N such that for all ε, δ ∈ (0,∞) it holds that

(
E
[
|u(0, ξ)− V 0

Nε,Nε(0, ξ)|
2
])1/2 ≤ ε and (3.137)

CNε,Nε ≤ αd max{1,C2+δ}
[

sup
n∈N

(4+8LT )(3+δ)(n+1)

n(nδ/2)

]
(min{1, ε})−(2+δ) <∞. (3.138)

Proof of Proposition 3.23. Throughout this proof let (ρ
(q)
1 )q∈[0,∞),(ρ

(q)
2 )q∈[0,∞) ⊆ [0,∞),

C ∈ [0,∞] satisfy for all q ∈ [0,∞) that

ρ
(q)
1 = q(q+3)(C2+1)

2 , ρ
(q)
2 = (q + 1)|C1|

q/2, and (3.139)

C =

(E[|g(X0
0,T (ξ))|2

])1/2
+
√
T

(∫ T

0

E
[
|f(t,X0

0,t(ξ), 0)|2
]
dt

)1/2
 eLT . (3.140)

Observe that the fact that µ and σ are globally Lipschitz continuous functions, (3.129),
and item (ii) in Proposition 3.22 assure that there exists a unique at most polynomially
growing function u ∈ C([0, T ]×Rd,R) which satisfies that u|(0,T )×Rd : (0, T )×Rd → R is
a viscosity solution of

(∂u∂t )(t, x) + 1
2 Trace

(
σ(t, x)[σ(t, x)]∗(Hessx u)(t, x)

)
+ 〈µ(t, x), (∇xu)(t, x)〉+ f(t, x, u(t, x)) = 0 (3.141)

for (t, x) ∈ (0, T )×Rd and which satisfies for all x ∈ Rd that u(T, x) = g(x). This proves
item (i). In addition, note that the fact that µ and σ are globally Lipschitz continuous
functions, (3.129), (3.132), and Proposition 3.22 assure that for all t ∈ [0, T ], x ∈ Rd it

holds that E
[
|g(X0

t,T (x))|+
∫ T
t
|f(r,X0

t,r(x), u(r,X0
t,r(x)))| dr

]
<∞ and

u(t, x) = E

[
g
(
X0
t,T (x)

)
+

∫ T

t

f
(
r,X0

t,r(x), u(r,X0
t,r(x))

)
dr

]
. (3.142)

Moreover, observe that the hypothesis that µ and σ are globally Lipschitz continuous
functions, the fact that for all θ, ϑ ∈ Θ with θ 6= ϑ it holds that FθT and FϑT are independent,
(3.132), and Lemma 2.20 assure that for all θ, ϑ ∈ Θ, r, s, t ∈ [0, T ], x ∈ Rd, B ∈ B(Rd)

with t ≤ s ≤ r and θ 6= ϑ it holds that P(Xθ
t,t(x) = x) = 1 and

P
(
Xθ
s,r(X

ϑ
t,s(x)) ∈ B

)
= P

(
Xθ
t,r(x) ∈ B

)
. (3.143)

Next note that the hypothesis that µ and σ are globally Lipschitz continuous functions,
(3.130), (3.132), and Lemma 2.7 (with d = d, m = m, T = T − t, C1 = C1, C2 =

C2, ξ = x, (µ(r, y))r∈[0,T ],y∈Rd = (µ(t + r, y))r∈[0,T−t],y∈Rd , (σ(r, y))r∈[0,T ],y∈Rd = (σ(t +

r, y))r∈[0,T−t],y∈Rd , (Ω,F ,P, (Fr)r∈[0,T ]) = (Ω,F ,P, (F0
t+r)r∈[0,T−t]), (Wr)r∈[0,T ] = (W 0

t+r−
W 0
t )r∈[0,T−t], (Xr)r∈[0,T ] = (X0

t,t+r(x))r∈[0,T−t] for t ∈ [0, T ], x ∈ Rd in the notation of
Lemma 2.7) assure that for all x ∈ Rd, t ∈ [0, T ], s ∈ [t, T ], q ∈ [0,∞) it holds that

E
[∥∥X0

t,s(x)
∥∥q] ≤ max{T, 1}

(
(1 + ‖x‖2)

q/2 + ρ
(q)
2

)
eρ

(q)
1 T . (3.144)
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For the next step let K, p ∈ [0,∞) satisfy for all t ∈ [0, T ], x ∈ Rd that

|u(t, x)| ≤ K(1 + ‖x‖p). (3.145)

This, Tonelli’s theorem, and (3.129) assure that for all t ∈ [0, T ], x ∈ Rd it holds that

E

[∣∣g(X0
t,T (x))

∣∣+

∫ T

t

∣∣f(r,X0
t,r(x), u(r,X0

t,r(x)))
∣∣ dr]

≤ E
[
K
(
1 + ‖X0

t,T (x)‖p
)]

+

∫ T

t

E
[
K
(
1 + ‖X0

t,r(x)‖p
)

+ L
∣∣u(r,X0

t,r(x))
∣∣] dr

≤ K
(
1 + E

[
‖X0

t,T (x)‖p
])

+

∫ T

t

K
(
1 + E

[
‖X0

t,r(x)‖p
])

+ LK
(
1 + E

[
‖X0

t,r(x)‖p
])
dr

≤ (1 + (T − t))K
(

1 + max{T, 1}
(

(1 + ‖x‖2)
p/2 + ρ

(p)
2

)
eρ

(p)
1 T

)
+ (T − t)LK

(
1 + max{T, 1}

(
(1 + ‖x‖2)

p/2 + ρ
(p)
2

)
eρ

(p)
1 T

)
<∞.

(3.146)

Moreover, observe that (3.129), (3.144), (3.145), and the triangle inequality demonstrate
that for all t ∈ [0, T ], x ∈ Rd it holds that

∫ T

0

(
E
[
|u(r,X0

0,r(ξ))|2
])1/2

dr +

∫ T

t

E
[
|f(r,X0

t,r(x), 0)|
]
dr

≤
∫ T

0

(
E
[∣∣K(1 + ‖X0

0,r(ξ)‖p)
∣∣2])1/2

dr +

∫ T

t

E
[
K(1 + ‖X0

t,r(x)‖p)
]
dr

≤
∫ T

0

K
(
1 +

(
E
[
‖X0

0,r(ξ)‖2p
])1/2 )

dr +

∫ T

t

K
(
1 + E

[
‖X0

t,r(x)‖p
] )
dr

≤ TK
(

1 +
[
max{T, 1}

(
(1 + ‖ξ‖2)p + ρ

(2p)
2

)
eρ

(2p)
1 T

]1/2)
+ (T − t)K

(
1 + max{T, 1}

(
(1 + ‖x‖2)

p/2 + ρ
(p)
2

)
eρ

(p)
1 T

)
<∞.

(3.147)

Combining this, (3.129), (3.133), (3.142), (3.143), (3.146), the fact that (Xθ)θ∈Θ are in-
dependent, and the fact that (Xθ)θ∈Θ and (Rθ)θ∈Θ are independent with Proposition 3.15
(with d = d, T = T , L = L, u = u, g = g, f = f , Rθ = Rθ, Xθ = Xθ, V θM,n = V θM,n, ξ = ξ,
C = C for M,n ∈ Z, θ ∈ Θ in the notation of Proposition 3.15) proves that for all M ∈ N,
n ∈ N0 it holds that

(
E
[
|u(0, ξ)− V 0

M,n(0, ξ)|2
])1/2 ≤ C(1 + 2LT )n exp(M2 )

Mn/2
. (3.148)

Next observe that (3.129), (3.144), and the triangle inequality imply that

(
E
[
|g(X0

0,T (ξ))|2
])1/2 ≤ (E[∣∣K(1 + ‖X0

0,T (ξ)‖p)
∣∣2])1/2

≤ K
(

1 +
(
E
[
‖X0

0,T (ξ)‖2p
])1/2)

≤ K
(

1 +
[
max{T, 1}

(
(1 + ‖ξ‖2)p + ρ

(2p)
2

)
eρ

(2p)
1 T

]1/2)
.

(3.149)
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In addition note that (3.129), (3.144), and the triangle inequality imply that(∫ T

0

E
[
|f(t,X0

0,t(ξ), 0)|2
]
dt

)1/2

≤

(∫ T

0

E
[∣∣K(1 + ‖X0

0,t(ξ)‖p)
∣∣2] dt)1/2

≤ K

√T +

(∫ T

0

E
[
‖X0

0,t(ξ)‖2p
]
dt

)1/2


≤ K
√
T

(
1 +

[
max{T, 1}

(
(1 + ‖ξ‖2)p + ρ

(2p)
2

)
eρ

(2p)
1 T

]1/2)
.

(3.150)

Combining this and (3.149) with (3.139) and (3.140) demonstrates that

C ≤ 2K max{T, 1}
(

1 +
[
max{T, 1}

(
(1 + ‖ξ‖2)p + ρ

(2p)
2

)
eρ

(2p)
1 T

]1/2)
eLT

≤ 2K(max{T, 1})3/2

(
1 +

[(
(1 + ‖ξ‖2)p + (2p+ 1)|C1|p

)
e

2p(2p+3)(C2+1)
2 T

]1/2
)
eLT

≤ 2Ke
3T/2

(
1 +

(
(1 + ‖ξ‖2)

p/2 +
√

(2p+ 1)|C1|
p/2
)
ep(p+

3/2)(C2+1)T
)
eLT

≤ 4KeT (L+2+p(p+2)(C2+1))
(

(1 + ‖ξ‖2)
p/2 + (2p+ 1)|C1|

p/2
)
≤ C <∞.

(3.151)

This and (3.148) establish item (ii). In addition, observe that (3.129), (3.133), (3.134),
(3.142), (3.143), (3.146) (3.147), the fact that (Xθ)θ∈Θ are independent, the fact that
(Xθ)θ∈Θ and (Rθ)θ∈Θ are independent, (3.151), and Proposition 3.18 (with d = d, T = T ,
L = L, u = u, g = g, f = f , Xθ = Xθ, V θM,n = V θM,n, ξ = ξ, C = C, α = α, CM,n = CM,n for
M,n ∈ Z, θ ∈ Θ in the notation of Proposition 3.15) prove that there exists a function
N : (0,∞)→ N such that for all ε, δ ∈ (0,∞) it holds that(

E
[
|u(0, ξ)− V 0

Nε,Nε(0, ξ)|
2
])1/2 ≤ ε and (3.152)

CNε,Nε ≤ αd max{1, C2+δ}
[

sup
n∈N

(4+8LT )(3+δ)(n+1)

n(nδ/2)

]
(min{1, ε})−(2+δ)

≤ αd max{1,C2+δ}
[

sup
n∈N

(4+8LT )(3+δ)(n+1)

n(nδ/2)

]
(min{1, ε})−(2+δ) <∞.

(3.153)

This establishes item (iii). The proof of Proposition 3.23 is thus completed.

3.6.3 MLP approximations in variable space dimensions

Theorem 3.24. Let T ∈ (0,∞), α, c,K ∈ [1,∞), L, p, P,P, q, C1, C2 ∈ [0,∞), Θ =

∪∞n=1Z
n, for every d ∈ N let ‖·‖Rd : Rd → [0,∞) be the Euclidean norm on Rd, let

〈·, ·〉Rd : Rd×Rd → R be the Euclidean scalar product on Rd, and let |||·|||d : Rd×d → [0,∞)

be the Frobenius norm on Rd×d, for every d ∈ N let ξd ∈ Rd satisfy that ‖ξd‖Rd ≤ cdq, for
every d ∈ N let gd ∈ C(Rd,R), fd ∈ C([0, T ]×Rd ×R,R) satisfy for all t ∈ [0, T ], x ∈ Rd,
v, w ∈ R that

max{|gd(x)|, |fd(t, x, 0)|} ≤ KdP(1 +‖x‖p
Rd

) and |fd(t, x, v)−fd(t, x, w)| ≤ L|v−w|,
(3.154)

for every d ∈ N let µd : [0, T ]×Rd → Rd and σd : [0, T ]×Rd → Rd×d be globally Lipschitz
continuous functions which satisfy for all t ∈ [0, T ], x ∈ Rd that

max{〈x, µd(t, x)〉Rd , |||σd(t, x)|||2d} ≤ C1d
P + C2 ‖x‖2Rd , (3.155)
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let (Ω,F ,P) be a complete probability space, let Rθ : Ω→ [0, 1], θ ∈ Θ, be independent
U[0,1]-distributed random variables, let Rθ = (Rθt )t∈[0,T ] : [0, T ]× Ω→ [0, T ], θ ∈ Θ, be the
stochastic processes which satisfy for all t ∈ [0, T ], θ ∈ Θ that

Rθt = t+ (T − t)Rθ, (3.156)

let (Fd,θt )t∈[0,T ], d ∈ N, θ ∈ Θ, be filtrations on (Ω,F ,P) which satisfy the usual conditions,

assume for every d ∈ N that (Fd,θT )θ∈Θ is an independent family of sigma-algebras,

assume that (Fd,θT )d∈N,θ∈Θ and
(
Rθ
)
θ∈Θ

are independent, for every d ∈ N, θ ∈ Θ let

W d,θ : [0, T ] × Ω → Rd be a standard (Ω,F ,P, (Fd,θt )t∈[0,T ])-Brownian motion, for every

d ∈ N, θ ∈ Θ let Xd,θ = (Xd,θ
t,s (x))s∈[t,T ],t∈[0,T ],x∈Rd : {(t, s) ∈ [0, T ]2 : t ≤ s} × Rd ×

Ω → Rd be a continuous random field which satisfies for every t ∈ [0, T ], x ∈ Rd that
(Xd,θ

t,s (x))s∈[t,T ] : [t, T ]× Ω→ Rd is an (Fd,θs )s∈[t,T ]/B(Rd)-adapted stochastic process and
which satisfies that for all t ∈ [0, T ], s ∈ [t, T ], x ∈ Rd it holds P-a.s. that

Xd,θ
t,s (x) = x+

∫ s

t

µd
(
r,Xd,θ

t,r (x)
)
dr +

∫ s

t

σd
(
r,Xd,θ

t,r (x)
)
dW d,θ

r , (3.157)

let V d,θM,n : [0, T ]×Rd × Ω→ R, M,n ∈ Z, θ ∈ Θ, d ∈ N, be functions which satisfy for all

d,M, n ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that V d,θM,0(t, x) = 0 and

V d,θM,n(t, x)

=
1

Mn

[
Mn∑
m=1

gd
(
X
d,(θ,n,−m)
t,T (x)

)]

+

n−1∑
k=0

(T − t)
Mn−k

[
Mn−k∑
m=1

fd

(
R

(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x), V
d,(θ,k,m)
M,k

(
R

(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x)
))

− 1N(k)fd

(
R

(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x), V
d,(θ,k,−m)
M,k−1

(
R

(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x)
))]

,

(3.158)

and let (Cd,M,n)M,n∈Z,d∈N ⊆ N0 satisfy for all d, n,M ∈ N that Cd,M,0 = 0 and

Cd,M,n ≤ αdMn +

n−1∑
k=0

[
M (n−k)(αd+ 1 + Cd,M,k + 1N(k)Cd,M,k−1)

]
. (3.159)

Then

(i) for every d ∈ N there exists a unique at most polynomially growing function
ud ∈ C([0, T ]×Rd,R) which satisfies that ud|(0,T )×Rd : (0, T )×Rd → R is a viscosity
solution of

(∂ud∂t )(t, x) + 1
2 Trace

(
σd(t, x)[σd(t, x)]∗(Hessx ud)(t, x)

)
+ 〈µd(t, x), (∇xud)(t, x)〉Rd + fd(t, x, ud(t, x)) = 0 (3.160)

for (t, x) ∈ (0, T ) × Rd (cf. Definition 3.21) and which satisfies for all x ∈ Rd that
ud(T, x) = gd(x) and

(ii) there exists a function N = (Nd,ε)d∈N,ε∈(0,∞) : N × (0,∞) → N such that for all
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d ∈ N, ε, δ ∈ (0,∞) it holds that(
E
[
|ud(0, ξd)− V d,0Nd,ε,Nd,ε

(0, ξd)|2
])1/2 ≤ ε and (3.161)

Cd,Nd,ε,Nd,ε ≤ α
[
4p+2KeT (L+2+p(p+2)(C2+1))

(
cp + |C1|

p/2
)](2+δ)

[
sup
n∈N

(4+8LT )(3+δ)(n+1)

n(nδ/2)

]
· d1+(P+max{pq,(Pp)/2})(2+δ)(min{1, ε})−(2+δ) <∞.

(3.162)

Proof of Theorem 3.24. Throughout this proof let (βδ)δ∈(0,∞) ⊆ (0,∞), (Cd)d∈N ⊆ [0,∞)

satisfy for all δ ∈ (0,∞), d ∈ N that βδ =
[
supn∈N

(4+8LT )(3+δ)(n+1)

n(nδ/2)

]
and

Cd = 4KdPeT (L+2+p(p+2)(C2+1))
(

(1 + ‖ξd‖2Rd)
p/2 + (2p+ 1)|C1d

P |p/2
)
. (3.163)

Observe that Proposition 3.23 (with d = d, m = d, T = T , L = L, K = KdP, p = p,
C1 = C1d

P , C2 = C2, α = α, ξ = ξd, g = gd, f = fd, µ = µd, σ = σd, Rθ = Rθ, Fθ = Fd,θ,
W θ = W d,θ, Xθ = Xd,θ, V θM,n = V d,θM,n, CM,n = Cd,M,n for d ∈ N, M,n ∈ Z, θ ∈ Θ in the
notation of Proposition 3.23) proves that for every d ∈ N

(I) there exists a unique at most polynomially growing function ud ∈ C([0, T ]×Rd,R)

which satisfies that ud|(0,T )×Rd : (0, T )×Rd → R is a viscosity solution of

(∂ud∂t )(t, x) + 1
2 Trace

(
σd(t, x)[σd(t, x)]∗(Hessx ud)(t, x)

)
+ 〈µd(t, x), (∇xud)(t, x)〉Rd + fd(t, x, ud(t, x)) = 0 (3.164)

for (t, x) ∈ (0, T )×Rd and which satisfies for all x ∈ Rd that ud(T, x) = gd(x) and

(II) there exists a function Nd = (Nd,ε)ε∈(0,∞) : (0,∞)→ N such that for all ε, δ ∈ (0,∞)

it holds that (
E
[
|ud(0, ξd)− V d,0Nd,ε,Nd,ε

(0, ξd)|2
])1/2

≤ ε and (3.165)

Cd,Nd,ε,Nd,ε ≤ αd max{1,C2+δ
d }βδ(min{1, ε})−(2+δ) <∞. (3.166)

Observe that item (I) proves item (i). Moreover, note that the hypothesis that for all
d ∈ N it holds that ‖ξd‖Rd ≤ cdq and the fact that (2p+ 1) ≤ 4p+1 imply that for all d ∈ N
it holds that

Cd ≤ 4KdPeT (L+2+p(p+2)(C2+1))
(

(1 + |cdq|2)
p/2 + (2p+ 1)|C1d

P |p/2
)

≤ 4KdPeT (L+2+p(p+2)(C2+1))
(
dpq(1 + c2)

p/2 + d
(Pp)/2(2p+ 1)|C1|

p/2
)

≤ dP+max{pq,(Pp)/2}4KeT (L+2+p(p+2)(C2+1))
(

2
p/2cp + 4p+1|C1|

p/2
)

≤ dP+max{pq,(Pp)/2}4p+2KeT (L+2+p(p+2)(C2+1))
(
cp + |C1|

p/2
)
≥ 1.

(3.167)

This and (3.166) demonstrate that for all d ∈ N, δ, ε ∈ (0,∞) it holds that

Cd,Nd,ε,Nd,ε ≤ α
[
4p+2KeT (L+2+p(p+2)(C2+1))

(
cp + |C1|

p/2
)](2+δ)

· d1+(P+max{pq,(Pp)/2})(2+δ)βδ(min{1, ε})−(2+δ) <∞.
(3.168)

Combining this and (3.165) establishes item (ii). The proof of Theorem 3.24 is thus
completed.
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4 MLP approximations for PDE models

The MLP scheme for semilinear Kolmogorov PDEs (cf. (3.158) in Theorem 3.24 above)
proposed in Subsection 3.6 can only be implemented for semilinear Kolmogorov PDEs
for which an explicit solution of the corresponding SDE is known. In this section, we
consider the MLP algorithm for two examples of such semilinear Kolmogorov PDEs,
semilinear heat equations (see Subsection 4.1 below) and semilinear Black-Scholes
equations (see Subsections 4.2–4.3 below). Apart from specifying the linear part of
the PDE we also choose a particular nonlinearity (cf. (4.46) in Corollary 4.5 below) in
Subsection 4.3 to obtain a PDE, which is used in the pricing of financial derivatives with
default risk (cf., e.g., Han et al. [54, (10)] and Duffie et al. [37]).

4.1 MLP approximations for semilinear heat equations

Theorem 4.1. Let T ∈ (0,∞), κ, p,P, q ∈ [0,∞), Θ = ∪∞n=1Z
n, for every d ∈ N let

‖·‖Rd : Rd → [0,∞) be the Euclidean norm on Rd, for every d ∈ N let ξd ∈ Rd satisfy that
‖ξd‖Rd ≤ κdq, for every d ∈ N let gd ∈ C(Rd,R), fd ∈ C([0, T ]×Rd ×R,R) satisfy for all
t ∈ [0, T ], x ∈ Rd, v, w ∈ R that

max{|gd(x)|, |fd(t, x, 0)|} ≤ κdP(1 + ‖x‖p
Rd

) and |fd(t, x, v)− fd(t, x, w)| ≤ κ|v −w|,
(4.1)

let (Ω,F ,P) be a probability space, let Rθ : Ω → [0, 1], θ ∈ Θ, be independent U[0,1]-
distributed random variables, let Rθ = (Rθt )t∈[0,T ] : [0, T ] × Ω → [0, T ], θ ∈ Θ, be the
stochastic processes which satisfy for all t ∈ [0, T ], θ ∈ Θ that

Rθt = t+ (T − t)Rθ, (4.2)

for every d ∈ N let W d,θ : [0, T ] × Ω → Rd, θ ∈ Θ, be independent standard Brownian
motions, assume that

(
W d,θ

)
d∈N,θ∈Θ

and
(
Rθ
)
θ∈Θ

are independent, for every d ∈ N,

θ ∈ Θ let Xd,θ = (Xd,θ
t,s (x))s∈[t,T ],t∈[0,T ],x∈Rd : {(t, s) ∈ [0, T ]2 : t ≤ s}×Rd×Ω→ Rd be the

function which satisfies for all t ∈ [0, T ], s ∈ [t, T ], x ∈ Rd that

Xd,θ
t,s (x) = x+W d,θ

s −W d,θ
t , (4.3)

let V d,θM,n : [0, T ]×Rd × Ω→ R, M,n ∈ Z, θ ∈ Θ, d ∈ N, be functions which satisfy for all

d,M, n ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that V d,θM,0(t, x) = 0 and

V d,θM,n(t, x)

=
1

Mn

[
Mn∑
m=1

gd
(
X
d,(θ,n,−m)
t,T (x)

)]

+

n−1∑
k=0

(T − t)
Mn−k

[
Mn−k∑
m=1

fd

(
R

(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x), V
d,(θ,k,m)
M,k

(
R

(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x)
))

− 1N(k)fd

(
R

(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x), V
d,(θ,k,−m)
M,k−1

(
R

(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x)
))]

,

(4.4)

and let (Cd,M,n)M,n∈Z,d∈N ⊆ N0 satisfy for all d, n,M ∈ N that Cd,M,0 = 0 and

Cd,M,n ≤ dMn +

n−1∑
k=0

[
M (n−k)(d+ 1 + Cd,M,k + 1N(k)Cd,M,k−1)

]
. (4.5)
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Then

(i) for every d ∈ N there exists a unique at most polynomially growing function
ud ∈ C([0, T ]×Rd,R) which satisfies that ud|(0,T )×Rd : (0, T )×Rd → R is a viscosity
solution of

(∂ud∂t )(t, x) + 1
2 (∆xud)(t, x) + fd(t, x, ud(t, x)) = 0 (4.6)

for (t, x) ∈ (0, T ) × Rd (cf. Definition 3.21) and which satisfies for all x ∈ Rd that
ud(T, x) = gd(x) and

(ii) there exist functions N = (Nd,ε)d∈N,ε∈(0,∞) : N × (0,∞) → N and c = (cδ)δ∈(0,∞) :

(0,∞)→ (0,∞) such that for all d ∈ N, ε, δ ∈ (0,∞) it holds that(
E
[
|ud(0, ξd)− V d,0Nd,ε,Nd,ε

(0, ξd)|2
])1/2 ≤ ε and (4.7)

Cd,Nd,ε,Nd,ε ≤ cδ d1+(P+max{pq,p/2})(2+δ)(min{1, ε})−(2+δ). (4.8)

Proof of Theorem 4.1. Throughout this proof assume w.l.o.g. that κ ≥ 1, assume w.l.o.g.
that (Ω,F ,P) is a complete probability space, for every d ∈ N let 〈·, ·〉Rd : Rd ×Rd → R

be the Euclidean scalar product on Rd and let |||·|||d : Rd×d → [0,∞) be the Frobenius
norm on Rd×d, let µd ∈ C([0, T ] × Rd,Rd), d ∈ N, and σd ∈ C([0, T ] × Rd,Rd×d), d ∈ N,
satisfy for all d ∈ N, t ∈ [0, T ], x ∈ Rd that

µd(t, x) = 0 and σd(t, x) = IRd , (4.9)

and for every d ∈ N, θ ∈ Θ, t ∈ [0, T ] let Fd,θt ⊆ F be the sigma-algebra which satisfies
that

F
d,θ
t =


⋂
s∈(t,T ] S

(
S(W d,θ

r : r ∈ [0, t]) ∪ {A ∈ F : P(A) = 0}
)

: t < T

S
(
S(W d,θ

r : r ∈ [0, T ]) ∪ {A ∈ F : P(A) = 0}
)

: t = T.
(4.10)

Note that (4.10) implies that for every d ∈ N, θ ∈ Θ it holds that (Fd,θt )t∈[0,T ] is a filtration
on (Ω,F ,P) which satisfies the usual conditions. Moreover, observe that (4.10) and
Lemma 2.18 demonstrate that for every d ∈ N, θ ∈ Θ it holds that W d,θ : [0, T ]× Ω→ Rd

is a standard (Ω,F ,P, (Fd,θt )t∈[0,T ])-Brownian motion. Next note that (4.3) and (4.9)
assure that for every d ∈ N, θ ∈ Θ it holds that Xd,θ is a continuous random field
which satisfies for every t ∈ [0, T ], x ∈ Rd that (Xd,θ

t,s (x))s∈[t,T ] : [t, T ] × Ω → Rd is an
(Fd,θs )s∈[t,T ]/B(Rd)-adapted stochastic process and which satisfies that for all t ∈ [0, T ],
s ∈ [t, T ], x ∈ Rd it holds P-a.s. that

x+

∫ s

t

µd
(
r,Xd,θ

t,r (x)
)
dr+

∫ s

t

σd
(
r,Xd,θ

t,r (x)
)
dW d,θ

r = x+W d,θ
s −W d,θ

t = Xd,θ
t,s (x). (4.11)

In addition, note that for all d ∈ N, t ∈ [0, T ], x ∈ Rd it holds that

max{〈x, µd(t, x)〉Rd , |||σd(t, x)|||2d} = max{0, d} = d. (4.12)

This, (4.1), (4.2), (4.4), (4.5), (4.9), (4.11), and Theorem 3.24 (with T = T , α = 1, c = κ,
K = κ, L = κ, p = p, P = 1, P = P, q = q, C1 = 1, C2 = 0, ξd = ξd, gd = gd, fd = fd,
µd = µd, σd = σd, Rθ = Rθ, Fd,θ = Fd,θ, W d,θ = W d,θ, Xd,θ = Xd,θ, V d,θM,n = V d,θM,n,
Cd,M,n = Cd,M,n for d ∈ N, M,n ∈ Z, θ ∈ Θ in the notation of Theorem 3.24) establish
that
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(I) for every d ∈ N there exists a unique at most polynomially growing function
ud ∈ C([0, T ]×Rd,R) which satisfies that ud|(0,T )×Rd : (0, T )×Rd → R is a viscosity
solution of

(∂ud∂t )(t, x) + 1
2 Trace

(
IRd [IRd ]∗(Hessx ud)(t, x)

)
+ 〈0, (∇xud)(t, x)〉Rd + fd(t, x, ud(t, x)) = 0 (4.13)

for (t, x) ∈ (0, T )×Rd and which satisfies for all x ∈ Rd that ud(T, x) = gd(x) and

(II) there exists a function N = (Nd,ε)d∈N,ε∈(0,∞) : N × (0,∞) → N such that for all
d ∈ N, ε, δ ∈ (0,∞) it holds that

(
E
[
|ud(0, ξd)− V d,0Nd,ε,Nd,ε

(0, ξd)|2
])1/2 ≤ ε and (4.14)

Cd,Nd,ε,Nd,ε ≤
[
4p+2κeT (κ+2+p(p+2)) (κp + 1)

](2+δ)
[

sup
n∈N

(4+8κT )(3+δ)(n+1)

n(nδ/2)

]
· d1+(P+max{pq,p/2})(2+δ)(min{1, ε})−(2+δ) <∞.

(4.15)

Note that item (I) establishes item (i). Moreover, observe that item (II) establishes
item (ii). The proof of Theorem 4.1 is thus completed.

4.2 MLP approximations for semilinear Black-Scholes equations

Lemma 4.2. Let d ∈ N, T ∈ (0,∞), (αi)i∈{1,2,...,d}, (βi)i∈{1,2,...,d} ⊆ R, let 〈·, ·〉 : Rd ×
Rd → R be the Euclidean scalar product on Rd, let Σ = (ζ1, . . . , ζd) ∈ Rd×d satisfy
for all i ∈ {1, 2, . . . , d} that 〈ζi, ζi〉 = 1, let (Ω,F ,P) be a complete probability space,
let W : [0, T ] × Ω → Rd be a d-dimensional standard Brownian motion, and let X =

(X
(i)
t,s (x))s∈[t,T ],t∈[0,T ],x∈Rd,i∈{1,2,...,d} : {(t, s) ∈ [0, T ]2 : t ≤ s}×Rd×Ω→ Rd be the function

which satisfies for all i ∈ {1, 2, . . . , d}, t ∈ [0, T ], s ∈ [t, T ], x = (x1, x2, . . . , xd) ∈ Rd that

X
(i)
t,s (x) = xi exp

((
αi − |βi|

2

2

)
(s− t) + βi〈ζi,Ws −Wt〉

)
. (4.16)

Then it holds that X is a continuous random field which satisfies that for all t ∈ [0, T ],
s ∈ [t, T ], x ∈ Rd it holds P-a.s. that

Xt,s(x) = x+

∫ s

t


α1X

(1)
t,r (x)
...

αdX
(d)
t,r (x)

 dr +

∫ s

t

diag
(
β1X

(1)
t,r (x), . . . , βdX

(d)
t,r (x)

)
Σ∗ dWr. (4.17)

Proof of Lemma 4.2. Throughout this proof let t ∈ [0, T ], s ∈ (0, T ], x = (x1, x2, . . . , xd) ∈
Rd, let fi : [0, T ] × Rd → R, i ∈ {1, 2, . . . , d}, be the functions which satisfy for all
i ∈ {1, 2, . . . , d}, r ∈ [0, T ], w ∈ Rd that

fi(r, w) = xi exp
(
(αi − |βi|

2

2 )r + βi 〈ζi, w〉
)
, (4.18)

let B = (B(i))i∈{1,2,...,d} : [0, s−t]×Ω→ Rd satisfy for all r ∈ [0, s−t] that Br = Wt+r−Wt,

and let ζ(j)
i ∈ R, i, j ∈ {1, 2, . . . , d}, satisfy for all i ∈ {1, 2, . . . , d} that ζi = (ζ

(j)
i )j∈{1,2,...,d}.

Observe that Itô’s formula (cf., e.g., Karatzas & Shreve [68, Theorem 3.3.6]) assures
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that for all i ∈ {1, 2, . . . , d} it holds P-a.s. that

X
(i)
t,s (x) = fi(s− t,Ws −Wt) = fi(s− t, Bs−t)

= fi(0, B0) +

∫ s−t

0

(
∂fi
∂r

)
(r,Br) dr +

d∑
j=1

∫ s−t

0

(
∂fi
∂wj

)
(r,Br) dB

(j)
r

+
1

2

d∑
j=1

∫ s−t

0

(
∂2fi
∂w2

j

)
(r,Br) dr

= fi(0, B0) +

∫ s−t

0

(αi − |βi|
2

2 )fi(r,Br) dr +

d∑
j=1

∫ s−t

0

βiζ
(j)
i fi(r,Br) dB

(j)
r

+
1

2

d∑
j=1

∫ s−t

0

|βi|2
∣∣ζ(j)
i

∣∣2fi(r,Br) dr.

(4.19)

The fact that for all i ∈ {1, 2, . . . , d} it holds that
∑d
j=1

∣∣ζ(j)
i

∣∣2 = 〈ζi, ζi〉 = 1 and the fact

that for all i ∈ {1, 2, . . . , d}, r ∈ [0, s− t] it holds that fi(r,Br) = X
(i)
t,t+r(x) hence assure

that for all i ∈ {1, 2, . . . , d} it holds P-a.s. that

X
(i)
t,s (x) = xi +

∫ s−t

0

(αi − |βi|22

)
+ 1

2 |βi|
2

 d∑
j=1

∣∣ζ(j)
i

∣∣2X
(i)
t,t+r(x) dr

+

∫ s−t

0

βiX
(i)
t,t+r(x)(ζi)

∗dBr

= xi +

∫ s−t

0

αiX
(i)
t,t+r(x) dr +

∫ s−t

0

βiX
(i)
t,t+r(x)(ζi)

∗dBr

= xi +

∫ s

t

αiX
(i)
t,r (x) dr +

∫ s

t

βiX
(i)
t,r (x)(ζi)

∗dWr.

(4.20)

This implies (4.17). The proof of Lemma 4.2 is thus completed.

Theorem 4.3. Let T ∈ (0,∞), κ, p,P, q ∈ [0,∞), (αd,i)i∈{1,2,...,d},d∈N, (βd,i)i∈{1,2,...,d},d∈N
⊆ R, Θ = ∪∞n=1Z

n satisfy that supd∈N,i∈{1,2,...,d}max{|αd,i|, |βd,i|2} ≤ κ, for every d ∈ N let

〈·, ·〉Rd : Rd ×Rd → R be the Euclidean scalar product on Rd and let ‖·‖Rd : Rd → [0,∞)

be the Euclidean norm on Rd, for every d ∈ N let ξd ∈ Rd, Σd = (ζd,1, . . . , ζd,d) ∈ Rd×d
satisfy for all i ∈ {1, 2, . . . , d} that ‖ξd‖Rd ≤ κdq and ‖ζd,i‖Rd = 1, for every d ∈ N let
µd : [0, T ] × Rd → Rd and σd : [0, T ] × Rd → Rd×d be the functions which satisfy for all
t ∈ [0, T ], x = (x1, x2, . . . , xd) ∈ Rd that

µd(t, x) = (αd,1x1, . . . , αd,dxd) and σd(t, x) = diag(βd,1x1, . . . , βd,dxd)Σ
∗
d, (4.21)

for every d ∈ N let gd ∈ C(Rd,R), fd ∈ C([0, T ] × Rd × R,R) satisfy for all t ∈ [0, T ],
x ∈ Rd, v, w ∈ R that

max{|gd(x)|, |fd(t, x, 0)|} ≤ κdP(1 + ‖x‖p
Rd

) and |fd(t, x, v)− fd(t, x, w)| ≤ κ|v −w|,
(4.22)

let (Ω,F ,P) be a probability space, let Rθ : Ω → [0, 1], θ ∈ Θ, be independent U[0,1]-
distributed random variables, let Rθ = (Rθt )t∈[0,T ] : [0, T ] × Ω → [0, T ], θ ∈ Θ, be the
stochastic processes which satisfy for all t ∈ [0, T ], θ ∈ Θ that

Rθt = t+ (T − t)Rθ, (4.23)
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for every d ∈ N let W d,θ : [0, T ] × Ω → Rd, θ ∈ Θ, be independent standard Brownian
motions, assume that

(
W d,θ

)
d∈N,θ∈Θ

and
(
Rθ
)
θ∈Θ

are independent, for every d ∈ N, θ ∈
Θ let Xd,θ = (Xd,θ,i

t,s (x))s∈[t,T ],t∈[0,T ],x∈Rd,i∈{1,2,...,d} : {(t, s) ∈ [0, T ]2 : t ≤ s}×Rd×Ω→ Rd

be the function which satisfies for all t ∈ [0, T ], s ∈ [t, T ], x = (x1, x2, . . . , xd) ∈ Rd,
i ∈ {1, 2, . . . , d} that

Xd,θ,i
t,s (x) = xi exp

((
αd,i − |βd,i|

2

2

)
(s− t) + βd,i〈ζd,i,W d,θ

s −W d,θ
t 〉Rd

)
, (4.24)

let V d,θM,n : [0, T ]×Rd × Ω→ R, M,n ∈ Z, θ ∈ Θ, d ∈ N, be functions which satisfy for all

d,M, n ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that V d,θM,0(t, x) = 0 and

V d,θM,n(t, x)

=
1

Mn

[
Mn∑
m=1

gd
(
X
d,(θ,n,−m)
t,T (x)

)]

+

n−1∑
k=0

(T − t)
Mn−k

[
Mn−k∑
m=1

fd

(
R

(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x), V
d,(θ,k,m)
M,k

(
R

(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x)
))

− 1N(k)fd

(
R

(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x), V
d,(θ,k,−m)
M,k−1

(
R

(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x)
))]

,

(4.25)

and let (Cd,M,n)M,n∈Z,d∈N ⊆ N0 satisfy for all d, n,M ∈ N that Cd,M,0 = 0 and

Cd,M,n ≤ dMn +

n−1∑
k=0

[
M (n−k)(d+ 1 + Cd,M,k + 1N(k)Cd,M,k−1)

]
. (4.26)

Then

(i) for every d ∈ N there exists a unique at most polynomially growing function
ud ∈ C([0, T ]×Rd,R) which satisfies that ud|(0,T )×Rd : (0, T )×Rd → R is a viscosity
solution of

(∂ud∂t )(t, x) + 1
2 Trace

(
σd(t, x)[σd(t, x)]∗(Hessx ud)(t, x)

)
+ 〈µd(t, x), (∇xud)(t, x)〉Rd + fd(t, x, ud(t, x)) = 0 (4.27)

for (t, x) ∈ (0, T ) × Rd (cf. Definition 3.21) and which satisfies for all x ∈ Rd that
ud(T, x) = gd(x) and

(ii) there exist functions N = (Nd,ε)d∈N,ε∈(0,∞) : N × (0,∞) → N and c = (cδ)δ∈(0,∞) :

(0,∞)→ (0,∞) such that for all d ∈ N, ε, δ ∈ (0,∞) it holds that(
E
[
|ud(0, ξd)− V d,0Nd,ε,Nd,ε

(0, ξd)|2
])1/2 ≤ ε and (4.28)

Cd,Nd,ε,Nd,ε ≤ cδ d1+(P+pq)(2+δ)(min{1, ε})−(2+δ). (4.29)

Proof of Theorem 4.3. Throughout this proof assume w.l.o.g. that κ ≥ 1, assume w.l.o.g.
that (Ω,F ,P) is a complete probability space, for every d ∈ N let |||·|||d : Rd×d → [0,∞) be

the Frobenius norm onRd×d, for every d ∈ N, i ∈ {1, 2, . . . , d} let ζ(j)
d,i ∈ R, j ∈ {1, 2, . . . , d},

satisfy that ζd,i = (ζ
(j)
d,i )j∈{1,2,...,d}, and for every d ∈ N, θ ∈ Θ, t ∈ [0, T ] let Fd,θt ⊆ F be

the sigma-algebra which satisfies that

F
d,θ
t =


⋂
s∈(t,T ] S

(
S(W d,θ

r : r ∈ [0, t]) ∪ {A ∈ F : P(A) = 0}
)

: t < T

S
(
S(W d,θ

r : r ∈ [0, T ]) ∪ {A ∈ F : P(A) = 0}
)

: t = T.
(4.30)
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Note that (4.30) implies that for every d ∈ N, θ ∈ Θ it holds that (Fd,θt )t∈[0,T ] is a
filtration on (Ω,F ,P) which satisfies the usual conditions. Moreover, observe that (4.30)
and Lemma 2.18 demonstrate that for every d ∈ N, θ ∈ Θ it holds that W d,θ : [0, T ] ×
Ω → Rd is a standard (Ω,F ,P, (Fd,θt )t∈[0,T ])-Brownian motion. In addition, note that
(4.21) and the fact that supd∈N,i∈{1,2,...,d} |αd,i| ≤ κ imply that for all d ∈ N, t ∈ [0, T ],

x = (x1, x2, . . . , xd) ∈ Rd it holds that

〈x, µd(t, x)〉Rd =

d∑
i=1

xiαd,ixi ≤
d∑
i=1

|xi|2|αd,i| ≤ κ ‖x‖2Rd . (4.31)

Furthermore, observe that (4.21), the fact that supd∈N,i∈{1,2,...,d} |βd,i|2 ≤ κ, and the
hypothesis that for all d ∈ N, i ∈ {1, 2, . . . , d} it holds that ‖ζd,i‖Rd = 1 assure that for all
d ∈ N, t ∈ [0, T ], x = (x1, x2, . . . , xd) ∈ Rd it holds that

|||σd(t, x)|||2d =

d∑
i,j=1

∣∣βd,ixiζ(j)
d,i

∣∣2 =

d∑
i=1

|βd,i|2|xi|2 d∑
j=1

∣∣ζ(j)
d,i

∣∣2
≤

d∑
i=1

κ |xi|2 ‖ζd,i‖2Rd = κ ‖x‖2Rd .

(4.32)

This and (4.31) ensure that for all d ∈ N, t ∈ [0, T ], x ∈ Rd it holds that

max{〈x, µd(t, x)〉Rd , |||σd(t, x)|||2d} ≤ κ ‖x‖
2
Rd . (4.33)

Next note that (4.21), (4.24), and Lemma 4.2 (with d = d, T = T , (αi)i∈{1,...,d} =

(αd,i)i∈{1,...,d}, (βi)i∈{1,...,d} = (βd,i)i∈{1,...,d}, Σ = Σd, (Ω,F ,P) = (Ω,F ,P), W = W d,θ,
X = Xd,θ for θ ∈ Θ, d ∈ N in the notation of Lemma 4.2) demonstrate that for all d ∈ N,
θ ∈ Θ it holds that Xd,θ is a continuous random field which satisfies for every t ∈ [0, T ],
x ∈ Rd that (Xd,θ

t,s (x))s∈[t,T ] : [t, T ]× Ω→ Rd is an (Fd,θs )s∈[t,T ]/B(Rd)-adapted stochastic
process and which satisfies that for all t ∈ [0, T ], s ∈ [t, T ], x ∈ Rd it holds P-a.s. that

Xd,θ
t,s (x) = x+

∫ s

t

µd
(
r,Xd,θ

t,r (x)
)
dr +

∫ s

t

σd
(
r,Xd,θ

t,r (x)
)
dW d,θ

r . (4.34)

Combining this, (4.22), the fact that for all d ∈ N it holds that µd and σd are globally
Lipschitz continuous functions, and (4.33) with Theorem 3.24 (with T = T , α = 1, c = κ,
K = κ, L = κ, p = p, P = 0, P = P, q = q, C1 = 0, C2 = κ, ξd = ξd, gd = gd, fd = fd,
µd = µd, σd = σd, (Ω,F ,P) = (Ω,F ,P), Rθ = Rθ, Fd,θ = Fd,θ, W d,θ = W d,θ, Xd,θ = Xd,θ,
V d,θM,n = V d,θM,n, Cd,M,n = Cd,M,n for d ∈ N, θ ∈ Θ, M,n ∈ Z, in the notation of Theorem 3.24)
establishes that

(I) for every d ∈ N there exists a unique at most polynomially growing function
ud ∈ C([0, T ]×Rd,R) which satisfies that ud|(0,T )×Rd : (0, T )×Rd → R is a viscosity
solution of

(∂ud∂t )(t, x) + 1
2 Trace

(
σd(t, x)[σd(t, x)]∗(Hessx ud)(t, x)

)
+ 〈µd(t, x), (∇xud)(t, x)〉Rd + fd(t, x, ud(t, x)) = 0 (4.35)

for (t, x) ∈ (0, T )×Rd and which satisfies for all x ∈ Rd that ud(T, x) = gd(x) and

(II) there exists a function N = (Nd,ε)d∈N,ε∈(0,∞) : N × (0,∞) → N such that for all

EJP 25 (2020), paper 101.
Page 65/73

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP423
http://www.imstat.org/ejp/


Overcoming the curse of dimensionality for pricing with default risks

d ∈ N, ε, δ ∈ (0,∞) it holds that(
E
[
|ud(0, ξd)− V d,0Nd,ε,Nd,ε

(0, ξd)|2
])1/2 ≤ ε and (4.36)

Cd,Nd,ε,Nd,ε ≤
[
4p+2κeT (κ+2+p(p+2)(κ+1))κp

](2+δ)
[

sup
n∈N

(4+8κT )(3+δ)(n+1)

n(nδ/2)

]
· d1+(P+pq)(2+δ)(min{1, ε})−(2+δ) <∞.

(4.37)

Observe that item (I) proves item (i). Furthermore, note that item (II) establishes item (ii).
The proof of Theorem 4.3 is thus completed.

Theorem 4.4 in an immediate consequence of Theorem 4.3 above. The proof of
Theorem 4.4 is therefore omitted.

Theorem 4.4. Let T ∈ (0,∞), κ, p,P, q ∈ [0,∞), (αd,i)i∈{1,2,...,d},d∈N, (βd,i)i∈{1,2,...,d},d∈N
⊆ R, Θ = ∪∞n=1Z

n satisfy that supd∈N,i∈{1,2,...,d}max{|αd,i|, |βd,i|2} ≤ κ, for every d ∈ N let

〈·, ·〉Rd : Rd ×Rd → R be the Euclidean scalar product on Rd and let ‖·‖Rd : Rd → [0,∞)

be the Euclidean norm on Rd, for every d ∈ N let ξd ∈ Rd, Σd = (ζd,1, . . . , ζd,d) ∈ Rd×d
satisfy for all i ∈ {1, 2, . . . , d} that ‖ξd‖Rd ≤ κdq and ‖ζd,i‖Rd = 1, let f : R → R be a
Lipschitz continuous function, for every d ∈ N let gd ∈ C(Rd,R) satisfy for all t ∈ [0, T ],
x ∈ Rd that

|gd(x)| ≤ κdP(1 + ‖x‖p
Rd

), (4.38)

let (Ω,F ,P) be a probability space, let Rθ : Ω → [0, 1], θ ∈ Θ, be independent U[0,1]-
distributed random variables, let Rθ = (Rθt )t∈[0,T ] : [0, T ] × Ω → [0, T ], θ ∈ Θ, be the
stochastic processes which satisfy for all t ∈ [0, T ], θ ∈ Θ that

Rθt = t+ (T − t)Rθ, (4.39)

for every d ∈ N let W d,θ : [0, T ] × Ω → Rd, θ ∈ Θ, be independent standard Brownian
motions, assume that

(
W d,θ

)
d∈N,θ∈Θ

and
(
Rθ
)
θ∈Θ

are independent, for every d ∈ N, θ ∈
Θ let Xd,θ = (Xd,θ,i

t,s (x))s∈[t,T ],t∈[0,T ],x∈Rd,i∈{1,2,...,d} : {(t, s) ∈ [0, T ]2 : t ≤ s}×Rd×Ω→ Rd

be the function which satisfies for all t ∈ [0, T ], s ∈ [t, T ], x = (x1, x2, . . . , xd) ∈ Rd,
i ∈ {1, 2, . . . , d} that

Xd,θ,i
t,s (x) = xi exp

((
αd,i − |βd,i|

2

2

)
(s− t) + βd,i〈ζd,i,W d,θ

s −W d,θ
t 〉Rd

)
, (4.40)

let V d,θM,n : [0, T ]×Rd × Ω→ R, M,n ∈ Z, θ ∈ Θ, d ∈ N, be functions which satisfy for all

d,M, n ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that V d,θM,0(t, x) = 0 and

V d,θM,n(t, x) =

n−1∑
k=0

(T − t)
Mn−k

[
Mn−k∑
m=1

f
(
V
d,(θ,k,m)
M,k

(
R

(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x)
))

− 1N(k)f
(
V
d,(θ,k,−m)
M,k−1

(
R

(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x)
))]

+

[
Mn∑
m=1

gd(X
d,(θ,n,−m)
t,T (x))

Mn

]
,

(4.41)

and let (Cd,M,n)M,n∈Z,d∈N ⊆ N0 satisfy for all d, n,M ∈ N that Cd,M,0 = 0 and

Cd,M,n ≤ dMn +

n−1∑
k=0

[
M (n−k)(d+ 1 + Cd,M,k + 1N(k)Cd,M,k−1)

]
. (4.42)
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Then

(i) for every d ∈ N there exists a unique at most polynomially growing function
ud ∈ C([0, T ]×Rd,R) which satisfies that ud|(0,T )×Rd : (0, T )×Rd → R is a viscosity
solution of

(∂ud∂t )(t, x) +

 d∑
i,j=1

βd,iβd,jxixj〈ζd,i,ζd,j〉Rd
2

(
∂2ud
∂xi∂xj

)
(t, x)


+

[
d∑
i=1

αd,ixi
(
∂ud
∂xi

)
(t, x)

]
+ f(ud(t, x)) = 0 (4.43)

for (t, x) ∈ (0, T ) × Rd (cf. Definition 3.21) and which satisfies for all x ∈ Rd that
ud(T, x) = gd(x) and

(ii) there exist functions N = (Nd,ε)d∈N,ε∈(0,∞) : N × (0,∞) → N and c = (cδ)δ∈(0,∞) :

(0,∞)→ (0,∞) such that for all d ∈ N, ε, δ ∈ (0,∞) it holds that(
E
[
|ud(0, ξd)− V d,0Nd,ε,Nd,ε

(0, ξd)|2
])1/2 ≤ ε and (4.44)

Cd,Nd,ε,Nd,ε ≤ cδ d1+(P+pq)(2+δ)(min{1, ε})−(2+δ). (4.45)

4.3 MLP approximations for the pricing of financial derivatives with default
risks

The next result, Corollary 4.5 below, is an immediate consequence of Theorem 4.4
above. The proof of Corollary 4.5 is therefore omitted.

Corollary 4.5. Let T,R, γl, γh, vl, vh ∈ (0,∞), p,P, q ∈ [0,∞), ε ∈ [0, 1), α, β ∈ R, f ∈
C(R,R), Θ = ∪∞n=1Z

n satisfy for all u ∈ R that γl < γh, vl > vh, and

f(u) = −Ru− (1− ε)
[
min

{
γh,max

{
γl,

(γh−γl)
(vh−vl) (u− vh) + γh

}}]
u, (4.46)

for every d ∈ N let ‖·‖Rd : Rd → [0,∞) be the Euclidean norm on Rd, let ξd ∈ Rd, d ∈ N,

satisfy that supd∈N
‖ξd‖Rd
dq < ∞, let gd ∈ C(Rd,R), d ∈ N, satisfy that

supd∈N,x∈Rd
|gd(x)||

dP(1+‖x‖p
Rd

)
<∞, let (Ω,F ,P) be a probability space, let Rθ : Ω→ [0, 1], θ ∈

Θ, be independent U[0,1]-distributed random variables, let Rθ = (Rθt )t∈[0,T ] : [0, T ]× Ω→
[0, T ], θ ∈ Θ, be the stochastic processes which satisfy for all t ∈ [0, T ], θ ∈ Θ that Rθt =

t+(T−t)Rθ, for every d ∈ N letW d,θ = (W d,θ,i)i∈{1,2,...,d} : [0, T ]×Ω→ Rd, θ ∈ Θ, be inde-
pendent standard Brownian motions, assume that

(
W d,θ

)
d∈N,θ∈Θ

and
(
Rθ
)
θ∈Θ

are inde-

pendent, for every d ∈ N, θ ∈ Θ letXd,θ = (Xd,θ,i
t,s (x))s∈[t,T ],t∈[0,T ],x∈Rd,i∈{1,2,...,d} : {(t, s) ∈

[0, T ]2 : t ≤ s} × Rd × Ω → Rd be the function which satisfies for all i ∈ {1, 2, . . . , d},
t ∈ [0, T ], s ∈ [t, T ], x = (x1, x2, . . . , xd) ∈ Rd that

Xd,θ,i
t,s (x) = xi exp

((
α− β2

2

)
(s− t) + β

(
W d,θ,i
s −W d,θ,i

t

))
, (4.47)

let V d,θM,n : [0, T ]×Rd × Ω→ R, M,n ∈ Z, θ ∈ Θ, d ∈ N, be functions which satisfy for all

d,M, n ∈ N, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that V d,θM,0(t, x) = 0 and

V d,θM,n(t, x) =

n−1∑
k=0

(T − t)
Mn−k

[
Mn−k∑
m=1

f
(
V
d,(θ,k,m)
M,k

(
R

(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x)
))

− 1N(k)f
(
V
d,(θ,k,−m)
M,k−1

(
R

(θ,k,m)
t , X

d,(θ,k,m)

t,R
(θ,k,m)
t

(x)
))]

+

[
Mn∑
m=1

gd(X
d,(θ,n,−m)
t,T (x))

Mn

]
,

(4.48)
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and let (Cd,M,n)M,n∈Z,d∈N ⊆ N0 satisfy for all d, n,M ∈ N that Cd,M,0 = 0 and

Cd,M,n ≤ dMn +

n−1∑
k=0

[
M (n−k)(d+ 1 + Cd,M,k + 1N(k)Cd,M,k−1)

]
. (4.49)

Then

(i) for every d ∈ N there exists a unique at most polynomially growing function
ud ∈ C([0, T ]×Rd,R) which satisfies that ud|(0,T )×Rd : (0, T )×Rd → R is a viscosity
solution of

(∂ud∂t )(t, x) +

[
d∑
i=1

|β|2|xi|2
2

(
∂2ud
∂(xi)2

)
(t, x) + αxi

(
∂ud
∂xi

)
(t, x)

]
−Rud(t, x)

− (1− ε)
[
min

{
γh,max

{
γl,

(γh−γl)
(vh−vl) (ud(t, x)− vh) + γh

}}]
ud(t, x) = 0 (4.50)

for (t, x) = (t, (x1, x2, . . . , xd)) ∈ (0, T )×Rd (cf. Definition 3.21) and which satisfies
for all x ∈ Rd that ud(T, x) = gd(x) and

(ii) there exist functions N = (Nd,ε)d∈N,ε∈(0,1] : N × (0, 1] → N and c = (cδ)δ∈(0,∞) :

(0,∞)→ (0,∞) such that for all d ∈ N, ε ∈ (0, 1], δ ∈ (0,∞) it holds that Cd,Nd,ε,Nd,ε ≤
cδ d

1+(P+pq)(2+δ)ε−(2+δ) and(
E
[
|ud(0, ξd)− V d,0Nd,ε,Nd,ε

(0, ξd)|2
])1/2 ≤ ε. (4.51)
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