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Abstract

Autosomal-dominant spinocerebellar ataxias, autosomal-recessive spinocerebellar ataxias, and 

hereditary spastic paraplegias have traditionally been designated in separate clinicogenetic disease 

classifications. This classification system still largely frames clinical thinking and genetic workup 

in clinical practice. Yet, with the advent of next-generation sequencing, phenotypically unbiased 

studies have revealed the limitations of this classification system. Various genes (eg, SPG7, 
SYNE1, PNPLA6) traditionally rooted in either the ataxia or hereditary spastic paraplegia 

classification system have now been shown to cause ataxia on the one end of the disease 

continuum and hereditary spastic paraplegia on the other. Other genes such as GBA2 and KIF1C 
were almost simultaneously published as both a hereditary spastic paraplegia and an ataxia gene. 

The variability and fluidity of observed phenotypes along the ataxia-spasticity spectrum warrants a 

rethinking of the traditional classification system. We propose to replace this divisive diagnosis-

driven ataxia and hereditary spastic paraplegia classification system by a descriptive, unbiased 

approach of modular phenotyping. This approach is also open to expansion of the phenotype 

beyond ataxia and spasticity, which often occur as part of broader multisystem neuronal 

dysfunction. The concept of a continuous ataxia-spasticity disease spectrum is further supported 

by ataxias and hereditary spastic paraplegias sharing not only overlapping phenotypes and 

underlying genes, but also common cellular pathways and disease mechanisms. This suggests a 

shared vulnerability of cerebellar and corticospinal neurons for common pathophysiological 

processes. It might be this mechanistic overlap that drives their clinical overlap. A mechanistically 

inspired classification system will help to pave the way for mechanism-based strategies for drug 

development.
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Hereditary spinocerebellar ataxias and hereditary spastic paraplegias (HSPs) each define a 

genetically heterogeneous group of rare degenerative disorders characterized by progressive 

degeneration of the cerebellar Purkinje cells and spinocerebellar tracts (ataxias) and 

corticospinal tracts (HSPs), respectively. They were traditionally designated in separate 

clinicogenetic disease classifications, according to the predominant disease phenotype on 

first gene locus description and to the mode of inheritance:

1. Neurodegenerative diseases first conceptualized as autosomal-dominant 
spinocerebellar ataxias (SCAs) were classified in the SCA classification, which 

entails 43 SCA subtypes to date.1

2. Neurodegenerative diseases first described as autosomal-recessive 
spinocerebellar ataxias (SCARs) were classified in the SCAR classification, 

comprising 24 subtypes.1 This SCAR classification is partly paralleled and 

duplicated, yet with different numbers, by another autosomal-recessive cerebellar 

ataxia (ARCA) classification, the ARCA classification.1

3. Neurodegenerative diseases first reported with spastic paraplegia were classified 

in the spastic paraplegia gene (SPG) classification irrespective of mode of 

inheritance. Seventy-eight distinct SPG loci are currently reported by OMIM.1

4. A small number of genes presenting with combined ataxia and spasticity were 

somewhat arbitrarily also categorized as spastic ataxia genes (SPAX/SAX). The 

7 loci listed in these classifications are mostly duplicate entries also contained in 

either the HSP or ataxia classification systems.

Each of these classification systems bears in itself the same problems known from similar 

classification systems of other movement disorders (for a broader discussion, see the 

analysis by the International Parkinson and Movement Disorder Society Task Force2). These 

include (1) erroneously assigned loci, (2) duplicated loci, (3) missing symbols or loci, and 

(4) unconfirmed loci and genes.2 For example, some recessive ataxias are not contained in 

the SCAR or the ARCA list (eg, Friedreich’s ataxia or AOA1), and some recessive ataxias 

are listed only in one of them (eg, AOA2 only in SCAR classification). Moreover, some 

dominant ataxias can also be inherited in a recessive manner and vice versa (GRID2,3 

AFG3L2,4 SPTBN25), making it difficult to designate them as either on the SCA or the 

SCAR/ARCA list (or both). Most important, the systematic value of each of these 

classification systems is also very limited. Numbers in the SCA/ARCA/SCAR/SPG lists are 

assigned in the order in which the disease was identified (initially by linkage analysis and 

more recently by gene discovery). Yet these numbers do not carry any systematic 

information in themselves that might help to facilitate clinical diagnostics, to understand the 

disease etiology, or to devise treatment strategies.

In addition to these shortcomings, each of these classification systems carries in itself the 

classification systems for ataxias and HSPs that also bear a particular limitation when seen 

together. They suggest a conceptual and classificatory divide between ataxias and HSPs, 

when in fact there exists a large phenotypic, genetic, and pathophysiological overlap. This 

intersection between ataxias and HSPs has been increasingly acknowledged throughout the 

last decade,6 but its appreciation was notably facilitated by recent next-generation 
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sequencing (NGS) studies. Classic clinical and genetic strategies were largely constrained by 

preexisting clinical conceptions, classifications, and diagnostic workflows, leading to 

confirmation bias in genotype-phenotype correlation studies. In contrast, NGS has facilitated 

gene discoveries and phenotypic classifications unbiased from prior clinical and diagnostic 

preconceptions. This development has led to further weakening and even partial removal of 

the defined boundaries between ataxias and HSPs. As we show here, recent NGS and related 

genomic studies have demonstrated

1. a rapidly increasing number of both novel genes and long-established “ataxia 

genes” and “HSP genes,” causing a phenotypic spectrum ranging from ataxia to 

HSP as 2 extremes on a continuous spectrum;

2. shared pathways and mechanisms between ataxias and HSPs.

We thus argue to move on from the linkage-inspired divisive classifications system of largely 

distinct ataxias and HSP categories toward a more modular understanding of phenotypes that 

reflects the increasingly complex relationship between genotype, neuronal system damage, 

and phenotypic expression. The frequent co-occurrence of ataxia and spasticity might 

thereby be driven by shared vulnerability of corticospinal tract axons and cerebellar circuits 

toward disturbances of the same molecular pathways (for graphical overview of the main 

hypothesis and concept proposed here, see Fig. 1). A mechanistically inspired classification 

system will prioritize research on shared pathways and pave the way for mechanism-based 

strategies for drug development.

Discovering the Phenotypic and Genetic Spectrum From the Extremes

Discovery of an increasing number of genes causing both prominent cerebellar and 

predominantly pyramidal phenotypes over the past few years has raised awareness of the 

substantial overlap between these 2 disease classifications. Thereby, the “divide” was closed 

from both sides: classical “HSP genes” were discovered to cause ataxia as well as classical 

“ataxia genes” were recognized to result in HSP phenotypes.

For genes discovered in the pre-NGS era, it commonly took years (and, in some cases, the 

phenotypically unbiased screening approaches enabled by NGS application) to overcome the 

preconception of the predominant phenotype associated with a gene. SPG7, identified as a 

cause of HSP in 1998,7 was not systematically considered a cause of predominant (and even 

pure) cerebellar ataxia until 15 years later.8 Yet, within the past 2 years, it has been 

appreciated as one of the most common causes of autosomal-recessive cerebellar ataxia,9,10 

and the cerebellar features may be even more pronounced than spasticity in some cohorts.10 

Mutations in PNPLA6 were identified as a cause of autosomal-recessive HSP complicated 

by motor axonal neuropathy in 2008, leading to the designation SPG39.11 However, it was 

not before 2014 that mutations in PNPLA6 were also appreciated as a cause of predominant 

cerebellar ataxia,12,13 and it has now been shown that PNPLA6 mutations can even cause 

pure cerebellar ataxia.14 In light of these observations of patients with predominant or pure 

cerebellar disease, the terms “SPG7” and “SPG39” reflect the historical meaning at best — 

and appear to be misnomers for these patients and phenotypes. The fatty acid 2-hydroxylase 

gene (FA2H) is even part of multiple classification systems. After initially being discovered 
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as the causative gene for leukodystrophy associated with spastic paraparesis and dystonia,15 

it was published 2 years later as a novel HSP gene (SPG35),16 only to be recognized to 

cause a novel form of neurodegeneration with brain iron accumulation (NBIA) termed 

FAHN — FA2H-associated neurodegeneration — a few months later.17 Not until recently, 

the substantial cerebellar ataxia present in many patients with FA2H mutations was 

systematically recognized.18,19

Likewise, HSP phenotypes were often recognized belatedly for “traditional” ataxia genes. 

Recessive mutations in SYNE1 were identified as a cause of cerebellar ataxia in 200720 and 

consequently designated ARCA1 and SCAR8. For almost a decade mutations in SYNE1 
were thought to cause a slowly progressive, largely pure cerebellar ataxia,21,22 before it was 

realized in 2016 that they are in fact causative for a broad pleiotropic phenotypic spectrum, 

with corticospinal tract damage and even predominant complicated HSP presentations 

among the most frequent features.23,24 Recessive mutations in PLA2G6 were found in 2006 

to cause, among others, a childhood-onset ataxia cluster (termed infantile neuroaxonal 

dystrophy).25 Although concomitant corticospinal tract features have already been described 

in several reports in recent years, it was not until recently that complicated HSP has been 

acknowledged as one of the main phenotypic presentations of PLA2G6 (Ozes et al, 

submitted). Biallelic STUB1 mutations were first published as a cause of recessive ataxia 

(eg, as part of a Gordon Holmes syndrome).26,27 Later studies then revealed that 

corticospinal tract damage is a frequent concomitant feature28 and sometimes even is 

predominate in the clinical presentation.29 Examples can also be found for recently 

identified autosomal-dominant disease genes. Dominant mutations in KCNA2 were first 

reported as a cause of (early-onset) cerebellar ataxia in 2015,30,31 before it was shown in 

2016 that dominant KCNA2 mutations can also cause HSP phenotypes,32 with both 

phenotypes occurring on a phenotypic continuum.

NGS has sped up not only disease gene discovery but also the time span from disease gene 

discovery until a broadened phenotypic spectrum can be appreciated. In some cases, this has 

led to the almost simultaneous “discovery” of one and the same gene as a novel ataxia gene 

and an HSP gene. Autosomal-recessive mutations in the nonlysosomal glucosylceramidase 

gene GBA2, for example, were designated SPG46 because of the predominant lower-limb 

spasticity noted by the European team of researchers.33 In the same journal issue, however, 

GBA2 was published as a novel gene for “cerebellar ataxia with spasticity” because of the 

initial disease manifestation as cerebellar ataxia in this independent patient cohort.34 

Similarly, KIF1C mutations were discovered to cause autosomal-recessive HSP complicated 

by ataxia features, termed SPG58.35 At the same time, however, it was discovered that 

KIF1C mutations can also cause predominant cerebellar ataxia (with variable spasticity of 

the lower limbs).36

These recent examples underscore the value of unbiased screening approaches enabled by 

NGS technology that — when combined with a modular phenotyping approach — enable 

rapid and comprehensive delineation of phenotypic spectra associated with Mendelian 

disease genes. Moreover, they illustrate that cerebellar and pyramidal disease manifestations 

commonly cooccur and can vary considerably in predominance and phenotypic expression 

along a continuous spectrum. This variable phenotypic presentation therefore does not 
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justify the classification of these ataxia-spasticity spectrum genes as SPG versus SCA/

SCAR/ARCA genes. The distinct SPG-versus-SCA/SCAR/ARCA classification system fails 

to capture this inherent phenotypic fluidity, rendering it in part arbitrary, and is therefore of 

limited systematic value for clinic and research.

Large Common Genetic Basis of Ataxias and HSPs

The aforementioned examples of ataxia-spasticity spectrum (ASS) genes are part of a larger, 

rapidly growing list of genes causing ataxia and HSP on a phenotypic continuum. Based on 

review of the literature and our own experience with whole-exome sequencing (WES) and 

whole-genome sequencing of large cohorts of cases with ataxia and/or HSP, we have 

compiled an extendable list of 69 genes that we consider relevant in the differential 

diagnosis of ASS disease (Table 1). We included only genes the phenotypic descriptions of 

which included both ataxia and spasticity (rather than merely pyramidal signs) in subjects 

from at least 2 different families (rather than merely single cases). The majority of these 

ASS genes cause autosomal-recessive disease (n = 49), but autosomal-dominant (n = 16) and 

X-linked recessive (n = 3) modes of inheritance also occur. For mutations in AFG3L2, 

autosomal-recessive (SCAR5) and autosomal-dominant (SCA28) modes of inheritance have 

been established. Notably, only 29 genes (42%) are part of either of the HSP or ataxia 

classification systems mentioned above (SCA/SCAR/ARCA/SPG). Consequently, even 

combining disease genes contained in either of the HSP or ataxia classifications is 

insufficient to capture the relevant disease genes for the ASS. The implications for clinical 

and genetic diagnostic practice are apparent: NGS-based approaches to test for mutations in 

ataxia genes (“ataxia panels”) need to also comprise HSP genes and vice versa to do the 

overlapping disease spectra justice; in addition, both ataxia and HSP gene panels should be 

expanded to cover not only the relevant genes “by classification,” but need to go beyond 

classification systems to cover also genes not included in any of the classification systems.

Common Pathophysiological Pathways and Mechanisms in Ataxias and 

HSPs

Under the surface of the seemingly disparate clinical syndromic and diagnostic 

classifications between ataxias and HSPs lurk not only shared allelic genes, but also 

common mechanisms and pathways. In this respect, the overlap between ataxias and HSPs 

resembles the well-established gene and pathway overlap between amyotrohic lateral 

sclerosis (ALS) and frontotemporal dementia (FTD). Like HSP and ataxias, these 2 

conditions have long been considered clinically disparate syndromes. Yet, over the past 

decade, we have increasingly recognized that they co-occur within families and even within 

individuals and largely share the same genes. Consequently, ALS and FTD are now usually 

studied jointly as a disease spectrum. Overcoming the diagnostic divide between ALS and 

FTD and focusing on shared pathways instead have led to identification of major shared 

mechanism hubs. For example, dysfunctional nuclear-cytoplasmic transport has emerged as 

a common mechanistic denominator uniting not only the different clinical conditions, but 

also various ALS/FTD genes like C9orf72, FUS, and TARDPB.37-39
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Similarly, HSP and ataxias, which share a substantial number of genes, might also be 

connected on a functional level via shared cellular pathways and pathomechanisms. A 

protein-protein interaction network using known ASS genes as seeds (Table 1, n = 63, here 

excluding the dominant repeat ataxias) reveals that the proteins encoded by these genes 

share a multitude of physical interactions and form several highly connected “protein 

communities” that are visualized by different colors shown in Figure 2. Functional 

annotation of these genes using GO terms and subsequent gene set enrichment analysis 

highlight functional clusters that are enriched in these proteins (Fig. 3, Supplementary 

Table). The 3 major functional clusters are: (1) lipid metabolic processes, (2) acid metabolic 

processes, and (3) cytoskeleton or dendritic intracellular transport processes. These 3 

clusters represent only a small subset of molecular pathways known to be involved in HSPs 

or cerebellar ataxias individually. This supports the hypothesis that pathways affected in 

ASS reflect shared selective vulnerabilities of corticospinal and cerebellar neurons. The 

clinical overlap of ASS spectrum diseases might thus be driven by underlying mechanistic 
overlaps (for an illustration of the relation between genetic, pathway, and clinical overlaps, 

see Fig. 1).

Some exemplary clusters of shared or interacting pathways underlying ASS diseases are:

• Phospholipid metabolism, including the genes PNPLA6,12,40,41 PLA2G6, 
DDHD1 (SPG 28), DDHD2 (SPG5442), CYP2U1 (SPG49), and ABHD1243 (for 

further overview, see references 40 and 44).

• Sphingolipid metabolism, including the genes FA2H,15 GBA2,33,45 GALC, 
HEXA, ASA, PSAP, and GLB1.

• Autophagy-lysosomal activity, including the genes SPG15, SPG11,46,47 

ATP13A2 (SPG78),48,49 NPC1, and NPC2 disease.50-55

Toward a Mechanism-Based Classification of Ataxia-Spasticity Spectrum 

Diseases

As our concepts of cellular pathways involved in ASS diseases grow, a mechanism-based 

classification system of the ASS comes into reach. Classification of genetically defined 

disorders by shared affected pathways rather than the perceived predominant phenotype will 

allow overcoming the classic SCA/SCAR/ARCA and HSP/SPG divide and appreciation of a 

more systematic, pathophysiological perspective. Other than the resolution of multiple 

inconsistencies of the traditional classification system which we have detailed above, a 

mechanistically inspired classification system of ASS diseases offers key advantages in 

therapeutic respects. Such a classification system will prioritize research on shared pathways 

and might pave the way for mechanism-based strategies for drug development. 

Hypothetically, compounds targeting dysfunctional pathways rather than single genes have 

the potential to address groups of genetically defined diseases rather than single ataxia or 

HSP subtypes (for graphical illustration of this idea, see label “causal treatment strategies 

targeting pathways” in Fig. 1). For example, one class of drugs might target ASS diseases 

with abnormal cholesterol processing and cholesterol sequestration such as CYP7B1 
(SPG5), NPC1, NPC2, or SERAC1 by exploiting cholesterol-depleting agents.56 Another 
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class of drugs might aim at ASS diseases with defective autophagy-lysosomal activity (eg, 

SPG11, ZFYVE26, ATP13A2), using an autophagy inducer.56 A mechanism-based disease 

classification might thus facilitate the translation of the giant genetic progress rendered 

possible by NGS over the past 5 years into first targeted molecular therapies.

Conclusions for Clinical Practice

In conclusion, we suggest to give up the classificatory divide between ataxias and HSPs in 

favor of a concept of a clinical, genetic, and pathophysiological ASS. From this inclusive 

rather than discriminatory approach, a number of advantages can be inferred for current 

clinical practice:

1. Increased precision of phenotypic description and improved efficiency of 
diagnostic workup. Early discriminatory classification of patients into fixed 

diagnostic categories potentially introduces bias into the clinical and diagnostic 

workup. We suggest taking a modular approach to phenotyping that allows the 

appreciation of nuanced individual phenotypic expression along the spectrum of 

ataxia and spasticity. This descriptive, unbiased approach of modular 
phenotyping would also be open to expansion of the phenotype beyond ataxia 

and HSP, as ataxia and spasticity often occur not in isolation, but as part of 

multisystem neuronal dysfunction. It thus allows for a more comprehensive, 

dynamic and systematic perspective than the traditional SCA/SCAR/ARCA and 

HSP/SPG classifications. Avoidance of narrow-minded ataxia and HSP clinical 

engrams will ultimately facilitate diagnosis in so-far unexplained complex 

neurodegenerative disease.

2. Individualized treatment. Following the idea of individualized medicine, modular 

phenotyping allows for individualized clinical treatment and management 

according to each individual’s particular phenotypic spectrum (rather than by the 

overall clinical diagnosis or SPG/SCA/ARCA classification) (for a graphic 

illustration of the role of symptomatic treatment according to individual 

phenotype, see Figure 1). For example, patients with a major ataxia component 

due to PNPLA6 or SPG7 mutations will be clinically managed according to their 

individual ataxia, receiving, for example, physiotherapy exercises specifically 

targeting ataxia dysfunctions,57,58 even if these genes are traditionally grouped in 

the HSP/SPG classification (SPG39 and SPG7, respectively). Vice versa, patients 

with pronounced spasticity because of SYNE1 or STUB1 mutations will be 

clinically managed according to their spasticity, receiving, for example, 

antispastic drugs, even if these genes are traditionally grouped in ARCA 

classifications.

3. Efficient diagnostic testing. Given the variability of phenotypes across the ASS 

and the sheer number of ASS genes, genetic testing on a gene-by-gene basis or 

relying on small gene panels is inefficient and mostly obsolete. Instead, genetic 

testing needs to resort to large gene panels or WES covering all ASS genes. 

Single-gene testing in ataxia spasticity spectrum diseases should be largely 

reserved for a few exceptions, for example, genotyping the FRDA repeat in 
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patients with afferent ataxia and pyramidal tract damage without major cerebellar 

atrophy, or the SACS gene in patients with the characteristic hypointense pontine 

stripes on T2-MRI imaging.59

4. Aggregated ASS gene panels and gene lists. In NGS diagnostics, the design of 

separate ataxia and HSP NGS gene panels and of separate ataxia and HSP gene 

lists, respectively, for WES analyses is not productive. NGS gene panels and lists 

need to aggregate all ASS genes.

Limitations and Future Challenges

The proposed approach of modular phenotyping bears several limitations. Patients might 

prefer to have a clear-cut clinical label for their disease (eg, HSP or spinocerebellar ataxia) 

rather than an open and dynamic broad descriptive phenotypic description of the 

individually affected neurological systems. A clear label might yet be given the name of the 

underlying gene and/or the pathway cluster. However, sporadic ASS patients without 

monogenic disease causation or obvious hit in one of the pathway clusters will escape 

classification by the proposed pathway-driven classification system.

The suggested pathway-driven classification is also limited by it requiring the affected 

cellular pathways to be known. For the large majority of ASS diseases, however, the 

pathway implications of the respective disease genes have yet to be identified. Future basic 

research now has to move on from NGS genetics to functional pathway explorations, both 

for each specific ASS gene and for possible shared pathway hubs, identifying in particular 

those pathway hubs that might be druggable.
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FIG. 1. 
From clinical diagnosis to modular phenotyping and underlying shared genes and pathways 

in ataxia-spasticity spectrum diseases. Ataxias and HSPs have traditionally been designated 

in separate clinicogenetic disease classifications, depending on the first phenotypic 

descriptions and pattern of inheritance, namely, either in autosomal-dominant 

spinocerebellar ataxias (SCAs) and autosomal-recessive spinocerebellar ataxias (SCARs) or 

hereditary spastic paraplegias (HSPs/SPGs). However, the molecular etiologies of these 2 

disease groups overlap greatly, based on manifold shared disease genes (top). Moreover, 

proteins encoded by HSP and ataxia genes closely interact physically as well as functionally. 

The heterogeneous genetic etiology of HSPs and ataxias thus converges into a small number 

of cellular pathways that are dysregulated in both diseases (right). Selective vulnerability of 

specific neuronal cell types that can be modified by additional genetic, epigenetic and 

environmental factors ultimately determines which neuronal systems and circuits will be 

affected by the pathway dysfunction (bottom). In ataxia-spasticity spectrum diseases, 

cerebellar and corticospinal tract neurons share selective vulnerabilities. The individual 

phenotypic expression (left) is a result of the pattern of neuronal system affection. It is 

essential to appreciate these 4 aspects, not only to understand an individual’s disease, but 

also to use all therapeutic routes, whether they be symptomatic or causal/disease modifying. 

Pathway-based treatment approaches are hereby particularly promising, as (1) they offer the 

potential to cure, not only to modify the disease condition, with the (2) pathway-based 

etiologies partly converging from the vastly heterogeneous genetic etiology. Targeting 

dysfunctional pathways rather than single genes or disease conditions thus has the potential 

to address whole groups of genetically defined ASS diseases. [Color figure can be viewed at 

wileyonlinelibrary.com]
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FIG. 2. 
Protein-protein-interaction network for ataxia-HSP spectrum disease genes. To generate a 

protein-protein-interaction (PPI) network, interactors (iteration 1) of 63 spastic ataxia genes 

listed in Table 1 were extracted using the iRefScape plugin in Cytoscape v2.8.3.60-62 

Autosomal-dominant repeat-expansion genes were removed from the seed list, as their 

binding properties appear to be largely shaped by their polyglutamine tracts rather than the 

properties of the wild-type protein. The PPI network was then imported into Gephi v0.9.1 

and filtered, whereby nonhuman interactions, predicted interactions, interactions based 

solely on high-throughput experiments, self-loops, and nodes with a degree < 2 were 

removed, retaining only nodes that were maximum 1 degree removed from the input spastic 

ataxia seed genes. The resulting network contained 389 nodes and 2582 undirected edges. 

We then applied the Louvain method to detect communities, neighborhoods of highly 

connected nodes. A total of 8 communities were detected, represented by differently colored 

nodes and edges in the figure. Ataxia-spasticity spectrum seed genes are represented by 

larger dots and labeled with the respective gene name. [Color figure can be viewed at 

wileyonlinelibrary.com]
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FIG. 3. 
Pathway enrichment map of ataxia-HSP spectrum gene sets. Gene-set enrichment analysis 

reveals several functional clusters associated with ataxia-spasticity spectrum genes. To 

generate the pathway, enrichment map spastic ataxia genes (Table 1, n = 63 genes; dominant 

repeat genes excluded) were uploaded to DAVID Bioinformatics Resources 6.863,64 and 

annotated with gene ontology terms (GOTERM_BP_FAT, GOTERM_MF_FAT).65 The fully 

annotated gene list is provided in the Supplementary Table. A gene enrichment map was 

then generated using the Enrichment Map plugin66 in Cytoscape v3.2 with the following 

parameters: P cutoff, 0.0001; FDR Q cutoff, 0.05; similarity cutoff overlap, 0.4. Three major 

enrichment clusters can be appreciated: (1) lipid metabolic processes (blue), (2) acid 

metabolic processes (orange), and (3) cytoskeleton or dendritic intracellular transport 

processes (green). Each major network contains several subnetworks highlighting a specific 

cellular process underlying ataxia-spasticity spectrum disease. The size of the nodes reflects 

the number of ataxia-spasticity spectrum genes represented in the respective functional 

cluster; the number of genes is also indicated by the number in each of the nodes. [Color 

figure can be viewed at wileyonlinelibrary.com]
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