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Overcoming the loss of blue 
sensitivity through opsin 
duplication in the largest animal 
group, beetles
Camilla R. Sharkey1, M. Stanley Fujimoto2, Nathan P. Lord3, Seunggwan Shin4, Duane D. 

McKenna4, Anton Suvorov1, Gavin J. Martin1 & Seth M. Bybee1

Opsin proteins are fundamental components of animal vision whose structure largely determines 

the sensitivity of visual pigments to different wavelengths of light. Surprisingly little is known about 
opsin evolution in beetles, even though they are the most species rich animal group on Earth and 

exhibit considerable variation in visual system sensitivities. We reveal the patterns of opsin evolution 

across 62 beetle species and relatives. Our results show that the major insect opsin class (SW) that 
typically confers sensitivity to “blue” wavelengths was lost ~300 million years ago, before the origin of 
modern beetles. We propose that UV and LW opsin gene duplications have restored the potential for 

trichromacy (three separate channels for colour vision) in beetles up to 12 times and more specifically, 
duplications within the UV opsin class have likely led to the restoration of “blue” sensitivity up to 10 
times. This finding reveals unexpected plasticity within the insect visual system and highlights its 
remarkable ability to evolve and adapt to the available light and visual cues present in the environment.

At the molecular level, the wavelength sensitivity of an animal photoreceptor is determined by the photopig-
ment, comprising an opsin protein bound to a light-absorbing chromophore. Insects commonly possess three 
opsin proteins (UV, SW and LW) that form photopigments maximally sensitive to ultraviolet (~350 nm), blue 
(~440 nm) and green (~530 nm) wavelengths, respectively. As insect opsin genes form distinct phylogenetic 
clades according to their spectral class (UV, SW or LW) the sensitivity ranges of an insect visual system can 
usually be estimated by the complement of opsin genes present. In some insects photopigment sensitivity has 
extended outside of this range into the violet (~420 nm) and red (>600 nm) region of the light spectrum through 
duplications of the SW1,2 and LW opsins2,3, respectively.

Gene duplications occur at a proposed rate of 1 per 100 MY4 and for the majority of duplications, gene copies 
are lost within ~2 MY, through the accumulation of deleterious mutations4. However, gene copies may be retained 
if they acquire a novel function through sequence mutation (subfunctionalization)4 that leads to increased �tness. 
In the case of opsins, bene�cial mutations in duplicates may lead to changes in photopigment properties, such 
as spectral sensitivity. Such duplications alongside losses of opsins have shaped the major animal opsin classes 
we observe today. Duplications of long-wavelength sensitive opsins are widespread across Arthropoda and are 
numerous in some lineages (e.g., up to 21 LW opsins in aeshnid dragon�ies2, 25 in the genome of Daphnia pulex5 
and seven in mosquitoes6). UV duplications by contrast are rare and lineage speci�c, with only single duplication 
events reported in Heliconius butter�ies7, planthoppers (Delphacidae)8, and two lineages of beetles9,10.

Molecular evidence suggests that the SW opsin class has been lost from a number of beetle lineages: �re-
�ies (Lampyridae11,12), diving beetles (�ermonectus marmoratus)9,13, jewel beetles (Buprestidae)10 and dar-
kling beetles (e.g., Tribolium castaneum)14. It has therefore been proposed that all beetles may lack the SW 
opsin class, which typically underpins visual sensitivity to blue wavelengths in insects. However, physiological 
evidence has revealed that a number of beetles do have blue sensitive photoreceptors: a ladybird (Coccinella 
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septempunctata)15,16, a leaf beetle (Leptinotarsa decemlineata17), two ground beetles (Carabus spp.)18 and a jewel 
beetle (Agrilus planipennis)10.

Two evolutionary scenarios are therefore possible. Firstly, the SW opsin class was lost independently in 
numerous beetle lineages, or secondly, this opsin class was lost prior to or during the early evolutionary history of 
beetles and blue light sensitivity was regained multiple times, independently of the ancestral SW opsin. Due to the 
paucity of studies on opsins from beetles and related groups, the timings of the SW opsin losses remain unclear. 
To address this, we examined the opsin repertoire of a broad diversity of beetles representing most major lineages 
and included beetles with a wide range of life histories (e.g., diurnal, nocturnal, predaceous and pollinating bee-
tles). Additionally, exemplars from the closely related orders Strepsiptera (twisted-wing parasites), Raphidioptera 
(snake �ies), Megaloptera (alder�ies, �sh�ies and dobson�ies) and Neuroptera (lacewings, antlions and mantid-
�ies), comprising the other major lineages of the clade Neuropteroidea19 were also investigated.

Results
Loss of the SW opsin class. For this study, over two billion RNA-seq reads were assembled into more 
than six million gene transcripts (Table S1). In total, 204 opsins were recovered, of which 73% encode full-length 
proteins (Tables S2 and S3). In a homology search of 74 coleopteran transcriptomes across 29 families and 19 
of 21 superfamilies, the SW opsin was not recovered. Furthermore, this opsin class was not detected in the 12 
transcriptome assemblies from the other lineages of Neuropteroidea. While the majority of samples were derived 
from adult tissue (Table S1), larval tissue was also sequenced for 11 species. �e SW opsin class was also not 
recovered from these samples, indicating that it has been lost in both major life stages. Similarly, both sexes were 
sequenced for 15 species, indicating that the SW opsin loss is not sex speci�c. Furthermore, we did not recover 
the SW opsin class from the genomes of four beetle species (Table S1). In all cases, there was no evidence for a 
SW opsin pseudogene but the absence of the SW gene in our analyses indicates that it has indeed been lost. We 
are con�dent that the phylogenetic breadth and quality of samples (Figure S1) used in this study was su�cient to 
rule out the possibility that this opsin class was present within Coleoptera but not recovered during our analysis. 
Bees, wasps and ants (Hymenoptera) are thought to be the closest relative of all remaining holometabolan insects, 
including the true �les (Diptera), and moths and butter�ies (Lepidoptera)20. �e SW opsin has been retained in 
these orders21–23, implying that the loss of the SW opsin occurred in the lineage leading to Neuropteroidea, a�er 
this clade diverged from the rest of Holometabola, approximately 300 million years ago19,24.

Opsin duplications. As the insect SW opsin class was lost prior to the radiation of Coleoptera, blue light 
sensitivity must have secondarily arisen in Coleoptera through an alternative mechanism to that of other insects. 
Recent evidence suggests that blue light sensitivity in jewel beetles (Buprestidae) has been achieved through 
duplication and subfunctionalization of the UV and/or LW opsin genes10. We performed homology searches 
for the presence of opsin gene duplications on 89 assembled neuropteroid transcriptomes, totalling 72 species. 
Phylogenetic analyses were performed to reconstruct species and opsin gene trees, which we then used to inter-
pret the evolutionary history of opsin gene duplication events.

We recovered UV duplications from three of the four coleopteran suborders: from the single species sampled 
from the suborder Myxophaga (Lepicerus sp.), three of �ve species from the suborder Adephega and 18 of 54 
species from the suborder Polyphaga (Fig. 1; Table S2). UV duplications were not recovered in either species 
from suborder Archostemata (Priacma serrata and Micromalthus debilis) (Table S2). In three cases, the phy-
logenetic placement of both UV copies into separate monophyletic clades in the gene tree reconstructed from 
DNA sequences (Figs 2 and 3) suggests that opsin gene duplications occurred prior to the crown diversi�ca-
tion of leaf beetles (Chrysomelidae), ladybirds (Coccinellidae) and jewel beetles (Buprestidae) (Fig. 2). Ancestral 
states of opsin duplication were reconstructed on the species phylogeny, to infer likely patterns of duplication 
across Coleoptera. Parsimony and maximum likelihood reconstructions (Figure S3), alongside the phylogenetic 
placement of opsin duplicates along independent lineages, suggest that many separate opsin gene duplication 
events occurred within Coleoptera. In total, including the previously described �ermonectus marmoratus and 
Buprestidae duplications, our results are consistent with the existence of 12 independent UV opsin duplications, 
two of which occurred in one species, the pollen beetle Brassicogethes aeneus (Nitidulidae) (Fig. 1). UV opsins 
are absent in three beetle species, Dastarcus helophoroides, Monochamus alternatus and Tenebrio molitor, sug-
gesting low UV opsin gene expression or a lack of UV opsins. Physiological evidence also supports a lack of UV 
sensitivity in T. molitor (Fig. 4)25. In the remaining neuropteroid orders, UV opsin duplications were observed in 
snake�ies (Raphidioptera) and one in twisted-wing parasites (Strepsiptera) (Figs 1 and 2).

Novel LW opsin gene duplications were discovered in �ve coleopteran species across �ve families: the �ower 
weevil Larinus minutus (Curculionidae), the whirligig beetle Gyrinus marinus (Gyrinidae), the pollen beetle 
Brassicogethes aeneus (Nitidulidae), the monkey beetle Heterochelus sp. (Scarabaeidae) and the ground beetle 
Carabus granulatus (Carabidae). �e DNA sequences of Carabus granulatus LW opsins were identical at the pro-
tein level, however, as the full length LW2 was not recovered in this species (137 amino acids; Table S3), it remains 
to be examined how distinct the full-length copies of these two opsins are. One additional buprestid (Aphanisticus 
sp.) was also found to have two LW opsin copies, con�rming previous �ndings from six other buprestid species10. 
LW duplications are also present in two of three Strepsiptera species with Xenos vesparum possessing �ve unique 
LW opsin proteins.

Sites under selection. To explore potential amino acid sites responsible for spectral shi�s in beetle UV 
opsins with putative blue light sensitivity, we tested branches in the opsin gene tree (Fig. 2) and individual amino 
acid sites for positive selection (PS). �is was carried out in the three major clades of beetle UV opsins duplicates 
that have complementary physiological evidence of blue-sensitive photoreceptors (Buprestidae, Coccinellidae 
and Chrysomelidae). Site selection analyses reveal only four sites under PS adjacent to the chromophore-binding 
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pocket, and the recovered positively selected sites were not congruent between lineages (Fig. 3; Table S4). It is 
therefore di�cult to hypothesise about the potential speci�c shi�ing mechanisms behind photopigment spectral 
diversity in these groups. Interestingly, however, all coccinellid, two chrysomelid and one buprestid UV opsin 
duplicates have hallmarks of insect SW opsins (Tables S4 and S5). �is includes a neutral or negatively charged 
amino acid rather than positively charged lysine (K) at bovine site 90 and phenylalanine (F) replacing tyrosine 
(Y) at bovine site 11326. Replacing K with a neutral amino acid at site 90 in the Drosophila Rh3 UV opsin, shi�s 
sensitivity by 73 nm into the blue wavelengths26. �is single amino acid substitution may be su�cient to render 
a number of beetle UV photopigments found in this study (Harmonia axyridis UV2, Leptinotarsa decemlineata 
UV2, Octodonta nipae, UV2 Oreina cacaliae UV2, Steraspis amplipennis UV1) functionally blue sensitive. Little is 
known about the spectral shi�ing mechanisms across Coleoptera10,12,27 but our �ndings, coupled with physiolog-
ical evidence for photoreceptor diversity, highlight beetles as a highly attractive group for future studies.

Discussion
Opsin losses have occurred in other animals, including the American cockroach (Periplaneta americana)28, deep 
sea �sh29, fossorial snakes30, caecilians31 and both nocturnal and aquatic mammals32–34. Such losses are typically 
associated with low-light or spectrally-attenuated environments. It has been proposed that the presumptive loss 
of tri- or di-chromatic colour vision under these conditions has little impact on �tness35 and due to the high 
cost of maintaining retinal tissue36, selection favours a reduction in visual system complexity (e.g., during the 
evolution of mammals)35. Furthermore, under these scotopic conditions, the saliency of wavelength speci�c cues 
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Figure 1. Opsin duplications within Coleoptera. Species phylogeny using 358 gene clusters from translated 
transcriptome assemblies, constructed using maximum likelihood. Node values indicate UFboot supports 
and only values <100 are shown. Strepsipterans are not included due to poor support and placement of these 
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Figure 2. Beetle opsin gene phylogeny. Maximum likelihood DNA phylogeny of all visual opsin genes from 
this study and other insect UV (purple), SW (blue) and LW (green) opsins rooted to cephalopod opsins (not 
shown). Node values (UFBoot support values) are based on 10,000 replicates. Values of 100 are not shown. 
Duplicated neuropteroid opsins are highlighted in grey.
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is diminished37 and a system using two rather than three photoreceptor classes may be advantageous by increas-
ing overall sensitivity to light38. Similar to what has been observed in other animal visual systems with reduced 
opsin diversity, it seems probable that the ancestor of Neuropteroidea was nocturnal or functioned at low light 
levels. Support for this hypothesis is also given by the preponderance of nocturnality (Neuroptera, Megaloptera, 
Raphidioptera) and evidence for visual function associated with nocturnality (Strepsiptera) in the other orders 
of Neuropteroidea39,40.

Opsin gene duplication and divergence is the primary mechanism by which novel photopigment sensitivities 
arise41. �roughout animal evolution, many instances of opsin gene duplications and losses have occurred, shap-
ing the diverse repertoire of animal visual system sensitivities we observe today41,42. A well-known example is 
the duplication of the LWS opsin gene in Old World monkeys that has lead to increased discrimination between 
long wavelengths and therefore an increased ability to detect ripe fruits against a foliage background43,44. �e 
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Figure 3. Signals of selection within beetle UV duplication clades. Branches (closed circles) and numbers of 
sites (red values) under positive selection in the three major coleopteran UV opsin clades. Positions of these 
clades, (A) (Chrysomelidae), (B) (Coccinellidae) and (C) (Buprestidae), on the full opsin DNA phylogeny are 
indicated (dashed boxes). For further positive selection statistics and amino acid sites see Tables S4 and S5.

Spectral sensitivities Opsins

Related taxa in this study Species with physiological data UV Blue Blue Green Red UV UV UV LW LW

Tenebrio molitor Tenebrio molitor

Dendroctonus ponderosae Dendroctonus pseudotsugae

Onthophagus taurus Lethrus apterus

Lampyridae Lampyridae

Onthophagus taurus Onitis alexis

Coccinella septempunctata Coccinella septempunctata

Leptinotarsa decemlineata Leptinotarsa decemlineata

Carabus granulatus Carabus spp.

Agrilus planipennis Agrilus planipennis

Brassicogethes aeneus Brassicogethes aeneus

*

Figure 4. Comparison of spectral sensitivities and opsins found in this study for matching or similar species. 
*Measurements from Dendroctonus pseudotsugae were made in the absence of UV stimuli. �e “blue-sensitive” 
photoreceptors discovered in this species most likely peak in the UV.
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distribution of opsin duplications across Coleoptera recovered in our analyses clearly show that opsin duplicates 
are not derived from an opsin-diverse common ancestor but, instead, appeared secondarily and independently 
in numerous lineages of beetles. �e prevalence of highly divergent UV opsin duplicates across Coleoptera 
(Table S3) and the rarity of such duplicates in other animal visual systems suggests that there may be a greater 
selective advantage for additional UV opsins in beetles than other animals. It is highly unlikely that duplications 
re�ect adult and larval opsin copies, as no di�erence in opsin copy number was found between the available adult 
and larval samples and the majority of samples used were derived from adult tissue (Table S1).

Spectral sensitivity data was available for six species included in this study, from two closely related Carabus 
species and one Dendroctonus species (Fig. 4)16–18,25,27,45–49. Comparing the number of opsin copies with photo-
receptor sensitivities reveals that all instances of blue sensitivity co-occur with UV duplication (Coccinella sep-
tempunctata, Leptinotarsa decemlineata, Brassicogethes aeneus, Agrilus planipennis and Carabus spp.; Fig. 4). We 
propose that coleopteran UV duplications and subsequent amino acid changes serve to extend the sensitivity of 
the beetle visual system into the short or blue wavelengths, overcoming the ancestral loss of sensitivity to this 
region of the light spectrum and its presumed limitations on spectral sensitivity and discrimination in diurnal 
and other comparatively high-light environments.

We found that beetle species with additional photoreceptor sensitivities had extra opsin copies (Fig. 4) sug-
gesting duplication and subfunctionalization as a route for the evolution of novel photopigment sensitivities. If 
the evolution of beetle opsin duplicates has been shaped by visual ecology, one might expect to �nd a clear link 
between opsin diversity and the use of visual cues or visual environment. Indeed, duplications are widespread 
amongst known diurnal species and those with eye morphologies that are indicative of activity in high light 
environments (e.g., large compound eyes, high density of corneal pigments, apposition-type eye structure)50. 
Opsin duplications were predominantly found in species with behaviours o�en guided by visual cues, and in 
many of these species (see references), vision has been shown to be the primary cue for such behaviours: �ower 
visitation (Larinus minutus, Brassicogethes aeneus51 and Heterochelus sp.52,53), predation (coccinellids54, gyrin-
ids55,56, �anasimus formicarius, Carabus granulatus, Metrius contractus), host plant detection (chrysomelids57,58, 
coccinellids59), and mate recognition (buprestids60). Duplications were notably absent in nocturnal species, with 
the exception of the nocturnal active predator, Carabus granulatus, which has been shown to possess a number of 
spectrally distinct photoreceptors18.

As is the case in butter�ies and moths (Lepidoptera)61 and dragon/damsel�ies (Odonata)2,62, beetle LW opsin 
duplications may serve to extend sensitivity into the longer wavelengths. However, further physiological meas-
urements from beetle species with LW duplications are necessary to con�rm this. Interestingly, whilst LW dupli-
cations are less common than UV duplications within Coleoptera, they are ubiquitous amongst �ower-visiting 
lineages: Brassicogethes aeneus (Nitidulidae: 3 UV and 2 LW), Heterochelus sp. (Scarabaeidae: 1 UV and 2 LW) 
and the weevil, Larinus minutus (Curculionidae: 1 UV and 3 LW). This points towards a potential role for 
extended long wavelength sensitivity to locate �owers. A recent study found long wavelength-shi�ed photore-
ceptors (628 nm) in the �ower-pollinating scarab, Pygopleurus israelitus, which is likely an adaptation to enhance 
the detection of red and orange �owers63. Physiological data from the red palm weevil, Rynchophorus ferrugineus, 
also reveals additional long wavelength-shi�ed photoreceptors64. �e pollen beetle, B. aeneus, with 3 UV and 2 
LW opsins, has the highest molecular complexity of opsins amongst all beetles studied thus far.

Our study reveals that some groups of beetles may have spectral sensitivity capabilities that match or even 
exceed those of pollinating bees and wasps (Hymenoptera), particularly in the long wavelengths. Traditionally 
it was assumed that trichromatic insect pollinators shaped the evolution of �ower visual signals. Interestingly, 
our results suggest that beetle pollinators secondarily evolved the potential for trichromacy alongside the evolu-
tion of angiosperms. As beetles were presumably some of the �rst pollinating insects, this raises the interesting 
question of whether or not colour vision in beetles co-evolved with �owers or whether the beetle visual system 
adapted to detect �owers whose visual signals had already evolved alongside trichromatic pollinations, such as 
Hymenoptera.

Methods
Samples used. All available neuropteroid RNA sequence reads were obtained from the Sequence Read 
Archive (SRA) and raw RNA-seq data were included from refs 10 and 11 (Table S1). Data for an additional 
buprestid species (Aphanisticus sp.) were also generated (see ref. 10 for methods). Trimmomatic (v0.32)65 was 
used to trim raw sequence reads of Illumina-speci�c adapters followed by gentle trimming of low-quality bases 
(Phred score <5) from the start and ends of reads according to refs 66 and 67. Finally, all reads with a resulting 
minimum length of <25 bases were removed. �e resulting reads were assembled using Trinity (v2.1.1)68 with 
default parameters. �irteen additional unpublished assemblies were provided by 1KITE (see Tables S1 and S6). 
For these samples, RNA extraction and sequencing was carried out as described in ref. 24. Details regarding 
assembly and steps to remove cross-contamination are outlined in ref. 69. Transcriptome assemblies have been 
deposited into the NCBI TSA database (see Table S6 for accession, Bioproject IDs and assembly versions).

Assembly quality quantification. To ensure that all whole-body transcriptomes were of high quality for 
opsin detection, the completeness of each assembly was estimated using orthology detection (BUSCO v1.1b1)70 
using default settings to determine the presence of 2675 arthropod Benchmarking Universal Single-Copy 
Orthologs (BUSCOs; Benchmarking Universal Single-Copy Orthologs). �e proportion of genes detected was 
used as an indicator of coverage for each transcriptome. Additionally, genes from the insect phototransduc-
tion pathway were extracted from each assembly, using a database of photransduction gene proteins, obtained 
from the genomes of 10 insect species, including one coleopteran (Tribolium castaneum, Acyrthosiphon pisum, 
Pediculus humanus corporis, Nasonia vitripennis, Solenopsis invicta, Aedes aegypti, Culex quinquefasciatus, Plutella 
xylostella, Apis mellifera, Camponotus �oridanus; KEGG ID tca04745). Coding regions within the assemblies 
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were predicted using TransDecoder (http://transdecoder.github.io), which retains the longest open reading frame 
(ORF). To ensure that no putative phototransduction genes were discarded prematurely, all predicted ORFs were 
also searched against a BLAST database of the phototransduction genes using blastp (BLAST+ v2.2.31)71 with 
e-value threshold of 0.001. �e resulting ORF dataset was then searched against an HMM database of the pho-
totransduction genes using hmmscan implemented in HMMER (v3.1b2)72. Assembly statistics, including total 
contigs recovered and N50 values, were used alongside the number of phototransduction genes present and the 
quality of opsins recovered (see below) to assess transcriptome quality. A�er examining all criteria, assemblies 
with fewer than 10 of 15 phototransduction gene orthologs were removed prior to further analysis.

Opsin extraction. Opsins were extracted from all remaining assemblies (74 Coleoptera, four Neuroptera, 
�ve Strepsiptera, two Raphidioptera, one Megaloptera and �ve Hymenoptera; Table S1). Opsins were extracted 
using the same methods used for the detection of phototransduction genes (see above) but instead using a 
database of known arthropod opsins (orthoDB EOG8NKF98) plus full-length coleopteran opsin genes from 
Lampyridae and �ermonectus marmoratus. To ensure that all available opsin copies were extracted, assem-
blies were secondarily analysed using an additional pipeline (PIA)73. All sequences were also BLASTed (https://
blast.ncbi.nlm.nih.gov/) and subject to phylogenetic analysis to con�rm that they were visual opsin proteins. 
Many of the samples contained tissue from multiple individuals, therefore, to exclude inter-speci�c variation in 
opsin gene copy, highly similar opsin duplicates (>99% sequence identity) were removed (CD-hit v4.6.4)74,75. 
Sequence identity was approximated for the remaining opsin duplicates using CD-hit (v4.6.4) and BLAST. Opsin 
sequences have been deposited in GenBank with accession numbers KY368182–KY368379. Opsins were also 
obtained from four coleopterans using a tBLASTn search of coleopteran opsins against Tribolium castaneum 
(Tenebrionidae), Anoplophora glabripennis (Cerambycidae)76, Dendroctonus ponderosae and Hypothenemus ham-
pei (Curculionidae) genomes (Table S1).

Opsin phylogeny. Putative nucleotide opsin sequences were subject to a codon alignment using MAFFT 
(v7.273)77 with 98 insect opsin sequences, and �ve outgroup cephalopod opsins (see Table S7 for accession 
numbers) specifying automatic alignment strategy selection. All coleopteran Rh7 opsins, of which the function 
is unknown, were excluded to reduce the number of alignment gaps. Potential contaminate opsin sequences 
and non-visual opsins (peropsins and RGRs) were also removed. Phylogenetic inference was performed on all 
�nal opsin nucleotide sequences using maximum likelihood (IQ-TREE v1.4.1)78 with 10,000 UFBoot iterations. 
Estimation of the best �tting model was carried out using ModelFinder within IQ-TREE. LG + F + I + G4 was 
selected as the best-�t model. All trees were edited in FigTree (v.1.4.2 http://tree.bio.ed.ac.uk/so�ware/�gtree/).

Species phylogeny. �e 13 transcriptome assemblies provided by 1KITE were excluded from the spe-
cies phylogeny according to 1KITE’s data release policy. To construct a species phylogeny, protein ORFs were 
generated from the remaining transcriptomes, using only one per species, with male adult samples used when 
possible. Orthologous gene clusters were generated using OrthoMCL (v2.0.9)79 and individually aligned using 
MAFFT (v7.273)77 with automatic alignment strategy selection. Each cluster represented a single gene and for 
species with multiple isoforms per gene, only the longest isoform was retained. Clusters were then �ltered using 
a machine-learning algorithm implemented in OGCleaner80,81 to remove low quality putative homology clus-
ters. Alignment quality was assessed using Aliscore (v2.0)82, and Alicut (v2.0) was used to remove ambiguously 
aligned positions in the multiple sequence alignments82,83. Only clusters with genes from at least 20% of species 
were used for further analysis. Lastly, a supermatrix was generated of 358 aligned gene clusters, which was used 
to infer a maximum-likelihood species phylogeny (IQ-TREE)78 with 10,000 ultrafast bootstrap (UFBoot) iter-
ations84. UV and LW opsin duplication events were reconstructed on the species phylogeny, using both parsi-
mony and maximum likelihood frameworks for ancestral state reconstruction in Mesquite (v3.04)85. Likelihood 
was estimated using the Markov k-state 1 (Mk1) parameter model, whereby all character changes are equally 
probable. Two characters were speci�ed according to the opsin gene data: single opsin gene or duplicated opsin. 
Multiple duplications within one species were assigned the latter category. Both ancestral state reconstruction and 
the topology of the opsin gene tree were used to infer the pattern of duplications across Coleoptera.

Positive selection analysis. Selection analysis was performed on the maximum likelihood topology using 
a full length DNA alignment of all opsins in this study, 98 additional insect opsins and �ve cephalopod opsins 
(Table S7). To test for signals of episodic positive selection (PS), we used CodeML within PAML (v4.9a)86. �e 
branch-site model A, which allows ω variation among sites as well as tree branches, was used to detect signatures 
of PS a�ecting certain lineages and sites87. In order to determine signi�cance of inferred selection patterns, we 
compared the branch-site null model A, which assumes �xed ω = 1 (i.e. neutrality) against the branch-site model 
A. �en, the test statistic for likelihood ratio test (LRT) was calculated as twice the di�erence in log likelihood 
(ℓ) between the two models (2∆ℓ). Signi�cance was assessed using a chi-square distribution with one degree of 
freedom. To avoid local optima, starting values of 0.1, 1 and 2 ω were used and the result with the best ℓ retained. 
A Bayes empirical Bayes approach was taken to determine amino acid sites likely to be under PS according a 
posterior probability with signi�cance at ≥95%. �e position of the chromophore-binding pocket (i.e. the region 
of the protein that interacts with the chromophore) was identi�ed using 3D protein modelling (I-TASSER online 
server)88,89 using squid rhodopsin as a template (PDB model 2Z73A)90. Sites within the binding pocket were high-
lighted as potential candidates for spectral tuning and compared with known tuning sites in other taxa.
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