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Overcoming the Under- and Over-Estimation

Problems in Adaptive Sliding Mode Control
Spandan Roy, Sayan Basu Roy, Member, IEEE, Jinoh Lee, Senior Member, IEEE, and Simone

Baldi, Member, IEEE

Abstract—Under- and over-estimation problems are commonly
observed in conventional adaptive sliding mode control (ASMC).
These problems refer to the fact that the adaptive controller
gain unnecessarily increases when the states are approaching
the sliding surface (overestimation) or improperly decreases
when the states are getting far from it (underestimation). In
this work, we propose a novel ASMC strategy that overcomes
such issues. In contrast to the state of the art, the proposed
strategy is effective even when a priori constant bound on
the uncertainty cannot be imposed. Comparative results using
two-link manipulator demonstrate improved performance as
compared to the conventional ASMC. Experimental results on
a biped robot confirm the effectiveness and robustness of the
proposed method under various practical uncertainties.

Index Terms—Adaptive sliding mode control, underestimation
and overestimation, switching gain.

I. INTRODUCTION

A considerable amount of research has been carried out re-

cently on various adaptive-robust control designs (comprising

neural network-based designs [1]–[3], switched-based designs

[4]–[11], functional observer-based designs [12], [13], time

delay-based designs [14]–[16] etc.). Adaptive-robust control

aims at reducing structural knowledge of the system like

conventional adaptive control, while being intrinsically robust

to bounded uncertainties. The most classic form of adaptive-

robust control is adaptive sliding mode control adaptive sliding

mode control (ASMC) where the control gain (usually referred

to in literature as switching gain) is adapted online [4].

Adaptation laws proposed in literature involve monotonically

increasing switching gains [5]–[10], whose high gain might

cause chattering [17].

A. Background on ASMC

To avoid monotonic behaviour of switching gain, the ASMC

laws of [18]–[21] have proposed a threshold-based adaptive
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law, i.e., the switching gain increases (resp. decreases) when

the states are outside (resp. inside) a boundary layer of the

sliding surface. Unfortunately, this strategy does not prevent

the switching gain which may still be increasing (resp. de-

creasing) even if the tracking error decreases (resp. increases),

leading to the overestimation (resp. underestimation) problem

of switching gain. Both situations are detrimental to control

performance: while the under-estimation problem reduces con-

troller accuracy by applying lower switching gain than the re-

quired amount, the over-estimation problem causes larger gain

and demands high control input [17]. Similar under- and over-

estimation problems arise in the adaptive laws of [22]–[25].

In order to keep the focus on the under- and overestimation

problems, our work will be based on the classical first-order

ASMC design.

Let us further elaborate on the issues of under- and over-

estimation by sketching the problem formulation and open

problems. The following notations will be used in this paper:

λmin(·), || · || and (·)g represent the minimum eigenvalue,

Euclidean norm and generalised inverse of (·), respectively; ∨
and ∧ denote logical ‘OR’ and ‘AND’ operators respectively;

I denotes identity matrix with appropriate dimension.

B. Motivation

Consider the following class of nonlinear systems, which

are suitable to represent many mechatronic systems [26], [27]

q̈ = f(q, q̇) +B(q)u, (1)

where q, q̇ ∈ R
n denote positions and velocity; u ∈ R

m

denotes control input with m ≥ n; f : R
n × R

n 7→ R
n

and B : R
n 7→ R

n×m denote the system dynamics terms.

The states x = [qT q̇T ]T are assumed to be measurable. The

functions f and B are considered to be uncertain according

to the following assumptions:

Assumption 1. The system dynamics term f(x) can be upper

bounded as:

||f(x)|| ≤ θ0 + θ1||x||+ · · ·+ θp||x||
p , Y (x)TΘ, (2)

where p ≥ 1; θi ∈ R
+

0 i = 0, · · · , p are finite but

unknown scalars; Y (x) = [1 ||x|| ||x||2 · · · ||x||p]T ; Θ =
[θ0 θ1 θ2 · · · θp]

T .

Remark 1. There exist a large class of real-world mechatronic

systems such as robotic manipulators [28], [29], mobile robots

[30], ship dynamics, aircraft, pneumatic muscles [31] etc.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works. 
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(in general systems following Lagrangian and Hamiltonian

mechanics) where the system dynamics exhibits property (2).

Assumption 2. The nominal value of B(x), call it B̂(x), is

selected such that for a known scalar E the following holds

||B(x)B̂(x)g − I|| , E < 1. (3)

Remark 2. Assumption 2 implies that the perturbation in

B(x) cannot be more than that of the nominal input matrix

B̂(x). Such an uncertainty description is typically adopted and

can be satisfied for many practical electro-mechanical systems

[27, §11].

Let qd(t), the desired trajectory to be tracked, be selected

such that qd, q̇d, q̈d ∈ L∞. Let e(t) , q(t) − qd(t) be the

tracking error and s be the sliding surface designed as:

s , ė+Ωe ⇒ s = Γξ, (4)

where Γ , [Ω I], ξ , [eT ėT ]T and Ω ∈ R
n×n is a positive

definite matrix. Using (1), the time derivative of (4) yields

ṡ = q̈ − q̈d +Ωė = f(x)− q̈d +Ωė+B(x)u

= Ψ(x, ξ) +B(x)u, (5)

where Ψ(x, ξ) , f(x)−q̈d+Ωė, referred as system uncertainty

hereafter. As n ≤ m, the system uncertainty satisfies the

matching condition in Assumption 2. Similar assumption on

uncertainties is implicit in most ASMC literature (cf. [18],

[19], [21]–[23]); however, because the uncertainty is state-

dependent, one cannot use the tools from literature which

require uncertainties to be bounded a priori. Application of

ARC for the case n > m avoiding structural constraint is to

the best of the authors’ knowledge open and can be a future

research direction.

The following two observations mark the difference between

the conventional ASMC as well as the goals.

Observation 1: The overestimation-underestimation prob-

lem of conventional ASMC can be easily illustrated via the

adaptive law of [18], [19] as an example:

K̇ =

{

K̄||s||sgn(||s|| − ǫ), if K > ǭ

ǭ if K ≤ ǭ
ǫ = 4KTs, (6)

where K̄, ǭ ∈ R
+ are user defined scalars, ǫ is a time-varying

threshold value and Ts is the discretization time (cf. [18], [19]

for detailed structure of the control law). It can be observed

from (6) that when ||s|| > ǫ (resp. ||s|| < ǫ), the switching gain

K increases (resp. decreases) monotonically even if the error

trajectories move close to (resp. move away from) ||s|| = 0.

This gives rise to the overestimation (resp. underestimation)

problem of switching gain. Similar problems also arise in the

adaptive laws of [20]–[25].

Observation 2: State-of-the-art ASMC works either assume

that ||Ψ|| ([5]–[10], [18]–[21], [32]) or its time derivative

([22]–[24]) is upper bounded by a constant, a priori. The upper

bound structure of ||f || in (2) reveals that a constant bound

assumption on ||Ψ|| or on its time derivative imposes an a

priori bound on the states (i.e., before analysing closed-loop

stability), which is a restrictive assumption.

C. Contribution

In view of the pertaining issues of the state-of-the-art, as

highlighted in Observations 1-2, the main contribution of this

work is a novel ASMC framework that, as compared to [18]–

[21], [23]–[25], stops increasing (resp. decreasing) the con-

trol gain when the tracking error decreases (resp. increases).

Thanks to this strategy, the proposed framework avoids the

overestimation-underestimation problems of switching gain.

The remainder of the work is organized as follows: The

proposed ASMC framework is designed in Section II along

with its detailed stability analysis; Section III presents a case

study with comparative simulation results, Section IV presents

experimental validation of the proposed ASMC using cCub

biped robot [33]; Section V presents concluding remarks.

II. PROPOSED ASMC FORMULATION

The control input of the proposed ASMC is designed as

u = B̂g(−Λs−∆u), ∆u = ζρ sat(s,̟), (7)

where Λ is a positive definite matrix; ζ ≥ 1 is a user-defined

scalar; sat(·, ·) is the standard ‘saturation’ function defined as

sat(s,̟) = s/||s|| (resp. s/̟) if ||s|| ≥ ̟ (resp. ||s|| <
̟); ̟ ∈ R

+ is a small scalar used to avoid chattering [34].

The gain term ρ will be defined later. Substituting (7) in (5)

and then adding and subtracting (Λs + ∆u), the closed-loop

dynamics is formed as:

ṡ = Ψ− (BB̂g − I)(Λs+∆u)− Λs−∆u

= υ − (BB̂g − I)∆u− Λs−∆u, (8)

where υ , Ψ − (BB̂g − I)Λs. Since ξ = [eT ėT ]T , then

||ξ|| ≥ ||e||, ||ξ|| ≥ ||ė||. Using x = ξ +

[

qd

q̇d

]

, the following

relation holds from (2):

||υ|| ≤ θ∗0 + θ∗1 ||ξ||+ · · ·+ θ∗p||ξ||
p , Y (ξ)TΘ∗, (9)

where θ∗i ∈ R
+ i = 0, · · · , p are finite but unknown scalars;

Y (ξ) = [1 ||ξ|| ||ξ||2 · · · ||ξ||p]T ; Θ∗ = [θ∗0 θ∗1 θ∗2 · · · θ∗p]
T .

The term ρ in (7) is designed as follows:

ρ =
1

1− E
(θ̂0 + θ̂1||ξ||+ · · ·+ θ̂2||ξ||

p)

,
1

1− E
(Y (ξ)T Θ̂), (10)

where Θ̂ = [θ̂0 θ̂1 · · · θ̂p]
T is the estimate of Θ∗. The gains

θ̂i, i = 0, 1, · · · , p are evaluated as:

˙̂
θi =

{

αi||ξ||
i||s|| if (σ(s) > 0) ∨ (

⋃p

i=0
θ̂i ≤ 0)

−αi||ξ||
i||s|| if (σ(s) ≤ 0) ∧ (

⋂p

i=0
θ̂i > 0)

(11)

with θ̂i(t0) > 0, i = 0, 1, · · · , p, (12)

where t0 is the initial time; αi, αi ∈ R
+ are user-defined

scalars; σ(s) is a user-defined function, designed in a way

to guarantee σ(s) > 0 (resp. σ(s) ≤ 0) whenever ||s||
increases (resp. does not increase). In view of the fact that,

in practice, one can only obtain feedback data for sensors

at sampling intervals Ts, a relevant choice for σ(s) becomes

σ(s) = ||s(t)|| − ||s(t − Ts)||. The notations ‘
⋃p

i=0
θ̂i’ and
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‘
⋂p

i=0
θ̂i’ respectively signify ‘either of θ̂i’ and ‘all θ̂i’ for

i = 0, · · · , p.

Remark 3. The initial condition of the gains are selected as

θ̂i(t0) > 0. Note that the first adaptive law in (11) forces the

gains to increase if at least one gain tends to go negative (i.e.,

(
⋃p

i=0
θ̂i ≤ 0)). This ensures that

θ̂i(t) ≥ 0 ∀i = 0, 1, · · · , p ∀t ≥ t0. (13)

A. Stability Analysis of the Proposed ASMC

Theorem 1. Under Assumptions 1 and 2, the closed-loop

system (8) with control input (7), (10) and adaptive law

(11) guarantees ξ(t), s(t), θ̃i(t) to be Uniformly Ultimately

Bounded (UUB).

Proof. The stability analysis is carried out using the following

Lyapunov function:

V =
1

2
sT s+

p
∑

i=0

θ̃2i
2αi

, (14)

where θ̃i , (θ̂i−θ∗i ), i = 0, 1, · · · , p. Exploring the structures

of sat(s,̟) in (7) and of the adaptive law (11), four possible

cases can be identified:

• Case (1):
˙̂
θi > 0 ∀i = 0, 1, · · · , p and ||s|| ≥ ̟;

• Case (2):
˙̂
θi < 0 ∀i = 0, 1, · · · , p and ||s|| ≥ ̟;

• Case (3):
˙̂
θi > 0 ∀i = 0, 1, · · · , p and ||s|| < ̟;

• Case (4):
˙̂
θi < 0 ∀i = 0, 1, · · · , p and ||s|| < ̟.

The closed-loop system stability is analysed for these four

cases using the common Lyapunov function (14).

Case (1): θ̂i increase ∀i = 0, 1, · · · , p and ||s|| ≥ ̟.

Note that
∑p

i=0

1

αi

θ̃i
˙̂
θi = Y (ξ)T (Θ̂ − Θ∗)||s||. Then using

(8)-(11) one obtains

V̇ = sT ṡ+ Y (ξ)T (Θ̂−Θ∗)||s||

= sT (υ − (BB̂g − I)∆u− Λs−∆u)

+ Y (ξ)T (Θ̂−Θ∗)||s||

≤ −sTΛs− ζ(1− E)ρ||s||+ sTυ + Y (ξ)T (Θ̂−Θ∗)||s||

≤ −sTΛs− Y (ξ)T (Θ̂−Θ∗)||s||+ Y (ξ)T (Θ̂−Θ∗)||s||

≤ −λmin(Λ)||s||
2 ≤ 0. (15)

From (15) it can be inferred that V is bounded for this

case, implying boundedness of θ̃i and s. This in turn ensures

boundedness of e, ė and θ̂i. Therefore, ∃ θ̄i ∈ R
+ such that

θ̂i(t) ≤ θ̄i , i = 0, 1, · · · , p when ||s|| ≥ ̟. (16)

Note that
˙̂
θi > 0 implies the gains θ̂i will increase. Thus,

to avoid overestimation, we have to prove that (11) provides

a mechanism such that the estimates would stop increasing

after a finite time so that Case (2) is initiated. Since,
˙̂
θi >

0 ⇒ ||s|| > 0 (from (11)), there always exists 0 < δ < ̟
such that ||s|| ≥ δ. Hence, s = Γξ yields

δ ≤ ||s|| ≤ ||Γ||||ξ|| ⇒ ||ξ|| ≥ (δ/||Γ||). (17)

Using (17), the first law of (11) yields

˙̂
θi ≥ αiδ(δ/||Γ||)

i, i = 0, 1, · · · , p. (18)

Taking V1 = (1/2)sT s and following the simplifications in

(15), one has

V̇1 ≤ −sTΛs− Y (ξ)T Θ̂||s||+ Y (ξ)TΘ∗||s||

≤ −λmin(Λ)||s||
2 −

p
∑

i=0

(θ̂i − θ∗i )||ξ||
i||s||. (19)

According to the second law of (11), the gains start to decrease

if sT ṡ ≤ 0 and θ̂i > 0 ∀i. Thus, when θ̂i ≥ θ∗i ∀i, one has

V̇1 = sT ṡ < 0 from (19) and the gains start decreasing. Now,

integrating both sides of (18) one can find that θ̂i ≥ θ∗i will

be satisfied within the finite times

tri ≤ (1/αiδ)(||Γ||/δ)
i ∀i = 0, 1, · · · , p. (20)

Thus, the gains would start to decrease at t ≥ T where T ≤ t̄
and t̄ = max{tr0, tr1, · · · , trp}.

Case (2): θ̂i decrease ∀i = 0, 1, · · · , p and ||s|| ≥ ̟.

Using θ̂i ≥ 0 (from (13)) and ||s|| ≤ ||Γ||||ξ|| yields:

V̇ = sT (υ − (BB̂g − I)∆u− Λs−∆u)

− (αi/αi)Y (ξ)T (Θ̂−Θ∗)||s||

≤ −sTΛs− Y (ξ)T (Θ̂−Θ∗)||s||

− (αi/αi)Y (ξ)T (Θ̂−Θ∗)||s||

≤ −λmin(Λ)||s||
2 + (1 + αi/αi)||Γ||{θ

∗

0 + θ∗1 ||ξ||+ θ∗2 ||ξ||
2

+ · · ·+ θ∗p||ξ||
p}||ξ||. (21)

Note that the condition {(σ(s) ≤ 0) ∧ (
⋂p

i=0
θ̂i > 0)} is

necessary to establish Case (2) which means σ(s) ≤ 0 is one

of the required condition to be satisfied. Further, σ(s) ≤ 0
implies ||s|| does not grow in Case (2), i.e., ∃β ∈ R

+ such

that ||s|| ≤ β in this case. Hence, using the relation s = Γξ,

the followings are satisfied for Case (2):

||s|| ≤ β ⇒ ||Γξ|| ≤ β. (22)

Moreover, (22) implies ∃γ ∈ R
+ such that

(1 + αi/αi)||Γ||(θ
∗

0 + θ∗1 ||ξ||+ θ∗2 ||ξ||
2+

· · ·+ θ∗p||ξ||
p)||ξ|| ≤ γ. (23)

Substitution of (23) into (21) yields

V̇ ≤ −λmin(Λ)||s||
2 + γ. (24)

Since 0 ≤ θ̂i(t) ≤ θ̄i (from (13) and (16)), the definition of

V in (14) yields

V ≤ ||s||2 + χ ⇒ −||s||2 ≤ −V + χ, (25)

where χ ,
∑p

i=0

1

αi

(θ∗i
2 + θ̄i

2
).

Let us define a scalar z as 0 < z < λmin(Λ). Then taking

̺ , (λmin(Λ)− z) and using (25), (24) can be modified as

V̇ ≤ −{λmin(Λ)− z}||s||2 − z||s||2 + γ

= −̺V − z||s||2 + ̺χ+ γ (26)

Hence, decreasing V can be derived when

||s|| = ||Γξ|| ≥
√

(̺χ+ γ)/z , ι. (27)

That is, V decreases when ||s|| ≥ ι and reaches within a set

Ωl , {V (s, θ̃i) ≤ ῑ : ||s|| < ι} within a finite time and stays
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there [35]. This also implies that there exist a set Ωu and scalar

c > ῑ such that Ωu , {V (s, θ̃i) ≤ c : ||s|| ≥ ι}. The definition

of V yields V ≥ (1/2)||s||2 , κ. Since Case (2) starts within

a finite time, let t = T0 be its initial time. Then ||s|| reaches

ι within a finite time duration [T0 T0 + (c− ῑ)/̺κ] [35].

Case (3): θ̂i increase, ∀i = 0, 1, · · · , p when ||s|| < ̟.

Similar to Case (1), V̇ can be simplified for this case as

V̇ = −sTΛs+ sT (−ζρ(s/̟) + υ − (BB̂g − I)∆u)

+ Y (ξ)T (Θ̂−Θ∗)||s||

= −sTΛs− Y (ξ)T Θ̂(||s||2/̟) + Y (ξ)TΘ∗||s||

+ Y (ξ)T (Θ̂−Θ∗)||s||

≤ −λmin(Λ)||s||
2 + Y (ξ)T Θ̂||s||. (28)

As δ < ̟ (from Case (1)), thus using the condition δ ≤
||s|| < ̟ for Case (3) one has

V̇1 ≤ −sTΛs− Y (ξ)T Θ̂(||s||2/̟) + Y (ξ)TΘ∗||s||

≤ −λmin(Λ)||s||
2 −

p
∑

i=0

((θ̂i(δ/̟)− θ∗i )||ξ||
i)||s||. (29)

Following the similar arguments like in Case (1), one can infer

for Case (3) that, (θ̂i(δ/̟) ≥ θ∗i would occur at t ≥ T ′ where

T ′ ≤ t̄′ and θ̂i’s would start to decrease initiating Case (4).

Here, t̄′ = max{t′r0, t
′

r1, · · · , t
′

rp} such that

t′ri ≤ (1/αiδ)(̟/δ)(||Γ||/δ)i ∀i = 0, 1, · · · , p. (30)

The integral of a piecewise continuous function over a finite

duration is finite [36]. Since
˙̂
θi is piecewise continuous (from

(11)) and gains only increase for finite time upto t̄′, θ̂i’s remain

finite and thus bounded for Case (3). For ||s|| < ̟, system

remains bounded inside the ball B̟ , {b̟ : b̟ = ||Γξ|| <
̟} as s = Γξ. This implies that ξ ∈ L∞ ⇒ Y (||ξ||) ∈ L∞.

Further, boundedness of θ̂i’s and ξ imply ρ ∈ L∞. Hence, for

||s|| < ̟, ∃ϑ ∈ R
+ such that

||Y (ξ)T Θ̂||||s|| ≤ ̟ϑ. (31)

Following (26) and using (31), (28) is modified as

V̇ ≤ −̺V − z||s||2 + ̺χ+̟ϑ. (32)

Hence, decreasing V can be derived when

||s|| = ||Γξ|| ≥
√

(̺χ+̟ϑ)/z. (33)

Case (4): θ̂i decrease, ∀i = 0, 1, · · · , p when ||s|| < ̟.

Proceeding like Case (3), V̇ can be simplified here as

V̇ ≤ −sTΛs− ζY (ξ)T Θ̂(||s||2/̟) + Y (ξ)TΘ∗||s||

− Y (ξ)T (Θ̂−Θ∗)||s||

≤ −λmin(Λ)||s||
2 + (1 + αi/αi)||Γ||(θ

∗

0 + θ∗1 ||ξ||

+ θ∗2 ||ξ||
2 + · · ·+ θ∗p||ξ||

p)||ξ||. (34)

This case along with finite time reachability can be analysed

exactly like Case (2) and thus, the repetition is avoided. The

UUB results for ||s|| ≥ ̟ and ||s|| < ̟ using the common

Lyapunov function (14) imply that the overall closed-loop

system also remains UUB [37] as well as e, ė remain bounded.

Computation of 

sliding surface

Eq. (4)

ASMC law with 

switching gains

Eqs. (7), (10)

Adaptation of 

Switching gains

Eqs. (11), (12)

Checking 

sliding surface 

evolution

s

Desired 

trajectory

q, q
.
+

- u
System plant

Eq. (1)

e,e
.

q ,d q d, q d
. ..

Figure 1. The block diagram of the proposed ASMC.

We finally notice that all the scalars δ, ι, ϑ, γ, β, χ, z, ̺ and

θ̄i were introduced only for the purpose of analysis and not

for designing the control law.

A block diagram of the proposed ASMC law is illustrated

in Fig. 1, and some remarks follow:

Remark 4. The main purpose of verifying the condition

σ(s) > 0 (resp. σ(s) ≤ 0) in (11) is to check whether the error

trajectories are moving away from (resp. moving towards) the

sliding surface and adapt the gains accordingly to overcome

the over- and under-estimation problems. Specifically, the

condition σ(s) > 0 (resp. σ(s) ≤ 0) is utilized to construct

(17) (resp. (22)) leading to the derivation of (20) (resp. (23)).

Remark 5. The proposed stability result does not impose any

restriction on the choice of the scalars αi and αi in (11)

as long as they are positive. However, proper tuning might be

beneficial to performance balance, as these parameters decide

the adaptation rates for the switching gains θ̂i leading to a

trade off between tracking accuracy (high gain) and reduced

control effort (low gain). Therefore, a designer can select these

gains according to application requirements.

III. CASE STUDY: EULER-LAGRANGE SYSTEMS

Euler-Lagrange (EL) systems have immense applications

in various domains such as defence, automation industry,

surveillance, space missions etc. , and are a class of systems

where Assumption 1 and 2 are intrinsically or easily satisfied.

Therefore, it is relevant to see how the proposed design can

be recast in such a case study. In general, a second-order EL

system has the following system dynamics [26, §2]

M(q)q̈ + C(q, q̇)q̇ +G(q) + F (q̇) + d = u, (35)

where M(q) : R
n 7→ R

n×n represents mass/inertia matrix,

C(q, q̇) : Rn×R
n 7→ R

n×n denotes Coriolis, centripetal terms,

G(q) : Rn 7→ R
n denotes gravity vector, F (q̇) : Rn 7→ R

n

represents the vector of damping and friction forces; u ∈ R
n

is the control input and d(t) denotes the bounded external dis-

turbances. The system (35) possesses the following properties

[27]:

Property 1. ∃Cb, Gb, Fb, d̄ ∈ R
+ such that ||C(q, q̇)|| ≤

Cb||q̇||, ||G(q)|| ≤ Gb, ||F (q̇)|| ≤ Fb||q̇|| and ||d(t)|| ≤ d̄.

Property 2. The matrix M(q) is uniformly positive definite

and there exist two positive constants µ1, µ2 such that

0 < µ1I ≤ M(q) ≤ µ2I. (36)
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Representing the system dynamics (35) as (1), one has

f(q, q̇) = −M−1(q){C(q, q̇)q̇ +G(q) + F (q̇) + d}, (37a)

B(q) = M−1(q). (37b)

The vector x = [qT q̇T ]T implies ||x|| ≥ ||q||, ||x|| ≥ ||q̇||.
Thus, using the Properties 1 and 2, one has

||f || ≤ (1/µ1)(Cb||q̇||
2 + Fb||q̇||+Gb + d̄)

≤ (1/µ1)(Cb||x||
2 + Fb||x||+Gb + d̄)

, θ0 + θ1||x||+ θ2||x||
2, (38)

where θ0 = (1/µ1)(Gb + d̄), θ1 = (1/µ1)Fb, θ2 = (1/µ1)Cb.

Thus, the EL system (35) intrinsically verifies Assumption

1 with p = 2. Hence, the control structure of the proposed

ASMC for EL system (35) consists of (7), (10)-(12) with

p = 2.

A. Application: 2-Link Manipulator

1) Simulation scenario: The two-link manipulator under

consideration has dynamics in the form (35), with

M =

[

M11 M12

M12 M22

]

, q =

[

q1
q2

]

,

M11 = (m1 +m2)l
2
1 +m2l2(l2 + 2l1 cos(q2)),

M12 = m2l2(l2 + l1 cos(q2)),M22 = m2l
2
2,

C =

[

−m2l1l2 sin(q2)q̇2 −m2l1l2 sin(q2)(q̇1 + q̇2)
m2l1l2 sin(q2)q̇1 0

]

,

G =

[

m1l1g cos(q1) +m2g(l2 cos(q1 + q2) + l1 cos(q1))
m2gl2 cos(q1 + q2)

]

,

F =

[

fv1sgn(q̇1)
fv2sgn(q̇2)

]

, d =

[

0.5 sin(0.5t)
0.5 sin(0.5t)

]

.

Here (m1, l1, q1) and (m2, l2, q2) denote the mass, length and

position of link 1 and 2 respectively. The following parametric

values are selected for simulation: l1 = 0.6m, l2 = 0.3m,

fv1 = 0.5, fv2 = 0.6, g = 9.8m/s2. Apart from the external

disturbance d, a sinusoidal uncertainty is considered in mass

for both the links, i.e., m1 = (5 + 0.5abs(sin(t)))kg, m2 =
(2.5 + 0.5abs(sin(t)))kg are considered in simulation (here

abs(·) denotes absolute value). The manipulator should track

the desired trajectories qd1(t) = qd2(t) = sin(t).
The proposed ASMC is compared with that proposed in

[18], [19], i.e. the adaptive law (6). This will be denoted as

cASMC (conventional ASMC) for compactness. It is to be

noted that cASMC requires the knowledge of the nominal

values of M,C,G and F , while the proposed ASMC only

requires the nominal knowledge of M . Nominal knowledge

is obtained by selecting the nominal values m̂1 = 5kg,

m̂2 = 2.5kg, l̂1 = 0.5m, l̂2 = 0.25m, f̂v1 = 0.4, f̂v2 = 0.5.

During simulation, the following controller parameters are

selected for the proposed ASMC: Λ = 5I,Ω = I , ̟ = 0.1,

θ̂i(0) = 20, ζ = 4, αi = αi = 10 ∀i = 0, 1, 2 and σ(s) =
||s(t)|| − ||s(t− Ts)||. Further, it is found that Assumption 2

holds with E = 0.412 while considering the nominal values

and perturbations in m1,m2. The controller parameters for

cASMC are selected as K̄ = 10, ǭ = 0,K(0) = 60. Finally,

sliding variable as in (4), initial state as q1(0) = q2(0) =
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Figure 2. Tracking performance comparison between ASMC (proposed) and
cASMC.
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Figure 3. Switching evaluation of the proposed ASMC with ||s||.

0.1rad and Ts = 0.001s are set for both the controllers for

parity.

2) Simulation Results and Comparison: The performance

of the proposed AMSC and that of cASMC are compared

in Fig. 2 in terms of (i) total error (defined as the Euclidean

distance in the tracking error of Links 1 and 2) and (ii) control

torque (defined as the 1-norm of u).

To clarify the contribution of the proposed ASMC in over-

coming the over- and under-estimation problems, the switching

gain plots for ASMC and cASMC are provided in Figs. 3

and 4 respectively. Figure 3 illustrates the evolutions of the

gains θ̂0, θ̂1, θ̂2 with respect to the variations in ||s||: this

substantiates the observation in Remark 4 that all the gains

(i.e., θ̂0, θ̂1, θ̂2) follow the pattern of ||s|| (i.e. they increase

when ||s|| increases and decrease when ||s|| decreases). On the

other hand, it is to be noted from Fig. 4 that the switching gain

K of cASMC increases even when ||s|| approaches towards

zero for the time intervals t=0.12−0.30s, t=22.02−22.27s,

t=28.30−28.56s etc. This is due to the fact that K cannot de-

crease unless ||s|| < ǫ and this gives rise to the overestimation

problem (cf. the unnecessarily high peak of K at around 0.3s).

According to (6), K decreases monotonically when ||s|| < ǫ
for example during t=1.00−20.00s, t=22.24−27.94s etc. This
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Figure 4. Switching gain evaluation of cASMC.

happens despite the fact that during these time intervals, ||s||
increases several times. As a matter of fact, this gives rise to

the underestimation problem: because K becomes smaller and

insufficient to tackle uncertainties, it occurs that the trajectories

will suddenly go away from the sliding surface (cf. the spikes

at around 22s and 28s and the corresponding spiking error in

Fig. 2), whereas ||s|| in Fig. 3 and the corresponding error in

Fig. 2 stabilize to some ultimate bound.

It can be noted from (11) that while increment-decrement

of θ̂0 solely depends on the value of ||s||, the same for θ̂1
and θ̂2 depend on both ||s|| as well as ||ξ||. Hence, noting the

relation (4) and the low tracking error (cf. the error plots in

Fig. 2), it can be realized from Fig. 3 that variations in θ̂1 and

θ̂2 are comparatively smaller compared to θ̂0.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The experimental setup is depicted in Fig. 5. To demonstrate

the effectiveness and robustness of the proposed ASMC in a

real-life system, it is experimented on a biped robot setup,

named cCub [33]. Each leg of the robot has six degrees-

of-freedom (DoFs), thus making a total of twelve DoFs for

the whole robot. The kinematic structure of the leg is with

pitch-roll-yaw joints at the hip, and pitch joints at the knee,

and pitch-roll joints at the ankle. The robot weighs 17.3kg

in total, while the link lengths are 0.24m from the hip to

the knee, 0.20m from knee to the ankle, and 0.06m from

the ankle to the foot sole. All joints are equally equipped

with a BLDC motor (Kollmorgen RBE series) and a harmonic

gear (Harmonic Drive CSG series) with a gear ratio of 100:1,

which generates peak torques up to 40 Nm. Since the robot

angle of the motor is measured by a magnetic absolute encoder

with a resolution of 12-bit, the ultimate resolution of the joint

angle (q) after the gear reduction is 0.879× 10−3 in degrees.

For experimental purposes, the robot is considered as a ma-

nipulator with dynamics shown in (35), where the three pitch

joints (in the sagittal plane) hip (q1), knee (q2) and ankle joints

(q3), are controlled while other joints are kept fixed at zero

angles. Thus, six pitch joints of two legs are simultaneously

operated. Each joint is controlled by an embedded micro-

controller with a sampling rate of 1 kHz which generates the

Pitch 

joints

Base
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Target computer - mini PC

Realtime OS (L=1ms)

Ethernet 1kHz

Development computer

Simulink Realtime 
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Data logging

Hard realtime system
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controllers 

for each 
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q2

q3

0
.0

6
m

Figure 5. The experimental setup of the cCub robot with the realtime control
system, and the schematic diagram of its kinematic structure.

control torque (u) and reads the joint angle (q). The proposed

controller is implemented in the realtime control system using

Simulink Real-TimeTM which communicates with the micro-

controllers of the robot in every 1ms.

Note that the experimental implementation of cASMC is

very difficult for the cCub robot, as only nominal values and

approximate upper-bounds of M are available [33], while

cASMC also requires nominal knowledge of C,F and G
which are uncertain and significantly time-varying for the

cCub robot. This, in our opinion, also highlights the effective-

ness of the proposed ASMC scheme in dealing with unknown

uncertainties for a complex system like cCub.

To properly judge the performance of the proposed con-

troller, two experimental scenarios, S1 and S2, are considered

in following subsections. For both S1 and S2, the control

design parameters are: Λ = Ω = 20I , ζ = 2, ̟ = 0.2, αi =
αi = 10, θ̂i(0) = 20 i = 0, 1, 2, σ(s) = ||s(t)|| − ||s(t− Ts)||
and Ts = 0.001. For simplicity, B̂g is selected as a constant

matrix as B̂g = diag[0.15 0.15 0.15] (kgm2); this in turn

gives E = 0.6 (obtained from prior inertia knowledge of the

cCub [33]) according to Assumption 2. Due to symmetry in

the mechanical structure of both legs of cCub, we only present

the experimental results for the right leg.

A. Experiments of Scenario S1 and Results

1) Experimental Scenario S1: This scenario studies the

capability of the proposed ASMC to cope with desired trajec-

tory having different speeds. For this purpose, five different

periodic desired trajectories, all generated using a fifth-order

polynomial and having different speeds are selected as in Fig.

6. It can be noticed from Fig. 6 that the desired position

angles span ±10,±15,±20,±25 and ±30 degrees within

5sec; accordingly, we call five experiments using these five

different desired trajectories as exp-1, exp-2, exp-3, exp-3,

exp-4 and exp-5, respectively. For all the experiments, the

initial configuration is set as q1(0) = −5, q2(0) = +5, q3(0) =

−5 (in degrees). For simplicity, no external disturbances are

considered in this scenario by keeping the robot hung in the

air (i.e., no ground contact was made).

2) Results and Discussion: The tracking performance of the

proposed ASMC for all the three joints are tabulated in Table

I in terms of root mean squared error (RMSE) and normalized
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Figure 6. Desired trajectories for the three pitch joints.

Table I
RMSE AND NMAE OF THE PROPOSED ASMC FOR SCENARIO S1

RMSE (degree)

Joints exp-1 exp-2 exp-3 exp-4 exp-5

q1 0.112 0.136 0.157 0.172 0.202

q2 0.103 0.122 0.137 0.151 0.166

q3 0.145 0.168 0.184 0.209 0.227

NMAE

q1 0.011 0.010 0.009 0.009 0.008

q2 0.009 0.008 0.008 0.006 0.007

q3 0.014 0.012 0.011 0.009 0.008

maximum absolute error (NMAE), where normalization is

performed with respect to the absolute maximum value of

the desired trajectory. Due to lack of space, only the results

from exp-5 with the fastest trajectory, i.e., under the worst

condition, are plotted in Figs. 7 and 8 in terms of tracking

performance and evolutions of overall switching gain and

sliding variable, respectively. Table I reveals that the increasing

RMSE of the tracking error is simply due to the larger span of

the desired trajectories: in fact, the NMAE is quite uniform for

all experiments. These observations highlight the effectiveness

of the proposed ASMC even while tracking varying desired

trajectories.

B. Experiments of Scenario S2 and Results

1) Experimental Scenario S2: In this scenario, the robust-

ness property of the proposed ASMC is verified in the presence

of dynamic external disturbances. In fact, in this scenario the

robot is required to follow the desired trajectories of exp-2 (cf.

Fig. 6) during a combination of the following three phases as

shown in Fig. 9:

(i) Phase 1 (0 ≤ t < 9): in this phase, the robot was hung

in the air while following the desired trajectory and at

t = 9s (approximately) the robot was put on the ground

initiating Phase 2;
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Figure 7. Performance of the proposed ASMC for exp-5.
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Figure 8. Evolution of the overall switching gain ρ and sliding variable for
the proposed ASMC in exp-5 of scenario S1.
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(approx. t=24s)

Squatting

on the ground

Figure 9. The snapshots of the robustness test of the proposed controller
under the Scenario S2.

(ii) Phase 2 (9 ≤ t < 24): during this phase, a squat like

motion was generated by the robot when following the

desired trajectory. As the robot’s feet is now in contact

with the ground, the ground reaction force gets propa-

gated throughout its body and act as a highly nonlinear

external disturbance during the postural changes; and

(iii) Phase 3 (t ≥ 24): in this phase, the robot was again

lifted from the ground at around t = 24s and thereby, the

ground reaction force was suddenly eliminated.

2) Results and Discussion: The tracking performance of

the proposed ASMC for this scenario is illustrated in Fig. 10

and evolution of its switching gains and sliding variables are

depicted in Fig. 11. Further, to effectively analyse the ability

of the proposed scheme in dealing with dynamic disturbances,
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Figure 10. Performance of the proposed ASMC for scenario S2.

Table II
RMSE AND NMAE OF THE PROPOSED ASMC FOR SCENARIO S2

RMSE (degree)

Joints
Phase 1 Phase 2 Phase 3

(t < 9) (9 ≤ t < 24) (t > 24)

q1 0.135 0.137 0.132

q2 0.121 0.119 0.117

q3 0.168 0.194 0.170

NMAE

q1 0.010 0.011 0.010

q2 0.009 0.010 0.008

q3 0.012 0.017 0.012
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Figure 11. Evolution of the overall switching gain ρ and sliding variable for
the proposed ASMC during scenario S2.

its performance is tabulated in Table II in terms of RMSE and

NMAE.

It can be noted from Fig. 10 as well as from Table II that,

during Phase 2 when the external disturbance was active, the

performance of ASMC slightly dipped compared to the other

phases. Figure 11 reveals that ||s|| and ρ are higher during

Phase 2 compared to other phases. Interestingly, a sudden

spike and a sudden fall can be observed in the plots of Fig. 11

at t = 9s and at t = 24s, denoting the sudden appearance and

removal of disturbances stemming from the effects of cCub’s

feet touching and being lifted off the ground, respectively.

Further, comparing performance of ASMC in Phases 1 and

3 with that of under similar condition in scenario S1 (i.e.,

exp-2) from Tables I and II, one can realize that ASMC has

good repeatability and thus, uniformity (i.e., performances

are almost similar under same operational condition). Such

characteristic is always desirable for a control scheme under

practical circumstances.

V. CONCLUSIONS

A novel ASMC law was proposed in this paper that

can overcome the over- and under-estimation problems of

switching gain without any a priori constant upper-bound

assumption on the system uncertainty. Comparative simulation

study with a 2-link manipulator and experimental results using

a multiple degrees-of-freedom biped robot have validated

the effectiveness of the proposed control law under various

unknown uncertainties. An exciting and challenging future

work would be to extend the proposed control law to higher

order sliding mode control.
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