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Abstract 

 
Many studies over the last several decades have found that people are generally overconfident 
about the accuracy of their knowledge.  This generalization has been overturned by a number of 
recent, carefully controlled studies.  These studies show little or no overall bias when judges 
express confidence in a choice between two alternative answers to a question.   Apparent 
overconfidence is due primarily to unsystematic error in judgments, combined with an 
unrepresentative selection of task items.   However, Klayman et al. (1999), found that substantial 
overconfidence persisted under equivalently controlled conditions with a different type of 
confidence judgment.  When judges are asked to provide intervals such that they are x% sure the 
correct answer is within the interval, the answer falls inside their interval much less than x% of 
the time.  The present paper shows that, although unsystematic judgmental error may contribute 
to overconfidence, subjective confidence intervals are indeed systematically too narrow—
sometimes only 40% as large as necessary to be well calibrated, depending on the domain of 
knowledge and the way in which intervals are elicited.  We discuss the possible psychological 
mechanisms underlying this pattern of findings. 
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Overconfidence in interval estimates 

 
Are people generally overconfident about their level of knowledge?   Research has 

produced a considerable amount of evidence over the last several decades to suggest that they 
are.  In these studies, when people say they are x% sure about a fact, they are typically right 
much less than x% of the time. However, the veracity and generality of the phenomenon of 
overconfidence have been increasingly subject to challenge in recent years.  The presence of 
overconfidence seems to depend to a very large degree on how the questions are chosen, what 
they are about, and how confidence judgments are elicited.  In the present study, we present 
evidence on how overconfidence varies with elicitation method, confirming that there is 
substantial bias in some, but not all, types of confidence judgments.  The pattern of results across 
methods offers important clues to the psychological processes underlying confidence.  
 In most studies of confidence participants are given questions with a choice of two 
answers, one of which is correct.  On each question the judge chooses an answer and then states 
his or her confidence, on a scale from 50% to 100%, that the choice is correct.  “Who was born 
first, Charles Darwin or Charles Dickens?”  “Dickens—75% sure.”   In other studies, participants 
do not choose answers, but rather provide estimates of a quantity in terms of ranges or 
boundaries that correspond to a given degree of confidence.  “When was Charles Dickens born?”  
“I’m 80% sure the answer is between 1750 and 1860.”   In this paper, we examine the latter of 
these two types of judgments, which we call interval estimates.   

Although interval estimates are less studied than binary choices, they are analogous to 
judgments that people commonly make in many contexts.  When people decide when to leave for 
the airport, or how much to invest in stocks, or how much inventory to hold, they implicitly 
make judgments about a plausible interval for the time the ride will take, how much they will 
have in their account 20 years from now, or the rates of sales and production.  Yaniv and Foster 
(1997) have found that people imply a rough sense of confidence in an interval estimate by 
choosing the precision with which they express information.  “I think it was during the last half 
of the 19th century” implies a different degree of confidence than “I think it was around 1875.” 

Studies by Klayman et al. (1999) and Juslin, Wennerholm, and Olsson (2000) found that 
interval estimates are prone to a great deal of overconfidence—much more so than binary choice 
questions.  However, the processes underlying this type of judgment are not well understood.  As 
a step in that direction, this paper examines interval estimates using different types of 
information and different types of questions.  There are several surprises.  Three methods of 
eliciting intervals that seem only modestly different produce very different results, with roughly 
40 percentage points of overconfidence in one method and less than 20 in another.  It appears 
that the more one breaks the interval estimate into more specific component judgments, the less 
overconfidence is observed.  In addition, we provide different kinds of information intended to 
reduce some of the uncertainty in forming intervals.  We were surprised to find that providing 
more objective information does little to reduce overconfidence.  Finally, we demonstrate that 
unsystematic imperfections in judgment can translate into overconfidence in interval estimates.  
However, we also find evidence of significant overall bias:  Under some conditions, intervals are 
less than half the size needed for good calibration. 

  
A brief history of overconfidence 

From about 1970 to 1990, studies of binary choice and interval estimates supported 
similar conclusions.  Studies typically showed overconfidence, that is, the mean confidence 
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across a set of questions typically exceeded the percentage of correct answers.  Binary choice 
tasks also showed a “hard-easy effect”:  overconfidence attenuates, and sometimes reverses, as 
percentage correct increases.  In addition,  the higher the expressed confidence, the more 
overconfidence.  For example, when judges are 90 to 99% sure in their answer to a binary choice 
question, they are typically correct about 70% of the time; when they are only 50% sure, they are 
correct around 55% of the time.  The results for interval estimates have been similar, though 
perhaps stronger:  For example, judges’ 90% intervals typically contain the correct answer less 
than 50% of the time (Klayman et al., 1999; Russo & Schoemaker, 1992).  (The hard-easy effect 
has not been investigated for interval estimates.) 

Researchers generally theorized that overconfidence results from biased retrieval and 
interpretation of evidence (e.g., Hoch, 1985; Koriat, Lichtenstein, & Fischhoff, 1980).  
Beginning in the late 1980’s, however, a different picture emerged concerning confidence in 
binary choice (see Budescu et al., 1997; Klayman et al., 1999; McClelland and Bolger, 1994 for 
syntheses).  According to this new view, judges’ responses contain lots of error, but little or no 
bias. There are several sources of unsystematic error in subjective confidence, ranging from 
having accidentally had atypical experiences (Juslin, 1994; Soll, 1996) to unreliability in 
generating a number that goes with one’s feeling of confidence (Erev, Wallsten, & Budescu, 
1994).  The proportion of correct answers is also susceptible to variation depending on which 
particular questions happen to be sampled.  Given that both confidence and accuracy are noisy 
measures of something else (the strength of the underlying information), mean-reversion effects 
are inevitable.  That is, when confidence is high, it’s generally too high, and when it’s low, it’s 
generally too low—the typical pattern of miscalibration.  Similarly, when accuracy is low for a 
set of questions it’s likely to be lower than the available information would lead one to expect, 
and when accuracy is high it’s likely to be higher than one would expect (Dawes & Mulford, 
1996; Klayman et al., 1999; Suantak, Bolger, & Ferrell, 1996).  This leads to overconfidence for 
“hard” question sets, and occasionally even underconfidence for “easy” question sets – the hard-
easy effect.   

A prediction of the noisy-but-unbiased view is that judges who are tested with a 
representative sample of questions across a wide variety of domains will on average be about 
right in their confidence.  Because they are imperfect, they will naturally tend to be 
overconfident when they are very confident, but also underconfident when they are very 
unconfident.  Recent research with binary questions has in general supported this view (e.g., 
Juslin, Winman, & Olsson, 2000; Klayman et al., 1999).  Overconfidence may have been the 
predominant finding in earlier studies because of a tendency for experimenters to construct tests 
that favored the harder questions in any given domain.  The hardest questions in a domain are 
naturally the most likely to be harder than a reasonable person would expect given his or her 
knowledge (Gigerenzer et al., 1991; Juslin, 1993; May, 1986). 
 What about judgments using the interval estimate paradigm?  Klayman et al. (1999) 
found a very different picture.  They used the same domains as for their binary choice questions, 
and again sampled randomly from all possible questions in each domain.  The result: Fewer than 
45% of answers fell within what were supposed to be 90% confidence intervals.  Currently, little 
is know about when and why interval estimates produce such severe overconfidence. 
 
Imperfection and bias, and how to tell the difference 

The history of research on confidence in binary questions makes it clear that 
unsystematic judgmental error can affect results in ways that are difficult to anticipate and to 
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analyze.  One important me thodological safeguard is to be sure that samples of stimuli are 
unbiased.  As in many recent confidence studies, we do this by sampling randomly from the 
population of available questions in a given domain of knowledge, and by examining multiple 
domains.  A second important measure is to consider what one would expect from a population 
of noisy but unbiased judges, and to compare observed results to that standard rather than a 
standard of perfection. 

Juslin et al. (2000) suggest one approach to a model of unsystematic error in confidence 
intervals.  They extrapolate from the two choice task by postulating that, for example, a 90% 
confidence interval can be modeled as two binary decisions:  95% certainty about the lower limit 
and 95% certainty about the upper.  As described earlier, the effect of unsystematic error is to 
make each of these estimates overly extreme.  The size of the error varies with the judge’s 
knowledge and reliability and with the predictability of the environment (see Juslin et al, 1997).  
A typical finding is that expressions of 95% certainty are associated with roughly 80% accuracy.  
Thus one might expect that a 90% confidence interval would miss about 20% at each end, and 
thus would include only 60% of answers.  This would explain a lot of the overconfidence 
observed in interval judgments, although data from Juslin et al. (2000) and from Klayman et al. 
(1999) indicate that interval estimates show about .10 to .15 more overconfidence than predicted 
by this model.   
 There are several important caveats to the characterization of interval estimates as a pair 
of binary choices.  As we will show later, judgments made separately for each endpoint do not 
show the same pattern as for a single judgment about an interval.  More importantly, the primary 
explanation for miscalibration in binary choice does not apply to the usual interval judgment 
task.  With binary choice questions, judges are given fixed alternatives and they respond with a 
range of different degrees of confidence.  If the researcher then examines different subsets of 
responses, the mean-reverting effect discussed earlier applies.  Assuming a noisy but unbiased 
judge, the higher the expressed confidence, the more likely it is to include some positive error, 
i.e., to be overconfident.  So, 95% confidence judgments, being very high, are inevitably too high 
on average. 
 With interval judgments, the confidence level is fixed and the judge must determine the 
answer that fits it.  The researcher considers all judgments, not a subset.  Thus, mean-reversion 
effects are not expected.  Across all these judgments, an unbiased judge should make a variety of 
errors, with judgments averaging out close to 95%.  Thus, even if we accept the hypothesis that a 
90% interval is made up of two 95% confidence judgments, we should not expect unbiased error 
to translate into overconfidence in the same way. 
 There is, however, a different way that unbiased judgmental noise might translate into 
overconfidence in interval judgments.  If judges make unbiased errors in assigning dates, 
weights, prices, or whatever to the endpoints of their intervals, they will come out looking 
overconfident.  To explain how this can happen, we present three mythical figures: a minor 
goddess by the name of Calibra, a sage named Serge, and a peasant named Peggy. 
 Calibra.  Calibra, being only a minor goddess, is not omniscient.  However, she is 
perfectly calibrated.  Calibra’s knowledge gives her a sense of how close any given value is 
likely to be to the truth.  If you ask her the height of Mount Olympus, for example, her 
knowledge indicates that 300 meters is very likely to be too small, 1000 meters is probably still 
too small, 7000 meters is almost surely too big, and so on.  Being a goddess, Calibra’s sense of 
likelihoods corresponds precisely to a subjective probability density function (spdf) whose 
probabilities exactly match true, external probabilities of being right.  When she says that she is 
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C% certain that the answer is A ± D, she is right C% of the time.  You can check this yourself.  
Over her indefinite lifetime, Calibra has made myriad judgments of this type and has kept precise 
records, and the correct answer is always revealed and recorded subsequent to her judgments.  
You can randomly draw a subset of judgments from the records at any level of confidence and 
check her hits and misses.  You will find that your samples behave exactly as though they were 
drawn by randomly sampling a series of independent, random events of probability C. 
 Serge.  Serge is a very sage sage.  His subjective probability judgments are like those of 
the goddess Calibra, except, being mortal, he knows less and he is prone to error.  He is 
completely unbiased, however; his errors are random and have a mean of zero.  Specifically, 
when asked for an interval corresponding to C% confidence, he gives the same size of interval 
that perfectly-calibrated Calibra would give if she had Serge’s knowledge, plus some random 
error.  That is, Serge reports an interval of A ± (D + e), where e is a random, mean-zero error. 
 Peggy.  Peggy is a peasant.  She’s not as wise as Serge is, but she’s no dummy.  Her 
confidence judgments do correlate positively with her chance of being correct.  However, she 
makes larger random errors than Serge does, and she also is prone to bias.  In particular, her 
intervals are systematically narrower than they ought to be. 
 We know that we will find Calibra to be perfectly calibrated, and Peggy will be 
overconfident on average.  But what can we expect from Serge?  As it turns out, Serge’s random 
errors will also produce overconfidence.  This makes it difficult to know the extent to which 
Peggy’s overconfidence is due to bias rather than noise. 

Why Serge is overconfident.  Serge’s unbiased errors translate into overconfidence 
because of a characteristic of the subjective probability density function (spdf) implied by his 
knowledge.    The most likely single value is inside the interval, and the likelihood goes down as 
you get further from that peak. This seems likely to be true of very many spdf’s.  
This implies that errors in setting the endpoints of the intervals have asymmetric effects 
depending on whether they are inward errors (making the interval narrower) or outward errors 
(making the interval wider).  Consider the normal distribution shown in Figure 1. .   

Suppose that we ask Serge to estimate the year in which Charles Darwin was born.  The 
curve in Figure 1 represents the perfectly calibrated version of Serge’s spdf.   It’s the curve that 
Calibra would have if she knew exactly what Serge knew.  Calibra would say, for example, that 
there is an 80% chance that Darwin was born between 1800 and 1840 (interval I, shown by the 
solid, vertical lines).  Serge, though, is prone to error.  He might set an interval that’s 10 years 
too narrow.  So, he says he is 80% sure the year is between 1805 and 1835 (interval J).  Calibra 
would have said there was 66% chance that the answer lies in that interval, and she’s perfectly 
calibrated, so Serge is overconfident in this case. 
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Figure 1.  A hypothetical subjective probability function for an estimate of the year 
Charles Darwin was born.  Intervals J and K represent opposite 10-year errors in 
estimating the interval, I, that contains 80% of the probability. 

 
 But Serge is not biased.  He is equally likely to make the opposite error, making his 
interval 10 years too wide (interval K).  Calibra would tell us that the probability that the answer 
lies between 1795 and 1845 is not 80%, as Serge reports, but 89%.  This time, Serge is 
underconfident.  Note, though, that the area mistakenly excluded by an inward error (the striped 
area) is greater than the area mistakenly added by an outward error (the gray area).  Specifically, 
a ten-year error produces 14% overconfidence in one direction and 9% underconfidence in the 
other.  On balance, then, unbiased errors about the size of the interval produce overconfidence.  
This example uses a normal curve, but this property is true of any curve that slopes upward 
toward a peak within the interval and downward on the other side. 

Is Peggy really biased or is she just noisy?  When we check the records on Peggy, we 
find that she is considerably more overconfident than Serge is.  This could be because Peggy’s 
errors are biased—on average, her intervals are narrower than her knowledge justifies.  However, 
it could also be that Peggy’s errors are merely larger than Serge’s.  In the above example, if 
Peggy’s errors in each direction were 30 years instead of Serge’s 10, they would produce 55% 
overconfidence and 18% underconfidence, and Peggy would be quite overconfident on average. 
 This raises the question of how to tell if an overconfident person is biased or just very 
noisy.  Are Peggy’s intervals the right size on average, or do they really tend to be too narrow?   
This is the question we want to answer for the participants in our studies.  We use three methods 
for estimating what the “right size” is for judges like Peggy.  Each method involves some 
simplifying assumptions and approximations.  However, we can hope that the different methods 
converge on plausible estimates. 
 Compare the inferred and the observed accuracy of estimates.  In this approach we 
pretend that each judge has a particular spdf for each question.  We doubt that judges literally 
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carry probability density functions in their head, but as long as they have a sense that some 
answers are more probable than others, we can model judges as though they have spdf’s.   We 
can estimate their spdf’s from the fractiles they give us.  For example, if Serge tells us he is 90% 
sure that Darwin was born after 1800 and 90% sure he was born before 1840, and we assume his 
spdf is normal-distribution shaped, we can infer the curve shown in Figure 1, which has a mean 
of 1820 and a standard deviation of 15.6. 
 The spdf implied by fractile estimates in turn implies a distribution of expected surprises.  
There should be a 20% chance that the correct answer is more than 20 years away from 1820 
(10% that is earlier than 1800 + 10% that it is later than 1840), a 52% chance that it is more than 
10 years away, a 75% chance that it is more than 5 years away, and so on.  Summing across all 
such probabilities for the curve shown in Figure 1, we find a mean expected absolute deviation 
(MEAD) of 12.4 years.   

We can then look at a given judge’s answers and compare two measures of surprise.  The 
first is the observed mean absolute deviation (MAD) between the true answer and the median of 
her spdf for that estimate.  The second is the mean expected absolute deviation (MEAD) implied 
by the fractiles she gives.  For Calibra, MAD of course equals MEAD, except for some random 
variation due to luck of the draw in sampling questions.  Importantly, the same is true for Serge, 
even though he’s overconfident.  As we noted before, given Serge’s spdf, a ten-year mistake in 
one direction causes 14% overconfidence, while the same error in the other direction causes 9% 
underconfidence.  However, equal and opposite mistakes have equal and opposite effects on 
MEAD (in this case, changing from 12.4 years to 10.8 or to 14.0 years, respectively).  So if 
Serge’s intervals are the right size on average, his MEAD and his MAD will also be the same 
size on average.  As for Peggy, if her MAD exceeds her MEAD, that means she is receiving 
bigger surprises than she expects, and her intervals are too small.  The ratio of MEAD to MAD is 
an estimate of the ratio of Peggy’s average interval size to the size that represents her true 
accuracy.1 
 Measure the correlation between interval size and hits.  Greater unbiased error and 
narrower intervals both cause more overconfidence.  However, the former has an additional 
effect that the latter does not.  The greater the noise, the greater the correlation between the size 
of the interval and whether the correct answer falls in it (a “hit”).   Calibra’s intervals vary in size 
according to how much she knows about a particular question.  However, her smallest 80% 
intervals contain the answer 80% of the time,  as do her largest 80% intervals.  Serge, on the 
other hand, also widens and narrows his intervals by accident.   When he makes an inward error, 
his interval gets narrower and also gets less likely to catch the right answer.  The opposite 
happens when he makes an outward error.  Thus, for Serge there is a correlation between interval 
size and hits.  For Peggy, we can identify the combination of noise + bias that would produce the 
combination of overall hit rate and size-to-hits correlation that we see in her responses. 

How hit-rate and correlation map onto noise plus bias depends on the way that noise 
operates.  We don’t actually know this, so we use two different, plausible models for it. One 
model we use is 

                                                 
1 The assumption that MEAD / MAD is equal to the ratio of the observed interval width to the 
proper interval width is exact for a normal distribution with the mean in the center of the interval.  
We have also found via simulations that this is approximately true for a variety of skewed beta 
distributions.  Since we do not know the shape of people’s implicit spdf’s, this should in any case 
be regarded as an approximation. 
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(1) Wi / Wi* = z  

where  Wi  is the width of the interval the judge gives for estimate i, and Wi*  is the well-
calibrated size Calibra would have given.  Variable z represents the judge’s error in setting the 
interval size.  In our simulations, we use a gamma distribution for z because it is bounded at 0, 
and, logically, intervals cannot be less than 0 in size.   The other model we use is  

(2) log(Wi / Wi*) = z. 
With logarithms, interval widths cannot be less than 0, so we can just assume a normal 
distribution for z.  Further details are provided in the Appendix. 
   In the studies presented here, we find very high correlations (between .85 and 1.0) among 
our three methods of estimating each participant’s average bias, z .  We present analyses using 
the MEAD/MAD measure, and note the few instances in which the other measures differed 
qualitatively. 
 

Experiment 1 
 

This study follows the approach used by Soll (1996), in which participants are not given 
specific, identifiable items, but rather are given only certain cues from which an estimate can be 
made.  For example, a judge might be asked to estimate the price of an automobile, given that it 
had 6 cylinders, had been rated 4 out of 5 in road tests by Consumer Reports magazine, and was 
medium in size. 

This approach provides a measure of subjective confidence intervals in a task that is not 
completely reliant on retrieval of information from memory.  We went further toward reducing 
reliance on memory by also providing judges with information about the highest, lowest, and 
average value in the relevant population for each of the cues and the criterion.  So, for example, 
judges were told that the automobiles they would be asked about came from the most recent 
Consumer Reports listing of sedans, that prices in that list ranged from $11,325 to $42,489, with 
an average of $21,416, that the number of cylinders ranged from 4 to 8, with an average of 6, and 
so on.  Judges of course still rely on memory for their impressions of the relations of cues to 
criteria, but not for the actual values of the cues or their ranges and averages.  We were interested 
to see if reduced reliance on memory-based information would result in less overconfidence than 
had been observed in earlier studies of interval estimates. 

A second advantage of providing objective cue information is that it provides objective 
standards for both accuracy and confidence.  That is, we can compare the estimates of 
participants to statistical estimates using the same cues, and we can compare participants’ 
confidence intervals to the statistical confidence intervals derived from regression models. 

We elicited subjective intervals two ways.  In one condition we asked for 80% intervals, 
in the other we asked for two separate 90% judgments, representing 10th and 90th percentiles.  
Researchers have generally assumed that judges intend the former to be equivalent to the latter, 
and that the two responses will be similar.  We test those assumptions in the present study. 
 
Methods 

Participants.  Participants were 32 undergraduate and graduate students from the 
University of Chicago, 9 male and 7 female in each of two conditions.  They were recruited via 
notices posted around campus and were paid $9 for the approximately 45 min it took to complete 
the procedure.  Three participants in each of the two experimental conditions were replaced 
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because their estimates revealed that they had misunderstood the questions in one or more of the 
domains. 

Procedure.  After signing a consent form, participants were handed 1 ½ pages of printed 
task instructions, which they were permitted to keep with them during the procedure.  The 
instructions included the following example: 

... Child number 7, selected randomly from the files of the local primary school, weighs 
86 pounds, is 51 inches tall, and has 11 permanent (adult) teeth.  We...then ask you to 
make an estimate about how old Child 7 might be.  We don’t ask for a “best guess”; ... 

The instructions continued with a description of one of the two elicitation methods: 
... instead, we ask you to give us two numbers such that you are 80% sure that the correct 
answer lies somewhere between the two. 

or 
... instead, we ask that you give us a lower estimate such that you are 90% sure that the 
child is not younger than that.  Then we ask you for an upper estimate such that you are 
90% sure that the child is not older than that. 
This was followed by an additional paragraph of explanation using the Child 7 example, 

including a translation of the required probabilities in terms of frequencies (“... you would expect 
on average to miss the answer on about 10 out of the 50 questions” or “... you would expect the 
correct answer to be lower than your lower estimate about 5 times and more than your upper 
estimate about 5 times”).  The remainder of the instructions described how to locate and provide 
information using the computer. 
 The estimation task was presented using PC-type computers.  Participants worked 
separately in a room that accommodated up to four participants at a time, separated by partitions 
that prevented seeing one another’s screens.  The task consisted of 50 questions, 12 from each of 
two domains, and 13 from each of two others.  The opening screen of the task introduced the first 
domain.  For example, 

Hello! The next 12 questions will ask you to estimate the invoice price of different sedan-
type automobiles (that is, the price the manufacturer charges the dealer.) We have 
randomly selected 12 out of the 67 sedans reviewed in Consumer Reports. Though we do 
not tell you the makes of the sedans, we give you some statistics about the year 2000 
models, along with the low, high, and average for all 67 reviewed sedans.  This 
information was drawn from the statistics available on the Consumer Reports website.  
These may not necessarily be the most useful statistics for making your estimates.  Please 
hit “PAGE DOWN” to begin. 

 
On each of the next 12 pages, an estimate in that domain was requested.  Figure 2 provides an 
example. 
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1 Number  
of doors 

Rating on 
road tests 

Number  
of cylinders 

Predicted  
reliability Type of car 

 2 to 4 1 to 5 4 to 8 1  to 5 Small  to Luxury 
 ave.= 4 ave.= 3 ave.= 4 ave. = 3 ave.= Family 

   this car:   4  3          Family 

 
DICTIONARY 

  
        

 
 

I'm 80% sure that the invoice price of this car   
  is between   and     

 
After entering your numbers, 

HIT "PAGE DOWN" FOR NEXT PAGE 
<Please do not return to previous estimates> 

 
Firgue 2.  Example of the display used to request estimates in the range-format condition 

of Experiment 1. 
 
Gray boxes represented missing information.  The cell marked “Dictionary” provided definitions 
for the criterion and each of the cues, and also the mean and range of for the criterion value (i.e., 
in Figure 2, for the full list of sedans form Consumer Reprots).  Figure 2 shows a screen from the 
range conditon. Participants used the keyboard to enter numbers in each of the two outlined cells 
in the “between ___ and ___” line.  The display in the two-point condition was the same, except 
that instead of completing the sentence “I’m 80% sure...,” there were two response lines that 
said, “I’m 90% sure that the invoice price of this car is at least [box]” and “I’m 90% sure that the 
invoice price of this car is at most [box].  Participants could change their responses prior to going 
on to the next question, but could not return to previously entered estimates.   

After answering 12 or 13 questions, depending on the domain, the next screen asked 
participants to indicate, on a scales from 0 to 10, how much they knew about the domain and, 
also from 0 to 10, how important it was to them “to know a lot about” the domain. 

After that, participants were presented with the next domain, using the same procedure.  
After completing a total of 50 questions from four domains, participants were asked, “Out of all 
50 questions you answered, for how many of the 50 questions do you think the correct answer 
will turn out to be within the interval you gave?” They were also asked to provide some 
demographic information. 
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Design.  Participants were assigned to one of two conditions.  Those in the range 

condition were asked for an 80% confidence interval, and those in the two-point condition were 
asked for high and low 90% estimates, as described in the Procedures.  Four domains of 
estimates were used, with each participant receiving all four.  The order of domains was 
counterbalanced across subjects in a Latin Square design.  The order of questions within domain 
was randomized at the beginning of the experiment, and was the same for all participants. 

There were five possible cues available for each domain, shown in Table 1.   
 

Domain Available cues 
  
This college’s overall quality score 
 Graduation rate 
 Academic reputation rating 
 % students from top 10% of their high school 
 Classes with over 50 students 
 % of faculty who are full-time 
  
The average box office gross of ‘90s movies starring this actress 
 Number of times she has been nominated for an Oscar 
 Whether she uses her real name 
 Number of films she has starred in 
 Her age 
 Number of children she has 
  
Invoice price of this sedan-type car 
 Consumer Reports predicted reliability 
 Consumer Reports rating on road tests 
 Number of doors 
 Size of car 
 Number of cylinders 
  
Winning % of this National Basketball Association team 
 Average turnovers per game 
 Average assists per game 
 Average rebounds per game 
 Average blocks per game 
 Average points per game 

 
Table 1.  Domains of estimates and the cues provided for each in Experiment 1. 

 
Where source materials provided more that five potential cues, the five were chosen to be (a) 
easily comprehensible and (b) approximately representative of the distribution of cue validities 
among all the cues contained in the source.  On any given trial, three of the five cues were 
presented.  The selection of cues was such that each cue appeared five or six times in the 12 or 
13 questions, in different combinations.  This meant that different questions within a domain had 
different quality information, and thus should merit different interval sizes.  The assignment of 
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which cues were given on which questions was constant across participants.  In each case, the 
values on the cues were the actual values of a particular item in the source list.  Thus, the 
distribution of cue values and the intercorrelations among cues approximated the population. 
 Due to a programming error, two of the 13 questions in the domain of college quality 
scores had to be eliminated from analyses;  some participants saw all five cues for those items. 
 
Results 
 Except where noted, results were analyzed using a multivariate analysis of variance with 
format (range or two-point) and gender as between-participants variables.  For each participant, 
the dependent measures were sums or averages across the 12 or 13 trials in each domain, 
producing four measures per participant.  
 Hit rate.  Overall, judges’ 80% confidence intervals contained the correct answer 48% of 
the time.  Intervals in the two-point format contained the correct answers more often than in the 
range format, F(1,28) = 7.1, p = .013, and there were significant differences among domains 
F(3,26) = 5.9, p = .003.2  See Table 2.  Female judges had a higher hit rate, F(1,28) = 6.5, p = 
.016.  There were no significant interactions. 
 
 

          Interval size relative to norm  

 
 

 
 

Hit ratea 
 

MEAD/MAD 
Gamma 

simulation 
Log 

simulation 
Format      
 Range 39 .45 .46 .44 
 Two-point  57 .66 .71 .69 
Domain      
 Movie grosses 39 .44 .46 .43 
 Basketball wins 46 .57 .55 .54 
 Car prices 51 .59 .63 .61 
 College ratings 57 .62 .70 .68 
Gender      
 Female 58 .70 .74 .72 
 Male 40 .45 .47 .45 
 
Table 2.  Estimates of overconfidence and interval size relative to well-calibrated 
intervals for each domain of Experiment 1 
aAnswers that exactly matched an endpoint were counted as correct. 

 
 MEAD and MAD.  Next, we applied the first method described earlier for estimating 
how the average size of subjective intervals compares to the average size of interval that would 
produce good calibration.   For each estimate, we calculated the absolute difference between the 
center of the participant’s interval and the correct answer.  We then averaged these to obtain the 
mean absolute difference (MAD) for each domain for each subject.  We also calculated the mean 
expected absolute difference (MEAD) that would result if the participant’s announced endpoints 

                                                 
2 In this and the subsequent experiments, an arcsin transformation was used in analyses of hit 
rates. 
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were the 10th and 90th percentiles of a normal distribution.  We of course do not know that a 
normal distribution is a good representation of judges’ spdf’s.  However, this provides a simple, 
parsimonious model by which to approximate the expected absolute deviation implied by the 
judge.  The ratio of inferred, expected deviations to actual, observed deviations (MEAD/MAD) 
thus provides an estimate of the ratio by which subjective intervals compare to the size of well-
calibrated intervals, on average.  The MEAD/MAD ratio was higher in the two-point format than 
in the range format, F(1,28) = 6.4, p = .018, and varied by domain, F(3,26) = 6.6, p = .002.  See 
Table 2.  Males were more biased than were females, F(1,28) = 8.8, p = .006.  There were again 
no significant interactions.  Similar results were obtained with both of the simulation-based 
estimates of bias (see Table 2). 

It is interesting to note that the ratio of MEAD to MAD was closer to one in the two-point 
condition for two reasons:  MEAD was larger, F(1,28) = 5.2, p = .031 and MAD was smaller, 
F(1,28) = 6.0, p = .021. 3  In other words, with the two-point format, judges were both more 
accurate and less confident.   A different pattern underlies the gender difference.  Males and 
females did not differ significantly on MAD (accuracy), only on interval width, F(1,28) = 9.4, p 
= .005. 
 Comparison to statistical estimates. Another way to gauge participants’ confidence is to 
compare them to statistical estimates.  We created linear regression models using each 
combination of cues seen by participants.  These models were created using the whole 
population from which items were drawn (e.g., all 67 sedans reviewed by Consumer Reports, not 
just the 12 we asked about.)   For each item participants saw, we obtained the statistical estimate 
from the relevant regression model, as well as that model’s 80% confidence interval.   As 
expected, the models’ estimates were more accurate.  Participants’ MADs were 1.6 times as 
large than those of the corresponding models.  But participants were also more confident.  The 
models’ intervals were 1.3 times the width of participants’ intervals. 

 Self-ratings.  Aside from providing interval estimates, participants answered three 
types of general questions about their task.  Following each set of 12 or 13 items in a domain, 
participants indicated on 0-to-10 scales how much they knew about that domain and how 
important it was to them to know about it.  Comparing individuals within each domain, neither of 
these measures nor their interaction was correlated with any of our performance measures.  
MANOVAs with format, gender, and domain as independent measures showed only a significant 
effect of domain on each measure, F(3,22) = 10.3, p < .001 for knowledge and F(3,21) = 11.2, p 
< .001 for importance. Comparing the four domains, ratings of importance were strongly 
correlated with hit rate (r = .95, t(2) = 4.35, p < .05).  The correlation of hit rate with knowledge 
ratings was positive, but not significant (r = .58).

After completing all 50 trials, participants were asked to estimate how many of their 
intervals actually did contain the correct answer.  Gigerenzer et al. (1991) asked a similar 
question following a series of binary choice questions.  They found that the average retrospective 
estimate of the number of correct answers was close to the actual average number correct for a 
representative sample of questions from the domain.  Our findings are partially consistent with 
theirs.  Given that we asked for 80% probability intervals, participants should have been aiming 

                                                 
3 We wanted to include all domains in a single analysis, even though their scales were very 
different (e.g., millions of dollars, percentages).  To roughly equate the scales, we standardized 
MAD and MEAD for each domain using the mean and variance of criterion values found among 
all items in the source list. 
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for 40 hits.  In retrospect, they estimated that they had 31.  In reality, they had 24.  Thus, 
participants were still overconfident in retrospect, but less so than they were item by item.  Even 
more interesting, we found a correlation of .47 (p < .006) between retrospective estimates and 
actual number of hits.  Thus, participants seem to have had some insight after the fact into their 
degree of overconfidence. 
 
Discussion 
 This study confirms the findings of Klayman et al. (1999) that confidence in intervals is 
very different from confidence in two-choice questions.  Overconfidence is pronounced in the 
former case, and modest in the latter.  Because unbiased variation in interval size can contribute 
to overconfidence, we use several methods to estimate specifically how the size of subjective  
intervals compares to what a well-calibrated judge would say.  We find that subjective 
confidence intervals are indeed too narrow -- on average, less than 60% of the size they needed 
to be.  It is interesting that providing objective cue information and explicit information about the 
range and mean of each of the cues and criteria did not greatly reduce overconfidence relative to 
what has been reported in the past (e.g., Juslin, et al., 2000; Klayman et al., 1999; Russo & 
Schoemaker, 1992).  Apparently, overconfidence in interval judgments is not only a function of 
processes of retrieval of facts from memory.  
 We found a big difference between two ways of asking for intervals that appear on the 
surface to be nearly equivalent.  When judges indicated they were 80% sure the answer was 
between __ and __, they were overconfident by 41%.  When they separately indicated high and 
low two-point estimates about which they were 90% sure, they were overconfident by 23%.  
Similarly, in the range format, intervals were less than half the well-calibrated size, and in the 
two-point format, about two-thirds.  Results also differed greatly by domain (see also Klayman et 
al., 1999).  This finding highlights the risks of relying on any single domain, as a number of 
studies have done.  We also found that men were almost twice as overconfident as women were.  
Women’s estimates were not more accurate, but their intervals were more than 50% wider than 
men’s.  
 Participants’ self-ratings also showed some interesting effects.  We found a very strong 
correlation between the average importance rating given a domain and the average hit rate in that 
domain.  Given that this was a pot-hoc observation, that we did not see a similar pattern within 
domain, and that it is based on a sample of only four domains, we are cautious in interpreting this 
finding.  However, it does suggest the hypothesis that participants monitor their state of 
knowledge or ignorance more carefully in domains they feel are important to know about.  This 
could be one important contributor to differences among domains. 
  The fact that retrospective confidence is lower than the requested 80%, and is correlated with 
actual hit rate across individuals, suggests that people have some insight into their general state 
of knowledge that is not fully applied to individual estimates. 
 

Experiment 2 
 

The results of the first study established that interval estimates are indeed overly narrow.  
Three different methods provided similar estimates of bias in interval width, and arrived at 
similar conclusions regarding how bias varies across elicitation formats and domains.  However, 
we made two assumptions in applying the methods that might be overly restrictive, which could 
potentially affect the results.  First, for the range format, we assumed that the boundaries 
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participants provided excluded 10% of the probability at each tail of the spdf.  This is not an 
issue in the two-point format, because participants were explicitly instructed to do so.  Second, 
we assumed that the median of the spdf was halfway between the reported boundaries.  A normal 
distribution is likely to be a good approximation if both assumptions hold true, but perhaps not 
otherwise.   
 In the present study, we obtained additional information from judges by asking them to 
provide explicitly their median estimate as well as separate low and high boundaries.  This 
permits us to take into account the possibility that judges’ intervals are in fact asymmetric (see 
O’Connor & Lawrence, 1989).  Having three fractile points instead of two permits us to better 
approximate the underlying spdf, and to better estimate implied and actual deviations.  We used 
beta functions for this purpose, because they can approximate a great variety of skewed 
distributions. 
 In Experiment 1, we found a surprising difference between range and two-point formats.  
Experiment 2 introduces another element, by requesting a median estimate.  Prior research offers 
mixed suggestions about what effect this might have, if any.  Intervals may be too narrow 
because of a natural tendency to anchor on a point estimate and adjust insufficiently for 
uncertainty.  If so, then stating an explicit median estimate might have no effect, because the 
judge is already doing something similar covertly, or it might make intervals narrower by 
making the anchor more salient (Russo & Schoemaker, 1992).  On the other hand, some studies 
(Block & Harper, 1991; Clemen, 2001; Juslin et al., 2000; Selvidge, 1980) have found that 
asking for a best guess in conjunction with intervals reduces overconfidence, perhaps because 
judges better appreciate their lack of good evidence if they encounter difficulty in generating a 
point estimate (Block & Harper, 1991).   
 
Methods 
 Participants. Participants were 30 MBA students at INSEAD. They were solicited in a 
commons area on the main campus in Fontainebleau, France, and they received 50 francs and a 
lottery ticket for a task that took roughly 20 minutes.  Two randomly chosen lottery winners 
received a bottle of Dom Perignon champagne.  The experiment was conducted in English 
because the student population at INSEAD is international and all instruction is in English.  We 
did not ask for gender or other demographic information. 
 Procedures.  For this study we returned to the common practice of providing participants 
with named items and asking them to make estimates based only on their prior knowledge.  We 
used five domains.  Three of these domains were traditional “almanac questions,” that is, general 
knowledge questions on arbitrarily chosen topics.  We selected domains for which participants 
would have some knowledge base to draw on and for which there were non-selective lists of 
items from which to sample.  These were the human fertility rates of different countries, the year 
in which a variety of devices and processes were invented or discovered, and the average daily 
high July temperature of major cities around the world.   
 In addition, we included two domains for which these participants could draw on direct, 
personal experience and knowledge.  These were the enrollments in various courses at INSEAD, 
and the time required to walk from one place to another around Fontainebleau. 
 After reading one page of printed instructions and having an opportunity to ask questions, 
each participant received a printed booklet of thirty items from one of the five domains, with one 
item on each page.  For each item, they were asked to make three estimates, corresponding to the 
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10th, 50th, and 90th fractiles of an spdf.  For example, to guess the year that the telegraph was 
invented, participants completed the following three statements: 
 

I am 90% sure that the year is after _____. 
I think the year is as likely to be after this year as before it: _______. 
I am 90% sure that the year is before _____. 

 
They were permitted to take as much or as little time as they wished, but were told that people 
typically finish in about twenty minutes.  
 
Design.   
 Participants were assigned alternately to each of the five domains.  All participants in a 
given domain saw the same 30 items, but in a different randomized order.  The items for each 
domain were selected at random from the corresponding source list.  The order of the three 
estimate questions varied, with each possible order being assigned to one participant in each 
domain.  For each participant the ordering of the three questions remained constant across items. 
 
Results 
 Except where noted, results were analyzed using an ANOVA with domain (five levels), 
position of the median (first, second, or third estimate), and order of the 10th and 90th fractile 
estimates (10th before 90th or vice versa) as between-participant variables.  Because there was 
only one participant in each cell, the three-way interaction was not analyzed. 
 
 
 

   
Hit ratea 

 
MEAD/MAD 

Gamma 
simulation 

Log 
simulation 

Class enrollments 0.49 0.55 0.62 0.65 

Invention dates 0.60 0.55 0.71 0.66 

Walk times 0.62 0.77 0.73 0.73 
July temperatures 0.77 1.33 1.25 1.24 

Fertility rates 0.83 1.59 1.36 1.32 
 

Table 3.  Estimates of overconfidence and interval size relative to well-calibrated 
intervals for each domain of Experiment 2. 
aAnswers that exactly matched an endpoint were counted as correct. 

 
 Hit rate.  As in the previous study, judges were significantly overconfident.  Their 80% 
intervals contained the correct answer 66% of the time.  However, the 14% overconfidence 
observed here is considerably lower than the 40% and 22% found in the range and two-point 
conditions of Experiment 1.  As in previous studies, overconfidence varied across domains, F(4, 
8) = 3.50, p = .06 (see Table 3).  There was a marginal effect of the order of 10th and 90th 
fractiles, F (1, 8) = 3.74, p < .10, qualified by an interaction between the position of the median 
and the 10th — 90th order, F(2, 8) = 4.44, p = .05.  No other effects approached significance.  
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The order effects appear to have been produced by a single discrepant condition.  Participants 
who gave their 10th fractile, then 50th, then 90th had only 39% hits.  In contrast, the hit rates in 
the other five cells ranged from 60% to 83%.   
 MEAD/MAD.  As in Experiment 1, the ratio of MEAD to MAD provides an estimate of 
the appropriateness of interval size.  In Experiment 1 we measured the absolute deviation 
between the correct answer and the middle of the participant’s interval for each item.  In this 
study, we measure deviations from the median estimates provided by the participants.  As before, 
we used the participant’s fractiles to infer an spdf and its expected absolute deviation.  This time, 
though, we have three estimates instead of two, allowing for the possibility of asymmetrical 
spdf’s.  For each set of three fractiles, we used the software package @Risk to infer the best-
fitting beta function, and then estimated the expected absolute deviation from the median for that 
beta using Monte Carlo simulation. 
The ratio of MEAD/MAD differed across domains, F(4, 8) = 4.92, p < .05.  Although no other 
effects were significant, the pattern of means roughly tracks that for hit rates.  This follows from 
the fact that across participants, MEAD/MAD is highly correlated with hit rate, r = 0.80.  
Overall, the average MEAD/MAD ratio of .96 appears much closer to unity than do the values of 
.47 and .68 for the range and two-point formats of Experiment 1..  Results using the estimates of 
interval bias from simulations are very similar to those using MEAD/MAD, as shown in Table 3.   
 
Discussion 

Experiment 2 confirms that subjective confidence intervals are too narrow.  The degree of 
overconfidence was substantial (about 15%), but it was considerably less than we observed in 
Experiment 1, and subjective intervals were considerably less narrow.  Looking across both 
studies, one could say that the larger the number of separate estimates required, the less 
overconfidence.  When a single range was requested, intervals were roughly 45% of the well-
calibrated size, when two separate boundaries were requested, they were roughly 70%, and when 
three fractiles were requested, they were roughly 96% of the appropriate size.  Later we will 
offer further discussion of this observation.  However, the comparison between Experiments 1 
and 2 is not straightforward.  They two studies were conducted using different domains, different 
information, and different populations.  Therefore, the next study provides a direct test of the 
extent to which asking for a median estimate is indeed the reason for the relatively low 
overconfidence observed in this study. 

The present study also shows an intriguing effect of the order in which the fractiles were 
elicited.  Participants who provided estimates in the order 10-50-90 were more overconfident 
than those who provided estimates in different orders.  We speculate that people may find this 
order most natural, which could lead to less deliberative, and thus more biased, information 
processing.  However, we will refrain from interpreting this result further unless we can replicate 
it.  Experiment 3 will provide an opportunity to do so. 

Participants did not perform better in the domains for which they had direct, personal 
experience—class enrollments and walk times.  Indeed, those two were among the most biased 
domains.  Although we sampled only a few domains here, these findings support the conclusion 
that overconfidence is not restricted to general knowledge, “almanac” questions.   
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Experiment 3 

 
This study uses two of the domains used in Experiment 2, namely July temperatures and the 
dates of inventions and discoveries.  These domains were chosen because they were suitable for 
use with American participants without modification and because they differed considerably in 
the degree of overconfidence observed in Experiment 2.   
 
Methods 

Participants.  The participants were forty-two students and staff at the University of 
Chicago, 25 female and  17 male. One participant in each of the two conditions was replaced 
because repetitive or arbitrary responses indicated that they were not attending to the task.  
Participants were solicited via advertisements posted around campus, and were paid $10. 
Materials.  Forty-five items were selected from each of the two domains.  These included the 30 
items used in Experiment 2, plus 15 new items selected randomly from the same information 
sources.  Estimates for each item were elicited using two different formats.  The two-point 
format asked for only the high and low estimates, as in the equivalent condition of Experiment 1.  
These were always requested in the order of lower boundary, then upper boundary.  The three-
point format asked for two boundaries and a median estimate, as in Experiment 2.  Estimates for 
these questions were requested in one of three orders:  median, lower boundary, upper boundary; 
lower, median, upper; and lower, upper, median. 
 As in Experiment 2, printed booklets were prepared with each item on its own page.  
Each participant received two booklets.  The first booklet contained the 30 items used in 
Experiment 2, in shuffled order, followed by the 15 new items in that domain, also shuffled.  The 
second booklet contained only the 30 “old” items from that domain, in a different, shuffled order. 

Design.  Format (two-point or three-point) was manipulated within participants.  
Specifically, each participant made the first 45 estimates using one format and the last 30 using 
the other format.  The order of formats was counterbalanced. 

Three variables were manipulated between participants:  domain (temperatures or 
discoveries), format order (two-point estimates before three-point, or vice versa), and position of 
the median estimate in the three-point format (first, second, or third). 

There were 21 participants in each domain.  Within each domain, 9 participants made 
two-point estimates first and 12 made three-point estimates first.  In each sub-group, one third of 
the subjects were assigned to each of the different median-estimate positions.   

Procedure.   The study took place in three parts, requiring about 30 minutes, 5 minutes, 
and 20 minutes respectively.  Introductory instructions indicated these time estimates, but 
participants were allowed to take as much or as little time as they wished.  Part I consisted of 45 
items from one of the two domains.  In Part II, participants were asked to provide numerical 
ratings of three different types of cookies or of a recent restaurant meal, in order to provide a 
break and a numerical task that might reduce recall of previous estimates.  These ratings were 
not analyzed.  Part III consisted of the first 30 items, presented in a different order and in a 
different format. 

Initial instructions described the three phases, and offered instructions for whichever 
format was to be used in Part I.  The following example is for a participant in the domain of 
discoveries, using the two-point format: 
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For each of the 45 items in Part I, we ask you to make two estimates, by 

completing two statements.  For example: 
In what year was [         ] invented?  

I am 90% sure that this happened after _____. 
I am 90% sure that this happened before _____. 

For the first statement, you should give us a year such that you believe there is a 
90% chance that the discovery or invention happened after that.  In other words, you 
believe there is a one in ten chance that the correct answer is earlier than this date. 

For the second statement, you should give us a year such that you believe there is 
a 90% chance that the discovery or invention happened before that. In other words, you 
believe that there is a one in ten chance that the correct answer is later than this date. 

 
 For those participants with Part I items in the three-point format, the instructions included 
this additional estimate: 

I think it’s equally likely that this happened after or before _______. 
placed in the appropriate position for that participant (i.e., before, between, or after the low and 
high estimates).  These instructions were added: 

For the third statement, you should give us a year such that you believe that the discovery 
or invention is about as likely to have happened after this date as before it.  In other 
words, you believe there is an equal chance that your guess is too early or too late. 

Participants were asked to consider each item in sequence, and were told they could change their 
answer to the current item, but could not go back to prior items. 
 After completing Part I, the experimenter collected the participant’s booklet and handed 
them instructions and ratings forms for rating cookies or restaurants, which took place in another 
room.  Following that, instructions were provided for Part III.  These were the similar to those 
used for Part I, but now using the other format (three-point or two-point).  The Part III 
instructions included the following:  

In this final part of the study, we would like for you to revisit some of the questions that 
you answered in Part I....Your answers should reflect your current beliefs about each 
question.  Do not worry about how your answers compare to what you might have 
said the first time you encountered these questions. 

 
Results 
 Two types of analyses were possible given the design.  In one approach, we perform 
ANOVAs using only the 45 questions presented in Part 1, ignoring the 30 that were repeated 
later, in Part 3. Domain (temperatures or discoveries), format (two-point or three-point), and 
gender are all between-participants variables.  In another approach, we use only the 30 questions 
that appear both in Part 1 and Part 3 for each participant.  In those, format is a within-participants 
variable, and there is the additional between-participants variable of which format was presented 
first.   Initial analyses of both types showed significant main effects of gender and domain by 
gender interactions.  Because participants were assigned to cells without regard to gender, males 
and females were not equally represented in each cell.  To minimize confounds between gender 
and other effects, all analyses were redone using weighted least squares to approximate the 
results that would obtain with an equal distribution of males and females in each cell. 
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 Very similar results were obtained with all four analytical methods.  We present the 
results from the weighted, between-participants analyses, and we note the few qualitative 
differences found in alternative analyses.   
 Hit rate.  Overall, judges’ 80% confidence intervals contained the correct answer 55% of 
the time.  Intervals in the three-point format contained the correct answers more often than in the 
two-point format, F(1,34) = 4.7, p = .037, and the two domains differed, F(1,34) = 41.9, p < 
.001.  See Table 4.  Female judges had a higher hit rate, F(1,34) = 5.0, p = .033.  There was also 
a significant interaction between domain and format, F(1,34) = 4.4, p = .043.  Format made a 
difference in the temperatures domain (with a hit rate of .60 in the 2-point format and .76 in the 
3-point), but virtually no difference in the discoveries domain (.42 for both). 
 

          Interval size relative to norm  

 
 

Percent 
within 

intervala 
 

MEAD/MAD 
Gamma 

simulation 
Log 

simulation 
Format      
 Two-point 51 .52 .58 .55 
 Three-point  59 .67 .73 .68 
Domain      
 Temperatures 68 .79 .83 .81 
 Discoveries 42 .40 .48 .42 
Gender      
 Female 59 .67 .72 .69 
 Male 51 .52 .60 .54 
 
Table 4.  Estimates of overconfidence and interval size relative to well-calibrated 
intervals in Experiment 3. 
aAnswers that exactly matched an endpoint were counted as correct. 

 
 MEAD and MAD.  As in the previous experiments, we calculated for each participant the 
ratio of expected deviations to observed deviations (MEAD/MAD).  The MEAD/MAD ratio was 
higher in the three-point format than in the two-point format, F(1,34) = 4.9, p = .033, and varied 
by domain, F(1,34) = 36.2, p <.001.  See Table 4.  Males were more biased than were females, 
F(1,34) = 5.06, p = .031.  There was a significant interaction between domain and gender, 
F(1,34) = 4.7, p = .038.  Women had more appropriate interval sizes than men in the 
temperatures domain (ratios of .93 vs. .65), but women and men were virtually the same in the 
discoveries domain (both .40). 
 The advantage of the three-point format seems to derive from both smaller errors and 
larger intervals.  MAD was about 10% lower in the three-point format, and intervals were about 
13% larger, although neither of those components was itself statistically significant.  The within-
participants analysis looks a little different.  There, the three-point format showed wider 
intervals, F(1,34) = 6.7, p = .013, but no significant advantage in MAD.  

Women’s intervals were almost 20% wider than men’s, and their MADs were about 6% 
lower.  The difference in interval widths approached significance (p = .107 in the between-
participants analysis and .058 in the within-participants); for the difference in MAD, both F’s < 
1.  
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 Estimates obtained from simulations show results very similar to those found with 
MEAD/MAD, except that they also show a significant interaction between domain and format, 
F(1,34) = 4.7 and 6.8 for gamma and log models, respectively, p = .036 and .013.  The reason for 
this can be traced to a similar interaction on MAD.  The three-point format showed larger 
interval widths in both domains, but showed improved accuracy only in the domain of 
temperatures. 
 Order of estimates.  In the three-point format, we always asked for the lower bound 
before the upper, but we varied the position in which we asked for the median estimate:  first, 
between the two other questions, or last.  We looked at the effects of order by examining only 
those questions asked in the three-point format, using the 30 questions that participants saw 
twice.  Every participant answered those questions in the 3-point format, either in the first round 
or the second. 
 We performed between-participants ANOVAs with four independent variables:  estimate 
order, domain, gender, and whether the 3-point questions were received before or after having 
given 2-point responses.  The dependent variables were the same ones used in the other analyses.  
No main effects of estimate order approached significance.  Hit rate and MEAD/MAD showed 
an order by domain interaction.  Those measures and MAD also showed an order by gender 
interaction.  In the temperatures domain, participants appeared to do better when the median 
came first or second.  In the discoveries domain, they did better when it came second or third.  
Women did better when the median was second or third; men when it was first or second.  
Clearly, if order of estimates has effects, they are complex ones. 
 
Discussion 
 Overconfidence was much lower in Experiment 2 than in Experiment 1.  We wondered 
whether that was attributable to our having asked participants in Experiment 2 to provide a 
median estimate in addition to specifying high and low boundaries to their intervals.  The results 
of the present study suggest that that is indeed a large part of the difference.  To make a direct 
comparison, consider only the temperature and discovery domains of Experiment 2, and only 
exactly those 30 questions when answered in the 3-point format in the first round of the present 
study.  (In other words, exclude the 15 new items added to the present study, and the second 
round of estimates.)  Experiment 2 participants had 60% and 77% hits in discoveries and 
temperatures, respectively; in the present study the figures were 48% and 82%.  (The figures 
shown in Table 4 are lower, because it happens that the 15 new items were more prone to 
overconfidence.)   

Within the present study, we find that adding the median estimate improved hit rates 
considerably, although all the of the improvement was in one domian.  We did not replicate the 
finding in Experiment 2 that providing estimates in the default, logical order of low-median-high 
produced more overconfidence.  Indeed, we found no clear effect of where we put the median 
estimate in the sequence. 
 In sum, the present study supports the hypothesis that making additional, separate 
estimates about different parts of one’s subjective probability distribution reduces 
overconfidence.  Doing so seems both to improve the accuracy of one’s estimates, and to 
increase the size of one’s confidence interval.  At the same time, we continue to find noticeable 
differences between populations and between domains.  These differences suggest caution in 
generalizing from results, but they may also provide interesting clues to underlying processes. 
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How much overconfidence is due to noise? 

 
 In all of our studies, we find widespread overconfidence.  As we explained at the 
beginning of this paper, overconfidence could result from unsystematic variations in interval 
size, even if interval were the right size on average.  Clearly that is not what is happening.  Using 
three different estima tion methods, we find that people’s intervals are smaller than they should 
be.  Nevertheless, unsystematic error might still contribute to the overconfidence we observe.  
How much overconfidence is attributable to bias (i.e., narrow intervals) and how much to noise 
(i.e., unsystematic variation in interval size)?    
 To answer the question, we need to estimated what the participant’s hit rate would have 
been if each one of their intervals were biased by a constant amount, without variation.  
Assuming that people’s spdf’s are normal, the 10th and 90th fractiles should be ±1.28σ from the 
midpoint.  So, we calculated what probability fell between fractiles set at ± z  * 1.28σ instead, 
where z  is the participant’s average bias in that domain.  For example, if a participant’s average 
bias was .5, we checked what probability is included between ± (.5 * 1.28)σ in a normal 
distribution.  The answer is 48%.  We then looked to see if the participant had in fact had more 
or less than 48% hits in that domain.  The difference between his or her actual hit rate and the 
expected rate with constant bias is our estimate of the biasing effect of noise. 
 In Experiment 2, participants gave three fractiles instead of two, so we were able to do 
better than just assume that each distribution was normal.  In the case of asymmetric 
distributions, we performed the same process on each inferred beta-shaped spdf, moving each 
fractile in toward the median by the average bias, z .  As it turns out, this refinement produced 
almost identical results to those we got if we simply ignored the expressed median and assumed 
the distributions were normal, supporting the reasonableness of that assumption in the other 
studies.  
 Table 5 shows the results using MEAD/MAD as the estimate of bias.  Results based on 
estimates from the simulations are similar. The first column shows the difference between the 
actual and constant- z  hit rates calculated for each person within each domain. Positive values 
indicate that variation in interval width contributed to overconfidence, while negative values 
imply that variation reduced overconfidence.  The values range from -.03 to .02, suggesting that 
within-person variation had only a minor effect on overconfidence. 

Variation from item to item within individuals is only one source of noise, however.  
There is also variation from person to person.  If people are on average unbiased, with some 
positively biased and some negatively, that too can produce net overconfidence.  So next we 
computed the effect of variation in z  across participants.  For each domain, the individual-level 
z ’s were averaged.  The expected hit rate was then computed, assuming that all participants 
consistently applied this same domain-level z  to all items in the domain.  This was compared to 
the theoretical hit rate we calculated previously, assuming that each individual had a constant 
bias.  The second column of Table 5 displays the difference.  The effects are slightly greater in 
magnitude than the individual-level effects, ranging from .01 to .06.   
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 Effects of Variation Overconfidence 
 within between between  due to 

Study Conditiion individual individuals domains Total Bias 
       

Experiment 1 Range 0.02 0.03 0.00 0.05 0.36 
2-point 0.00 0.03 0.00 0.04 0.19 

      
Experiment 2 3-point -0.01 0.05 0.07 0.11 0.03 

      
Experiment 3   2-point -0.03 0.01 0.01 -0.01 0.30 

3-point -0.02 0.02 0.03 0.03 0.17 
      

Klayman et al. (1999)a mixed 0.02 0.03 0.01 0.06 0.47 
blocked -0.03 0.04 0.03 0.05 0.36 

      
 

Table 5. Effects of variation on overconfidence. 
aIn the mixed condition, participants saw 10 questions from each of twelve domains in 
mixed order.  In the blocked condition, participants saw 40 questions from each of three 
domains presented in separate blocks. 
 
One more source of noise is variation is between domains.  If some domains are 

positively biased and some negatively, that can produce net overconfidence, too.  So we next 
averaged the biases across both participants and domains to obtain an overall mean bias.  The 
difference between the corresponding hit rate and the theoretical hit rate in the previous step 
reflects the amount of overconfidence due to variation across domains, which ranged from .01 to 
.07, as shown in the third column. 

Summing all three sources, the total biasing effect of noise to the ranges from -.01 to .12.  
Any remaining overconfidence is attributed to bias, as shown in the table.  After subtracting out 
the effect of variation, bias still accounts for a substantial amount of overconfidence in most of 
the experiments.  Experiment 2 is an exception—we are not sure why.  In that experiment there 
was an unusually small amount of overconfidence to begin with; the hit rate for 80% intervals 
was 66%.  Most of the 14% overconfidence could be accounted for by variation, leaving only 3% 
due to bias.  Overall, however, we find that overly narrow intervals account for most of the 
observed overconfidence.   

 
Conclusions 

 
 People are grossly overconfident when they provide subjective confidence intervals for a 
quantitative estimate.  This finding differs greatly from findings from studies of confidence in 
binary choice questions.  With binary questions, apparent overconfidence mostly evaporates 
when one is careful to test a representative set of questions from multiple domains.  With 
subjective intervals, in contrast, overconfidence of as much as 45% (in 90% confidence 
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intervals) persists even with representative sets of questions (Klayman et. al, 1999).  The present 
studies produce three main findings concerning subjective confidence intervals: (1)  
Unsystematic variation contributes to overconfidence, but the main cause is that subjective 
intervals are too narrow; (2) the format by which subjective intervals are solicited has a large 
effect on overconfidence and interval size; and (3) men are more overconfident than women are. 
 We of course would like to understand when and why subjective confidence intervals are 
too narrow.  We are not yet in a position to answer those questions definitively. However, the 
pattern of results in the present experiments offers some interesting suggestions.  One obvious 
possibility is that narrow intervals are the result of anchoring (presumably on a best-guess point 
estimate) and insufficient adjustment.  To some extent, though, this is merely a restatement of the 
phenomenon. One would still want to know why adjustment was insufficient, and more so in 
some formats that in others.  At the same time, some of our results seem not to fit an anchoring 
story very easily.  It is hard to know just where a judge’s anchor lies, but it is likely to be near the 
median (i.e., where the answer is believed to be equally likely to be above or below).   Making 
the median estimate explicit should make the anchor even more salient, or perhaps have no effect 
(because judges already start from their best guess).  Instead, asking for an explicit median seems 
to increase adjustment; it increases the size of subjective intervals. 
 What, then, are the likely sources of bias?  When judges collect information, either from 
their heads or from the outside world, they obtain only a limited sample of the potential 
information.  Moreover, the sample they draw is probably not unbiased.  Because of the nature of 
human associative memory, information that has many semantic connections with already-
retrieved information will have a retrieval advantage, making the sample more consistent than a 
random sample of evidence would be.  Confirmation biases (see Klayman, 1995) will further 
contribute to the excessive consistency of information and interpretations of its implications for 
the answer.  People do not fully anticipate the consequences of confirmation biases (Klayman, 
1995) nor of limited and biased samples more generally (Fiedler, 2000).  They treat their sample 
of evidence too much as though it were a reliable and unbiased representation of the world. 
 The above explanation must be regarded as speculative, pending further studies of the 
cognitive processes underlying confidence judgments.  However, the observed pattern of 
findings supports this general view.  Consider first the comparison between binary questions and 
interval estimates.  Klayman et al. (1999) argue that confirmation biases are expected to have 
more impact on the latter.  Who has a longer average life expectancy, Argentines or Canadians?  
The question offers two explicit alternatives:  Argentines live longer, or Canadians do.  Thus, 
both possibilities are considered more or less equally, producing error-prone, but not heavily 
biased, judgments of the balance of evidence.  In contrast, when asked for a single range 
estimate, the judge starts with some initial impression of, say, the longevity of Canadians and 
must then judge the appropriate precision of that impression. This is more akin to the situation in 
which the validity of a single hypothesis is being evaluated, which is when confirmation biases 
have the most effect (Klayman, 1995, McKenzie, 1999). 
 What about the format differences observed in the present studies?  When judges are 
asked for separate low and high 90% judgments rather than a single 80% range, their intervals 
become wider and the correct answers are closer to the centers of their intervals.  An evidence-
sampling explanation fits this case.  When asked to provide a lower bound, the judge is implicitly 
asked to consider what the lowest plausible answer could be (specifically, one which is 90% sure 
to be too low).  This elicits a search for evidence that Canadians are prone to early death (e.g., 
due to the hardships of harsh weather conditions). The separate request for the highest plausible 
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answer elicits a search for evidence that Canadians are hardy (e.g., due to the rigors of harsh 
weather conditions).  The result is two separate searches for evidence in two different regions of 
knowledge.  This increases the range of evidence considered (making judgments more accurate) 
while making the variability of implications more apparent (increasing interval width.) 
 Now, add another request, namely for the point at which the correct answer seems to be 
equally likely to be above or below.  This might be seen as an incitement to anchor, but in the 
context of the two other required estimates, it provokes a third search in yet another region of 
knowledge, again increasing accuracy and also the sense of the variety of implications of 
different evidence. 
 As Klayman et al. (1999) did, we also find systematic differences in overconfidence 
between individuals, between subpopulations, and between domains of knowledge.  We don’t 
have much evidence yet about what make some individuals consistently more overconfident than 
others, why men are more overconfident than women are, nor why certain domains are more 
prone to overconfidence than others.  At the same time, certain factors that we thought might 
mitigate overconfidence showed no such effect.  These include providing objective information 
to use in making the estimate and asking about domains that have been personally experienced. 

Having appropriate confidence is important for making appropriate risky decisions, for 
knowing when to seek advice and information, and for communicating one’s knowledge.  
Judging appropriate confidence is not easy.  Aside from that, there is a general tendency toward 
overconfidence, which can be quite severe in some conditions, but is not universal.  We are 
optimistic that future research into differences between formats, people, and domains will 
advance our understanding of the psychology of confidence and our ability to help people be 
better judges of confidence.  In the meantime, we can say that if you want to obtain a well-
calibrated estimate, ask for a comparison between two options, or else ask separately about 
different parts of the range of possible answers.  Also, be careful what you ask about, and ask a 
woman.  
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Appendix 

 
 This appendix describes the models and procedures used to estimate interval-size bias 
based on the observed hit rate and the covariance between interval size and hits. 
 
Gamma Model 
 
 This model corresponds to Equation 1 in the text, Wi = z Wi*, where Wi  is the width of 
the interval the judge gives for estimate i, and Wi*  is the well-calibrated size.  Across a set of 
items, variable z has a mean of z  and some mean-zero variation, vi, around that, so 
 
 (A1) Wi = Wi*( z  + vi).  
 
 We define a binary variable Hi, such that Hi = 1 if the interval for item i contains the 
correct answer (a hit) and Hi = 0 otherwise.  If there were no variation (no vi), there would be no 
covariance between the width of the interval and whether or not there is a hit.  By definition, for 
p% intervals, Wi

* is the size of interval for which the probability of Hi = 1 is p.  Wi
* varies from 

item to item, being wider when knowledge is low and narrower when knowledge is high, so that 
the probability of a hit is always p.  Since z  is also constant, cov( z Wi

*, Hi) = 0.   
 In the presence of this variation, however, the probability of a hit does vary with interval 
size.  A larger vi means a larger interval for the same degree of knowledge, and thus a higher 
chance of a hit.  On average, wider intervals will be associated with higher hit rates, that is, 
cov(Wi, Hi) > 0.  By observing the size of this covariance in the data, we can get a clue as to the 
amount of bias and variation across a given set of items (typically, for a given participant in a 
particular domain).   
 We need, therefore, to find the mathematical relationship between the observable 
quantity cov(Wi, Hi) and the theoretical quantities of interest, z  and vi. Beginning with Equation 
A1, we have: 
 
      Wi = z Wi* + vi Wi* 
 
(A2) cov(Wi, Hi) = cov( z Wi*, Hi) + cov(viWi*, Hi). 
 
To proceed, we need to make an additional, simplifying assumption, namely that H is a function 
only of z  and vi, and not of Wi*.  This implies that Wi* is independent of vi as well as Hi and any 
other functions of vi.  Substantively, we are assuming that overconfidence does not vary with the 
ideal interval size, at least within a given person and domain.  Early work on overconfidence 
suggested that people were more overconfident when they knew less, which would imply larger 
errors with larger intervals.  However, recent research has shown that this “hard-easy effect” is 
mainly an artifact of how the hard and easy questions are selected (e.g., Dawes & Mumford, 
1996; Gigerenzer et al., 1991; Klayman et al., 1999).  Thus, the assumption that error is unrelated 
to well-calibrated interval width is reasonable.  Given this independence assumption, plus the 
fact that z  is a constant, Eq, A2 simplifies to 
 

cov(Wi, Hi) = cov(viWi*, Hi)    
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The next two steps are based on a standard definition of covariance, cov(X, Y) = E(XY) – 
E(X)E(Y), or equivalently,  E(XY) = E(X)E(Y) + cov(X, Y).  Continuing, then, 
 

cov(Wi, Hi) =  cov(viWi*, Hi) = E(viW*iHi) – E(Hi)E(viW*i)  
 
(A3) cov(Wi, Hi) = E(W*i)E(viHi) + cov(W*i, viHi) – E(Hi){E(vi)E(W*i) + cov(W*i, vi)}.  
 
By the definition of vi, E(vi) = 0, and the independence assumption implies that cov(W*i, vi) = 0 
and cov(W*i, viHi) = 0, so Eq. A3 simplifies to 
  
 cov(Wi, Hi) = E(Wi*)E(Hivi)   
 
  = E(Wi*){E(Hi)E(vi) + cov(Hi, vi)} 
 
(A4)  = E(Wi*)cov(Hi, vi).   [because E(vi) = 0] 
 
From Equation A1, it is easy to show that E(Wi) = z E(Wi*).  Therefore, we can rewrite Equation 
A2 as 
 

(A5) 
( , ) ( , )
( )

i i i i

i

Cov W H Cov H v
E W z

=   

 
The quantities on the left side of Equation A5 can be estimated from observable behaviors.  The 
numerator is simply the covariance between interval width and the binary variable that indicates 
hits and misses.  The denominator is estimated by mean interval width.   
 We used Monte Carlo simulations to produce a variety of distributions of interval sizes, 
using a variety of different gamma functions for ( z  + vi).  Bounded at zero, gamma distributions 
have two parameters, shape and scale, that uniquely determine the mean ( z ) and the standard 
deviation around it, σv.  We then scored simulated hits and misses by matching each simulated 
interval to a standard normal distribution of correct answers.  Luckily, different combinations of 
z  and σv produce unique combinations of hit rate and covariance that can be matched to 
observed results.  
 
Log model 
 
 The logic for our alternative model is the same, but starting from a different assumption 
about how actual and ideal interval sizes are related, as shown in Equation 2 of the text, namely 
log(Wi / Wi*) = z.  Again, we partition z into its mean, z , and mean-zero variation around it, vi.  
So,  
 

log(Wi / Wi*) = z + vi 

 
 log Wi  = log Wi* + z  + vi 
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cov(log Wi, Hi)  = cov([log Wi* + z  + vi], Hi)   

 
   = cov(log Wi*, Hi) + cov( z , Hi) + cov(vi, Hi). 
 
As we discussed earlier, cov(Wi

*, Hi) = 0, so logically cov(log Wi*, Hi) = 0, too; cov( z , Hi) = 0 
because z  is a constant.  Thus, 
 
(A6) cov(log Wi, Hi) = cov(vi, Hi). 
  

This time, our Monte Carlo simulations used normal distributions for ( z  + vi), with 
different means and standard deviations.  We then matched the resulting distribution of intervals 
to a standard normal distribution of correct answers to calculate hits and misses and the 
covariance.  Again, different combinations of z  and σv produce unique combinations of hit rate 
and covariance that can be matched to the observed hit rate and the observed covariance between 
log-interval-widths and hits. 
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