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1 Introduction

Let p > 3 be a prime integer, K a finite extension of Q, and N > 4 a positive integer not
divisible by p. We fix once for all an algebraic closure K of K and an embedding Q — K, where
Q is the algebraic closure of Q in C. We denote by C, the completion of K and let v be the
p-adic valuation of C, normalized such that v(p) = 1. We write 7: Fy — p, 1 C Q5 for the
Teichmiiller character.

Let F' be a totally real number field of degree ¢ > 1 over Q in which p is unramified and
let us denote by Wp the rigid analytic space over Q, called the weight space, which is the rigid
space attached to the noetherian complete algebra Z,[[(Or ® Z,)*]]. Let us fix an Of-algebra A
which is a p-adically complete and separated integral domain, formally smooth and topologically
of finite type over Ok and a weight k € Wp(Ak). Here Ax := A ®o, K and we may view k
as a continuous group homomorphism & : (Op ® Z,)* — Aj.. We choose w a rational number
such that 0 < w < 2/p"tif p >3 and 0 < w < 1/3" if p = 3, where r is a certain constant
determined by k (see section §3.3.) We call such a w adapted to k.

The main purpose of this article is to attach to the data (A, F, N,w, k) an overconvergent
modular sheaf wL’k and to this modular sheaf the Ax-module of overconverget Hilbert modular
forms of weight k, tame level py and degree of overconvergence w denoted M (k, iy, w).

The first remark is that if A = Ok and k € Wp(K) then M (k, uy,w) is the K-vector space
of what would usually be called overconvergent Hilbert modular forms of weight k. If, on the
other hand we choose A such that U := Spm(Ag) is an admissible affinoid open of Wy and
choose k € Wp(Ak) to be the universal character attached to Ak, i.e. k: (Op ® Z,)* — Aj
is defined by t*(a) := t for all t € (O ® Z,)* and o € U — Wp, then M(k, uy,w) is the
Ag-module usually called the p-adic families of Hilbert modular forms over U.

We show that the above mentioned constructions of overconvergent modular sheaves and
overconvergent Hilbert modular forms are functorial in A and w and that we have natural Hecke
operators Ty and U, on M (k, uy,w), for every q prime ideal of Op not dividing Np. Moreover
we show compatibility (as Hecke modules) of these overconvergent Hilbert modular forms with
the classical Hilbert modular forms of tame level uy (for A = Ok and k a classical weight)
and with Katz-type p-adic modular forms. For ¢ = 1 we show that the overconvergent modular
forms defined in this article coincide (as Hecke modules) with the ones previously defined by R.
Coleman in [C1].

Let us quickly sketch the new concept of overconvergent modular sheaf and how such objects
define overconvergent Hilbert modular forms. For the precise definitions and details of proofs
see chapters 3 and 4.

Let the notations be as at the beginning of this section. We define the following categories
and functors.

e The category FSchemes,. It is the category whose objects are normal p-adic formal
schemes topologically of finite type over S := Spf(A) and the morphisms are morphisms of
formal schemes over S.

e The category Sheavesk. It is the category whose objects are pairs (U, F) where U is an
object of FSchemes, and F is a sheaf of Oy ®¢,. K-modules on U such that there is a coherent
Oy-module F' on U with the property that 7 = F ®¢, K. The morphisms in this category are
defined in section §3.1.

e The category Hilb(uy)Y. It is the category whose objects are quintuples (G/LI, Ly N, Y)



where

— U is an object of FSchemes, and G — U is a formal abelian scheme.

— ¢ denotes real multiplication by Op on G/U.

—\ is an identification of the sheaf of symmetric @p-homomorphisms from G to its dual, GV,
and the notion of positivity given by the sub-sheaf of polarizations with a representative of a
class of the strict class group of F.

—)y is a level py-structure on G/U.

—finally Y is a p“-growth condition.

We send the reader to section §3.1 for the details and also for the definition of the morphisms

in this category. We have natural functors Hilb(uy)% — FSchemes, (and Sheavesy —

FSchemes, ) defined on objects by (G/U,t,\,¥n,Y) — U (respectively (U, F) — U) which
give the categories Hilb(u )% and respectively the category Sheavesy the structure of a fibered
categories over FSchemes,. In fact Hilb(uy)Y is stack (although not a stack in groupoids)
but we will not use the language of stacks in this article.

We prove that if k € Wr(Ak) is a weight such that w is adapted to it, then:

1) There exists a cartesian functor w';*: Hilb(uy)% — Sheavesy over FSchemes 4 which
we call an overconvergent modular sheaf of weight k. This object is close to what is usually
called a coherent sheaf on a stack.

2) The category Hilb(sux)% has a final object denoted G*™ consisting of the abelian scheme
GV — M(A, uy)(w) with its extra structure, where (A, uy)(w) is an appropriate for-
mal model of the strict neighborhood of width p* of the ordinary locus in the fine moduli
space of abelian schemes over A with real multiplication by Op and uy-level structure, denoted
IM(A, un), and G is the pull-back of the universal abelian scheme (see section §3.1 and lemma
3.2). This special object satisfies a universal property similar to the property of a “final object”
in a category.

We denote

M (k, pn,w) == H°(M(A, py ) (w), wyjﬂiv)

and call them weakly holomorphic overconvergent modular forms of weight k.

3) By construction there are natural Hecke operators U, and T on M (k, iy, w) for every q
prime ideal of O not dividing Np.

4) Let 9(A, ux)(w) denote the normalization of (A, ux)(w) in a smooth, projective

toroidal compactification (A, un) of M(A, uy). We show that wgfniv extends uniquely to

a coherent, locally free Ogy4 ) (w) @ K-module of rank 1 on M(A, i) (w) which will be also

denoted wgfmv .

Moreover the Ax-module

A:;U'N

M(ka KN, U)) = HO (ﬁ<A7 ,UN)(w)a wgﬁniv)

which will be called the module of overconvergent Hilbert modular forms of weight £, is inde-
pendent of the toroidal compactification.

5) If T is a Hecke operator on M (k, juy, w) then T (M (k, py,w)) C M(k, pn, w).

6) For certain accessible weights k we construct integral models of our overconvergent modular
forms of weight k.



Finally let us comment on what we do not do in this article. First we do not treat the case p = 2
as the main results on canonical subgroups in the paper of Andreatta-Gasbarri [AGal, which we
use in Appendix A and apply in Chapters 2 and 3, do not hold for p = 2.

We do not deal here with the case in which p is ramified in F', this is done in [AIP]. In that
article we also prove that every finite slope overconvergent Hilbert cusp form sits in a p-adic
family of finite slope cusp forms and therefore one can define the cuspidal part of the Hilbert
modular eigenvariety.

Finally, as already mentioned, we do not use the language of stacks in this article although
we believe that it would be an interesting venue to pursue. We propose to come back to this
issue in the future.

We'd like to point out that Vincent Pilloni independently has constructed in [P], using a
different idea, sheaves like our wgfniv in the case ¢ = 1. In Appendix B we briefly recall his
definition and prove that those overconvergent modular forms are the same as the ones defined
in this article. Pilloni’s definition goes through the construction of a “partial Igusa tower” over
certain strict neighborhoods of the ordinary locus in X ()" and it is a very natural, finite
slope extension of Hida’s construction of overconvergent ordinary modular forms. Our method
is different, at least at the first sight: we emphasize certain universal torsors which we construct
using p-adic Hodge theory. This method provides good integral structures for the Banach spaces
of overconvergent modular forms. In [AIP1] we combined the two ideas and constructed the
cuspidal part of the Eigenvariety for Siegel modular forms.

Acknowledgements While working at this project we benefited from very inspiring discussions
on p-adic families of modular forms with Vincent Pilloni and Benoit Stroh. We thank Robert
Coleman for the careful reading of the paper. He pointed out an error in an earlier draft and
suggested ways to fix it. We also thank the referee for the careful reading of the paper and
useful suggestions. Part of the work on this article was done while its authors were guests of the
Institut Henri Poincaré, Paris during the Galois Trimester 2010. We are very grateful to this
institution for its hospitality.

Notations Throughout this article we’ll use the following notations: if © € Q, we’ll denote by
p" an element of C, of valuation u. If R is an Ok-algebra, p* € O and M is an object over
R (an R-module, an R-scheme or formal scheme) then we denote by M, := M ®g R/p“R. In
particular My = M ®r R/pR.

Finally we would like to warn the reader that in section §2 and Appendix A the letter A
usually denotes an abelian scheme, while in the rest of the article the letter A denotes a certain
Ok-algebra and the abelian schemes are denoted by the letter G.

2 The Hodge-Tate sequence for abelian schemes

We fix N, p and w where N is a positive integer, p > 3 is a prime integer and w is a rational
number such that 0 < w < 1/p. We denote by K a finite extension of @, containing an element
of valuation w. Let k be its residue field.

Let us denote by R an Og-algebra which is a noetherian, p-adically complete and separated
normal integral domain and let A — U := Spec(R) be an abelian scheme of relative dimension
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9. o

Let K be an algebraic closure of the fraction field of R which contains K and let n = Spec(K)
denote the respective geometric generic point of #. Let T := T,(A,), where A, is the fiber of A
at n.

Our standard local assumptions will be the following.

(i) We suppose we are given a fixed R-sub-algebra R C K such that Ry is Galois over Ry,
and we let G denote the Galois group.

(ii) We suppose the natural action of Gal(K/Frac(R)) on T factors through G.

(iii) We suppose (R)Y = R, where R denotes the p-adic completion of R.
There are two cases of interest for us in this article as well as for future applications in which
these local assumptions are satisfied:

a) The situation when R is a small Ok -algebra, i.e. there is an Ok-algebra W and Og-algebra
morphisms

OK{Tl,TQ, ...,Td}/(Tng, ,ZFJ — 7Ta) — W — R

where 1 < j < d, a > 0 and the first morphism is étale and the second is finite and becomes
étale after inverting p.

In this case we take R to be the inductive limit of all R-sub-algebras of K which are normal
and finite and étale after inverting p. Then the theory of almost étale extensions ([F1], [GR])
guarantees the desired properties.

b) Suppose that R’ is a small Og-algebra (as in (a) above) and that the abelian scheme A
is defined over Spf(R'). Then, (i)(ii) hold for R C R thanks to (a). Let ¢’ := Spf(R’) and let
U = Spf(R) denote the normalization of a formal open affine of an admissible blow-up of . In
this case we take R to be the image of R ®pr R in K.

Lemma 2.1. The local assumptions (i), (ii) and (iii) hold in cases (a) and (b).

Proof. In (a) one constructs an intermediate extension R, equal to the normalization of the
1

1
image of R ®o, Ok [T{~,...,T;" ] in R with Galois group I' over Ry after inverting p. Here
K C K is the extension obtained by adding all p”-roots of 1. Faltings’ Almost Purity Theorem
[F1, Thm. 4] guarantees that for every finite and étale extension R [p~'] C S, the normalization
Se of Ry in S is almost Shirley. Arguing as in the proof of [Br, Prop. 3.1.1] we get that

~

p(R)Y C (fioo)F. One then proves that the latter is contained in R - Ilj using the explicit action

1
of T' on the variables T}”" ; see the proof of [Br, Lemme 3.1.4& Prop. 3.1.8]. Thus, p*(R)Y C R

so that we have inclusions R C (R)Y C R - }%. In particular, as R is noetherian and normal, to

~

deduce the equality R = (R)Y it suffices to check it after localizing at height one prime ideals
P of R over p. Replacing R with Rp we may then assume that R is a discrete valuation ring

(DVR) in which case the inclusions R C (R)Y C R - z% imply that R = (R)Y.

In (b) let Ry, be the image of R®p R, in R with R/_ as above. Consider a normal extension
R, C S C }_%/, finite and Shirley after inverting p. Let S be the normalization of the image
of 8’ ®r R in R. We claim that it is an almost étale extension of R,,. This means that given

the canonical idempotent eg € S ®p__ S[p~!], see loc. cit., for every element p’ in the maximal



ideal of Of_ we have that p’eg € S ®@pg_. S. As eg is the image of the the canonical idempotent
e € 8" Q@p_ S'[p7!] and R, C S is almost étale, this condition holds for es and, hence, for
es. We conclude that R is the direct limit of almost étale extensions of R,,. Arguing as in

loc. cit. we deduce that the map (E;)F — (R)¢ has cokernel annihilated by multiplication by p
so that p(R)Y C (EOO)F. Note that I' acts as a subgroup of automorphisms of R C R, so that

~ BN
pRL, C R because of the explicit action of I on the variables T/"" and on O_ . Thus we have

inclusions R C (R)9 C R - ]% and we conclude that R = (R)Y arguing as in case (a). O

From now on we assume that R is such that the local assumptions are satisfied. We denote
by wa/r = T (4 5) = € (24 p), where e : Spec(R) — A is the zero-section, and we assume
that wa/g is a free Oy-module of rank g.

We now consider the relative Frobenius morphism ¢ 4: Rlm, ((9 Al) — R'm, ((’) Al), and let
det(p4) denote the ideal of R/pR generated by the determinant of ¢4 in a basis of Rlm,(A;).
We assume that there exists 0 < w < 1/p such that p* € det(pa) and p* € det(pav). By
[AGa] it follows that there exists a canonical subgroup C' C Ag[p] of Ak defined over Ux. We
let D C Ak[p]Y = (AY)k[p] be the Cartier dual of Ax[p]/C over Ug. It is proven by Fargue in
[Fa2] that A}, also has a canonical subgroup and that it coincides with D.

Let us remark that as a consequence of the local assumptions we have an isomorphism as

G-modules 7' = lim A[p"|(R).

We’d now like to recall a classical construction which will be essential for the rest of this article,
namely the map dlog. Let G be a finite and locally free group scheme over ¢ annihilated by
p™, let GV denote its Cartier dual and we denote by wev/r the R-module of global invariant
differentials on GV. We fix an affine, noetherian, normal scheme p-torsion free S — U and define
the map

dlogg ¢ G(Sk) — wav/r ®r Os/p"Os

as follows. Let x be an Sk-point of G. Since S is normal, affine and p-torsion free and G
is finite and flat over U, = extends uniquely to an S-valued point of GG, abusively denoted x.

Such a point corresponds to a group scheme homomorphism over S, f,: G¥ — G, and we set
dlog(z) = fi(dT/T) where dT'/T is the standard invariant

Lemma 2.2. The map dlog is functorial with respect to U, G and S as follows:

a) Let U — U be a morphism of schemes and let G — U be a finite locally free group
scheme. We denote by G' — U’ the base change of G to U and let S — U’ be a morphism
with S normal, noetherian, affine and flat over Ok. Then the natural diagram commutes

, dloggr s m
G'(Sk) — weyvr @r Og/p"Og
! !

dlogg s

G(Sk) — wev/r @r Og/p"Og

b) Let G and G' be group schemes, finite and locally free over U = Spec(R) and G' — G a
homomorphism of group schemes over U. As before we fiz a morphism S — U with S normal,
noetherian, affine and flat over Ok. Then, we have a natural commutative diagram



dlogG/’S

G'(Sk) — weyvr ®r Os/p"Og
! l

dlo
G(Sk) —=%°  wavir ®r Og/pmOs

¢) Finally let us suppose that we have a morphism of normal, noetherian, affine schemes S" — S
over U, which are flat over Ok . Then we have a natural commutative diagram

dlogG_’S

G(Sk) — w@yv/r®rO0s/p"0Os
l l

dlogs o/

G(S}() — wG\//R ®R Osl/meS/

Proof. The proof is standard and we leave it to the reader. O

[a¥)

Applying the construction above to the group schemes AY[p"] = (A[p"])" for n > 1 over the
tower of normal R-algebras S whose union is R (see above) we obtain compatible G-equivariant
maps (for varying n)

dlog,: A¥[p"|(Rx) — wapr)/n ®r R/P"R = wa/r @r R/p"R.
By taking the projective limit of these maps we get the morphism of G-modules

dlog 4v : TH(A)) ®z, R — war ®r R.

We also have the analogous map for A itself, i.e., a map dlog,: T,(4,) ®z, R — wav/R @R R.
The Weil pairing identifies 7),(A,) with the G-module T},(A))"(1) so that the R-dual of dlog,
provides a map a: wj, g @ R(1) — T,(A)) ®z, R. We thus obtain the following sequence of

R-modules compatible with the semi-linear action of G which we call “the Hodge-Tate sequence
attached to A”

(*) 0— wXV/R QR E(l) LN TP(A;/) Xz, R % WA/R ®R§ — 0.

Since HY (Q,R(—l)) = 0 we have that dlog o a = 0, i.e., this sequence is in fact a complex. We
prove (proposition 6.1):

Theorem 2.3. The cokernel of the map dlog in the sequence (x), which we call the Hodge-Tate
sequence attached to A, is annihilated by p¥ for v =w/(p —1).

Remark 2.4. It follows from [Br] that p is not a zero divisor in R, therefore the morphism a
above is injective.

G. Faltings proved that the homology of the given sequence is annihilated by pﬁDK/KO
where Dy, is the different of K over the fraction field Ky of W(k). L. Fargues improved this
result showing that it is annihilated by prll. One can prove that A is ordinary if and only if the
theorem holds with v = 0; see [AGa, §13.6]. The general case is a consequence of proposition
5.1 of the appendix and proposition 2.5 (below).
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From now on whenever we write D, A"[p] and AY[p]/D we mean the G-representations
D(Rg), AV[p|(Rk) and (AV[p]/D)(Rk) respectively. Let us denote by F° := Im(dlog) and

F' = Ker(dlog). They are R-modules and because dlog is G-equivariant it follows that F° and
F! have natural continuous actions of G.

Proposition 2.5. The R-modules F* and F' are free of rank g and we have a commutative
diagram with exact rows and vertical isomorphisms

0 —  FYpvEl TP(A;?/) @Z’T R/p'"R — FO/pl=v O — 0
| 1=
0 — D®R/p"™R —  A'pl@R/p'*"R — (AY[p]/D)®R/p""R — 0.

Moreover, the cohomology of the Hodge-Tate sequence () is annihilated by p*.

Proof. We divide the proof in three steps.

Step 1: F° is a free R-module of rank g and p* annihilates Coker(dlog). It follows from
proposition 6.1 that the mod p reduction of dlog factors via a map

a: (Av[p]/D) QF, E/pﬁ — WA/R OR R/pﬁ

Choose elements {fi,..., f,} of T,(Ay)/pTp(Ay) which provide a basis of D over F,. We also
fix a basis {wi,ws, ... ,we} of wasr. If t1,ts,... 1, are elements of a group we denote by ¢ the

column vector with those coefficients and by ¢ the reduction of ¢ modulo p. Let us denote by EAE
M,y,(R/pR) the matrix with the property that a(f) = 0-@. Let us now denote by § € My, ,(R)

~

any matrix such that the image of § under the natural projection M, ,(R) — M,x,(R/pR) is

5. Let G° C wy /R @R R be the R-module generated by the vectors ¢ - w. Thus Step 1 follows if
we prove:

~

Lemma 2.6. (1) There exists a matriz s € Myx,(R) such that §-s = s-§ = p'Id.
(2) The }Qf—module G° is free of rank g and it contains p'wa/r R }2%
(3) The R-module G coincides with F°.

In particular, F' is a finite and projective ﬁ—mOdule of rank g.

Proof. The last statement follows from the others.
(1) We use proposition 6.1: as p’Coker(dlog) = 0 and 0 - w generates the image of dlog

modulo p, it follows that there are matrices A and B € M, ,(R) such that
p'w = dlog(d) = pA-w+ Bj - w.

Therefore, we have p¥ (Id—plﬂ’A) = B¢ and as Id—p!' YA is invertible we obtain that s-d = p*Id.
Let us now recall that p is a non-zero divisor in ﬁ, therefore the natural morphism M, g(}%) —
ngg(}%i[l /p]) is injective and in the target module the matrices d and p~"s are inverse one to
the other. Therefore we obtain the relation ¢ - s = p*Id first in Mng(}:%[l /p]) and then even in

Mysg(R).



(2) By construction G is generated by the g vectors § - w. Let a € (E)g be a row vector
such that a - 5 w = 0. Since ¢ is invertible after 1nvert1ng p and w is a basis of w4/r, we have

that a =0 in R[ 1]9. Since p is not a zero divisor in R and § is invertible after inverting p, we
conclude that a = 0. Moreover, we have p’w = s -0 - w. Hence, the last claim follows.

(3) For every d € T,(A)) ®z, R there exists A and B € My,,(R) such that dlog(d) =
AJ - w + pBw. Since p’wa/r @ R is contained in G°, we conclude that FO C G°. Similarly,
since p¥Coker(dlog) = 0 we have that p’wa/r ®r R C F°. The vectors § - w are contained in

FO + pwy /R R R which is contained in F°. The conclusion follows.
O

Step 2: We prove that we have a commutative diagram

Wi r @ B/PR =5 T(A) @ R/pR =5 wyr® R/pR
sl | — Ta
0 — D®R/pR — A'p|®R/pR — (AY[p]/D)® R/pR — 0

Let H° and H' be the image and respectively the kernel of the map dlog: T,(A,) ®z, R —
wav/R DR }Q% Since also AV admits a canonical subgroup, we know from Step 1 that H° is a free
ﬁ—module of rank g and H! is a finite and projective ﬁ—module of rank g. It follows from [F, §3,
lemma 2] that H* and F! are orthogonal with respect to the perfect pairing (T (A,) ®z, }22)

(T,(A)) @z, R) —> R( ) defined by extending R linearly the Weil pairing. In particular, via
the isomorphism

h: Ty(AY) @z, B — Ty(AY)Y @ R(1),
induced by the pairing, we have h(F') C (H")(1). Thus, h induces a morphism /': F° —
(H")V(1). Since H' is a projective ﬁ-module, the map T},(Ay)" ®§(1) — (H')V(1) is surjective
so that A’ is a surjective morphism of finite and projective ﬁ—modules of the same rank and,

hence, it must be an isomorphism. This implies that /& induces an isomorphism F1 = (HY)Y(1).
Since (H°)/p(H)")(1) C T,(Ay)Y ®R/pR( ) is identified with D ® R/pR C AV[p|® R/pR via
h, we get the claim in Step 2.
Step 3: End of proof. From Step 1 (applied to the abelian scheme A/R) we have that
p’(wav/r ®r R) C H and from Step 2 we have an isomorphism F' = (Ho)v(l). Consider the
map B o o

v: F' CT(A)) © R — A'[p] ® R/pR — (A"[p]/D) ® R/pR.
Note that that wj p ®r R/pR goes to zero in (AY[p]/D) ® R/pR by Step 2 and the latter

is a free R/pR-module. Since R is p-torsion free, the subset of elements of R/pR annihilated
by p coincides with p!~"R/pR. We conclude that the image of the map 7 is contained in
p' " (AY[p]/D) ® R/pR so that it is zero modulo p'~*. In particular, the map T,(A4)) ® R —
AY[p|@R/p' "R — (AY[p]/D)®R/p*~"R induces a map F°/p'*F° — (AY[p]/D)®R/p""R.

This is a surjective morphism of free R/p'~"R-modules of the same rank. Hence, it must be

9



an isomorphism. More concretely, it is deﬁiled by sending the reduction of § - w modulo p'~?,
to the basis i of D. Since F is a free R-module, we can find a (non canonical) splitting
T,(AY) ® R = F & F'. In particular, F'/p' ™" F" injects into T,(A)) ® R/p' "R and it must
coincide with D ® R/p'~*R. This provides the diagram in the statement of proposition 2.5. R

Note that D ® R/p' "R is a free R/p'~"R-module of rank g. Since F' is a projective R-
module 0£ rank g, any lift of a basis of D ® R/p' "R to_ elements of F'* provides a basis of the

latter as R-module. We conclude that also F! is a free R-module of rank g as claimed.
O

Let us now suppose that (AY[p]/D)(R) = (AY[p]/D)(R) and therefore, using 6.2, it follows that
0 € My (R/pR). We have the following

Proposition 2.7. Let §, € My, ,(R) be any lift of & in My4(R). Let us denote by Gy C WA/R
the R-sub-module generated by the entries of §, - w.

1) Then, Gq is a free R-module of rank g with basis 0, - w and Gy Qg }:% >~ 0,

2) The R-module Fy := (F°)9 C wa/r coincides with Go. In particular, Fy ®R§ ~ [0,

3) We have a natural isomorphism Fy/p'~"Fy = (AY[p]/D)® R/p*~" R whose base change via
R—R provides the isomorphism F°/p'="F° = (AV[p] /D)@ R/p*~"R in 2.5 via the isomorphism
Fy®p R = F.

4) Let Fy = (Fy)¥(1), then we have a natural G-equivariant isomorphism of R-modules:
Fior R F,

~

Proof. (1) As §,( mod pﬁ) = § lemma 2.6 implies that there is an s, € My, ,(R) such that
8o 8o = 8o 0y = p’Id. In My, (R[1/p]) we have sy = p~"8y € Myxy(R[1/p]) N Myyy(R). But

R[1/p]N R = R because R is normal. Hence, Oy - Sg = Sp - 0y = p¥Id. This implies that G is a
free R-module. By lemma 2.6 the R-sub-module generated by d, - w is F°. This concludes the
proof of (1).

(2) Tt follows from (1) that Gy C F° and that Gy C (F°)9. Let now z € (F°)9. Then
r=u'- (8, w) for some column vector u with coefficients in R. As z and §, - w are G-invariant
and the elements of ¢, - w are R-linearly independent (as ¢, is in GL4(R[1/p])), it follows that

u is G-invariant. Since (E)g = R by our assumption on R, we have x € Gy. This proves (2).

(3) By construction the map F° — (AY[p]/D) ® R/p'~ R in 2.5 sends the basis §, - w to
the given basis of AY[p]/D; see Step 3 of the proof of 2.5. Extending R-linearly and reducing
modulo p'~ we get the claimed isomorphism Fy/p'~"Fy — (A¥[p]/D) @ R/p'"R.

(4) This follows from the natural isomorphism as R-modules which is G-equivariant F!
(F°)V(1) (see Step 2 of the proof of proposition 2.5.) O

We now claim that the free R-module F{ defined in proposition 2.7, and which will be now
denoted Fy(A/R) is functorial both in A/R. More precisely, we have:
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Lemma 2.8. a) Let R — R’ be a morphism of Ok-algebras of the type defined at the beginning
of this section, let A/R be an abelian scheme such that the assumptions of 2.7 hold and let
A'/R' be the base change of A to R'. Then we have a natural isomorphism of R'-modules
Fo(A/R) ®@r R = Fy(A'/R') compatible with the isomorphism wa/r @r R' = war /g

b) Let us assume that we have a morphism of abelian schemes A — B over R and that
for both A and B the assumptions of 2.7 hold. Then we have a natural morphism of R-modules
Fo(B/R) — Fy(A/R) compatible with the morphism wg/r — wa/g.

~/

Proof. We have similar statements for F: in case (a) we have a morphism of R-modules
~/
FY(A/R) ®zR — F O(A’/R'), compatible with the isomorphism of invariant differentials, and

in case (b) we have a natural morphism of R-modules F°(B/R) — F°(A/R) compatible with
the morphism on invariant differentials. These two statements follow from the functoriality of
dlog; see 2.8. Taking Galois invariants we immediately get (b) and also that we have a morphism
f: Fo(A/R)®p R — Fy(A'/R'). Since f is an isomorphism modulo p*~ by 2.7 and since it is
a linear morphism of free R’-modules of the same rank, it must be an isomorphism as claimed.

O

2.1 The Hodge-Tate sequence for semi-abelian schemes

We need a generalization of proposition 2.5 to the case of semi-abelian schemes in order to deal
with the cusps when implementing our constructions to moduli spaces of abelian varieties. We
follow [F, §3.e] providing more details.

Let S C U be a simple normal crossing divisor, transversal to the special fiber of &/ . We
write U° = U\S and let R[S™!] be the underlying ring. Assume that its p-adic completion
Jﬁg?l] is an integral normal domain. As before we fix a geometric generic point 77 = Spec(K) of
4°. Let A be an abelian scheme over 1/ and assume that there exists an étale sheaf X over U
of finite and free Z-modules, a semi-abelian scheme G over U, extension of an abelian scheme B
by a torus 7', and a I-motive M := [X — Gype] over U}, such that T),(A,) is isomorphic to the
Tate module T,,(M,) as G>-module. This is the case for generalized Tate objects used to define
compactifications of moduli spaces.

By analogy with our discussion at the beginning of §2, we assume that we are given an
R-sub-algebra R of K, which is an inductive limit of normal R-algebras M C K for which each
R[S™!,p~! € M[S™!,p~] is finite and étale, and which satisfies the following local assumptions:

(i) We suppose Rg[S™!] is Galois over Rx[S™!] and let G° denote the Galois group.

(ii) We suppose the natural action of Gal(K/Frac(R)) on T factors through G°.

(iii) We suppose (R)Y = R, where R denotes the p-adic completion of R.

Let MY := [Y — Hye| be the dual one-motive; here, Y is the character group of T and
H is a semi-abelian scheme over U, extension of BY by the torus 7" with character group X.
Then, Tp(AX) is isomorphic to the p-adic Tate module of the dual motive M. In particular,
it admits a decreasing filtration W_;T),(A;) for i = 0, 1 and 2 by G°-sub-modules such that (1)
W Ty(Ay) = Tp(Hy); (2) groTy(Ay) = Y @Zy; (3) groTp(4,) = T(17); (4) gr_y(T) = T(By).

Consider the map dlog: T),(AY)@R[S~] — wa e ®r R[S~"]. Since the p-adic completion of
wa/ue can be expressed in terms of the p-divisible subgroup of A and the latter can be expressed
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using M we have wa /o ®p R[S & Wau DR R[S—1]. The latter sits in the following exact
sequence of sheaves on U:

0 — wpy — wagu — wrpu — 0.

We then define a filtration on wgy by setting W_swa i := 0, W_iway := wp and W_owg =
wg/u.

Lemma 2.9. The map dlog extends uniquely to a morphism
dlog: T,(A)) ® R — weju @k R,

which is trivial on gr_,T,(AY), induces an isomorphism on gryT,(A)) ® R — wry ®r R

and coincides with the map dlog: T,(B,)) ® R — wpjy @r R[S™'] on B via the identification
gr_lTp(AX) = Tp(B7\7/)'

This extension is functorial in R and in A. More precisely, assume that we have a morphism
of abelian schemes f: A — A" over U° such that the associated p-adic Tate modules are the Tate
modules of one-motives M = [X — G] and M’ = [X' — G'] as above and the map induced
from f on Tate modules arises from a morphism of one-motives M — M'. Then, the following

diagram 1s commutative

AV = dlogaryv =
L(A))oR  —  wer®R

! !

dlog 4v

TP(A7\7/> ®R — wG/R(X)F

Proof. The uniqueness follows from the fact that dlog is a map of free R-modules and the
map R — R[S—1] is injective. This also implies that the displayed diagram commutes since it

commutes after base change to R[S~!] by functoriality of dlog.

For every n € Nlet R C R, C R be a finite and normal extension such that A [p"] = M [p"]
is trivial as Galois module over R,[S™',p~!]. This allows to split the filtration on M, [p"]
so that M,[p"] = BY[p"] & T)[p"] & Y/p"Y as representations of the Galois group of R over
R,. Note that the Galois module B)[p"] © T} [p"] © Y/p"Y is associated to the group scheme
BY[p"@T'[p"|®Y/p"Y over R,. By functoriality of the map dlog we deduce that dlog modulo p™
extends to all of Spec(R,,) and coincides with the sum of the maps dlog of these group schemes.
Passing to the limit the conclusion follows. O]

Applying the same argument to the dual abelian scheme and one-motive we deduce that also
in this case we have a Hodge-Tate sequence attached to A:

0 — whv/r Or R(1) = T,(4)) ®z, R dog wg/r ®r B — 0.
As before we denote by F the image of dlog and by F! its kernel. We assume that Frobenius
¢op: R'm.(B1) — R'7.(B) and ¢pv: R'm.(B)) — R'm.(B)) have determinant ideals con-
taining p* for some 0 < w < 1/p. Let C' C B[p] be the Galois sub-module associated to the
canonical subgroup and Dy C BY[p] to be the Cartier dual of B[p]/C. We define D C AY[p| (as

Galois modules) to be the inverse image of Dp in H[p] — BY[p] which we view in AY[p] via the
inclusion H[p] C AY[p]. Note that the kernel of D — Dpg is T"[p]. Then,
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Corollary 2.10. The R-modules F° and F' are free of rank g and we have a commutative
diagram with exact rows and vertical isomorphisms

0 —s Fl/pl—vFI _ TP<A>/]) ®Z‘T E/pl—vﬁ _ FO/pl—vFO — 0
[i= 1=
0 — D®R/p"™R — A'plOR/p"™R — (A'[p]/D)®R/p"™R — 0

Moreover, if AV[p]/D is a constant group over U°, the R-module Iy := (F°)9 C wa/g is free

of rank g, we have Fy @r R = F° and we have a natural isomorphism Fy/p' ™" Fy = (AV[p]/D) ®
R/p'™"R whose base change via R — R provides the isomorphism F°/p'~"F° = AV[p]/D) ®
R/p'"R.

FEventually, the construction of Fy is functorial in U and A (see 2.9 for the meaning of the
functoriality in A).

Proof. The statement concerning Fy follows from the first arguing as in 2.7. The statement
about the functoriality is the analogue of 2.8 and is proven as in loc. cit. It is deduced from the
functoriality of F° using the functoriality of the map dlog proven in 2.9.

For the first statement one argues that, using the filtration given in 2.9 and the description
of dlog on such a filtration, it suffices to prove the claim for BY and this is the content of 2.5.
The details are left to the reader. O

3 Overconvergent modular sheaves

3.1 Definition of overconvergent modular sheaves

We start by fixing a p-adically complete and separated, formally smooth and topologically of
finite type Of-algebra A. We write S := Spf(A) for the associated formal scheme and Sx =
Spm(Af) for the associated rigid analytic fiber. We let ||_|| be the Gauss norm on A so that
A={x € Ax | |lz|| <1}. We define the following categories and functors.

a) FSchemes,. It is the category whose objects are p-adic formal schemes U over S such that
U has a finite affine open covering {U; = Spf(R;)}ic; with the property that R; is a p-adically
complete and separated normal domain, topologically of finite type over A, for every ¢ € I. The
morphisms in FSchemes are morphisms as formal schemes over S.

For any object U we denote by Ux — Sk the corresponding morphism of rigid analytic
spaces.

b) Given an object U of FSchemes, we define Coh(Oy ®¢,. K) to be the category of sheaves of
Oy ®o,, K-modules F on U, with the property that there is a coherent Oy-module F' on U such
that F = F'®o, K. We let Sheavesk be the category whose objects are pairs (Z/l, f) where U
is an object of FSchemes, and F is an object of Coh(Oy ®o, K).

If (L{,]:) and (L{’,}"’) are two objects of Sheavesy then a morphism (L{,}") — (Z/{/,}"’) is
a pair (¢, ¢") where ¢: U — U’ is a morphism of formal schemes over S and ¢ : ¢ (F') — F
is a morphism of Oy ®e, K-modules over U.

We have a natural functor Sheavesy —— FSchemes, defined at the level of objects
by (L{ ,F ) — U and at the level of morphisms (gb, qu*) — ¢. For every object U of
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FSchemes, we let Sheavesk|, be the full subcategory of Sheavesy consisting of pairs of
type (Z/{ wa ) with morphisms inducing the identity on U. It is equivalent to the opposite cate-
gory of Coh(Oy ®p, K). For every morphism ¢: & — U’ in FSchemes, we have an inverse
image functor ¢*: Sheavesg|,s — Sheavesg|, such that (« o §)* = [* o o* for every two
morphisms «: U — U" and 3: U — U'. In particular, Sheavesy — FSchemes, is a fibred
category; cf. [SGA1, Ex. VI, Example 11.b].

We also have an integral variant of the category Sheavesg, the category Sheaves whose
objects are pairs (U, F) where U is an object of FSchemes, and F is a coherent sheaf of Oy-
modules on U. Given two objects (Z/I,}") and (Z/l’,f’) a morphism (Z/{,f) — (Z/l’,}"’) is a pair
(¢,¢™) where ¢: U — U’ is a morphism of formal schemes over S and ¢T: @5 (F') — F is a
morphism of Oy-modules over U. Then also Sheaves — FSchemes, is a fibred category.

c) Let F' denote a totally real number field of degree g over Q with ring of integers Op and
different ideal Dp. Let (¢1,¢f), ..., (¢cn, ¢;) be a complete system of representatives for the strict
class group of F. Fix an integer N > 4 and assume that p is unramified in F' and does not
divide N. We define the category Hilb(uy)Y to be the category whose objects are quintuples
(G/U, 1, \, N, Y) where

e U{ is an object of FSchemes,.

e G — U is a formal abelian scheme of relative dimension g. We assume that G — U
is relatively algebrizable by which we mean that there exists an affine open covering {U; =
Spf(R;) }ier of U, with R; a normal domain, such that G x; U; is algebrizable to an abelian
scheme G; over Spec(R;).

e 1: O — Endy(G) is a ring homomorphism. It has the following property: if e: Y — G
is the zero section of G and we denote wgy = e*(ng /u)» then wqy is an invertible O @z Oy-
module.

o if P; C Homp, (G, GV) is the sheaf of Op-modules for the finite étale topology of U,
defined as the symmetric Op-linear homomorphisms G — GV, and if P}, C Pg is the subset
of polarizations, then A is an isomorphism \: (Pg,,])ér) >~ (¢, ¢;), for some t, of invertible
Op-modules with a notion of positivity for the finite étale topology of U; [R, Def. 1.19].

e we have a closed immersion Wy : uy ® D' — G[N] of group schemes compatible with the
Op-actions over U.

oY € HO(U,det(wg/u)lfp R0y OK/pOK) is such that Yh(G/L{, L )\,wN) = p“. Here,
det(wg/u) = Nwgy and h(G/Z/{,L,)\,z/JN) € HO(Z/{,det(wg/u)p_l ROk OK/p(’)K) is the Hasse
invariant; see [AGo, Def. 7.12].

Remark 3.1. If (G/U, 1, A\, 1N, Y) is as above, then Gx — Uy has a canonical subgroup Cg C
Gklp]. See 2.1.

The morphisms of the category Hilb(uy)Y% are defined as follows. Let (G JU L\ DN, Y) and
(G,/UI,L,,)\,,Q/J;V,Y/) be objects, then a morphism (G/Z/{, /,,)\,z/JN,Y) — (G’/Z/{’,L’,X,wg\,,Y’)
is a pair ((15, a) such that

e ¢: U — U’ is a morphism of formal schemes.

o a: G — Gy =G Xy U is an Op-linear morphism of group schemes defined over ¢ such
that ¥y o a = ¢y, a*(Y') =Y and a induces an isomorphism Cg = Car Xy Uge.
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We have a functor Hilb(uy)% — FSchemes, defined by (G/L{, L,A,wN,Y) — U and
(¢,a)— ¢. Given an object U of FSchemes, we let Hilb(uy)%[y be the subcategory of
FSchemes, consisting of objects (G/U, Ly N, VN, Y) over U and of morphisms mapping to the
identity of #. For a morphism ¢: U4 — U’ in FSchemes, we have an inverse image functor
¢*: Hilb(un)4%)e — Hilb(pun)%]y defined by the fibre product with respect to ¢. Moreover,
(vo B)* = p* o a* for every two morphisms o: U’ — U"” and f: U — U'. In particular, also
Hilb(uy)4 — FSchemes, is a fibred category. In fact, as mentioned in the intorduction,
Hilb(uy)Y is stack (but not a stack in groupoids) over FSchemes 4.

The category of Hilb(uy)Y has a special object which enjoys a certain universal property as
follows (see lemma 3.2). Let 9MM(A, uy) be the fine moduli space classifying abelian schemes
over A with real multiplication by O and py-level structure. Tt is a smooth and quasi-
projective scheme over A; see [R, §1]. Let M(A, uyn) denote the formal completion of IMM(A, )
along its special fiber and B(w) denote the normalization of the blow-up of 5)\1(14, pn) along
the ideal generated by (p“’,iz(G, L A,z/JN)) where (G/E/)J\T(A,MN),L,A,wN) is the pull back of
the universal abelian scheme with its Op-multiplication, polarization and level structure on
M(A, ) and hwP~! is a local lift of the Hasse invariant h(G, ¢, A, 1y) with w a local generator
of det (wG//m\T(A’#N)).

We denote by 9M(A, un)(w) the p-adic completion of the open sub-scheme of B (w) which
is the complement of the section at oo in the exceptional divisor of B(w). It is a p-adic for-
mal scheme which is an object of FSchemes, defined at the beginning of this section. The
rigid analytic generic fiber 9(A, un)(w)g is the strict neighborhood of the ordinary locus of
M(A, un)ie of width p».

Let (GUiv, v \univ gmniv) be the pull back under the canonical map 9M(A, puy)(w) —
ﬁ(A, un) of the p-adic completion of the universal object over MM(A, ux). We also define

Yuniv — pw/h (Guniv/m(A7 ,uN)(w)7 Lunivj )\univ’ ¢J1{?iv>. Then
Quniv = (Guniv’ Luniv’ )\univ7 Q/)uNniV’ Yuniv)
is an object of Hilb(uy)Y and we have

Lemma 3.2. Let (G/Z/{, LA\ UN, Y) be an object of Hilb(uy)%. Then there exists a unique mor-
phism in FSchemesy, ¢: U — M(A, un)(w) and a morphism (¢, a): (G/L{, L )\,@DN,Y) —
(G /IMN(A, py ) (w), ™, N oy Y univy i Hilb ()Y such that a: G — G™ Xan(a iy ) (w)
U 1is an 1somorphism compatible even with the polarizations data. Moreover a is unique among
all such isomorphisms compatible with the Op-multiplications, the level structures and the po-
larizations data.

Remark 3.3. The compatibility between polarizations data alluded to in lemma 3.2 means
that A: (Pg,Pg ) >~ (¢4, ¢;) coincides through a with the isomorphism of sheaves on the étale
topology of M(A, pn)(w), NV (Pguniv, Pl ) = (e, ¢)

More precisely, the isomorphism defined by « is (PGaniv,P+ ) = (77@,73;5) which sends

GZL/l{niV
G — G to Vo foa.
We now prove Lemma 3.2.
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Proof. Let (G/U,L, )\,wN,Y) be an object of Hilb(uy)%. Then there exists a unique mor-

phism of formal schemes ¢: U — §J\T(A, px) such that G = G° Xga ) U over U, where

AuN
G° is the universal object over E/)J\T(A,MN). This isomorphism is compatible with the Op-
multiplications, level structures and polarizations data. Moreover, because of the existence
of the section Y, ¢ factors uniquely through the above mentioned blow-up of 9 (A, uy) and
because U is a normal p-adic formal scheme, it factors uniquely through the p-adic completion
of the normalization B(w) of the blow-up, in other words ¢ factors uniquely through a mor-
phism ¢ : U — IM(A, py)(w). Thus we obtain an isomorphism a : G = G"™ Xona un)w) U
over U such that (¢, a) : (G/L[, L,)\,wN,Y) — (Guni"/fm(A,,uN)(w),L“niv,)\univ,w}‘\,ﬂiv,Y““iv) is
a morphism in Hilb(uy)Y. Moreover, « also preserves the polarizations data.

We claim that o is unique with these properties: if o/ : G = G"™Y Xon(a uy)w) U 1s another
isomorphism preserving the QOp-action, level structures, and polarizations then a oo/ : G = G
is an isomorphism over U which preserves all structures (including the polarizations data) so it
is the identity by Lemma 1.23 in [R].

0

Definition 3.4. An overconvergent modular sheaf of tame level N (with degree of overconver-
gence w) is a functor F: Hilb(ux)% — Sheavesy over FSchemes 4.

Definition 3.5. If F is an overconvergent modular sheaf and (G/Z/{, Ly, YN, Y) is an object of
Hilb(pn )%, we denote by F(Gu.aey,y) the respective coherent sheaf on U. We denote by

M(f, N, w) = HO (mt(A, ,LLN)(U))7 fguniv)
and call these weakly holomorphic overconvergent F-valued modular forms.

Remark 3.6. The sheaf Fguniv defines a coherent sheaf on the rigid analytic fiber (A, pun)(w) &
and we could have defined equivalently M (F, N, w) as M (F, N,w) := H° (EDT(A, ) (w) g, fgumv).

Remark 3.7. The universal property of the special object G™" of Hilb ()% implies that to
give a section f € M(F,N,w) is equivalent to give a rule which assigns to every isomorphism
class of an object (G/U, 1, \,Y) of Hilb(uy)% a section f(G/U,t,\Y) € H'(U, Fgu.ry))
which is functorial in (G/U, ¢, \,Y) and commutes with base change.

3.2 Classical Hilbert modular sheaves

Let K be a finite extension of @, containing a Galois closure of F. Let oy,...,0, be the field
homomorphisms F' — K. Each o; defines a so called universal character y; = (0; ® 1): (O ®
Z,)* — Op, see [AGo, Def. 4.1]. Then, inside W(K) one has the so called classical weights
which are of the form x :=[[7_, X with (..., ky) € Z9.

Let G = (G/L[, LA UN, Y) be an object of Hilb(uy)®,.. The O ®z Oy-module of invariant
differentials wg y is invertible as p is unramified in F; see [AGo, Rmk. 3.6]. In particular, we
decomposes as @7_, L; where L; is the Oy-sub-module on which O acts via 0;. Each £; is an
invertible Oy-module. Given a classical weight x we define the invertible Oy ®¢, K-module

wé = ®g:1£fl ®OK K.
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Given a morphism (¢, a) G = (G/U, L,)\,Q/}N,Y> — (G,/ul,L,,X,Q/J;V,Y/) := G’ the natural
map o*: ¢* (wG//u/) — wgy is a map of O ® Oy-modules. It induces a map of Oy ®p, K-
modules

a;: ¢ (£z> — L,

which is an isomorphism as « is an isogeny. Define the isomorphism of Oy ®¢, K-modules
wX(a, @) = @t ¢* (wy) = W5

where ofi = @%q; for k; > 0 and o = (C(Z-_ki)_l for k; < 0. With these definitions one verifies
that wX defines an overconvergent modular sheaf.
For parallel weights k1 = ... = k, =: k the invertible sheaf wé is the k-th power of the Hodge

invertible sheaf det(weg/u) ®o, K considered in [R, §6].

A description a la Katz. For later purposes we provide an alternative description of wg.
Given an object G = (G/Z/I, L, N\, N, Y) of Hilb(un)g,., put Ty := (OF ®z, OM)X and let wg be
the Tj-torsor defined by we . Let O&Xﬁl) be the sheaf Oy, with action by Ty twisted by y .
Consider the invertible Oy ®p, K-module $Homy, (wé , (’)é,x_l)) ®o, K. Given a generator w of
wau as Op ® Oy-module, an element f € $Homr, (wé , O&Xﬁl)) is determined by the image f(w)

via the rule f (oflw) =x(a)f (w) This should be thought of as the sheaf theoretic analogue of
the notion of an Hilbert modular form as a rule a la Katz, cf. [AGo, Def. 5.1].

Define the Oy ®p, K-linear map

-1
ﬁOmTu (wéa OZE{X )) R0y K — W?;/u

as follows. Given a local generator w of wgy over an open V C U as Op @ Oy-module we get a
local trivialization of wé over V and a splitting w = ) . w; where w; is a generator of £;[, as Oy-
module for every i = 1,...,g. Given ¢ € Homr, (ng/v’ O](,X_l)), the element ) (w) - 7_,w" lies
in F(V, wé) If we choose another generator w’ := aw with « an invertible section of Or ® Oy,
we have ' = ), w! with ] = x;(a)w; and we compute

Y() - @Lw"™ = x )W) - O a(a) vl = () - 8w

Thus, we get a well defined map which does not depend on the choice of w and which glues for
varying V’s to a global map.

Lemma 3.8. For every x the map $Homr, (wé, (’)é,xil)) Qo K — wé/w defined locally on U

by choosing a local generator w of wj and sending a local section 1 of Homy, (wé, O&Xﬁl)) to
. G el

Y(w) - @7 wi, is an isomorphism of Oy ®o, K-modules.

In particular, Homy, (w& ) O&Xﬁl)) ®o, K is endowed with the structure of an overconvergent
modular sheaf inherited by the isomorphism of the lemma and the structure of modular sheaf on
Wy u We describe explicitly how it behaves on morphisms. Suppose we are given a morphism

(qzﬁ, a): G = (G/Z/{,L, )\,@Z)N,Y) — (G’/U',L’,A’,¢§V,Y’) := G’'. Consider the induced map

17



o’ o* (wG/ /u') — wgqu- Given local generators w and w’ of wg .y and wer e respectively over
open sub-schemes V C Y and V' C U’ such that ¢(V) C V', write o*(w') = aw with a a section
of Or ® Oy over V. It is invertible after inverting p as a* is an isomorphism after inverting p.

Given a local section t of omr,, (wé,, (91(}71)) ®o, K over V', we let ¢7(t) be the local section
—1 -

of Homy, (wg, OZE,X )) ®oy K over V defined by sending b - w — x*(b)x(a)¢* (t(w')) for every
section b of Ty,.

3.3 Hecke operators

The main property of the definition in section 3.1 is that given an overconvergent modular sheaf
F of tame level N there is an operator U, and a Hecke operator Ty for every prime ideal q of Op
not dividing p/N on the Ax-module of weakly holomorphic overconvergent F-valued modular
forms. Let G"™ := (GUniv, v \univ w0 'y) be the universal abelian formal scheme over
SDI((’)K,,uN,)(w) and let E)JI(OK,,uN,)(w)K be the rigid analytic fiber of SDI((’)K,,uN) (w).

Lemma 3.9. The canonical subgroup C' of the universal object is isomorphic to the constant
group scheme O /pOr over a finite and étale covering of M(O, pun ) (W) k-

Proof. We first consider the finite and étale cover Z’ where C'x becomes constant. We have to
prove that finite étale locally over Z’ such a group is isomorphic to Op/pOp. It suffices to prove
it for every point of Z’. Let K C L be a finite extension, let F be its residue field and consider
an L-valued point x of Z'.

The pull-back G, of G to the ring of integers of L is an abelian scheme. Then, G, x admits
a canonical subgroup C, x which is a constant group. In particular, it is a Op/pOp-module of
dimension p? as [F,-vector space. We need to prove that it is a free Op/pOp-module. It suffices
to show that given a non-trivial element e of Op/pOp then e does not annihilate C, . We let
C,; C G, be the schematic closure of C, i in G,. Its special fiber C, r coincides with the kernel
of Frobenius on G, . In particular its module of invariant differentials coincides with wg, ./r
which is a free Or ® F-module so that e does not annihilate it. Then e does not annihilate C;, x
either. ]

Set ¢ = p or q is a prime ideal of Op not dividing pN. For every ¢ we fix an identifica-
tion (qe;, q7¢f) = (¢j,¢]) (j depends on i), where let us recall the family {(c;, ¢f)}izypt is a
complete set of representatives for the strict class group of F. We define SJT(A, [N, q)(w) K —
EDT(A, L N) (w)k as the finite and étale cover of rigid analytic spaces classifying Op-invariant sub-
group schemes Hg of the universal abelian object which, finite and étale locally, are isomorphic
to Or/q and such that Hx does not intersect the canonical subgroup C. If q does not divide p,
this last condition is automatic. If q = p it follows from lemma 3.9 that Hx & C' = (OF / pOF)2
étale locally over SJT(A, LN, q) (w)k so that Hg @ C coincides with the p-torsion of the universal

abelian scheme GY¥. Thanks to [AGa, Thm 10.6] there is a normal formal scheme

P Em(A,uN,q)(w) — DJT(A,MN) (w),

with rigid analytic fiber EITI(A, LN q)(w) i such that Hg extends to a finite and flat subgroup
scheme H"™V of the universal abelian object G'"V. We also have a unique morphism

P2 m(Aa KN, q) (w) - Dﬁ(A7 :uN) (w/)
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defined by taking the quotient G "™V := G"™V/H"" with induced action of Op, polarization
structure, 1y and Y. Notice that the locus where the polarization module is (¢;, ¢;") is sent to
the locus where the polarization module is (qc;, ¢ ); see [GK, §7.1]. Here we take w' = w if

q does not divide p. If ¢ = p and w < zﬁ’ as Hi @ C = G¥V[p], we may take w' = pw by

[Fa2, Thm. 5] or [GK, Thm. 5.4.3]. In both cases, the morphism p, induces an isomorphism on
rigid analytic fibers as GY' is canonically isomorphic to the quotient of G/Ifmv by the subgroup
scheme GW¥V[q]/Hy and Hy coincides with the image of G/;niv[q]. We denote by

T Guniv G’,univ
- & <4

the universal isogeny with kernel H"™™" defined over S)ﬁ(A,MN, q)(w). Therefore we have a
natural morphism:

f(ﬂq) . p; (fguniv) — fg/,univ e fguniv = p; (Fguniv).

We define the operator Ty (for q not dividing p) and the operator U, (for q = p) as the compo-

sition:
.7: (TI'q )
—

H0 (E)JI(A, /LN)(U),), fguniv) — HO (i)ﬁ(A, UN, q) (w),p§ (Fguniv))

) o (M (A, v, 9) (1), 97 (Fmnr) ) = HO (A, ) (w) e, e (B Fgon) ) -5
5 HO (M (A, iy, ) (w) e, Fguniv) 22 HO (A, un) (w), Fguniv ).

As in 3.6 we implicitly identify the global sections of p} (Fguniv) on Sm(A, LN q) (w) with the
global sections of the associated locally free sheaf on the rigid analytic space im(A, 1N, q) (w) k-
Similar considerations apply to the last isomorphism. This allows us to define the trace of p;
as p; induces a finite and étale morphism of rigid analytic spaces but not necessarily at the level
of formal schemes.

In particular we get Hecke operators
Ty: M(F,N,w) — M(F,N,w), Uy: M(F,N,w) — M(F,N,w),

for primes g not dividing p, by pre-composing the maps above with the inclusion M (F, N,w) —
M(F,N,uw').

Corollary 3.10. Given overconvergent modular sheaves F and G and a natural transformation
of functors f: F — G, the induced map M(F,N,w) — M(G, N,w) is Hecke equivariant.

Proof. This follows as the Hecke operators are defined using only the fact that F and G are
functors.

[]
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3.4 Overconvergent modular sheaves of weight £

Let Wr be the rigid analytic space over Q, associated to the noetherian complete algebra
Zp|[(OF ® Zy)*]], called the weight space for GLy/p.

Let us recall that we fixed a K-affinoid algebra Ax with good reduction (see the beginning of
section 3.1). Let k € Wr(Ag) be an Ax-valued weight, in other words k: (Op ®Z,) s A% s
a continuous homomorphism. We denote the action of k on elements t € (Op ® Z,,)* additively,

Le. k(t) =t As (Or ® Z,) " is compact the image of k is contained in A% and we denote also
by k: ((’)F ® Zp)X — A*. The goal of this section is to attach to the data (A, F, N,w, k) an
overconvergent modular sheaf wL’k on Hilb(uy)Y, functorial in A and w; see 3.13.

We denote by r :=min{n € N, | n>0,|[k(1+p"(Or @ Z,))|| < p~"/*~V}. Any non-

negative w € Q such that w < z% if p#£3and w < 3% if p = 3 is called adapted to k. We fix

such a w and note that there exists a unique Z,-linear function a: O ® Z,, — A such that
t* = exp(alog(t)) Vte1+p (Op @Z,).

Let e1,...,e, be a Z-basis of Op. By [AGo, §4] we have an isomorphism Wp = Il.;D,
where [i is the set of characters of (Op/pOr)* and D is the open unit polydisk of dimension g
given by Spm (Zp[[Xl, oo Xy [p‘l}), centered at 0. Given a C,-valued point (zy,...,2,) of D,
the associated character of (O ®7Z,)* is the logarithm 1—|—p(OF Rz Zp) — O ®zZ, composed
with the map Op ®@z Z, — C), > a;e; — [z}

Examples 1) For every finite extension K C L and every k € Wg(L) our construction for
A = Oy, provides overconvergent modular sheaves of weight k:

wh": Hilb(uy)¥, — Sheaves.

2) For every positive 7 € N let W, C Wp be the open subspace of weights &k such that
|k(1+p"(OF @ Z,)|| < p~*/®=Y. Then the family {W,}, defines an open admissible covering
of Wp by affinoids associated to formal affine schemes Spf(A,). As on each W, there exists a
universal character k,: (Op ® Z,)* — AX defined by (t*)(z) =¢* for all t € (Op ® Z,)* and
xr € W,, we can apply the previous construction providing a family of overconvergent modular
sheaves

w) ,: Hilb(uy)4 — Sheaves.

For every finite extension X' C L and every k € W,(C,), the functoriality implies that the
restriction of wf , to the inclusion Hilb(uy)¥ C Hilb(uy)Y4  coincides with wi*.

We start explaining the construction of wi{k with the following lemma.

Lemma 3.11. Every object G := (G/L{, Ly A, @Z)N,Y) in Hilb(ux)% admits a canonical subgroup
C. C G of level r. Moreover, C, is the iterated extension of C1, it is Op-invariant and finite
étale locally over Uy the Op-group scheme C,. is isomorphic to Op/p"OF.

Proof. The existence of the canonical subgroup follows from [Fa2, Thm. 6]. By loc. cit. finite
étale locally over Uk it is a free Z/p"Z-module of rank g , it is stable under the action of Op
and it is the successive extension of the canonical subgroup C; of level 1. It then follows from
3.9 that finite étale locally over Uy it is is a free O /p"Op-module of rank 1.

O
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We first define the functor w';* on a full subcategory Hilb'(uy)% of Hilb(uy)%. We then

show how w* extends uniquely to Hilb(uy)%.

The category Hilb'(uy)Y. Given an object G := (G/U, ¢, \,¥y,Y) in Hilb(uy)% with U =
Spf(R), let O : Uj; — Uk be the finite and etale morphism representing the functor

Jsomo,, (Or/p"OF, C,),

i.e., all the trivializations of C,. as Op/p"Op-group scheme. By the Lemma it is Galois with
group G = ((’)F/p’"OF)X. Let now 6: U’ — U denote the normalization of U in U} and
set G' = (G//Z/{’, !, X,wfv,Y’) be given by the pull-back of G via 6. It defines an object of
Hilb 0y ).

We define Hilb'(uy)% as the full subcategory of Hilb(uy)% consisting of objects G :=
(G/U,L, A,wN,Y) such that & = Spf(R) is affine, G is algebrizable and, with the notations
above setting U’ := Spf(R'), the ring R’ satisfies the local assumptions of §2.

The functor wi* on objects. There is an Oys-sub-module Fg of W g lven by FO(CNJ’/R’) of 2.7.

It is stable under the action of O on G’ by the functoriality of Fy proven in 2.8. Moreover we
have an isomorphism of Or ® Oy-modules provided by the map dlog:

(C)Y & Op Jp' ™" Oy =2 F Jp " T (1)

Define F}, as the inverse image in Fg of (C,)V —(C,)V[p""!]. Then F, is a torsor under the sheaf
of groups Sy == (O @ Z ) (14 p="(OF @ Oyr)) and both Sy and Fi; are endowed with
compatible actions of G, lifting the action on U’. If z is a local section of 1 + pU (OF ® Ou/)
then we write 2% := exp(alog(x)) where let us recall a : Op ®Z, — A was a Z,-linear map such
that t* = exp(alog(t)) for all t € 1 +p (OF ® Z,). Let us then remark that With the definition
above % is also a section of 1 4+ p(* ((’)F ® Ou/) We now define a twisted action of S on
Oy as follows: let s := ¢-x be a local section of Sy := (OF ® Zp) (1 + p=I (O ® Ou/))
and y a local section of Oy. We set

sxy =gz c".q.

We denote (’)gi) the sheaf O, with this action of §». We define the coherent Oy ®p, K-module
B g
w&k = (GK,* (ﬁomgu, (.7:/@, (’)é{/ k))) R0k K) )

As f)omgu,( o Oé;k)) is an invertible O;-module, we deduce that w&k is an invertible Oy ®o,
K-module. This defines w’;* on objects of Hilb'(uy)Y.

The functor ka on morphisms. Consider the functor S§: Hilb'(uy)4 — Groups and the

functor O'-F): Hilb'(juy)% — (8 Sheaves) associating to an object G := (G/Z/{, L\ UN, Y)

the sheaf Sy and the coherent O, -module with action of & given by Ou/ . It follows from
2.8 and 2.10 that the association G +— Fg defines a functor F: Hilb'(uy)4 — (SfSheaves).
Consider a morphism a: G — H in Hilb'(uy)% over a map 4 — W in FSchemes,. By
assumption it induces an isomorphism of canonical subgroups Cqg = Cg Xy, Uk of level 1.
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Thanks to 3.11 it induces an isomorphism of the canonical subgroups of level r of Gk and
Hy Xy, Uk. In particular, if we let Uy — Ux and Wi — Wy be G-coverings classifying the
trivializations of the the canonical subgroups of level r of G and Hy we have Uy = Wy X, Uk
compatibly with the action of G. This induces a morphism U’ — W' lifting the morphism
U — W. Due to 2.8 the map on differentials wy — wg induces a morphism o*: Fg — Fg.
Consider the diagram

«

a* (.7-"&) — Fa
l l

0*(C}) @ O [P~ O 25 C% @ O [~ O,

where the vertical arrows are induced by the isomorphisms defined in (2) and o": C); — C is
induced by « so that it is an isomorphism. The diagram is commutative due to the functoriality
of dlog proven in lemma 2.8. In particular o* is an isomorphism of Or®O;-modules and induces
an isomorphism o*: o* (f ,E) Rar(Syy) Sur = Fg of Syp-torsors. We thus get isomorphisms

a” (foms,,, (Fiz: Owr)) = Homa- s, (@ (Fiz): Our) — Homs,, (Fg, Ow)

of Oy-modules with action of G. Here, the first map is induced by the natural map Oy, —
O (Ou/) and the last map is induced by inverting the isomorphism a* (.7-" lﬁ) — F§. Inverting
p and taking G-invariants of 0k . we get the sought for isomorphism of Oy ®ep, K-modules

S o)

T:k
G

Remark 3.12. An alternative definition of the sheaves wh" over U’ would have been as the

“push-out” Fg; ®sg,, Oé,k,) ® K; this definition of w&k would have given a more direct and readily
contravariant action on morphisms. Using local trivializations of F(, as Sy-torsor, one can
make sense of such a tensor construction as the push-out of the cocyle defining F, via the map
k: Sy — Oy ® K. The need in applications for an intrinsic definition of wgk, not based on a
choice of local trivializations, lead the authors to the present definition. One should think of
it as the Oy ® K-dual of F(; ®g,, O ¥ @ K. This issue and the comparison between the two

approaches are discussed for classical modular sheaves in §3.2.

Recall from [SGA1, Ex. VI, Def. 5.2] that a functor between two categories over a given
category is cartesian if it transforms cartesian diagrams into cartesian diagrams. We deduce from
the above that wi{k is a cartesian functor Hilb'(uy)%, namely for every morphism G — G’
in Hilb'(ux)Y over ¢: U — U’, the induced map ¢*: ¢* (wgfg) — wgk is an isomorphism of
Oy ®0p, K-modules.

Theorem 3.13. There exists a unique overconvergent modular sheaf
wh¥: Hilb(uy)Y% — Sheavesy,
which is a cartesian functor and extends the functor wi{k on Hilb'(ux)%. Furthermore,

(1) for every object G of Hilb(ux)% over a formal scheme U the Oy @ K-module w&k I8
locally free.
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(2) wL’k is functorial in A and in w, i.e., for every morphism of formally smooth Og-algebras
A — B and for every w' < w satisfying the bound above, the modular sheaf wgk on Hilb(uy)y
is Wi on Hilb(uy )Y restricted to the subcategory Hilb(uy)% € Hilb(py)Y.

(3) Let O: Hilb(uy)% — Sheavesy be the functor associating to G := (G /U, 1, A\, N,Y)
the sheaf Oy ®o, K. For weights k and k' let k + k' be the weight t*% = t¥ . ¥ Then,
taking w adapted to k and k' there is a natural isomorphism of functors wL’k ®o ka — wLHk/,
compatible with the functorialities in (2).

Proof. For every affine open U C 9(A, ux)(w) the pull-back of the universal object Gy

defines an object of Hilb'(uy)%. In particular, wg’fniv is defined for the universal object over

IM(A, ) (w). Consider an object G of Hilb(uy)% over a formal scheme . Possibly replacing
U with an open affine formal sub-scheme we may assume that & = Spf(R) is affine. We have a
unique map f: U — M(A, pn)(w) such that G is isomorphic to the pull-back of the universal
object via Gumv via f. We set wG = f*( G““‘V)' This construction glues and provides a

definition of w * for every object G of Hilb(uy)Y.

As we have already proven that the functor w on Hilb'(1y)Y is cartesian, this definition
agrees with the one already given for objects of Hllb (u ~)%. The cartesian property implies that
any functor with the properties required in the Theorem agrees on objects with our definition.
This proves the uniqueness claimed in the Theorem 3.13. We are left to define w!* on morphisms
and to prove that it is cartesian.

Consider an object G of Hilb(uy)Y over a formal scheme V. Possibly after replacing
V with a covering by open formal sub-schemes we may assume that V = Spf(R) and the
morphism f:V — IM(A, uy)(w), defined above, factors via an open affine sub-scheme U of
IM(A, py)(w) for which GY™ is in Hilb'(uy)%. Define g : Vie — Vi as the finite and
étale morphism representing the functor Jsome,. (OF /p"OF, C’T) and let R’ be the normaliza-
tion of R in V.. Recall that over U we have Fguniv |y C wguniv Ju oy Oy and an isomorphism
(C)Y @ Our [P O 2 Funi [ D0 Frumiv. As Vi = Vie Xy, Uy the morphism f: V — U
lifts to a morphism f’: V' — U’ and pulling back via f’ provides an invertible Op ® Oy -module
Fa C wgyy ®o, Oy and an isomorphism vg: (C))" ® Oy [p=0W0Oy, = Fo/pt =" Fq. Tt

follows that wT = (QK,* (Homs,, (F, (9( ))) R0 K)g where Sy, F(, and O](,Tk) are defined as
before.

By the functoriality of dlog the map ¢ is induced by the map dlog on the Tate module
of G if R is a DVR as explained in 2.7. As R’ is normal and Fg is an invertible Oy-sub-
module of Qg/y ®o,, Oy, the knowledge of F¢ and 7¢ in co-dimension one on Spec(R’), for
general R’ characterizes them uniquely. This implies that they are defined for any object G of
Hilb(uy)Y by gluing and that they are functorial for morphisms in Hilb(ux)%. Proceeding as
for the definition of ka on morphisms in Hilb'(uy)Y¥, this suffices to define the functor ka on
morphisms in Hilb(uy)% and to prove that it is cartesian.

(2) Due to uniqueness in order to prove that wh* is functorial in A and w we may restrict
to the subcategories Hilb' ()% and Hllb/(MN) We remark that Hilb'(uy)% C Hilb' (uy)Y.
Then, the construction implies that wh" = proving (1).

(un)y
(3) Due to the uniqueness statement in the theorem, it suffices to construct the claimed
isomorphism on the subcategory Hilb'(uy)%. Take an object G := (G/L[,L,/\,wN,Y). The
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product on Oy defines a natural isomorphism of invertible O;y-modules
Homs ,(Fi, O4) @0, Homs,, (Fb, O5F)) — Homs,, (F, O ).

Taking ®o, K and the G-invariants of the push-forward by 0, we get the isomorphism u)g“ ®oy,

w&k/ o w&k'k,. We leave it to the reader to verify that it is functorial in G, in A and in w. O

3.5 Overconvergent modular forms of weight £

We write M(A, puy)(w) for the p-adic formal scheme defining the normalization of (A, jux ) (w)
in a smooth projective toroidal compactification 9M(A, uy) of 9M(A, uy). The existence of
M(A, puy) is proven in [R, §6]. If g = 1, we are classifying elliptic curves and those com-
pactifications coincide all with the strict neighborhood of the ordinary locus of width p" in the
modular curve X;(N) ®o, A. If g > 2 the definition of 9(A, uy) depends on the choice of a

polyhedral cone decomposition.

Theorem 3.14. Let w, Ak, r, k be as in the previous section. Then,

i) wgfniv extends uniquely to a coherent, locally free Ogpiy ) w) @ K-module of rank 1 on
M(A, un)(w). This estension will also be denoted by wgfmv.

ii) The Ag-module M(A, puy,w) = H° (ﬁ(A, /LN)(w),wg’fniv) is independent of the toroidal
compactification. B

iii) Let q denote p or an ideal of Op not dividing pN. Let f € M(A, uy,w) and let us
denote by f° its restriction to IM(A, un)(w). Then T4(f°) extends uniquely to an element of

M(A, pn,w) which will be denoted Ty(f).

We start with the following important result.

Lemma 3.15. There exists a unique triple of objects (@univ,zuniv,vumv) over M(A, puy)(w),
extending the triple (G, (" Y UiV oper MM(A, un)(w) as follows:

—univ

o G — M(A, puy)(w) is a semiabelian scheme, locally relatively algebraizable extending
the abelian scheme on G™Y — IM(A, un)(w).

—univ —=univ

o O — Endﬁ(A#N)(w)(G ) is a ring homomorphism compatible with the Op-

multiplication on G™ over M(A, py)(w).

< univ

oY € H(M(A, ,uN)(w),wlézfiv ®ox Ok /pOk) is such that

—univ

Y . h(G ’Zuniv’ )\univ7 w]uvniv) — pw.

Proof. The existence of the extensions follows from [R, Thm. 6.18]. Let G and G be two
semiabelian schemes algebrizable locally over 9U(A, uy)(w) and extending the universal abelian
scheme over M (A, un)(w). We consider a covering by open formal sub-schemes {U; = Spf(R;)};
such that R; is an integral, noetherian domain and G and G are algebrizable to semiabelian
schemes G; and G} over U; = Spec(R;) for every i. Then, there is an open dense sub-scheme
U? C U; over which G; and G are isomorphic to the pull-back of the universal abelian scheme
over M(A, un)(w). As the R;’s are all normal such a generic isomorphism extends uniquely to
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an isomorphism G; = G thanks to [FC, Prop. 1.2.7]. By uniqueness these local isomorphisms
glue to a global isomorphism a: G = G'. If G and G are endowed with extra structures,
namely polarizations and py-level structures, extending the ones on the universal abelian scheme,
they are preserved by a generically and, hence, they are preserved by «. This proves the
uniqueness. O

Proof. (of the Theorem 3.14)

i) Let U = Spf(R) C 9M(A, ux)(w) be an affine open and let G = (G/U,t,y) denote
the restriction of the universal semiabelian scheme, Op-multiplication and level py-structure
to U. Let us also denote by U° the open formal sub-scheme of U over which G is abelian, i.e.
U =U X34 ) (w) PUA, pv) (w), and let G := (G°/U°, 12, X°,1)°, Y ?) denote the restriction of
G"™ to U°. Then G° is an object of Hilbuy)%. By [R, Thm. 5.1] taking & small enough we
may assume that R and G satisfy the assumptions of §2.1. In particular the pull back of G to
the completion of U along U\U° admits a uniformization a la Mumford by a l-motive M and
the Tate module of G is defined by the Tate module of M. Due to the real multiplication, M
has purely toric semiabelian part. Thus the connected part G[p"]" of G[p"] is finite and flat over
U of rank p", it is a diagonalizable group scheme and G[p"]% defines the canonical subgroup
C, of G level p" over Ug. Let us define O : U — Uk to be the finite and étale morphism

representing the functor
Jsomo,, (Or/p"OF, C,),

i.e., all the trivializations of C, as Op/p"Op-group scheme. It is Galois with group G =
(OF/pTOF)X. Let now 6: U’ — U denote the normalization of U in U} and set G' =
(G//UI,L/,¢§V> to be the pull-back of G = (G,L,@/JN) via 0. Consider the O;y-sub-module
Fe of war s given by Fy(G'/R') of 2.10. Due to 2.9 it coincides with wer g and in particular it
is stable under the action of O on GG'. Moreover we have an isomorphism of Op ® Oyy-modules
provided by the map dlog:

(Cr)Y ® O [ O = F ™" F. (2)

Define F; as the inverse image in F¢ of (C,)" — (C,)"[p"~']. Now we repeat the construction of
wgk in the abelian case, more precisely we notice that F is a torsor under the sheaf of groups

Sy = (OF ® Zp) e (1 + p=" (O ® Ou/)) and both & and Fg are endowed with compatible
actions of G, lifting the action on U’ given by the same expressions as in the abelian case. We
denote Oé,k,) the sheaf O, with that action of S;». We define the coherent Oy ®¢, K-module

g
b = (O (Soms, (74, O M)) @0, K )

As f)omgu,( G (’)é;k)) is an invertible Oy/-module, we deduce that w&k is an invertible Oy ®o,

K-module. Moreover we have:
T,k _ bk
(«UQ ‘MIO( —_— wGo .

BE on Uy glue to give an invertible sheaf w™ . on M(A, puy)(w)

Guniv

extending wgfniv on M(A, un)(w).

By uniqueness the sheaves w
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ii) We now show that the Ax-module H° (ﬁt(A, pn)(w), wg’fmiv) is independent of the choice

of toroidal compactification M (A, un)(w). If g = 1 all toroidal compactifications coincide and
so there is nothing to prove. For g > 2 we remark that any two smooth toroidal compactifica-
tions are dominated by a third one, still smooth, by [R, Lemme 4.2]. Thanks to 3.15 we have
compatibility of the universal objects. So it suffices to prove the following claim. Consider a
morphism of smooth toroidal compactifications f: ﬁ/(A, pn)(w) — M(A, py)(w) and a mor-

phism ¢g: G"™Y — G over f. We have an isomorphism f* (w Giumv) & Wg/,univ by definition of

overconvergent modular sheaf. By adjunction we obtain a map wgfmv — fy ( f* (wg’fniv)). We

claim that it is an isomorphism. As wgfniv is a locally free Oﬁ( Apun)(w) Dok K-module, it suffices
to prove it for wgﬁniv replaced with Oy ®¢,. K for an open affine U = Spf(R) C M(A, uy)(w).

In this case, the claim follows from the theorem on formal functions as 1 (L{) — U is proper
birational and R is normal. o
iii) We now prove that the operators T, and U, restricted to H <?)J?(A, pn)(w'), wgfm) factor

through H° <ﬁ(A, ) (w), wik > As w'F . is a locally free sheaf on M (A, v, ) (w) and the

latter admits an open affine covering by the formal spectrum of normal rings, it suffices to prove
that the image of a section s of H° <ﬁ(A, uN)(w’),wg’jmv) via Ty or U,, defined a priori in

HO (S.TI(A, ,uN,)(w) K,wgfniv), extends in co-dimension 1 over W(A, LN, )(w) k. More precisely,

9 wGuniv Guniv

it suffices to prove the following.

Claim 1. Let R be a complete discrete valued field with maximal ideal I and fraction field L of
characteristic 0. Consider an object G := (GL/L,t, A\, ¢¥n,Y) € Hilb(uy)%(L) such that G,
extends to a semiabelian scheme GG over R with action of O, having bad reduction at the closed
point of R. In particular, it will have purely toric reduction and in particular the canonical
subgroup of level r of G extends to a subgroup scheme of G, finite and flat over R, given by

the connected part of G[p"]. Proceeding as in the proof of (1) one gets an R-module wj" C wTQ]Z

Let L C L' be the finite and étale algebra defining the scheme theoretic fiber pl_l([Q L]) of
the moduli point [G;]. In particular G, admits a tautological subgroup scheme Hp, defining
the Hecke correspondence. Consider the quotient map 7y : Gy — Gr//Hp =: G},. Then,

" with induced action of Op, polarizations, 1y and Y defines an L’-valued point [Q’L,] of
M(A, py)(w'). Let R’ be the normalization of R in L. It is the product of finitely many discrete
valuation rings. The schematic closure of Hy, C (G defines a quasi-finite and flat subgroup
scheme H' C G ®g R'. Thus, the projection map 7: G xg R — (G X R R’)/H’ =: (' is a flat
and quasi-finite homomorphism of group schemes extending 7;,. G has purely toric reduction
therefore G’ also has purely toric reduction. Furthermore G’ with the induced action of Op,
the polarization, ¥y and Y defined over L’ provides a moduli interpretation for the extension of

[Q’L,} to an R/-valued point of ﬁ(A, LN, ) (w") granted by the valuative criterion of properness;

see [R, Prop. 5.2]. Also in this case as in the proof of (1) one gets an R-module wly’ C wyﬂ :
=5/

The claim we need to prove is the following.

T,k T,k

Claim 2. The image of wéf“ via the map p; . o p5: Wer, T WG, is contained in wgk-

We prove the claim. The module wj" (resp. wF) is constructed from the torsor Fi (resp. Fi)
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under Sp = (O ® Z)) . (14 p"="(Op ® R)) (resp. under Sp/) defined by the inverse image
in wg (resp. wer) of dlog((C,)Y — (Cy)V[p"™']). The map dr: we = we @x R is an isomorphism.
As 7 induces an isomorphism between the canonical subgroups of level p" of G @z R and of
G', it induces an isomorphism of Sp-torsors Fi, — Fg X7 Sk, Arguing as in the proof of the
functoriality of wi{k in §3.4 we get an isomorphism of R’-modules

ko~ tk
dr*: Wi s Wi eR R

The map p; . o p; is defined as the base change ®gL of the composite of dr* and the trace
wgk ®r R — wgk. The latter is defined by the trace from R’ to R so that p; . o pj (wgfz) lies in
the sub-module wgk of wTQ’Z as claimed. O

Let w, Ak, 7,k be as in theorem 3.14.

Definition 3.16. We call M (k, juy,w) = H° (ﬁt(A,,uN)(w),wgﬁm) the space of holomorphic
overconvergent Hilbert modular forms of weight k, tame level pny and degree of overconvergence
w. We denote by

Ty: M(k, iy, w) — M(k, py,w), Uy: M(k, pun,w) — M(k, un,w),

for primes q not dividing p, the induced Hecke operators.

Assume now that we can take r = 1, i.e., that ||[k(1+p(Or®Z,))|| < p~/®. Given an object
G = (G/Z/l, L,/\,wN,Y) in Hilb'(ux)%, define

/ — g
QTGk =4, (ﬁomgu, (F& (’)ZE,, k))) )

As Sﬁomgu,( G O&Tk)) is an invertible Oyy-module and the group G = (Op/pOr)* is of order
prime to p, we conclude that QTQk is a coherent Oy -module and it is a direct summand in
Homs,, (Fg, Oé;k))). Arguing as in 3.13 the functor Q7* extends uniquely to a cartesian functor

Qi{k: Hilb(uy)% — FSheaves called the integral overconvergent modular sheaf of weight k.
As in 3.13 one proves that

Corollary 3.17. If |[k(1 + p"Or)|| < p/®V, the functor QF*: Hilb(ux)% — Sheaves is
cartesian. Furthermore,

(1) Qi"k is functorial in A and in w;
(2) for weights k and k' there is a natural isomorphism of functors QLF @0 QiF = Ql’k'k/ ;

(3) we have an isomorphism of functors wi* = QF @p, K.

4 Properties of wj:{k

We gather several properties of the overconvergent modular sheaf wi{k defined in theorem 3.13.
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4.1 The g-expansion maps

First of all we show how the general theory of overconvergent modular sheaves provides natu-
rally g-expansion maps on the Ax-module M(k:, LN w) of holomorphic overconvergent Hilbert
modular forms of weight k defined in 3.16.

A cusp of M(A, piy)(w) is defined by (i) a fractional ideal 2 of O, (ii) a notion of positivity
on A1, (iii) an exact sequence of Op-modules 0 — D' — H — A — 0, (iv) a direct summand
Dy'/NDi' € H/NH as Op-modules. We write M := 2 = €°A~" and My := +M with the
notion of positivity induced by 2. See [Ch, §3.1]. We explain how to define the g-expansion
maps at the given cusp:

_ o U2
rexpa: T (ki) — Al G K.
where A[q%] 2 MU0} is the sub-ring of A¢*],c At ufoy o0 which the group of squares of the units

Uy = {zx € Of \:c =1 mod pN}, acting on My, acts trivially.

Given a cusp one can construct a Tate object Tateg over the formal completion Uy = Spf (RQ[)
of suitable affine open formal sub-scheme Wy of (A, jx)(w) at the given cusp. By construction
Ry is a sub-ring of Aq*] .. atugop- The Tate object is the pull-back of the universal object Gy

defined in 3.15. Set whF (Mm) as the pull-back of the sheaf wf* (Q) " defined in 3.14. We
describe it explicitly. The Tate object Tatey admits a uniformization a la Mumford by a 1-motive
A - G, ® D;l}. In particular, wrate, /1ty = We,, 0D Uy admits a canonical basis element wgay,
as Op ® Ry-module provided by the standard invariant differential on G,,. See [R, §4] and [Ch,
§3.6). The subgroup scheme 1, C G,, defines the canonical subgroup v,: i, ® Dn' — Tatey.
Via these identifications the map dlog for Tategy is defined by the map dlog for G,, ® D;l, see
§2.1, so that the image of the canonical generator of the Cartier dual of p, ® Dp' i Wean modulo
p' ™. Write Uy := Spf(Rpy) — Us for the finite étale extension classifying all trivializations of
the canonical subgroup ¢;,: 1, ® D' of Tatey. The group of automorphisms of this extension
is the group previously denoted G = (Or/pOr)* in §3.4 and Uy = [ [, Usa as we have 1, over Us,.
An element o € G acts on Ry as a diamond operator, sending W — 1,01 ®a so that it acts by

pull-back on Frrage, sending wean + Wean| (@) = 7(a) ™ wean where 7 is the Teichmiiller character

G — (Or®Z,)*; see [AGo, Prop. 7.6]. Write S := (OF®ZP)X (14p1="(Op @ Ry)). Consider
the Ry-module HHoms(Frage, - R/Q([_k)). By construction, see the proof of 3.14(i), the sections of

wi* (Tatey) over Uy coincide with 5’_)01‘(15(J‘-"r’rat%l R;((_k))g[pfl]. It is a free Ry[p~']-module of
rank 1, generated by the element w® sending s - wean — (—k)(s)ey for every s € S where
e = (—/{:(oz))a g € Ry generates the eigenspace of R{ on which G acts via the character —k.

Hence, for every f eM (k LN, W ) there exists a unique element g-expy(f) of Ry ®p, K such

that g-expy(f) - wh, = fluy as sections of Homg(Frate,, ,R;(l_k))g. Note that as f is a section of

whF over M(A, un)(w) by 3.5 the image of g-expy(f) in Alq°laenrtugoy ®ox K is contained in

the sub-ring A[q ]] Ux

e MU0} ®o, K. This provides the sought for g-expansion map.
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4.2 Comparison with Katz’ ordinary modular forms

For w = 0, the formal scheme M(A, pyn)(0) is the open formal sub-scheme of (A, uy) defined
by the ordinary locus. It is affine with algebra of functions denoted in the sequel by R. Let
M (A, finpee) be the formal affine scheme defined by the Igusa tower over MM (A, py)(0), classi-
fying ordinary abelian schemes G with real multiplication by Op, polarization and a piypye-level
structure Wy : finpeoDp! < G. The natural map

r: M(A, pvp) — M(A, py)(0)

is Galois with group Z := (Op ® Z,)*. Let us fix a weight k € Wg(K). Following [K2, §1.9],
see also [AGo, Def. 11.4], we have:

Definition 4.1. The Rx-module of ordinary p-adic modular forms a la Katz of level uy and

weight k is the space M (A, pn, k)™ of eigenfunctions in H° [ M (A, pinpee ), O Ro. K ||k
g p 7:“ ’ g :u p K

W(A,},LNPOO)
i.e. the set of sections on which 7 acts via the character k.

For every cusp as in §4.1 the connected part of the p-divisible group of the Tate object Tatey
is canonically isomorphic to e ®D;1 providing a unique morphism f: Spec@)ae MEUoy T
SDT(A, uNpoo). As usual the “hat” denotes p-adic completion. The pull-back of functions via f
defines a g-expansion map

g-expo: M (A, pin, k)™ — A(0%) aerrtugoy ®ox K

see [K2, (1.9.8)].
On the other hand, using 3.17 and proceeding as in §4.1, we also have an Rg-module
HO (9 (A, pun) (0), wL’k]Qumv) and a g-expansion map

g-expg s HY(M(A, 1n) (0), | gunn ) — A(q*) aenrtugoy ®ox K.

The main result of this section is a statement comparing the two spaces:

Proposition 4.2. We have a natural isomorphism of Ry -modules
O HO (MM (A, fuw ) (0), ¥ guniv) —= M(A, pun, k),
which is compatible with q-expansions.

Proof. Let Rx C Ry be the Galois extension, with group H, over which the p-adic Tate module
of T of the dual of the universal abelian scheme G"™" over Spec(R) is trivial. Note that we have
an exact sequence

0—T°—T—>T"—0
of H-modules, where T is the Tate module of the connected part of G™-¥ [p>] and T = 7Z,(¢),
for p: H — (OF ® Zp) * an étale character, is the Tate module of the maximal étale quotient

of T'. They are both invertible O ® Z,-modules. By construction ¢ factors via Z. Let R be the
normalization of R in Ryx. We denote by I' C H the Galois group of R}, C Rk where R’ is the
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algebra underlying the formal scheme 9(A, py,)(0). The quotient H /T is the group previously
denoted by G = (Op / pOF)*. We have a commutative diagram with exact rows:

0 — W\C/Yvuniv/R ®R E(l) — T ® E % WGuniv/R ®R E — 0
L I Ta
0 — T ® R — T®R — T*® R — 0

The morphism « is defined by dlog and is an isomorphism so that F? = wguniv /R @R R in this
case. Modulo p the morphism « induces the isomorphism (Op/pOr) @ R = GV [p]* @
R = weuiv/p ®r R'/pR’. Let G (vesp. F') be the inverse image of (Op/pOr)* under the map

wgunvy g @R — (Op/pOr) @ R/pR (resp. wgun /g — (G [p]/C)@R’). Then, G’ (resp. F’)

is a torsor under 4 = (OF®ZP)X(1 +pOr®Z,)R) (resp. S = (OF®ZP)X (1+p(Or®Z,)R'))

and the inclusion F’ C G’ induces the isomorphism G’ = F' x° S where the latter is the
=~(=k) , =~
push-out torsor. Let B (resp R %) be R (resp. R') with the action by S°¢ (resp. S) twisted
~(=

) .
by the character —k. Then, (Sord)r =S and (R )F = R'"®_ Then,
, 'k , =(—k) r , ~(—k)
Homg (F', R) = ( Homg | F', R = Homgeap ( G/, R .

=(=9)
An element o € T acts on g € Homgea (G', R ) by (0g)(z) := o(g(c7'(z))). Note that for
s € S we have (0g)(sz) = s(og)(x) so that the action is well defined. The map

, =(-h) | (k)
p: Homg| F', R — Homgoa | G, R

is defined by sending f +— g where for y € G’ we let g(y) := sf(x) for s € S and z € F'
such that y = xs. Since f is S-invariant, g(y) does not depend on the choice of s and x such
that s = y i.e. ¢ is a well defined and S°*-equivariant. Moreover, p is I'-equivariant. Indeed,
if ¢ € T then (0g)(y) = s(og)(z) = so(g9(c(z))) = so(f(x)) since 07 (z) = z. Because
p(a(f))(y) = so(f(z)) we have o(p(f)) = p(o(f)). Moreover, p is an isomorphism whose
inverse is defined by g — g|p. L R

The isomorphism a: T ® R = R(¢) — wguiv/pr @r R gives o (G') = 54, where the
[-action is defined by: if o € T', y € S then o * y = o(y)¢(0) € S, Therefore o induces an
isomorphism

, ~(—k) ENEON
Homg (F', R™") = Homgora p (S"rd,R ) = (Homsmd (Sord,R )) .

=(—Fk) = =~
Let us observe that Homgea(S”Y, R ) = R, as R-modules, and the I'-action is given as
~(—k

follows. Let 0 € T' and g: S°Y — R be an S°%morphism. Then (cg)(u) := o(g(c(u)),
in particular (0g)(1) = o(g(c™(1))) = o(g(é(0) ™" - 1)) = k(é())g(1).
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~(—k —~

=(
In other words, Homgera (S, R ) = R(k o ¢) as I-modules and therefore o induces an

isomorphism of R’-modules Homg (F ! ,R'(’k)) = (E(k o qS))F, which is compatible with the
residual action of G on both sides. Now inverting p and passing to the invariants with respect
to G = (OF / p(’)F)* we get the claimed isomorphism

o (Homg (F', R @0, K)° = (R(k o ¢) 0, K)",

where the first space is H(9(A, uy, ) (0), wi{ﬂgmv) and the second one is M (A, uy, k). We are
left to check the compatibility with g-expansions. We remark that 7 (Tateg) = Op®zZ, as it is

the Cartier dual of T*(Tatey). The pull-back of a via f: Specm)aeM;U{o} — M (A, pnp)
arises then from the isomorphism of Rg-modules

e dlo ~
RQ{ =T t (Tategl) & RQ( —g> QGm®D;1/Z/{Q,[ = QMQ{/Z/&U

coming from the map dlog on G,,, sending a — awc,,. Using the notation of 4.1, this induces
isomorphisms of Rg-modules

g ~

B+ Soms(Fuge, - Ba )" = (By )" = Ra,

k

sending w;,

— e +— 1. The map on the right is induced by the first projection R’QL = ngg Ry —

Ry and sends e, +— 1. The pull-back of 3 to @)ae MEU{0} is the pull-back of ®4 via f.
In particular, given g € H?(M(4, MN,)(O),QJL{k|QumV) we have g-expg(g) - w¥, = gluy. Thus

g-expy (B574(9)) = [*(P(9)) = q-expy(yg) - B(wh,,) = ¢-expy(g) as claimed.
0

4.3 Comparison with classical Hilbert modular sheaves

We conclude this section with a result comparing our construction with the classical Hilbert
modular sheaves introduced in §3.2. Inside Wg(K) we consider the classical weights with neben-
typus to be weights which are of the form & := x - ¢ where x :=[]?_, Xf with (ki,... k) € 29
is a classical weight as in loc. cit. and ¢: (OF/pOF)X — OF is a character. We say that k is
non-negative if (ky,...,k;) € N?. For any such we write |x| := >, k;. First of all we intro-
duce modular sheaves Q% which generalize the construction of §3.2 to the case of non trivial
nebentypus.

Let G = (G/L{, L\ UN, Y) be an object of Hilb(uy)®, . In particular, wgyy is an invertible
Or ®z Oy-module as p is assumed unramified in F. Let U} the open dense subspace where G
is an abelian scheme and let O : U}’(’, — U}, be the finite étale covering classifying Op-invariant
subgroup schemes U, : 11, D' < Gg. It is Galois with group G := (OF/pOF) “Letb: U —U
be the normalization of U in Uj,. Let us point out that this definition makes sense. Let
V = Spf(R) C U be an affine open, then Vg = Spm(Rg) and let Vi C U}, be the inverse image
of Vi under 0. This morphism is finite and étale therefore Vj. is an affinoid, Vj = Spm(Sk),
with Rx — Sk a finite and étale K-algebra homomorphism. Let S be the normalization of R
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in Sk and set V' = Spf(S). Then S is a p-adically complete, separated and normal R-algebra
and for varying V’s, the various {V'}’s constructed above glue to give a formal scheme U’ with
a unique morphism to U. Define the Oys-module wy w pushing-out 6* (wg/u) by x. If we put

Ty = ((’)F Rz Ou')* and we let w* be the Ty, -torsor defined by 6* (Qg/u), then Wé/u' is the sheaf
Homg,, (w*, (95571)) where (98571) is the sheaf Oy with action by Tj, twisted by xy~!. Recall
that £k € Wp(K) is given by x - : (O ® Z,)* — Op. The elements of G act on U’ and on
wey - We write
(K]
QkQ =0, (wé/u')

as the eigenspace of elements of 6, (wx) on which G acts via the character k: (Op/pOr)* — OF
defined by k. It is a Oy-module.

Given a morphism (gzﬁ,oz) G = (G/Z/{, L A,l/JN,Y) — (G’/V, L/,)\/,ZMV,Y,) = G’ we get an
induced map a*: ¢* (wG//V) — wau of Op ® Oy-modules. Define the map

ot 01 () — O,

possibly after inverting p if k£ is not non—negative, as follows. Assume that over open sub-
schemes W C V and Z C V' such that ¢(Z) C W the torsor w, , is generated by an

element f and w Iz is generated by an element e and write a*(f) = ae with a a non-zero

section of O ® Oz, invertible after inverting p. Then, the displayed map sends a local section
_ -1 _

t: Wi plwr = O of oma,, (Wi olx )) to the local section ¢*(¢): wg 7 — 05X given

by be — x1(b)x(a)p* (t(f)) Notice that if x is a non-negative weight then x(a) is a section of

Oz, otherwise it is a section of Oz ®e, K. Upon taking 6, (,) (K one deduces that w* defines
an overconvergent modular sheaf

QF: Hilb(uy)¥, — Sheaves
for k classical, non—negative and it defines an overconvergent modular sheaf
w* := Qf: Hilb(uy), — Sheavesg

for any classical k. Thanks to lemma 3.8 and the explanation which follows it, the classical
Hilbert modular sheaf wX introduced in §3.2 coincides with Q. for k = ¢, i.e., fore = 1. In
fact QF and QF. can be defined with the rule above also for the universal object G'™" over any
toroidal compactification M(Op, py) of the moduli space M(Ok, un) and the global sections
are the so called classical Hilbert modular forms of weight x and nebentypus ¢.

Proposition 4.3. For every classical non-negative weight k there is a natural transformation
of functors py: Qy; — QF such that for every object G of Hilb(un)6,. the map ¢y, (Q) s an
injective morphism of invertible Oy —modules with cokernel annihilated by pXI.

For every classical weight there is a natural equivalence of functors gy k wy; — Ok which
coincides with ¢ @o,. K for k non-negative. It induces an isomorphism, compatible with Hecke

operators,
M(wg’;, N7 U}) — HO (ﬁ((’)K, ,uN), quﬂiV,K) .

32



Proof. We use the notations above. Let G = (G/Z/l, L A,wN,Y) be an object of Hilb(uy)8, -
Write
Sy = (O @ Z)" (1 + p* 7 (Or @7 Or)) C Tia.

We remark that x extends to a morphism of multiplicative monoids x: O ® Oy — Oy The
inclusion Fg C 67 (QG /u), see the explanation before 3.13, is compatible via the action of Sy and
Ty via the natural inclusion S;» C Ty and with the action of the Galois group G. It provides
an injective morphism of O,-modules

ex(G): Boms, (Fg, Oy Y) — Homa, (0" (Qep), O ™) =

as follows. Assume that over an open W C U’ the torsor Fy; is generated by an element f and
we o is generated by an element e and write f = ae with a a non-zero section of Or ®@ Oy,
invertible after inverting p. Then, over W, the map ¢, (Q) sends a local section t: Fgly — Ol(/;X)
of ﬁomgu,( & Of/;X)) to @X(Q) (1): wé/u,|w — (’))(/;X) given by ae — x *(a)x(a)t(f). Notice
that if &k is non-negative, then y(a) is non-zero section of Oy so that ¢, (G)(t) is well defined
integrally. Otherwise, we define ¢, (Q)(t) after inverting p. One verifies that this morphism is
well defined, i.e., it does not depend on local generators of F¢; and wy, o and that it is injective
as x(a) is invertible after inverting p. In particular, these morphisms glue for varying W’s to
a global injective morphism of Oy/-modules and the latter is equivariant with respect to the
actions of G. Note that
T,k ' SN , (—x) (k]
by (G) = 0. (9oms,, (Fe: 0L")) = 0. (Soms,, (76, 0,M))

the eigenspace on which G acts via k.

Thus, for k£ non—negative the map ¢y, (Q) is defined by 6, (gpx (Q)) by taking on both sides the
eigenspaces on which G acts via k. For k non-negative it is an injective morphism of invertible
U-modules as ¢, (Q) is an injective morphism of invertible O;-modules and G is a group of order
prime to p. We leave to the reader the verification that ¢, defines a natural transformation of
functors. Since the cokernel of F; C 6* (QG /u) is annihilated by p”, the cokernel of ¢, (Q) is
annihilated by x(p®) = pXIV.

For any classical weight the definition above provides an isomorphism of functors ¢, (Q)
after inverting p. It coincides with ¢ ®0, K for non—negative weights. As wy; and Q% are both
overconvergent modular sheaves, the fact that ¢ x induces an Hecke equivariant map follows
from 3.10.

O

5 Overconvergent modular sheaves in the elliptic case
In this section we review what has been done so far in the case g = 1, i.e., we are studying elliptic
modular forms. The main purpose of this section is to show that the overconvergent modular

forms defined in this article coincide, in the elliptic case, with the ones previously defined by R.
Coleman in [C1].
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We fix in this section the following notation: Let N > 4 be an integer, p > 2 a prime, K
and w be as in section §1, F' = Q, W(K) := Wg(K) = Homeon(Z,, K*). We denote W*(K)
the subset of weights & € W(K) such that there exists a (unique) pair (s,i), s € K with

—p+9 ,
v(s) > and i € Z/(p — 1)Z such that t* = (t)*7(t)" where let us recall 7 : ZX — ji,_ is

the Teichmiiler character and for t € Z we denote (t) := t/7(t). We call such weights accessible
and in what follows we identify the accessible weight k& with the pair (s,i) as above associated
to it. We set Ax = K and let us recall the Eisenstein series ([C1], section B1)

E(q):=1+ Lp(?), 1 Z( Z 1)) ¢" € K[[q]]-

n>1 d|n,(p,d)=1

In this section we will denote by X (w) the rigid analytic subspace of the modular curve X; (V) /x
which was denoted 9U(Ox, uun)(w)x in section 3.4 and by X(w) its formal model over O which
was denoted M (O, pun)(w) there. Let us recall that if g = 1 there is a unique compactification
(toroidal and minimal) of the open modular curve Yi(N)/x = 9M(Ok, pun)k so there is no
ambiguity. Moreover, let us recall the important fact that X (w) is an affinoid over K. We also
denote by X (p)(w) the inverse image under the natural projection X;(Np),x — X1(NN)/k of
X(w). As X(p)(w) — X(w) is a finite Galois extensions of affinoids, of Galois group G = F,
we have a natural action of this group on X (p)(w) and on H°(X(p)(w), Oxp)w)), the latter
being denoted F|(a) for FF € H*(X (p)(w), Ox(p)w)) and a € F.

We now recall the definition B4 in [C1]. If £ € W(K)* is an accessible weight attached to the
pair (s,i) as above and f(q) € K[[q]] is a power series, we say that f(q) is the g-expansion of
an overconvergent modular form of tame level N, weight k£ and degree of overconvergence w if
the power series f(g)/E(q)* is the g-expansion of a section F' € H*(X (p)(w), Ox (p)(w)) with the
additional property that for all a € F we have F|(a) = 7(a)'F.

In this sense, of course E(q) is the g-expansion of an overconvergent modular form of weight
(1,0). We denote by M(N,k,w) the K-vector space of all “Coleman” overconvergent mod-
ular forms of tame level N, weight k& and degree of overconvergence w and by MT(N, k) =
lim,, o M (N, k,w). Tt is shown in [C1] that we have natural Hecke operators on MT(N k).

On the other hand in 3.13 we have introduced an overconvergent modular sheaf wy; and the

space M (wg’;, N ) = lir% M (wgi, N, w) of global sections for varying w’s, see 3.5, also provides

a Hecke module. The two spaces coincide for classical weights (s,i) € (Z, Z/(p — 1)Z) due to
4.3. Our aim is to prove the following result:

Theorem 5.1. For all k € W*(K) we have a natural K -linear, Hecke-equivariant isomorphism,
7k ~
Oy M(whr, N) =5 MI(N, k)k.
Moreover, if k = (s,1) € (Z,Z/(p — 1)Z) then @, coincides with the one defined in proposition
4.3.
In order to prove the theorem the first step is to study more closely the (integral) sheaf

Tk . bk
Qw T quniv/x(w)
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constructed in 3.17. Here £"V is the universal semiabelian scheme over the formal scheme X (w).

We review its construction. Let X(p)(w) denote the normalization of X(w) in X (p)(w) and
v X(p)(w) — X(w) the corresponding finite map. As ¢ is normal and 9 : X (p)(w) — X (w)
is finite Galois with Galois group GG = F ¢, this group acts on X(p)(w).

Let k = (s,7) be an accessible weight. The condition on the valuation of s assures that
exp(slog(t)) is well defined. Let w = w(s) € Q be such that 0 < w < p/(p+ 1) and w <
(p — 1)1}(8) +p—2. Write v := w/(p — 1). If z is a section of the sheaf of abelian groups
1+ pt- YOx(p)w) We then write x° := exp (s log(x )) which converges thanks to the assumption

3€( ) (w for the sheaf Ox(yw) with

action of S, := Z; . (1 +pt " Ox(p)(w) ) defined as follows. For ¢ E Z,, and local sections x of
1+ pl_”(’)};(p)(w) and y of Oxp)(w) define

on w. It is another section of 1 4 p! “Oxp)w). We write ol

(cx) -y = z°c"y.

Since for every u € 1+ pZ, we have (ux)s(u_lc)k = x°c*, the given action is well defined. We

let G act on Ox(p NY(w) and on S, via the pull-back action on Oxy)(w)-
Let us recall the S,-torsor F, defined in section §3.3 and denoted féumv J%(w) there. Then G
acts on F, and the construction in 3.17 gives:

Lemma 5.2. The sheaf Qeunw/x( is the sheaf Qﬁj, defined as the Ox(,)-module

, = <?9* (ﬁOmSv (72 Ox?(prw))))G
In particular, if we denote M(N, k,w) := H°(X(w), Q%) we have
M(N, k,w)g = M(N,k,w) Qp,, K = M(wo , N, w),
the latter being defined in 3.5, and
M(N, k) = lim M(N, k,w)x = M (w5, N).

w—0

Note that $Homg, (_7-"’ (9 y )(w)) is an invertible Ox(y)w)-module since F; is a torsor locally

v

trivial for the Zariski topology on X(p)(w). Since 9 is finite, ¥, (f)omg (.7-"’ (9 - (w))> is a coher-
ent and p-torsion free Ox,)-module. If £ is asso<31ated to the pair (s, j), it depends only on s and
not on j. The action of G on F, and on (’) ( ) induces an action of G on $Homg, (.7-"’ (9 y ))(w))
lifting the action of G on X(p)(w). The actlon of G depends on j. Then, QF consists of the

G-invariants of ¥, (ﬁomsv (j’-";7 Oge_(;j)) )> so that it is a coherent Ozx(,)-module.

We denote by €27 the sheaf Homg, (]-" ! Ox(;)(()))))- It is an invertible Ox()(w)-module, endowed
with an action of G.

Coleman introduced an overconvergent modular form D, of level I'y(Np) and weight (1,0) €
W*(Q,) in lemma 9.2 of [C3] (see also proposition 6.2 and corollary 6.3 of the present arti-
cle). The modular form D, is a characterized by the folllowing properties of its g-expansion:
D,(q)P~" = E,_1(q) and D,(q)(mod p) = 1. The relationship between E and D,, is given by the
following lemma.
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Lemma 5.3. (1) For all € > 1/p there is w > 0 such that D,/E and E/D, are sections on
X()(w) and |(Dy/ E) — Uy < € and (D) B) — ) < e

(2) Let k be a weight associated to a pair (s,i) € W*(K). Then D,(q)°/E(q)® and E(q)*/D,(q)*
are q-expansions of overconvergent modular functions of trivial character.

Proof. 2) follows from 1) which is really an adaptation of lemma B3.1 of [C1]. More precisely,
as F(q) and D,(q) are congruent to 1 (mod p) it follows that |(D,/E)|x,np)©0) — lx:(vp)0) <
Ip| = 1/p. As the family {X;(Np)(w)}wso is a basis of strict neighborhoods of X;(Np)(0) and
as D,/ E is overconvergent, it follows that

(Dp/ E)lxvmy0) = Lsavpo) = lim [(D/E) = Hxy vy w)-

Now (1) is clear. Since E and D, have trivial character, claim (2) follows as well. O

Let us fix V C X(w) an affine such that the invariant differentials wey is free with generator
w. Let U = Spf(R) C X(p)(w) be the inverse image of V via the map ¥: X(p)(w) — X(w).
Consider the differential, which we’ll call standard differential:

wr = D,(E/R, ) = Dy(E/R,w,¥)w, for every generator w € we)x(p)(w)(U). (3)
Here, 1) is the level I'y (INp)-structure of the restriction of £ to U.

Lemma 5.4. (1) The R-module Fy is the free R-sub-module of wgp generated by Wit In
particular, F, is the trivial Z, (1 + pl_”R) -torsor defined by Z, (1 + pl_“R)wStd.
(2) The diamond operators a € F) act on w* via w*|(a) = 77" (a)w™".

Proof. (1) The first claim is a consequence of Proposition 2.7 and corollary 6.3. The second
follows since w® modulo p'~" is the image via dlog of the generator v € CV by Proposition 2.7
and F is the inverse image of F)\y = CY\{0} under 7y — C¥ ® R/p""R.

(2) The claim follows from Coleman’s result that D, has p-adic weight (1, 0). O

As D,(E/%(p)(w),v) is a canonical global section of we/x,(np)w), it follows that F is a
free Ox(p)(w)-sub-module of we,xp)w) and F,, is the trivial S,-torsor, generated by the standard
differential w4, Consider s € K with p-adic valuation v(s) > %. Let X, be the global section

of 28 defined as follows. For every U = Spf(R) C X;(N)(w) as above and every cu € S,(U)
with ¢ € Z; and u € (1 —i—pl_”R), define

X,o(cuw™) :=u™ € R.

Due to the action of the diamond operators on w4, it follows that for every a € F, we have
X (wStd|<a)) = X;,. We deduce:

Corollary 5.5. The Ox, (np)w)-module X, is a free Ox, (Np)w)-module with basis element X,
and X, € M(N, (s, 0),pw).

Now we can prove the following lemma.
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Lemma 5.6. We have a decomposition

19* (Qs ) EBP 2Q(S]

as Oxw)-modules, which identifies 089 s the direct factor of ¥, (€2,) on which G acts via the
j-th power 17 of the Teichmiiller character T. In particular,

(a) H® (X(p)(w), Q) = @?;SM (N, (s,7),p") and similarly after inverting p.

(b) The Oxw) Qo K-module QF @0, K is invertible and identifying it with an invertible
sheaf on the rigid analytic fiber X (w) we get that

M(N, k,w)x = H (X (w), 2 ®o, K).

c) if p¥ is a uniformizer of K, then Q) s a locally free Ox(w)-module of rank 1 for all
0<j<p-2

Proof. Since the order of G is p — 1 which is invertible in Ok and €23 is an invertible Ox(y)(w)-
module, then ¥, (2})) admits a decomposition into coherent Ox(,)-modules defined, locally on
X(w), as the eigenspaces on which G acts via 77 for j = 0,...,p — 1. We have

Homsg, (F,, Ox “() ) = Q5[]

as Ox(p)(w)-module, with action of G

twisted by 777, Since Q" consists by definition of the G-invariants of ¥, (Sﬁomg (F, (9 o (Uig))
it is identified with the G-invariants of ¥, (€2, [—i]), i.e., with the Ox)-sub-module of 19 (Q2)
on which G acts via 7. Claim (a) follows.

Now we wish to show that in the decomposition of the locally free Ox ,)-module 9, (qu R0k
) 0+ (Ox(py(w)) (by corollary 5.5), into eigensheaves for the action of G, Q) Ro, K =
O)g. () (w)s €ach of them is locally free of ramk 1. For this let us recall Igusa’s theorem which
states that X(p)(0), the ordlnary locus in X (p)(w), is connected, therefore X (p)(w) is also
connected. Thus the rank of (9 (»(0) can be checked on the generic point of X (p)(0), and there

it follows that the rank is 1 by Kummer theory. This proves b).

c¢) Under the assumption that p* is a uniformizer of K, the formal scheme X(w) is regular
formal scheme and as X(p)(w) is a normal formal scheme of relative dimension 2 over Spf(QOf),
it is Cohen-Macauley. Therefore the finite morphism ¥: X(p)(w) — X(w) is also flat and as
(2 is a locally free Ox(p)(w)-module of finite rank, 1, (qu) is a locally free Ox(,)-module of finite

as Ox(p)(w)-modules with G-action where QF [—i] is €2,

rank. Thus Q57 is itself locally free. Now as %( ) is connected, the rank of Q47 is constant
and it is equal to 1 as by b) above the rank of O ®@K K is 1. O

5.1 Comparison with Coleman’s definition for non-integral weights

In this section we assume that p > 5 as in [C3] and we fix an accessible weight k = (s,7) €
WH*(K).

We prove the main result of this section, i.e. theorem 5.1.
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Proof. (of 5.1)

Let ¢ € H° (X(w),uﬁ’k). By lemma 5.6 this is equivalent to the fact that there is f €
H°(X(w),w®)) such that g = fX;,. In other words f € H°(X(p)(w), Ox(p)(w)) is such that
fl{a) = 77(a)f for all a € G = F}. Therefore for w > 0 small enough we have g = fu*E*

with u € H° (X (p)(w), OX(p)(w))G having the property that u is congruent to 1 modulo a large
enough power of p such that u® makes sense. This is equivalent to g being an overconvergent
modular form of weight k£ in Coleman’s sense. O

6 Appendix A: The map dlog

Let p be a prime number > 3 and 0 < w < % be a rational number. Let K be a finite extension
of Q, with ring of integers Ok and containing the p-th roots of unity. We fix such a root ¢,
so that over Ok we have a canonical homomorphism of group schemes Z/pZ — p,, sending
1 + (p, which is an isomorphism over K. We normalize the induced discrete valuation on K so
that p has valuation 1. Let R be a normal and flat Og-algebra, which is a p-adically complete
and separated integral domain. Let us recall the notation introduced after section §1: if u € Q,
we’ll denote by p* an element of C, of valuation u. If p* € Ok and M is an object over R (an
R-module, an R-scheme or formal scheme) then we denote by M, := M ®g R/p“R. In particular
M, = M ®r R/pR.

Let m: A — U := Spec(R) be an abelian scheme of relative dimension g > 1. Assume that
the determinant ideal of the Frobenius ¢: R'm,(A;) — R'm.(A;) contains p”. Then, it follows
by the main theorem [AGa, Thm. 3.5] that Ax over Uy admits a canonical subgroup C. Let
D C Aplj. = AY[p]k be the Cartier dual of A[p]x/C over Uy. Then, we have:

Proposition 6.1. (1) The map dlog: AY[plx — wa/r ©r R/pR has D as kernel.
(2) The cokernel of the R-linear extension A[plx @ R/pR — wa/r ®r R/pR of dlog is
annshilated by pﬁ.

The proof of (1) follows from [AGa], but we need to recall some preliminaries. The proof of
(2) is a combination of the techniques of (1) and the results of [Fa2].

Congruence group schemes: Assume that K contains a p-th root of 1, let R be a flat, p-
adically complete and separated Og-algebra which is an integral domain and let A € R such
that \»~! € pR.

Let Gy = Spec(A,), with Ay = R[T]/(PA(T)), be the finite and flat group scheme over R as

in [AGa, Def. 5.1]. Here, P\(T) := (Hﬁ\# and the group scheme structure is given as follows.

The co-multiplication is T'+— T ® 1 +1® T + NXT ® T, the co-unit T' — 0, the co-inverse by
T +— —T(1+4 AT)~'. This makes sense since 1 + AT is a unit in A,.

Homomorphisms between congruence group schemes: If p is an element of R dividing A the
[F,-vector space Homp (G, G,,) is of dimension 1 generated by the map 7, ,: Gy — G, sending
Z — 1+ M\ 'T; see [AGa, §5.3]. If v € R divides p one has 7,,, 0y, = 7y, In particular,
if ;¢ is a unit then there is a canonical isomorphism G, = u, by [AGa, Ex. 5.2(b)| and we put
Ny =Ny 1t follows that Homg(Gy, G,,) = 0 if 1 does not divide .

Relation to Oort-Tate theory: In terms of Oort-Tate theory GG corresponds to the group
scheme G4, = Spec(R[Y]/(Y? —aY)) where ac = p and ¢ = ¢(A) = 7' (1 —p)*~'w, ;. There
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is a canonical isomorphism G, = G sending T +— > ") i~ “z; where wy, ..., w,_; are the
universal constants of Oort-Tate; see [AGa, §5.4]. We remark for later purposes that a = pA™?
up to unit so that a = 0 modulo pA\'~P. Recall also that w; = i! modulo p fori =1,...,p—1so
that 7' — S P_ 1 Ni- 1Y! modulo p. In particular,

1+)\T+—>Z/\Z 12

and at the level of differentials we have dT +— Y7 N1 Y0 dy = BdY with g = S0 X110

(i—1)!
In particular, § = 1 modulo \Y and (14+A\T)*dT — (1—\P~ 1Yp D dY modulo ’7IAY? = APaY
which is a multiple of Ap and hence is 0 modulo p.

Differentials: Since P\(T) := (H’\/\# the derivative of Py(T) is pA'™?(1 + AT)P~! which is
a up to unit. Hence, we have Qg,/p = AT /aA\dT with a = 0 modulo pA'"?. In particular,
Qc,/r 1s free of rank 1 as A,/(pA'"?)-module so that also the module of invariant differentials
wa,/r of Gy is a free R/(pA'™P)-module of rank 1. The image of the invariant differential dT'/T

of p1, under the map 7, is then A\(1 4+ \T")~1dT, i.e.,

dlog: Gy — wg,, = A1+ AT) !

Proof. (of 6.1) To prove (1) it suffices to prove that for every S-valued point x of AY[p], where
S = Spec(R') and R’ is a finite normal extension of R, we have xx € D(Sk) if and only if
ri € Ker (dlog). Replacing R’ with the completion at its prime ideals above p, we may assume
that R’ is a complete DVR. Passing to a faithfully flat extension we may further replace R’
with its normalization R in an algebraic closure of the fraction field of R’. Replace S with
S = Spec(}_%/).

To prove (2) we remark that AY[p|x ® R/pR and wa/p ®p R/pR are free R/pR-modules of
the same rank. Take the determinant of the R-linear extension of dlog and call it d € R/pR.
Then, d annihilates the cokernel. We may assume that d € R'/pR' for some R C R’ finite and
normal and R’ C R. Since R’ is normal, to prove that d = Ozpz% for some a € R’ it suffices
to show that this holds after localizing at the prime ideals of R’ over p. As before, passing to
a faithfully flat extension we may further replace R’ with its normalization R in an algebraic
closure of the fraction field of R'.

Thus both in case (1) and (2) we may assume that R is a complete discrete valuation ring
and S = R. In this case it is proven in [AGa, prop. 13.5] that the map dlog modulo p can also be
defined in terms of torsors and corresponds to the following map dLog: AY(R) = Hi :(Ag, 1) —
WA/ /pw AR A Hptorsor over Az, extends to a jy-torsor Y — Ag, which is defined by giving
a Zariski affine cover i; of Ay and units v; in I'(U;, Oy, ) so that the Y|y, is given by the equation

ZP —u;. Then, dLog(Y) is defined locally by u; 'du; € T'\(Uj, QZ /R)/(p) and these glue to a global
section of w,_ /E/pwg B

(1) Let A € R be an element of valuatlon =% It follows from [AGa, Prop. 13.4] and [AGa,
Prop. 12.1] that the kernel of dLog has dlmenswn g and is isomorphic to prpf(A 7 Ga). Note
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that Hy ((Ag, Gy) = Homﬁ(GX,A%) by Cartier duality [AGa, §5.12] so that we get a map
U: Gy — A% which is a closed immersion after inverting p. Let D C A% be the schematic
closure of Wg. Then, by [AGa, Def. 12.4] it is the Cartier dual of Az/C. This concludes the
proof of (1).

(2) Consider on £ = A%/ D an increasing filtration by ¢ finite and flat subgroup schemes
Fil'E such that E; = FiliHE/FiliE is of order p. Such filtration exists over K with F; x = Z/pZ
since Ex = (Z/pZ)?. One then defines Fil'E = E; to be the schematic closure of Ei k in F and
this is a finite and flat subgroup scheme of E since R is a dvr. One lets F;;; be the schematic
closure of E; i1 i in E/E; and one puts Fil'E to be the inverse image of F;,; via the quotient
map F — E/E;. In particular, E; & G,v\i for some A\; € R. The invariant differentials way, of
G, define a free rank 1 module over R/pA, ”R.

It is one of the key results of Fargues [Fa2] that D is the canonical subgroup of AY and that

9_ AP divides p*. Hence, each wa,, [(p'7") is a free R/p*~"R-module. The image of the
map dlog: GXi ® R — wg,, is generated by A; so that its cokernel is annihilated by A;. Since
EV C Az is a closed immersion, the module of invariant differentials wpv of EY modulo p'~ is a
quotient of the module of invariant differentials of Az which is a free R-module of rank g. Note
that wpv/(p'™") = wa_/(p'™") admits a filtration, with graded pieces wgy /(p'~™"), compatible
with the given filtration on E. Due to its functoriality the map dlog: £ ® R — wpgv/(p*~")
preserves the filtrations and we conclude that [[_, \; annihilates its image. In particular, ppwfl
annihilates the cokernel of dlog as claimed. O]

We now pass to the case of elliptic curves. Let N be an integer prime to p. Let 7: £ — Y(N, p)
be the universal relative elliptic curve where Y (N, p) is the modular curve associated to the
congruence subgroup I'1 (V) N Ty(p). Write & for the mod p reduction of €. Let F': & — Efp)
be the Frobenius isogeny and let

¢: R'7,0¢, — R'7, O,

be the induced o-linear morphism on cohomology. This defines a modular form H of weight p—1
on the mod p-reduction of Y (N, p) which is the pull-back to level (N, p) of the Hasse invariant,
a modular form of level 1. It coincides with the modular form £, ; modulo p for p > 5. Let
U(w) be the formal sub-scheme of Y (V, p) defined by |H| < w. We proceed as follows: locally
lift H so that |H| < w makes sense in unequal characteristic and then we show that the formal
scheme does not depend on the choice of the lift. Let Z(w) be the normalization of the inverse
image of U(w) in the p-adic formal scheme associated to Y;(Np). Its rigid analytic geometric
fibre is finite and étale of degree p — 1 over U(w)q,. Recall that we have a map

dlog: &[p] — we,

defined as follows. Consider a formal scheme S over U(w) and an S-valued point z of E[p]. Via
the canonical isomorphism E[p] = £[p]” it defines an S-valued point of E[p]Y, i.e., a group scheme
homomorphism f,: E[pls — Gy..s. Then, the dlog(x) is the invariant differential on & given
by the inverse image via f, of the standard invariant differential Z='dZ on G,, 5. In general, a
similar construction provides for every finite and locally free group scheme G over a base S a
map dlog: GV — wg /s where wg/s is the sheaf of invariant differentials of G.
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Proposition 6.2. Over Z(w) we have an exact sequence

0— C — &[p] %wgl,

where C' is the canonical subgroup of E[p]¥. Moreover,

1.) H admits a unique p — 1-root Ho1 on Z(w), which extends at the cusps and has q-
1

expansion 1. If p > 5 then Hir lifts uniquely to a (p — 1)-th root E"{ of E,_1 on Z(w),
i.e., a weight 1 modular form whose (p — 1)-th power is E,_1;

2.) Elpl/C admits a canonical Z(w)-section, which we denote by v and which is a generator
1

over Z(w)q,. Modulo p'=¥ the image of v via dlog is the weight 1 modular form H»1. There

is o € Oz, such that o - Hit = pﬁ.

Proof. The first statement follows from 6.1. We simply write Z for Z(w).

(1) Choose a basis er of R'r.Og on an open formal sub-scheme Y = Spf(R) C Z and
denote by A € R an element such that F(eg) = Aeg modulo p. For p > 5 we take A so
that E,_(£,e}) = Ae””'. Here we identify the element Qp := e}, with a generator of the
module of invariant differentials w;, via the isomorphism (Rlﬂ'*Og)v = wy given by Serre’s
duality. We may then write o —p¥: R'7,O¢, ., — R!'m,O¢, on U as the map S; — S; sending
X — HX? —p»X. For every ring extension R C R’ we let Zg/(A) be the set of solutions of the
equation X — AX? —p“X in R'. We let Zgr 1(A) and Zp 1-,(A) be the solutions in R} and

| _w- Write red 1y (Zp 1(A)) for the image of Zg1(A) in Zg 1-4(A). It coincides with the
set of solutions of R]_,, 5 X — AX? —p*X € R|. Then, [AGa, Lemma 9.5] asserts that if R’
is normal, noetherian, p-torsion free and p-adically complete and separated the natural map

ZR/(A) — redm_w (ZR/J(A))
is a bijection. By [AGa, Thm. 8.1 & Def. 12.4] we have an isomorphism
(C/'Lp]/C(R,K) = CV(R,K) = redl,l_w (ZR/J(A)).

Thus, the set Zg/(A) is an Fj-vectors space of dimension < 1 and it is of dimension 1 if and
only if CV(R)) is a constant group scheme over R’..

Since by construction the canonical subgroup exists and has a generator ¢ over Rx and since
by assumption u, x = Z/pZ, then also CV(R),) admits a canonical generator ¢¥. Then, Zgz(A)
has dimension 1 as an F,-vector space and the image of ¢¥ defines a basis element. This image
is of the form pr18~! where § is a given (p — 1)-root of A in R. This already implies that H
has a (p — 1)-root in R; defined by § and it also implies the last claim in (2).

Assume that U is contained in the ordinary locus of Z(w). Then, the canonical subgroup is
canonically isomorphic to 1, and we can take the invariant differential of 11, as a generator of wy,
modulo p and, hence, of R'7,Og,. With respect to this basis H is 1 and, hence, § = 1; see [AGa,
Prop. 3.4]. This construction applied to the Tate curve gives the claim on the g-expansion.

Assume that p > 5. Two different local trivializations of wg on U differ by a unit u. Thus,
we get two different functions A and B with B = wP~!A. In particular, multiplication by u
defines a bijection from red171_w(ZR/71(A)) to redy 1_y (ZR/J(B)) and the root pﬁézl is sent to
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_w

pr—1 651 -u. This implies that over Z(w) the modular form pprill, and hence also the modular
form E,_;, admits a globally defined (p — 1)-root as claimed.

(2) Choose U, er and § as in the proof of (1). Let G be the group scheme introduced at the
beginning of this section. The canonical subgroup of £[p] is isomorphic to the subgroup scheme
G (—psr-»,—so-1y by [C2, Thm. 2.1]. It is denoted by B_, with u = pd'~? in loc. cit. using the
relation between Coleman’s approach and the Oort-Tate description given in the proof of [C2,
Prop. 1.1]. Such group scheme is isomorphic to G(,,) modulo p with a and c as at the beginning
of the section. We remark that in this case a = pl_w(pwé(l_p)) up to a unit so that a = 0 modulo
p'~*. By loc. cit. the immersion h: G, C € has the property that h*(Qg) = (1—6""'YP1)dY
modulo p. The latter is equivalent to (1 — 6P~ 'Y?1)dY and hence to (1 + 6T')~1dT modulo p.

By the first claim of the proposition and identifying E[p] with E[p]¥ via the principal polar-
ization on &, the map dlog factors via the map E[p]¥ — Gy and by functoriality of dlog it is
compatible with the map dlog for Gs. Moreover, the morphism 7s: G5 — p, introduced at the
beginning of this section defines a canonical section of E[p]¥/C = GY which is a generator over
Q,- This defines the section 7 of £[p]/C claimed in (2). Denote by U;_,, and & _,, the reduction
of U and € modulo p!~*Ok. Consider the following commutative diagram

dlo
5[]9]\/ —g> wglfw/ulfw

l
dlog

\Y
G6 WaGs /Uy -

Since G5 C E[p| is a closed immersion, the natural map we, 1, ., — wWa,/u,_, 18 surjective. Since
Ways iy 18 free as Oy, -module, such map is an isomorphism. The map dlog: Gy — we, /.
sends 75 to the pull-back of the invariant differential of 1, in wg, 2, which is 6(1 4 067)~'dT,

i.e., 002 via the isomorphism we, 14, = W,/ .- Hence, dlog(ns) is equal to H#1 modulo
1—w

p' " concluding the proof of (2). O

In [C3, Lemma 9.2] and for p > 5 Coleman introduces a weight (1,—1) € W*(Q,) overcon-
vergent modular form D, of level I';(Np) whose (p — 1)-power is E,_; and, from the proof of
the Lemma, it has g-expansion 1 modulo p. These two properties characterize such a modular
form. We deduce:

Corollary 6.3. The overconvergent modular form defined by EE over Z(w)g, is the weight
(1,0) overconvergent modular form D, of level I'y(Np) introduced by Coleman.

In particular, our approach can be seen as a refinement of [C1, Lemma 9.2] providing a formal
model for D,,.

7 Appendix B: V. Pilloni’s overconvergent modular forms

In this appendix we use the notations of chapter 5. As mentioned in the introduction, in this
section we compare the constructions of elliptic overconvergent modular forms in [P] and the
one in this article and prove that they produce the same objects.

Let us briefly present the construction in [P]. We fix £ € W(K) a weight; then there is a
w > 0 and a rigid analytic space T* (depending on w), with a morphism 3 : T* — X (w) which
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is a Galois cover with Galois group Z*. Then the overconvergent modular sheaf w* on X (w) is
defined to be the sub-sheaf of 3, (OTX) on which the Galois group Z; acts via the character —k
and the overconvergent modular forms of weight £ are global sections of this sheaf.

We’ll now be more precise. We choose a p-th root of 1 in K and assume for simplicity that
the weight k = (s,5) € W*(K) is accessible. Let 7* denote the formal scheme whose points
over a formal scheme S — Spf(Ok) are isomorphism classes of triples (x,~,w) where:

e z € X(w)(S) corresponding to a pair (£,/S,1,) consisting of an elliptic curve &, — S
and a I';(N)-level structure on it

e 7 denotes a generator of the dual of the canonical subgroup C) of &, corresponding to the
p-the root of 1 chosen

and

e w is an invariant 1-differential form on &, over S such that w( mod p'~*) = dlog(7).

We have natural morphisms 7 — X(p)(w) N X(w) and let 5 := Yoa. We denote as usual by
T, X (p)(w) and X (w) the rigid analytic generic fibers of these formal schemes and by «, ¥, 3 the
restrictions of the morphisms with the same names to the generic fibers. Then g : T — X (w)
is Galois with Galois group Z, where the action is defined by: if a € Z), (z,v,w) € T, we set
ax* (z,v,w) = (x,ay,aw). We define

Wt = /8* (OTX ) (_H),

where the exponent (—#) indicates the sub-sheaf of sections on which Z) acts via —x, more
precisely if s is a section of Orx, a € Z,; and (z,7,w), s is a section of w” if and only if
s(z,avy,aw) = k1 (a)s(x,v,w).

We define M* (N, k,w) := H°(X (w),w*), and the main purpose of the appendix is to prove

Lemma 7.1. There is a natural isomorphism, compatible with the actions of the Hecke operators:
M(N7 K, w)K = MP(Na ka UJ),
where the first module was studied in section §5 of this article.

Proof. We use the notations of section §5. Let us first remark that by the very definition
of T, the torsor sheaf o*(F’) has a canonical trivialization, i.e. o*(F’') = S,rx - w, where
Syrx = L5 (1 + p'"Orx) and w is the universal differential form. Therefore (again using the
notations of section §5) we have

Homs (o (F),051) 2 051 = a*(03).
It follows that we have, on the one hand
B.(9oms, . (a*(F),00)7 = B.(0p) " =,
On the other hand we have
x X G
Bu(Homs, . (" (F), 05)) 7 = B (e (2)) = . (au(a” () 775) " = v.(25)° = 5.

This gives the desired isomorphism and we leave it to the reader to prove that this isomorphism
commutes with the action of Hecke operators.
m
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