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Abstract

Macroscopic properties of structural materials are strongly dependent on their

microstructure. However, the modeling of their evolution is a complex task because of

the mechanisms involved such as plasticity, recrystallization, and phase

transformations, which are common processes taking place in metallic alloys. This

complexity led to a growing interest in atomistic simulations formulated without any

auxiliary hypotheses beyond the choice of interatomic potential. In this context, we

propose here a model based on an overdamped stochastic evolution of particles

interacting through inter-atomic forces. The model settles to the correct thermal

equilibrium distribution in canonical and grand-canonical ensembles and is used to

study the grain boundary migration. Finally, a comparison of our results with those

obtained by molecular dynamics shows that our approach reproduces the complex

atomic-scale dynamics of grain boundary migration correctly.

Keywords: Stochastic dynamics, Atomistic modelling, Crystalline materials, Grain

boundary migration

Introduction

The increase inmanufacturing of small-scalemetallic crystallinematerials and their usage

in the current nanotechnology era calls for a deeper understanding of their mechanical

behavior (Shan et al. 2008; Wang et al. 2014; Chen et al. 2014; Zhang et al. 2017). This

can only be achieved by improving our knowledge on the rich physics and complexities

at small-scales such as dislocation plasticity, grain boundary (GB) migration, diffusion,

phase transformations, and their coupling. To that end, atomistic modeling techniques

become more and more relevant not only because they are formulated at the appropriate

scale (Mishin et al. 2010) but also they provide information and data for models formu-

lated at mesoscale, e.g., discrete dislocation dynamics (Bulatov et al. 1998; Zepeda-Ruiz

et al. 2017), phase field methods (Finel et al. 2010, 2018; Vuppuluri and Vedantam 2016;

Salman et al. 2012; Ask et al. 2018) and non-linear elastic models (Minami and Onuki

2007; Salman and Truskinovsky 2011; Geslin et al. 2014; Salman et al. 2019).

Molecular theories postulate the dependence of the energy on the inter-atomic dis-

tances and bond angles between pairs of atoms. Afterward, for a given N particle

assembly, the evolution of the system is obtained straightforwardly by integrating New-

ton equations (Rahman 1964). Although it is challenging to obtain interaction potentials

that are able to reproduce the thermodynamical properties of a specific material, the

major drawback in molecular theories is the limitation on the accessible time and length
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scales. Typical molecular dynamics (MD) simulations involve approximately 104-106

atoms (which is equivalent to a few nanometers) and last a time span of a few nanoseconds

(Paul 1993). The limitation on the time scale is due to the presence of high phonons fre-

quencies (typically of the order of 1012 Hz) in crystalline materials that severely restricts

the integration time-step.

Several extensions of the original MD have been proposed, such as the Voter’s hyper-

dynamics (Voter 1997) which provides an accelerated scheme that incorporates directly

thermal effects or the Laio and Parrinello’s metadynamics (Laio and Parrinello 2002)

which consists in computing free energy barriers. Most of these approaches rely on the

transition state theory, which basically consists in treating rare events as Markov pro-

cesses. Therefore, it has been natural to look at other methods that are directly and

fully based on the transition state theory, such as Monte Carlo methods or stochastic

overdamped dynamics which do not incorporate inertia and, consequently, automatically

exclude lattice vibrations.

Indeed, different methods have been developed in the past to get rid of the time scale

associated with phonons and to reach time scales associated with diffusion. More than

a decade ago, a continuous atomic-scale method, the phase field crystal method, has been

introduced (Elder et al. 2002). It consists in following the evolution of the atomic density,

whose maxima correspond to the positions of atoms. The method is attractive as, despite

its simplicity, it automatically incorporates elastic effects, multiple crystal orientations

and the nucleation and motion of dislocations. Also, as the dynamics is purely dissipative,

it gives access (at least in principle) to diffusive time scales. However, being continuous by

nature, the numerical implementation requires the use of a grid with grid spacing much

smaller than the smallest length scale incorporated in the model, i.e., the atomic size.

Therefore, the method is drastically limited to very small system sizes.

Another methodology is based on the fact that, at low enough temperature, diffu-

sion events take place at a small rate and, therefore, these events can be considered

as Markov processes. This is at the root of the so-called kinetic Monte Carlo (KMC)

method, which consists in following a Markov chain with a catalog of predefined diffu-

sion mechanisms to compute at every time step the escape rate from a local minimum

(Bortz et al. 1975; Yip 2005). However, since this catalog is predefined, the system under

study has to be discretized and atomic positions are limited to fixed lattice sites. In

order to extend KMC to long-range elastic effects and, more importantly, to disordered

or distorted configurations (amorphous or liquid state, dislocations, cracks, . . . ), various

off-lattice versions have been developed. Among them, we mention the k-ART method,

which stands for “kinetic Activation-Relaxation Technique” (El-Mellouhi et al. 2008).

This is an off-lattice KMC in which the energy barriers are evaluated “on-the-fly”, which

relaxes the need for a predefined catalog. However, the method still relies on a catalog

of events which, now, is not predefined but grows along the route of the Markov chain.

The updating of this catalog and its use are rather complex (see for example Béland et

al. (2011)). For instance, starting from a local minimum, the generation of the transition

path associated with a new event requires the random identification of the direction

of the lowest local instability and the identification of the subsequent path to the near-

est saddle point while the energy is minimized in the hyperplane orthogonal to this

direction. All together, these steps require a few hundred (typically 600 to 800 times)

evaluations of forces.
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The overdamped Langevin method proposed below and the ART KMC belong to the

same category, as both rely on Markov dynamics applied to atomic positions. There-

fore, they should give access to the same time scales. However, the overdamped Langevin

method is much simpler to use, because it does not require the delicate creation and

continuous updating of a catalog of events. To our knowledge, this approach, while it is

widely used in studying the dynamics in soft matter systems and bio-molecular simula-

tions (Ando et al. 2003; Manghi et al. 2006; Ma et al. 2016a, b) has never been employed

in the simulation of crystalline materials.

The aim of this paper is to present a derivation of overdamped Langevin dynamics (LD)

equations that reproduce the proper thermal equilibrium distribution in the canonical

and grand-canonical ensembles, then to use these equations in the study of temperature-

and curvature-driven grain boundary migration.

The paper is organized as follows. First, we describe the overdamped Langevin dynam-

ics and how it can be extended to simulate the grand-canonical thermodynamic ensemble.

Also, we give a numerical justification for the application of this overdamped formalism.

Finally, we report the results of the application of the LD to the study of grain boundary

migration under the sole effect of curvature. The output of the model is then com-

pared with the results obtained by MD. The last section is dedicated to conclusions and

perspectives.

Presentation of themodel

Overdamped langevin dynamics: general formalism

We first consider the simple situation of the (NVT) thermodynamical ensemble in which

the number of particle N, the volume V and the temperature T are fixed. The main

objective of the present approach is to avoid the time scale associated with phonons.

Therefore, the configurational space in restricted to the coordinates xni , where upper

index n = 1, ...,N refers to a particle and lower index i = 1, 2, 3 to a cartesian coordinate.

Correspondingly, the dynamics involves only the first derivatives of xni :

dxni
dt

= −ν−1 ∂�

∂xni
+ Bηni (t), (1)

where �({xni }) is the potential energy between particles, ν a viscosity coefficient and B

the amplitude of a white gaussian noise ηni (t) such that
〈

ηni (t)
〉

= 0,
〈

ηni (t)η
m
j (t′)

〉

=
δnmδijδ(t − t′). δnm and δij are Kronecker symbols and δ(t − t′) stands for the Dirac delta

distribution. The coefficients ν and B are supposed to be constant and independent from

particle positions. Equation (1) represent a first order in time stochastic dynamics, also

known as overdamped Langevin Dynamics or position Langevin dynamics (Nelson 1967).

The application of this dynamics to describe the system evolution is justified under the

assumption that the momenta thermalize faster than positions, i.e., we suppose that they

instantaneously reach their equilibrium distribution. The validity of this hypothesis for

crystalline materials will be discussed later. The Fokker-Planck equation associated with

Eq. (1) is given by

dP({xni })
dt

=
N

∑

n=1

3
∑

i=1

∂

∂xni

[

1

ν

∂�

∂xni
P({xni })

]

+
∂2

∂xni ∂x
n
i

[

B2P({xni })
]

. (2)
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The above differential equation is deterministic and describes the time evolution of the

probability distribution of the set
{

xni
}

. In the limit t → ∞, Eq. (2) converges to the

steady-state solution

Peq({xni }) = A exp

(

−
2�({xni })

νB2

)

, (3)

where the normalization factor A is given by

A−1 =
∫

exp

(

−
2�({xni })

νB2

) N
∏

n=1

3
∏

i=1

dxni . (4)

Obviously, this steady state solution corresponds to the Boltzmann equilibrium distri-

bution if and only if the viscosity coefficient ν and noise amplitude B are linked by the

fluctuation-dissipation theorem:

B =
√

2kBT/ν. (5)

Therefore, under this condition, the Langevin dynamics given in Eq. (1) converges to the

correct thermodynamical state in the long-time limit.

Now, we propose an heuristic argument to justify that, at a proper time scale, the over-

damped dynamics of Eq. (1) reproduces also the out of equilibrium dynamics. For that

purpose, we analyze the auto-correlation functions of the particles’ velocities vni and posi-

tions xni by analyzing the time evolution of an atom in a defect-free single crystal using

MD simulations. We simulated a 2D defect-free single crystal where atomic interactions

are represented by a Lennard-Jones type potential. We place 50002 atoms in a square sim-

ulation box with periodic boundary conditions in order to approach the ideal condition of

an infinite media with reasonable computational costs. The initial positions were set on a

perfect triangular lattice, and the initial velocities were randomly assigned using a temper-

ature value of T =0.125 ǫLJ/kB (for units definitions, see “Simulation settings” section).

We integrated the trajectories via the Verlet scheme in the canonical ensemble (NVE).

After thermal equilibrium was reached, we considered the trajectory (i.e., momentum

and position) of a single atom in a time span [ 0,Tmax] and we calculated the following

auto-correlation functions:

〈vj(t)vj(t + τ)〉 =
1

Tmax

∫ Tmax

0

(vj(t) − v̄j)(vj(t + τ) − v̄j)

σ 2
vj

dt, j = 1, 2

〈rj(t)rj(t + τ)〉 =
1

Tmax

∫ Tmax

0

(rj(t) − r̄j)(rj(t + τ) − r̄j)

σ 2
rj

dt,

where v̄j and r̄j are time averages over Tmax of velocity and position components while

σ 2
vj
and σ 2

rj
are their variances (as we consider here a single particle, the upper index in

velocity and position is omitted). The value of Tmax was chosen in order to be at least 100

times the maximum value of τ for which the auto-correlation functions were calculated.

The results of these calculations are reported in Fig. 1, where we observe that the velocity

auto-correlation function relaxes at a much smaller time scale than the position auto-

correlation function. In other words, if τv is the velocity auto-correlation relaxation time,

we infer that, at any time scale such that 
τ larger than τv, the velocities reach a quasi-

static equilibrium state with respect to the positions. Therefore, at time scales 
τ >

τv, we may consider that velocities relax and that, consequently, the phase space may

be restricted to the set of positions
{

xni
}

. This in turn implies that the dynamics should
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Fig. 1 Normalized auto-correlation function of the second component of the velocity (blue curves) and

position (red curves) of an atom obtained in MD at T = 0.125ǫLJ/kB

involve only the first order time derivative of xni . Keeping in mind that this dynamics must

converge to the correct equilibrium state, we conclude that, at time scales 
τ > τv, the

kinetics of
{

xni
}

is given by overdamped Langevin dynamics such as the ones given in

Eq. (1), with the condition shown in Eq. (5).

Of course, an exact formulation of the overdamped Langevin dynamics equations

should proceed through an explicit coarse-graining procedure over the initial Newtonian

dynamics. The outcome of this time coarse-graining would naturally lead to a coarse-

grained potential�cg

({

xni
})

that will differ from the original�
({

xni
})

, as phonons will be

adiabatically embedded into �cg

({

xni
})

, together with explicit expressions for the viscos-

ity coefficient ν and noise term. In this paper, we propose a simplification that consists in

replacing the coarse-grained potential �cg

({

xni
})

by the original one. The derivation of

the coarse-grained potential, required to accurately describe high temperature situations,

is beyond the scope of the present paper.

Overdamped Langevin dynamics in the (NPT) ensemble

The set of Eq. (1) allows the simulation of a system of N particles in the (NVT) ensem-

ble, i.e., volume and temperature are fixed. However, in crystalline materials, it is essential

to control the simulation box through an applied stress in order for the system to relax

its shape, in particular when phase transitions may occur. This requires the identification

of the differential work associated with the chosen stress tensor. As interatomic poten-

tials are naturally written with atomic coordinates that refer to a fixed reference frame,

this differential work must involve a strain that refers to this frame, i.e. which involves

partial derivatives with respect to coordinates within the reference frame. This is the

case of the deformation gradient F, whose conjugate stress is the first Piola-Kirchhoff
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stress. This leads us to consider the (NPT) thermodynamical ensemble, where P refers to

the first Piola-Kirchhoff stress. Consequently, we need to introduce new degrees of free-

dom (DOF) to characterize the size and shape of the simulation box, and to extend the

formulation (1) to incorporate these new degrees of freedom.

We operate as follows. Consider a system of N particles in a simulation box defined by

three vectors Lα with α = 1, 2, 3. The change in the simulation box shape can be described

via the deformation gradient tensor F, which represents an overall homogeneous defor-

mation so that:

(Lα)i = Fij
(

L0α
)

j
i, j,α = 1, 2, 3 (6)

where the vectors
(

L0α
)

define the reference configuration and Einstein’s summation con-

vention is implied. Consequently, the set of degrees of freedom (DOF) is now composed

by the 3N atoms coordinates and the nine components Fij of the tensor F. In order to

couple the dynamics on the positions of atoms with these DOF, we use as independent

variables the scaled coordinates
{

x̃ni
}

, defined for atom n by the following relation:

x̃ni =
(

H−1
)

ij
xnj i = 1, 2, 3 (7)

where Hij = FilL
0
lj and L0 is a diagonal matrix containing the norms of the vectors

(

L0α
)

.

We then propose the following overdamped Langevin Dynamics:

dx̃ni
dt

= −
1

ν

∂H̃

∂ x̃ni
+ B ηni (t) i = 1, 2, 3 ; n = 1, ...,N ,

dFαβ

dt
= −

1

γ

∂H̃

∂Fαβ

+ A ξαβ(t) α,β = 1, ..., 3 , (8)

where ξαβ(t) is a white gaussian noise and where H̃
({

x̃ni
}

,F
)

is the Hamiltonian for

the extended set of DOF. This Hamiltonian is selected below to ensure the convergence

towards the thermodynamical equilibrium.

Providing that the pairs of the coefficients (ν,B) and (γ ,A) respect the Fluctuation-

Dissipation relation, the Fokker-Planck equation associated with the set of stochastic

differential Eq. (8) converges to the steady-state solution:

P̃eq({x̃ni },F) =
1

Z̃
exp

(

−
H̃

({

x̃ni
}

,F
)

kBT

)

(9)

where Z̃ is a normalization constant. This probability density in the
({

x̃ni
}

,F
)

phase space

represents the correct thermodynamical equilibrium provided that:

P̃eq({x̃ni },F)

N
∏

n=1

3
∏

i=1

dx̃ni

3
∏

α,β=1

dFαβ = Peq({xni },F)

N
∏

n=1

3
∏

i=1

dxni

3
∏

α,β=1

dFαβ . (10)

In this expression, Peq
({

xni
}

,F
)

is the Boltzmann probability density in the
({

xni
}

,F
)

phase space,

Peq
({

xni
}

,F
)

=
1

Z
exp

(

−
H

({

xni
}

,F
)

kBT

)

, (11)

where H
({

xni ]
}

,F
)

is the usual enthalpy, defined as

H
({

xni
}

,F
)

= �
({

xni
})

+ V0 Pαβ Fαβ , (12)
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and P is the first Piola-Kirchhoff stress tensor. From the definition of the scaled coordi-

nates it follows that:

N
∏

n=1

3
∏

i=1

dx̃ni = (V0 det(F))−N
N
∏

n=1

3
∏

i=1

dxni , (13)

which, with Eq. (10) leads to the relation between the two probability densities:

P̃eq
({

x̃ni
}

,F
)

(V0 det(F))−N = Peq
({

xni
}

,F
)

, (14)

Introducing (10) and (11) in the previous expression, and taking the logarithm of the

expression, we finally obtain the Hamiltonian for the extended set of DOF

H̃ = H
({

xni
}

,F
)

−NkBT ln(V0 det(F)) = �
({

xni
})

+ V0 Pαβ Fαβ −NkBT ln(V0 det(F)).

(15)

This choice ensures that the Langevin dynamics (8) converges towards the correct

thermodynamic equilibrium.

Overdamped LD simulations of grain boundarymigration

GBmigration and coupled motion: general context

GBmigration is one of themain phenomena responsible for themicrostructural evolution

of crystalline materials during thermomechanical processing. In traditional annealing

treatments, the main driving forces responsible of GB motion are: (i) the difference of

energy between adjacent grains, stored during previous plastic deformation (ii) the cur-

vature of the GB boundary (Gottstein and Shvindlerman 2009). In this last case, most of

the observations performed at the mesoscale (that of the grain) in polycrystalline materi-

als usually report simple grain boundary migration without additional shear deformation

or rotation of adjacent grains (Béucia et al. 2015; Huang and Humphreys 1999; Gottstein

and Shvindlerman 1992). Furthermore, it is also known that GB motion can be enhanced

by the application of an external mechanical field. The first observations of stress-induced

GB motion were reported by Li and Bainbridge in 1950 (Li et al. 1953; Bainbridge et al.

1954) while results from more recent experiments are reported in Winning et al. (2001);

Molodov et al. (2007, 2011); Rupert et al. (2009); Mompiou et al. (2009). In these experi-

ments , it has been observed that the application of a shear stress on a bicrystal defined by

two distinct orientations across a straight interface (the GB) can lead to the motion of the

boundary in the direction parallel to the normal of its plane. This phenomenon is usually

referred in the literature as “GB coupled motion” and has awakened wide interest because

of the role it seems to play during plastic deformation and grain growth in nanocrystalline

materials (Gianola et al. 2006) or during recrystallization at low temperatures (Cahn and

Mishin 2009). The presence of coupling between the normal and tangential component

of GB displacement in the case of stress-induced GB migration has also been observed

for the case of non-symmetric and curved GB (Legros et al. 2008; Farkas et al. 2006).

The “GB coupled motion” has also been investigated intensively from the theoretical

andmodeling point of view, see for instance (Kobayashi et al. 2000; Cahn and Taylor 2004;

Cahn et al. 2006a; Pusztai et al. 2005; Trautt and Mishin 2012; Trautt et al. 2012; Wu

and Voorhees 2012; Ask et al. 2018). A wide range of atomistic simulations performed

in order to understand the phenomenon leads to results in agreement with experimental

observations (Mishin et al. 2010; Cahn et al. 2006a; Trautt et al. 2012; Cahn et al. 2006b;
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Homer et al. 2013). On the other hand, opinions on the kinetics of GB are divergent

in the case of motion-driven only by curvature (no applied stress). It is widely accepted

that subgrain coalescence is generally accompanied by grain rotation, whereas the role

of rotations during the shrinking of equiaxed grains is not so obvious and discrepan-

cies between experiments and numerical simulations are present. From the experimental

point of view, Mompiou et al. (Legros et al. 2008) claim that no rotation was seen during

the shrinking of island grain with pure tilt GB. Also in similar experiments performed

by Radetic et al. (2012), no rotation was highlighted. It has to be underlined that the

simultaneous observation of coupled GB migration, shear deformation and grain rota-

tion in the case of island grain shrinking under the sole effect of curvature is not easy to

put in evidence during in situ experiments since there is the need of being able to mea-

sure simultaneously the GB displacements in three directions as well as the change in

orientation. From the numerical point of view, contrary to experiment, several atomistic

simulations performed using circular or cylindrical geometries highlighted the presence

of rotation during island grains shrinkage (Brandenburg et al. 2014; Barrales-Mora and

Molodov 2016; Trautt and Mishin 2012; 2014). The discrepancy between experiments

and simulations may find an interpretation in the recent study performed by Barrales-

Mora et al. (2014). From their simulations, the authors show the occurrence of coupling

and induced rotation only in the case of tilt GB, while rotation becomes negligible for

the case of mixed GB. The possible non-ideal tilt character of the island grains studied in

experiments may justify the absence of rotation underlined in refs. (Legros et al. 2008;

Radetic et al. 2012).

In this context, one aim of the simulations performed in this work is to identify the

mechanisms responsible for the grain boundary coupled motion. We consider the sim-

ple case of the shrinkage of a circular grain in two dimensions. More precisely, we

study temperature- and curvature-driven GB migration of a circular grain embedded in

a mono-crystalline matrix for both low and high misorientations. We analyze the cou-

pled motion during GB displacement, and we compare our observations with previous

works performed in the field. Finally, we perform direct comparisons between LD and

MD simulations in order to demonstrate the relevance of the new modeling approach.

Simulation settings

We consider a 2D circular grain embedded in a monocrystalline matrix. The tempera-

ture is fixed and no external stress is applied. Atomic interactions are represented by a

Lennard-Jones type pair potential:

ϕ(rnm) = ǫLJ

[

(

σ

rnm

)α

−
α

β

(

σ

rnm

)β
]

, (16)

where rnm is the interatomic distance, ǫLJ is the energy scale and σ the reference dis-

tance. The values of the exponents are set to α =8 and β =4. The cut-off distance is 2.2σ .

This particular pair-interaction potential was chosen for its simplicity and numerical effi-

ciency. We apply periodic boundary conditions in all directions and set the rectangular

simulation box equal to 180 × 180 ×
√
3
2 σ 2. Simulations were performed in the (NPT)

ensemble at zero pressure, in order to avoid stresses generated by the volume change

during the shrinking of the grain. The temperature was set equal to 0.125 ǫLJ/kB, which
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corresponds to 1/3 of the melting temperature. This temperature was previously calcu-

lated by performing several simulations of a perfect monocrystal at different temperatures

and following the evolution of the mean potential energy of the system. In the 3D case, a

sharp increase of this variable takes place at themelting point. In our 2D geometry, a rapid

variation of the potential energy was also clearly visible and used as a definition of the

melting temperature. Special care was taken to create an initial GB structure as close to

equilibrium as possible. For this purpose, the following procedure is developed. Starting

from a perfect lattice previously relaxed at the desired temperature, a circular central area

is rotated. To avoid the occurrence, at the precipitate/matrix interface, of atoms that are

too close to each other, the monocrystalline matrix around the grain is slightly expanded.

Then, the system is shortly relaxed by integration in the isothermal-isobaric ensemble.

The final result of this procedure is an initial relaxed GB configuration. In our simula-

tions, we have always used a precipitate diameter smaller than half the smallest dimension

of the simulation box to minimize the interactions with periodic images.

To perform LD simulations, we implemented Eq. (8) in a numerical code written in For-

tran that makes uses of a linked-bin algorithm combined with a neighbor list to calculate

interatomic forces, as usual in molecular simulations.We use the reduced time τ = tǫLJ
ν

and, for the time integration we use the Heun’s method discussed in Appendix. In this

paper, as we only consider simulations at zero pressure, all the components of the Piola-

Kirchhoff tensor P are set to zero. To perform MD simulations we used the open-source

code LAMMPS (Plimpton 1995) with a Nose-Hoover style thermostat and barostat (Nosé

1984; Hoover 1986).

To be able to characterize grain boundaries, we performed a Delaunay triangulation

in the computational geometry to find the number of nearest neighbors (NN) of each

atom. In a perfect triangular crystal, each atom has 6 NN. Along grain boundaries, we

observe the formation of topological defects that are defined as particles that do not pos-

sess six NN. In our simulations, we found the occurrence of pairs of particles having 5-7

NN that we interpret as dislocations or structural units depending on they are isolated

or not.

Comparison of LD with MD

In this section, we perform a direct comparison between MD and LD simulations for

the grain shrinkage. We use the simulation settings given above with the same ini-

tial conditions when using LD or MD. Three initial misorientations are considered:

θ0 = 10◦, 15◦, 21.8◦. The misorientation angle is defined as the rotation of the grain with

respect to the matrix, which is chosen as the reference state. In Fig. 2, we present the evo-

lution of (i) the misorientation angle of the central grain θ , (ii) the number of 5-7 defects

at the boundary. The results obtained from the LD model are presented in red and the

ones obtained fromMD in blue.

From the left-hand side of Fig. 2, we conclude that the coupling between the grain

migration is well captured by the LD method. Indeed, in both methods, the grain does

not rotate for θ0 = 21.8◦ while for the two other values of θ0 = 10◦, 15◦ an increase of the

misorientation is measured. The agreement on the increase rate is reasonable considering

the fact that the dynamics is, in both simulations methods, stochastic. In the right-hand

side of Fig. 2, the evolution of the number of 5-7 defects as a function of the central grain

area also shows a good agreement between the simulation results obtained by the two
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Fig. 2 a-c Evolution of the misorientation angle θ and (d-f) of the number of 5-7 defects along the grain

boundary as a function of the grain area, for the initial values θ0 = 10◦ , 21.8◦ , 15◦ . The results obtained with

the LD model (red) are compared with the ones obtained with MD simulations (blue)

methods. We checked that the atomic mechanisms that dictate the evolution of disloca-

tion number as a function of the grain area, are same in both LD andMD.We also verified

the reproducibility of the results that we present below by performing simulations with

different realizations of the Gaussian noise in LD or initial velocity distribution inMD (up

to 10 realizations). As a conclusion, this comparison illustrates that the LDmethod repro-

duces the complex dynamics of coupled motion during GB migration. For compactness,

we only present, in the following, simulation results obtained in the LD formalism.

We comment now on the computational aspects of LD versus MD. In the course of the

previous comparison, we observe that the number of time steps required to simulate the

same overall evolution is 2 to 4 times smaller in LD that in MD, which leads to a com-

putational time 2 to 4 times smaller in LD than in MD. Meanwhile, as explained above in

the paragraph devoted to the general formalism, we recall that the very spirit of the LD

dynamics should be to use the coarse-grained interatomic potential that would emerge

from a time averaging procedure of the original potential along a conveniently chosen

time interval 
t. More precisely, this time interval should be chosen such that, at scale



Baruffi et al. Materials Theory             (2019) 3:4 Page 11 of 26


t, the atomic position kinetics displays the characteristics of a Markov process. The pre-

liminary numerical investigation of the auto-correlation functions presented above (see

Fig. 1) indicates that this 
t, which obviously will set the time step for the integration of

the coarse-grained Langevin equations, would possibly be as large as a few 104 femtosec-

onds, i.e., roughly 4 orders of magnitude larger than a typical MD time step, giving to the

LD approach, when used with a coarse-grained potential, a huge advantage over MD.

Migration mechanism for low angle grain boundaries

We report now our investigation with an initial misorientation angle θ equal to 10◦.

Similar observations, not reported here, have been obtained for other low misorienta-

tions, as well.

For low initial misorientations (i.e., θ ≤ 15◦), the GB structure is composed of sev-

eral well-spaced single 5-7 pairs. These defects can be interpreted as dislocation cores. In

our simulations, six different edge dislocations were observed whose Burgers vectors are

±[ 1, 0, 0] a0,±1/2[ 1,
√
3, 0] a0,±1/2[ 1,−

√
3, 0] a0 where a0 denotes the equilibrium lat-

tice constant. At the simulation temperature, a0 is equal to 0.95σ . For the sake of clarity,

we omit in the following the constant a0 when referring to Burgers vectors. The arrange-

ment of these dislocations along the boundary depends on the local orientation of the GB

plane.When the normal to the boundary plane is nearly parallel to one of the above-listed

Burgers vectors, the boundary is mainly composed of only one dislocation type. Indeed,

as shown in Fig. 3, we frequently observe the formation of facets during the GB migra-

tion, as pointed out in previous works (Barrales-Mora andMolodov 2016; Upmanyu et al.

2006). These facets contain homogeneous dislocation arrays with Burgers vectors parallel

to the facet normal. In our simulations, the grain boundary migrates towards its center

Fig. 3 Facet formation during grain shrinkage for an initial misorentation θ = 10◦ . The matrix is represented

in green and the grain in yellow. Each dislocation is shown by a 5-7 pair (blue-red). Each facet is composed of

a set of dislocations having the same Burgers vector
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of curvature until the grain totally disappears. No defects are left in the matrix after the

grain shrinkage. During the GB migration, there is an increase in the misorientation θ

and a corresponding increase in the dislocation density ρD at the boundary, defined as

the ratio between the number of dislocation cores along the boundary and the boundary

perimeter. We report in Fig. 4 the evolution of these two quantities as a function of the

grain area (normalized by their initial values θ0 and ρD0 ) for the case of θ0 = 10◦. We can

see that ρD increases by approximately 40% from its initial value and that its evolution

strictly follows the change in the misorientation angle.

We now study in detail the microscopic processes driving the migration. In our sim-

ulations, we observed two different reactions between dislocations. The first one is the

partial or total annihilation between two ormore dislocations. An example of this reaction

is shown in Fig. 5, where we observe the following reaction regarding Burgers vectors:

A : 1/2[ 1
√
30]+B :[ 100]+C : 1/2[ 1

√
30]→ B :[ 100]+B :[ 100] .

Note that this three-to-two dislocation reaction may also be analysed as resulting from

three smaller scale reactions, namely the splitting of the middle [100] Burgers vector into

1/2[ 1
√
30] and 1/2[ 1

√
30] followed by the merging of these two Burgers vectors with

dislocation A and C, respectively. However, as the overall process occurs very rapidly

and inter-dislocation distances are very small, it is not possible to assert if this three-step

process does exist. Therefore, we simply refer to this process as an annihilation mecha-

nism through which three initial dislocations react and generate only two dislocations.

The second one is the interaction between two dislocations. This mechanism is presented

Fig. 4 Evaluation of the dislocation density ρD/ρD0 along the grain boundary (red curve) and change in the

misorientation angle θ/θ0 (blue curve) during grain shrinkage for θ0 = 10◦
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Fig. 5 Dislocation annihilation. Dislocations are represented by a 5-7 pair in blue and red. a The grain is

shown in yellow, the matrix in light green. We colored the planes along which the dislocations have glided in

dark green in order to keep track of the paths on which they glided. b Dislocations A, B, C with Burgers

vectors 1/2[ 1
√
30], [100], 1/2[ 1

√
30] recombine to form two dislocations with Burgers vectors [100]

in Fig. 6. The glide of the dislocations labelled A and B in Fig. 6a, with Burgers vec-

tors [ 1, 0, 0] and 1/2[ 1,
√
3, 0], necessarily brings the two dislocations close to each other.

When the distance between the dislocations is of the order of two interatomic distances, a

rapid movement of a few atoms inside the overlapping dislocation cores leads to an effec-

tive exchange of the Burgers vectors of the two dislocations. This mechanism, sketched

in Fig. 6c, is better shown in Fig. 7a-c, where the additional planes of the two dislocations

are shown in dotted line. We look at the atoms forming the grey lozenge. When the two

dislocation cores approach each other, the surrounding lattice is highly distorted, and the

Fig. 6 Effective climb (see text). Direct interaction of two dislocations A and B with Burgers vectors [100] and

1/2[ 1
√
30]: a initial configuration; b final configuration ; c sketch of the mechanism. The dashed line

indicates the initial position of the grain boundary. The color code is the same as the one used in Fig. 5
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Fig. 7 Effective climb (see text): a two dislocations approach each other (center of the figure); b they arrive at

a distance comparable to two interatomic spacings, thus inducing a strong distortion in the surrounding

lattice; c a local slip of atoms induces a rotation of the original Burgers vector (atomic displacements are

represented by arrows). For the color code, see Fig. 5

lozenge becomes a square. This configuration is unstable and quickly collapse thus caus-

ing a rotation of the two Burgers vectors. Arrows represent the displacement induced in

the surroundings by this process. The final result can be interpreted as a crossing of two

dislocations supplemented by a displacement outside their gliding planes, without the

need of a vacancy assisted climb with a pre-existing surrounding atom vacancy. For this

reason, we will refer to this first mechanism as “effective climb”. As above, we note that this

process could also be analyzed as a splitting of dislocation A into dislocations 1/2[ 1
√
30]

and 1/2[ 1
√
30] followed by a merging of the latter with dislocation B but again, as the

overall process occurs at very small time and space scales, we simply refer to the overall

mechanism as a climb process, because this is the process we observe when we compare

the initial and final states.

In order to better understand what role dislocations play in the overall GBmigration, we

track the history of the dislocations motion on the gliding planes by following the move-

ment of the 5-7 pairs. In Fig. 8 we report four snapshots in which we colored the gliding

plane on which a dislocation passed in dark green. The grain is highlighted in yellow color

and the matrix in light green. From these snapshots we can observe that the migration

takes place via a combination of dislocation glide and reactions as clearly appears from

the numerous crossing points between dislocations gliding planes. Moreover, the planes

sheared by dislocations form a regular pattern of hexagonal cells. Their size gets smaller

when approaching the grain center. This observation is in agreement with the fact that the

dislocation density increases during the grain shrinkage, so their average distance along
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Fig. 8 History of the 5-7 defect pair during the grain shrinkage (dark green) at reduced time a) t = 264, b)

t = 486, c) t = 738, d) t = 924. Their traces form a regular pattern of hexagonal-shaped cells (for the color

code see Fig. 5)

the boundary decreases. In Fig. 9 we show a color map of the magnitude of atomic dis-

placements after the grain boundary passage. This map strictly follows the patterns of the

dislocation gliding planes. Moreover, it suggests that the GB migration proceeds by the

formation of several cellular "hexagonal shaped rings” which result from a combination of

glide, effective climb (which allows the propagation of dislocations along the boundary)

and annihilation. A simplified description of this phenomenon is given in the following.

We describe the grain boundary as a hexagon, as shown in Fig. 9b. This, of course, is an

idealization that oversimplifies the observed shape of the grain boundary. However, dur-

ing the course of its shrinking, we do often observe that the initially circular grain displays

well-defined facets that all together form a shape that is not far from a hexagon. This fact

clearly appears when looking at the residual atomic displacements map after the grain

disappeared in Fig. 9. We indeed observe that, during grain shrinking, the grain boundary

follows, in average, a hexagonal shape. Then, the migration of this grain boundary can be

described as follows (see Fig. 10):

• the dislocations glide until an unstable situation occurs when the dislocations at the

corners get closer (see Fig. 10a);
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Fig. 9 a Color map of the residual atomic displacement magnitude after the grain disappeared (θ = 10◦);
b simplified description of the grain boundary used to develop the toy model of grain boundary migration

• the effective climb of the dislocations meeting at the six corners (see green circles in

Fig. 10a-b;

• subsequent propagation of effective climb along each side of the hexagon (see red

circles in Fig. 10b-c;

• after propagation, a first hexagonal shaped ring is closed by partial annihilation

between two or more dislocations (see for example the blue circles in Fig. 10c and d.

In brief, the grain collapse proceeds through a succession of dislocation glide perpen-

dicularly to the hexagonal facets, propagation of climb events along the facets and one

annihilation event per facet. The overall effect of this mechanism is an increase of the

misorientation angle θ together with the decrease of the grain area.

The link between the misorientation angle θ and grain area A may be identified as fol-

lows. As explained above, the process is analyzed as the successive formation of hexagons.

We label the hexagons by the index n. At stage n, we note ln, Rn, θn,N
side
n and dn the length

of the facets, the distance of the facets from the centre of the hexagon, the misorienta-

tion angle, the number of dislocations along each facet and the average distance between

dislocations, respectively. Using Frank’s formula (Frank 1950), we have:

dn =
‖ b ‖

2 sin(θn/2)
∼

‖ b ‖
θn

,

The facet length ln and the distance Rn are geometrically linked (see Fig. 9-b):

ln =
2

√
3
Rn,

and dn is defined by:

dn =
ln

N side
n

.

Now, we analyze the transition from hexagon n to hexagon (n + 1) as follows:

• first, all the dislocations that sit along the facets glide perpendicularly to the facets,

and their number remains constant. Under the hypothesis that the distance between

two neighboring dislocations that are separated by a corner is equal to the average
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Fig. 10 Simplified model proposed to explain the boundary migration by progressive cellular rings: a) simple

glide of dislocations; b) an unstable situation is reached at the corners when dislocations with Burgers

vectors rotated by 60◦ approach one to the other and proceed to an effective climb mechanism. Pairs of

dislocations that undergo this climb process are highlighted by green circles just before -in a)- and just after

-in b)- the climb process; c) the dislocations at the corners propagate along the sides by a chain of effective

climb events, see red circles in b) and corresponding red circles in c); d) a cellular hexagonal-shaped ring is

closed and the dislocation number per side is lowered through a three-to-two annihilation reaction, see blue

circles in c) and d)

distance, a simple geometrical analysis shows that an unstable situation (i.e., two

dislocations come close to each other) is reached after a gliding equal to dn;

• then, the effective climb events start at the corners, propagate along the boundary

and stop when the new hexagon is closed through one annihilation event per side.

This kinematics is associated with the following recursive relations:

Rn+1 = Rn − dn,

N side
n+1 = N side

n − 1,

dn+1 =
2

√
3

Rn+1

N side
n+1

.
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It is straightforward to integrate recursively these relations and to calculate, for each index

n, the actual value of the misorientation angle θn and hexagon area An:

θn = 2 sin−1

(

‖ b ‖
2dn

)

,

An = 2
√
3R2

n.

We used this kinematics to estimate the co-evolution of the misorientation θ and grain

area A for a grain with initial misorientations θ0 = 10◦ and θ0 = 15◦ , area A0 = 2
√
3R2

0

with R0 = 44.74σ . The result is shown in Fig. 11 where, for comparison, we also report the

result obtained by the atomistic simulations. First, we observe that the model reproduces

the grain rotation. Thismeans that a coupled normal-tangential motion of grain boundary

is embedded in the local mechanisms at the root of our model (glide, effective climb,

annihilation). Second, we observe that our approximate hexagonal kinematics reproduces

the atomistic simulation qualitatively, even if a quantitative agreement is not obtained,

which is not surprising, taking into account the simplicity of the geometrical model we

have proposed.

That being said, we think that the overall agreement between the simulation and the

simple model confirms the validity of the local mechanisms (glide, effective climb, and

three-to-two annihilation processes) that we identified as being at the origin of the grain

shrinking mechanism for small initial misorientation. These mechanisms generate grain

rotation (more precisely, an increase in the misorientation) in agreement with the atom-

istic simulations, thereby confirming the existence of a coupledmotion. Finally, it is worth

mentioning that the change of misorientation angle towards higher values that we observe

here when the initial misorientation is low (θ0 < 15◦), is also in agreement with the

predictions of the variational model proposed in ref. (Cahn and Taylor 2004).

Migration mechanism for high angle grain boundaries

When the initial misorientation is high (θ0 > 15◦), dislocations are no more identifiable

at the GB since the spacing between 5-7 pairs resulting from the Delaunay triangulation

is too small. As shown in Fig. 12, the GB can, however, be described by structural units.

These units can be composed of a single 5-7 pair of defects or more. Their migration is no

longer describable in terms of dislocation dynamics but can be explained by considering

Fig. 11 Evolution of the misorientation θ as a function of the grain size predicted by the toy model (in red)

compared with the results obtained by atomistic simulations (in blue) for θ0 = 10◦ (left) and for θ0 = 15◦

(right)
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Fig. 12 Structure of a high angle grain boundary described in terms of structural units for θ0 = 21.8◦ . Red
and blue atoms have 5 and 7 NN, respectively

the local atomic position readjustments, which lead to the transformation from one lattice

orientation to the other (Cahn et al. 2006a).

In Fig. 13a, we report the evolution of the misorientation angle for θ0 ranging from

13.2◦ to 27.8◦. In all cases, the coupling effect (resulting in a change in θ ) is present,

except for θ0 = 21.8◦. We also stress that, in our simulations, the rotation direction of

the grain (i.e., the sign of coupling) is opposite for θ0 < 21.8◦ and 21.8◦ < θ0 < 30◦.

The fact that there is no coupling effect for some particular initial misorientations was

already mentioned in the previous works (Trautt and Mishin 2012; Upmanyu et al. 2006).

The absence of coupling for θ0 = 21.8◦ is justified by the fact that this misorientation

corresponds to a CSL condition for the hexagonal grid (�7). However, this justification is

incomplete because, as we can see from Fig. 13a, a non-zero coupling is clearly observed

for the misorientation values 27.8◦(�13) and 13.2◦(�19), which also correspond to CSL

conditions.

Fig. 13 aMisorientation as a function of the grain area (in σ 2 units) for several initial misorientation θ0 ; b 5-7

pairs density ρ5−7/ρ5−70 along the grain boundary (red curve) and change in the misorientation angle θ/θ0
(blue curve) during grain shrinkage for the initial misorientations θ0 = 21.8◦



Baruffi et al. Materials Theory             (2019) 3:4 Page 20 of 26

In this section, we analyze the atomistic mechanisms at the origin of the GB migration

for the value θ0 = 21.8◦. As previously done with dislocations in the low misorienta-

tion case, we computed the density of 5-7 defects accommodating the misfit between the

matrix and the grain during its shrinkage. The evolutions of the normalized quantities

ρD(t)/ρD(t = 0) and (θ(t) − θ0)/θ0 are reported in Fig. 13b. We observe that the density

of 5-7 defects remains approximately constant during the grain shrinkage, although some

fluctuations of the order of 5% are present. Therefore, as in the low misorientation case,

we observe that the rotation of the grain is linearly related to the density of 5-7 defects

along the boundary.

In order to clarify the kinematics observed for θ0 = 21.8◦ we kept track of the neighbor-

hood of each atom during the grain shrinkage. We observed that there is a set of atoms

that hardly move and whose first neighbor shell remains unchanged, even though the

atoms within these shells are displaced. The positions of these "fixed” atoms, shown in

Fig. 14a, are not random but are locally on a �7 coincidence sites grid. More precisely,

several regions where a�7 coincidence sites lattice (CSL) grid can be observed, with tran-

sition zones between them. This is linked to the fact that seven different CSL grids can be

defined for a �7 grain boundary, the different grids being related by a translation. All the

above observations suggest that, for the special case of θ0 = 21.8◦, the migration of the

boundary occurs by local adjustment of atoms rotating around these “fixed” positions.

To better quantify this peculiar behavior, described above we propose the following cal-

culation.We consider the relative position
rnm between the atom n and its first neighbor

m at time t = 0 and at time t∗ after the GB passage. Then, following the approach pro-

posed in Falk and Langer (1998), we try to identify a local linear transformation F(n) that

describes the atomic movements around the atom n. In order to do this, we minimize the

mean-square difference between 
rnm(t∗) and the local displacement that would result

from the action of F(n) on 
rnm(0),m = 1, . . . , 6:

D(n)2 =
6

∑

m=1

‖
rnm(t∗) − F(n)
rnm(0)‖2. (17)

Fig. 14 Atomic structure after the grain shrinkage (θ0 = 21.8◦): a atoms that have not changed their first

nearest neighbors shell are represented in green; b atoms are colored according to the value of the D(n)2

coefficient (see text for details)
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Numerically, the matrix F(n) which minimizes D(n)2 is given by:

(

Y (n)
)

ij
=

6
∑

m=1

(
rnm(0))i(
rnm(0))j,

(

X(n)
)

ij
=

6
∑

m=1

(
rnm(t∗))i(
rnm(0))j, (18)

(

F(n)
)

ij
=

(

X(n)
)

ik

(

Y (n)
)−1

kj
. (19)

If, for a given atom n, this minimization process leads to a small enough D(n)2 (typi-

cally D(n)2 < 0.1) then we may interpret the dynamics around the atom n as a uniform

transformation associated with the local deformation gradient F(n),:


rnm(t∗) ≈ F(n)
rnm(0). (20)

Conversely, if the minimization does not lead to a small D(n)2 , atomic movements around

an atom n cannot be described by a local transformation matrix. The results of this

overall procedure are reported in Fig. 14b, where we can see that the deviation D(n)2 is

almost zero for atoms that sit on the coincidence sites while it takes higher values for

the surrounding atoms. Furthermore, for the atoms inside the initial grain and for which

D(n)2 < 0.1, we have analyzed the deformation gradient F(n). The histogram of the four

components of F(n) are presented in Fig. 15. From these histograms, we conclude that the

deformation gradient at the vicinity of the atoms considered is found to be

F =
(

0.9320 −0.3738

0.3735 0.9291

)

, (21)

Fig. 15 Histogram of the deformation gradients inside the grain for atoms such that D(n)2 < 0.1 after the

grain shrinkage (θ0 = 21.8◦)
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with a standard deviation smaller than 1.5× 10−3 on each component. Because the stan-

dard deviations are small, F can reasonably be thought as representative of the local

deformation gradient F(n). Obviously, F is anti symmetric. As its determinant is close to

1 (detF ≈ 1), we conclude that F describes a rotation. In conclusion, the movements of

atoms surrounding the ones sitting on the coincidence sites positions can be interpreted

as rigid rotation. The associated rotation angle is found to be θ ≈ sin−1(F21) = 21.9◦,

which is approximately the value of the misorientation angle.

The local rotation in the neighborhood of atoms located on the �7 coincidence site lat-

tices can also be described in terms of the dynamics of 5-7 defects (Fig. 16). These 5-7

defects (blue-red atom pairs), located at the grain boundary, migrate in between the coin-

cidence lattice sites atoms (black atoms), the latter keeping their 6 NN. The evolution

of the orientation of the 5-7 defects during their migration reveals that their migra-

tion cannot be described as a glide mechanism (a video is available as a supplementary

material).

Summary, conclusion and perspectives

In the present work, a stochastic dynamics for the atomistic modeling of crystalline mate-

rials is presented and tested in the context of GB migration. Atoms motion is described

through an overdamped Langevin formalism in order to avoid crystal vibrations that

limit the time-step size to be used in the integration of equations. The convergence of

the dynamics to the correct equilibrium in the canonical ensemble is demonstrated. The

model is extended to simulate the (NPT) ensemble by adding 9 DOF which describe

the macroscopic deformation gradient of the simulation box. Convergence to the correct

equilibrium distribution for the system of (N+9) DOF is guaranteed as well. A possible

justification for applying the proposed overdamped dynamics to crystalline materials is

Fig. 16 a-d 5-7 defects walk during grain shrinkage for θ0 = 21.8◦ . Atoms on the �7 coincidence site lattice

are shown in black, the coincidence sites grid in dotted line
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suggested by numerical calculations of the autocorrelation functions of atoms position

and velocities. Finally, a first numerical application of the proposed model is performed

in the field of GBmigration. For this application, we focused on a simple case study where

GB motion is driven only by curvature and temperature, and we simulated the shrinking

of a circular island grain embedded in a monocrystalline matrix. In order to validate the

model, we compared our results with the ones obtained from MD simulations. The good

agreement between the two methodologies confirms the applicability of the overdamped

Langevin dynamics for modeling the microstructural evolutions in crystalline materials.

Furthermore, we highlight interesting characteristics of the mechanisms driving the GB

migration in the low and high misorientation cases. For low angle GB, we observed that

the GB migration proceeds by a combination of dislocation glide, effective climb, and

annihilation reaction. A geometrical model is proposed to explain these particular migra-

tion mechanisms. The change in the misorientation θ predicted by this “simple model”

shows an overall agreement with those obtained by simulations. For high misorientation

GB, we verified that the existence or absence of the coupled motion, highlighted in pre-

vious works, is strictly linked to the GB structure. We verified that for misorientations

corresponding to the CSL �7, atoms on coincidence sites act as “fixed points” thus pre-

vent any rotation of the grain. The boundary migration proceeds by local rotations of

atomic positions around these points.

The overdamped approach proposed here is of course fully 3D and a 3D analysis of

a phase transition using a many-body interatomic potential is in progress and will be

submitted for publication shortly (Baruffi 2018).

In conclusion, the overdamped LD seems to be a suitable instrument for the atom-

istic modeling of crystalline materials. Future perspectives are: (i) the application of the

overdamped LD for the study of other physical phenomena involving the microstructural

evolution in metallic alloys (for example phase transitions) and, (ii) most importantly, the

derivation of Langevin equations through an explicit coarse graining of the Newtonian

dynamics, the anticipated outcome of this procedure being a coarse-grained potential and

the associated overdamped dynamics.

Appendix

We consider a stochastic equation with white noise for the set of positions {xni } of the
form:

dxni (t) = f ni ({xni (t)})dt + BdWn
i (t), (22)

where f ni is the ith component of the force on atom n derived from the interaction energy

φ as f ni
({

xni (t)
})

= − ∂�
∂xni

and the differential dW (t) denotes an infinitesimal increment of

theWiener processWn
i (t) and B =

√
2νkBT to enforce the correct equilibrium properties

discussed in the text. The integral form of Eq. (22) is given by

xni (t) =
∫ t

t0

f ni
({

xni (t
′)
})

dt′ +
∫ t

t0

BdWn
i (t′) + xni (t0), (23)

where the first term in the rhs. is a Riemann integral and the second term is a stochastic

integral. To numerically evaluate Eq. (23) we implement an explicit predictor-corrector

method which results in the following numerical scheme:
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xni (t + 
t) = xni (t) +
1

2

[

f ni
({

x̄ni (t + 
t)
})

+ f ni ({xni (t)})
]


t + B
Wn
i (t),

x̄ni (t + 
t) = xni (t) + f ni
({

xni (t)
})


t + B
Wn
i (t),

(24)

where the finite increment
Wn
i (t) = Wi(t+
t)−Wn

i (t) can be calculated as
Wn
i (t) =√


tξ(t),
t ∈ R and ξ(t) taken from a normal distribution with unit variance. In the

numerical simulations we used a time-step 
t = 2 × 10−3.

Abbreviations

CSL: Coincidence Sites Lattice; DOF: Degrees Of Freedom; GB: Grain Boundary; KMC: Kinetic Monte Carlo; LD: Langevin

Dynamics; MD: Molecular Dynamics; NN: Nearest Neighbors
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