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COMMENTARY:

Overestimated global warming 
over the past 20 years
John C. Fyfe, Nathan P. Gillett and Francis W. Zwiers

Recent observed global warming is significantly less than that simulated by climate models. This 
difference might be explained by some combination of errors in external forcing, model response and 
internal climate variability. 

Global mean surface temperature 
over the past 20 years (1993–2012) 
rose at a rate of 0.14 ± 0.06 °C 

per decade (95% confidence interval)1. 
This rate of warming is significantly 
slower than that simulated by the climate 
models participating in Phase 5 of 
the Coupled Model Intercomparison 
Project (CMIP5). To illustrate this, 
we considered trends in global mean 
surface temperature computed from 117 
simulations of the climate by 37 CMIP5 
models (see Supplementary Information). 
These models generally simulate natural 
variability — including that associated 
with the El Niño–Southern Oscillation 
and explosive volcanic eruptions — as 
well as estimate the combined response 
of climate to changes in greenhouse gas 
concentrations, aerosol abundance (of 
sulphate, black carbon and organic carbon, 
for example), ozone concentrations 
(tropospheric and stratospheric), land 
use (for example, deforestation) and 
solar variability. By averaging simulated 
temperatures only at locations where 
corresponding observations exist, we find 
an average simulated rise in global mean 
surface temperature of 0.30 ± 0.02 °C 
per decade (using 95% confidence 
intervals on the model average). The 
observed rate of warming given above is 
less than half of this simulated rate, and 
only a few simulations provide warming 
trends within the range of observational 
uncertainty (Fig. 1a).

The inconsistency between observed 
and simulated global warming is even more 
striking for temperature trends computed 
over the past fifteen years (1998–2012). 
For this period, the observed trend of 
0.05 ± 0.08 °C per decade is more than four 
times smaller than the average simulated 
trend of 0.21 ± 0.03 °C per decade (Fig. 1b). 
It is worth noting that the observed trend 
over this period — not significantly 

different from zero — suggests a temporary 
‘hiatus’ in global warming2–4. The 
divergence between observed and CMIP5-
simulated global warming begins in the 
early 1990s, as can be seen when comparing 
observed and simulated running trends 
from 1970–2012 (Fig. 2a and 2b for 20-year 
and 15-year running trends, respectively).

The evidence, therefore, indicates that 
the current generation of climate models 
(when run as a group, with the CMIP5 
prescribed forcings) do not reproduce 
the observed global warming over the 
past 20 years, or the slowdown in global 
warming over the past fifteen years. This 
interpretation is supported by statistical 
tests of the null hypothesis that the 
observed and model mean trends are equal, 

assuming that either: (1) the models are 
exchangeable with each other (that is, the 
‘truth plus error’ view); or (2) the models 
are exchangeable with each other and 
with the observations (see Supplementary 
Information). Differences between 
observed and simulated 20-year trends 
have p values (Supplementary Information) 
that drop to close to zero by 1993–2012 
under assumption (1) and to 0.04 under 
assumption (2) (Fig. 2c). Here we note 
that the smaller the p value is, the stronger 
the evidence against the null hypothesis. 
On this basis, the rarity of the 1993–2012 
trend difference under assumption (1) is 
obvious. Under assumption (2), this implies 
that such an inconsistency is only expected 
to occur by chance once in 500 years, if 
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Figure 1 | Trends in global mean surface temperature. a, 1993–2012. b, 1998–2012. Histograms of 
observed trends (red hatching) are from 100 reconstructions of the HadCRUT4 dataset1. Histograms 
of model trends (grey bars) are based on 117 simulations of the models, and black curves are smoothed 
versions of the model trends. The ranges of observed trends reflect observational uncertainty, whereas 
the ranges of model trends reflect forcing uncertainty, as well as differences in individual model responses 
to external forcings and uncertainty arising from internal climate variability.
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20-year periods are considered statistically 
independent. Similar results apply to trends 
for 1998–2012 (Fig. 2d). In conclusion, we 
reject the null hypothesis that the observed 

and model mean trends are equal at 
the 10% level.

One possible explanation for the 
discrepancy is that forced and internal 

variation might combine differently in 
observations than in models. For example, 
the forced trends in models are modulated 
up and down by simulated sequences of 
ENSO events, which are not expected to 
coincide with the observed sequence of 
such events. For this reason the moderating 
influence on global warming that arises 
from the decay of the 1998 El Niño event 
does not occur in the models at that 
time. Thus we employ here an established 
technique to estimate the impact of 
ENSO on global mean temperature, and 
to incorporate the effects of dynamically 
induced atmospheric variability and major 
explosive volcanic eruptions5,6. Although 
these three natural variations account 
for some differences between simulated 
and observed global warming, these 
differences do not substantively change our 
conclusion that observed and simulated 
global warming are not in agreement over 
the past two decades (Fig. 3). Another 
source of internal climate variability that 
may contribute to the inconsistency is 
the Atlantic multidecadal oscillation7 
(AMO). However, this is difficult to assess 
as the observed and simulated variations 
in global temperature that are associated 
with the AMO seem to be dominated by a 
large and concurrent signal of presumed 
anthropogenic origin (Supplementary 
Fig. S1). It is worth noting that in any case 
the AMO has not driven cooling over the 
past 20 years.

Another possible driver of the difference 
between observed and simulated global 
warming is increasing stratospheric 
aerosol concentrations. Results from 
several independent datasets show that 
stratospheric aerosol abundance has 
increased since the late 1990s, owing to 
a series of comparatively small tropical 
volcanic eruptions8. Although none of the 
CMIP5 simulations take this into account, 
two independent sets of model simulations 
estimate that increasing stratospheric 
aerosols have had a surface cooling impact 
of about 0.07 °C per decade since 19988,9. 
If the CMIP5 models had accounted for 
increasing stratospheric aerosol, and had 
responded with the same surface cooling 
impact, the simulations and observations 
would be in closer agreement. Other factors 
that contribute to the discrepancy could 
include a missing decrease in stratospheric 
water vapour10 (whose processes are 
not well represented in current climate 
models), errors in aerosol forcing in the 
CMIP5 models, a bias in the prescribed 
solar irradiance trend, the possibility that 
the transient climate sensitivity of the 
CMIP5 models could be on average too 
high11,12 or a possible unusual episode of 

Figure 2 | Global mean surface temperature trends and p values. a,b, 20-year (a) and 15-year (b) running 
trends. Black curves are ensemble-averaged trends over the 37 sets of model simulations. Dark-grey 
shading indicates the 2.5–97.5% ranges of the simulated estimates. Light-grey shading shows the 95% 
uncertainty ranges of the ensemble means, derived by dividing the 2.5–97.5% ranges by the square root 
of the number of models. Red curves are the observed trends averaged over 100 realizations and the 
horizontal red lines show the observed 1900–2012 trends averaged over 100 realizations. Black cross-
hatchings are the 95% uncertainty ranges for simulated 1900–2012 ensemble mean trends. Note that the 
observed and simulated long-term trends are very similar to one another, and are smaller than the short-
term trends. c,d, 20-year (c) and 15-year (d) p values on trend differences between the simulations and 
observations for assumption (1) (purple curves), or assumption (2) (green curves). The horizontal dashed 
lines indicate the threshold below which we reject the null hypothesis.

Figure 3 | Trends in global mean surface temperature and in associated natural and residual time series.  
a, 1993–2012. b, 1998–2012. The 2.5–97.5% ranges for observed estimates are shown by the red boxes. 
The 2.5–97.5% ranges for simulated estimates are represented by the open black boxes, with the 95% 
ranges on ensemble mean trends indicated by grey shading. The estimated natural signals shown are 
associated with the El Niño-Southern Oscillation (ENSO), dynamically induced atmospheric variability 
(cold ocean–warm Earth; COWL) and major explosive volcanic eruptions (Volcano). Trends in global 
mean surface temperature without these estimated natural signals are shown at the bottom (Residual).
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internal climate variability not considered 
above13,14. Ultimately the causes of this 
inconsistency will only be understood after 
careful comparison of simulated internal 
climate variability and climate model forcings 
with observations from the past two decades, 
and by waiting to see how global temperature 
responds over the coming decades. ❐
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COMMENTARY:

Uncertainty analysis in climate 
change assessments
Richard W. Katz, Peter F. Craigmile, Peter Guttorp, Murali Haran, Bruno Sansó and Michael L. Stein

Use of state-of-the-art statistical methods could substantially improve the quantification of uncertainty 
in assessments of climate change.

Because the climate system is so complex, 
involving nonlinear coupling of the 
atmosphere and ocean, there will 

always be uncertainties in assessments and 
projections of climate change. This makes it 
hard to predict how the intensity of tropical 
cyclones will change as the climate warms, the 
rate of sea-level rise over the next century or 
the prevalence and severity of future droughts 
and floods, to give just a few well-known 
examples. Indeed, much of the disagreement 
about the policy implications of climate 
change revolves around a lack of certainty. 
The forthcoming Intergovernmental Panel 
on Climate Change (IPCC) Fifth Assessment 
Report (AR5) and the US National Climate 
Assessment Report will not adequately 
address this issue. Worse still, prevailing 
techniques for quantifying the uncertainties 
that are inherent in observed climate trends 
and projections of climate change are out of 
date by well over a decade. Modern statistical 
methods and models could improve this 
situation dramatically.

Uncertainty quantification is a critical 
component in the description and attribution 
of climate change. In some circumstances, 

uncertainty can increase when previously 
neglected sources of uncertainty are 
recognized and accounted for (Fig. 1 shows 
how uncertainty can increase for projections 
of sea-level rise). In other circumstances, 
more rigorous quantification may result in a 
decrease in the apparent level of uncertainty, 
in part because of more efficient use of 
the available information. For example, 
despite much effort over recent decades, 
the uncertainty in the estimated climate 
sensitivity (that is, the long-term response 
of global mean temperature to a doubling of 
the CO2 concentration in the atmosphere) 
has not noticeably decreased1. Nevertheless, 
policymakers need more accurate uncertainty 
estimates to make better decisions2.

Detailed guidance provided to authors of 
the IPCC AR5 and the US National Climate 
Assessment Report emphasizes the use 
of consistent terminology for describing 
uncertainty for risk communication. This 
includes a formal definition of terms such as 
‘likely’ or ‘unlikely’ but, oddly, little advice 
is given about what statistical techniques 
should be adopted for uncertainty 
analysis3,4. At the least, more effort could be 

made to encourage authors to make use of 
modern techniques.

Historically, several compelling 
examples exist in which the development 
and application of innovative statistical 
methods resulted in breakthroughs in the 
understanding of the climate system (for 
example, Sir Gilbert Walker’s research 
in the early twentieth century related 
to the El Niño–Southern Oscillation 
phenomenon5). We anticipate that 
similar success stories can be achieved 
for quantification of uncertainty in 
climate change.

Although climate observations and 
climate model output have different sources 
of error, both exhibit substantial spatial 
and temporal dependence. Hierarchical 
statistical models can capture these features 
in a more realistic manner6. These models 
adopt a ‘divide and conquer’ approach, 
breaking the problem into several layers 
of conceptually and computationally 
simpler conditional statistical models. The 
combination of these components produces 
an unconditional statistical model, whose 
structure can be quite complex and realistic. 
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