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The NAC transcription factors play critical roles in regulating stress responses in plants.

However, the functions for many of the NAC family members in rice are yet to be

identified. In the present study, a novel stress-responsive rice NAC gene, ONAC022, was

identified. Expression of ONAC022 was induced by drought, high salinity, and abscisic

acid (ABA). The ONAC022 protein was found to bind specifically to a canonical NAC

recognition cis-element sequence and showed transactivation activity at its C-terminus

in yeast. The ONAC022 protein was localized to nucleus when transiently expressed in

Nicotiana benthamiana. Three independent transgenic rice lines with overexpression of

ONAC022 were generated and used to explore the function of ONAC022 in drought

and salt stress tolerance. Under drought stress condition in greenhouse, soil-grown

ONAC022-overexpressing (N22oe) transgenic rice plants showed an increased drought

tolerance, leading to higher survival ratios and better growth than wild-type (WT) plants.

When grown hydroponically in Hogland solution supplemented with 150 mM NaCl, the

N22oe plants displayed an enhanced salt tolerance and accumulated less Na+ in roots

and shoots as compared to WT plants. Under drought stress condition, the N22oe

plants exhibited decreased rates of water loss and transpiration, reduced percentage

of open stomata and increased contents of proline and soluble sugars. However, the

N22oe lines showed increased sensitivity to exogenous ABA at seed germination and

seedling growth stages but contained higher level of endogenous ABA. Expression of

some ABA biosynthetic genes (OsNCEDs and OsPSY ), signaling and regulatory genes

(OsPP2C02, OsPP2C49, OsPP2C68, OsbZIP23, OsAP37, OsDREB2a, and OsMYB2),

and late stress-responsive genes (OsRAB21, OsLEA3, and OsP5CS1) was upregulated

in N22oe plants. Our data demonstrate that ONAC022 functions as a stress-responsive

NAC with transcriptional activator activity and plays a positive role in drought and salt

stress tolerance through modulating an ABA-mediated pathway.

Keywords: abscisic acid (ABA), drought tolerance, NAC transcription factor, ONA022, salt tolerance, rice (Oryza

sativa L.)
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INTRODUCTION

Plants have developed an array of sophisticated mechanisms at

multiple levels to cope with unfavorable environmental stresses,
such as drought and high salinity (Yamaguchi-Shinozaki and

Shinozaki, 2006). Upon perception of external stress signals, a
complicated signaling network is effectively and timely initiated,

which ultimately reprograms the expression of a large set of
stress-responsive genes (Zhu, 2002; Shinozaki and Yamaguchi-
Shinozaki, 2007; Golldack et al., 2014; Nakashima et al., 2014).

This expression reprograming of stress-responsive genes at
genome-wide level often activates various cellular, physiological,

biochemical, andmetabolic processes, including stomatal closure,
repression of cell growth and photosynthesis, activation of

respiration, and accumulation of compatible osmolytes, such
as proline and soluble sugars, which protect plants from

damages and thus increase the chance of survival (Shinozaki and
Yamaguchi-Shinozaki, 2007; Hu and Xiong, 2014).

Recent extensive genetic and molecular studies using
knockout/knockdown mutants and overexpression transgenic

lines in model plants as well as in crop plants have demonstrated
that many transcription factors (TFs) belonging to the NAC,

AP2/ERF, MYB, WRKY, bZIP, homeodomain, bHLH, NF-Y,
and CAMTA families play important roles in plant responses

to abiotic and biotic stresses (Ariel et al., 2007; Chen et al.,
2012; Mizoi et al., 2012; Puranik et al., 2012; Rushton et al.,

2012; Licausi et al., 2013; Nuruzzaman et al., 2013; Castilhos
et al., 2014; Nakashima et al., 2014; Shao et al., 2015). The NAC
(NAM, AFAT, and CUC) proteins are characterized with a

conserved region, called NAC domain, at their N-terminals and a
highly divergent C-terminus (Olsen et al., 2005). Genome-based

bioinformatics analyses have showed that the NAC proteins
constitute a large plant-specific family with more than 100

members (Ooka et al., 2003; Fang et al., 2008; Nuruzzaman
et al., 2010; Le et al., 2011). A large number of the NAC TFs

have been characterized for their roles in plant abiotic stress
responses (Puranik et al., 2012; Nuruzzaman et al., 2013).

Transcriptional profiling analysis revealed that at least 33
Arabidopsis NAC genes were responsible to abiotic stresses

including high salinity (Jiang and Deyholos, 2006). Similarly,
it was also found that a large portion of the rice NAC family

exhibited overlapping expression patterns in rice under various
abiotic and biotic stresses (Nuruzzaman et al., 2015; Sun et al.,

2015). Six rice NAC genes have been shown to be involved in
defense response against pathogen infection, e.g., ONAC048

(OsNAC6), ONAC048 (OsNAC111), ONAC122, and ONAC131
in regulating defense response against Magnaporthe oryzae

causing blast disease (Nakashima et al., 2007; Sun et al., 2013;
Yokotani et al., 2014), ONAC054 (RIM1) with negative effect on
resistance to rice dwarf virus (Yoshii et al., 2009) and ONAC068

(OsNAC4) as a positive regulator of hypersensitive cell death
(Kaneda et al., 2009). The involvement of NAC TFs in rice

abiotic stress response was extensively explored and seven
NAC genes have been characterized to play important roles in

abiotic stress tolerance in rice. For example, overexpression of
ONAC002 (SANC1/OsNAC9), ONAC048 (SNAC2/OsNAC6),

ONAC009 (OsNAC5), ONAC122 (OsNAC10), ONAC045, or

ONAC058 (OsNAP) improved significantly the drought and

salinity tolerance in transgenic rice (Hu et al., 2006, 2008;
Nakashima et al., 2007; Zheng et al., 2009; Jeong et al., 2010,

2013; Takasaki et al., 2010; Song et al., 2011; Redillas et al., 2012;
Chen et al., 2014; Liang et al., 2014) and some of these transgenic

rice lines showed increased drought tolerance under severe
drought stress conditions without any adverse effect on yield

or even with yield increase (Hu et al., 2006; Jeong et al., 2010,
2013; Redillas et al., 2012; Chen et al., 2014). Abscisic acid (ABA)

is a well-known stress hormone that coordinates the complex
networks of stress responses. ABA-mediated signaling pathway

plays important roles in abiotic stress responses regulated by
several NAC TFs in transgenic rice plants, as demonstrated by

the hypersensitivity to ABA (Hu et al., 2006, 2008; Chen et al.,
2014), upregulated expression of ABA biosynthesis-related genes

(Jeong et al., 2010; Redillas et al., 2012), increased endogenous
ABA level (Liang et al., 2014), and upregulated expression of
a set of ABA-responsive stress-related genes (Nakashima et al.,

2007; Hu et al., 2008; Jeong et al., 2010, 2013; Takasaki et al.,
2010; Redillas et al., 2012; Chen et al., 2014). In addition, altered

stomatal movement or root system regulated by overexpression
of ONAC002 (SANC1/OsNAC9), ONAC009 (OsNAC5), or

ONAC122 (OsNAC10) was also found to be involved in the
improved abiotic stress tolerance of the transgenic plants (Hu

et al., 2006; Jeong et al., 2010, 2013; Takasaki et al., 2010; Redillas
et al., 2012).

We are interested to characterize novel TF genes that regulate
plant stress response and try to generate stress-resistant/tolerant

crops through transgenic approach. In our previous study, we
characterized a number of stress-responsive ONAC genes in rice

response to biotic and abiotic stresses using publicly available
microarray data (Sun et al., 2013, 2015) and noticed that one

ONAC gene, ONAC022 (LOC_Os03g04070), was significantly
induced by several abiotic and biotic stress treatments. In the

present study, we performed a detailed functional analysis by
overexpression of ONAC022 in transgenic rice to explore its roles
in abiotic stress tolerance.

MATERIALS AND METHODS

Plant Growth and Treatments
Rice (Oryza sativa L.) cultivar Yuanfengzao was used for

analyses of gene expression in response to abiotic stress and
ABA treatment whereas cultivar Xiushui 134 for generation of

transgenic lines and phenotype analyses. Seedlings were grown
in a soil mix (clay is mixed with soil at 3:1 ratio) in a growth

room under daily cycle of 28◦C 14 h light (>3000 lux)/22◦C
10 h dark or in a greenhouse with natural sunlight. For hormone

treatment, 2-week-old seedlings grown in a growth room were
treated by spraying with 100 µM ABA or with equal volume of

solution containing only 0.1% ethanol and 0.02% Tween-20 as
controls. For drought stress treatment, seedlings were put on lab

blenches without water supply or on water-saturated filter papers
in Petri dishes as controls. For salt stress treatment, seedlings

were irrigated with 200 mM NaCl solution. Leaf samples were
collected and stored at –80◦C until use.
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Cloning and Sequence Analysis of
ONAC022
Based on the predicted sequence of ONAC022
(LOC_Os03g04070) in Rice Genome Annotation database and a

full-length cDNA (AK107090) in GenBank database, the coding
sequence of ONAC022 was amplified using a pair of gene-specific

primers (Supplementary Table S1) and cloned into pMD19-T
vector, yielding plasmid pMD19-ONAC022. After confirmation

by sequencing, plasmid pMD19-ONAC022 was used as a
template for all experiments. Multiple sequence alignment was

performed using ClustalW program in the Lasergene software.
Phylogenetic tree analysis with other rice NAC proteins retrieved

from the Rice Genome Annotation database was performed
using neighbor-joining method in MEGA5 software with

1000 replications. The promoter sequence of the ONAC022 gene
(1500 bp upstream from the transcription start site) was retrieved

and searched for putative cis-elements at the PLACE database
(http://www.dna.affrc.go.jp/PLACE/signalscan.html).

Subcellular Localization Assay
The coding sequence of ONAC022 was amplified using a pair

of gene-specific primers (Supplementary Table S1) and inserted
into vector pFGC-EGFP at BamHI/XbaI sites, yielding plasmid
pFGC-GFP-ONAC022. This plasmid and the pFGC-EGFP

empty vector were transformed into Agrobacterium tumefaciens
GV3101 and the agrobacteria were infiltrated separately into

leaves of Nicotiana benthamiana plants expressing a red nuclear
marker RFP–H2B protein (Chakrabarty et al., 2007) using 1-mL

needless syringes. After agroinfiltration, the plants were grown
in a growth room under 25◦C for 48 h. GFP fluorescence signals

were excited at 488 nm and detected under a Zeiss LSM 510Meta
confocal laser scanning microscope (Oberkochen, Germany)

using a 500–530 nm emission filter.

DNA Binding and Transactivation Activity
Assays
For DNA binding activity assay, the coding sequence of
ONAC022 was amplified using a pair of gene-specific primers

(Supplementary Table S1) and inserted into pGEX-6p-1 (GE
Healthcare, Piscataway, NJ, USA) at BamHI/EcoRI sites,

yielding plasmid pGEX-6p1-ONAC022, which was then
transformed into Escherichia coli strain BL21. GST-fused

ONAC022 recombinant protein was purified using glutathione
resin column (Genscript, Shanghai, China) according to the

manufacturer’s protocol. A 28 bp cis-element fragment wNACRS
(ATCGCATGTGGAGCACGGAGCACGTTTT, the core sequen-

ces underlined; Xie et al., 2000; Trans et al., 2004) and a mutated
fragment mNACRS (ATCGAAAAAAGAGAAAAGAGAAAA

TTTT, the mutated nucleotides underlined) were labeled
with biotin. Electrophoretic mobility shift assay (EMSA) was

performed using a chemiluminescent EMSA Kit (Beyotime
Biotechnology, Haimen, China). Binding reactions were

conducted in a total of 10 µL volume containing 5x EMSA
buffer, 2 µg recombinant ONAC022 protein or GST protein

(as a negative control) and 1 µL biotin-labeled wNACRS or
mNACRS probe. For the competitive reactions, excess unlabeled

wNACRS or mNACRS probe (in excess of 200 times) was added

and incubated for 20 min before addition of the labeled wNACRS
probe. The reaction mixtures were separated on 8% native

PAGE and transferred onto nitrocellulose membranes. Signals
from the probes were detected according to the manufacturer’s

protocol. For transactivation activity assay, the coding sequence
of ONAC022 was amplified using a pair of gene-specific primers

(Supplementary Table S1) and fused in-frame to yeast GAL4
DNA binding domain in vector pBD-GAL4Cam, yielding

plasmid pBD-ONAC022. Plasmid pBD-ONAC022 and pBD
empty vector were transformed into yeast strain AH109. The

transformed yeasts were plated on SD/Trp− or SD/Trp−

His− medium and incubated for 3 days at 30◦C, followed

by addition of x-α-gal. Transactivation activity of the fused
proteins was evaluated according to the growth and production

of blue pigments after addition of x-α-gal on SD/Trp− His−

medium.

Generation and Characterization of
N22oe Lines
The coding sequence of ONAC022 was amplified using
ONAC022-F-OE and ONAC022-R-OE (Supplementary Table S1)

and inserted into binary vector pCoUm (Zhang et al., 2008)
under the control of a maize ubiquitin promoter, yielding plasmid

pCoUm-Ubi::ONAC022. The resulting construct was introduced
into rice calli of cultivar Xiushui134 through Agrobacterium-
mediated transformation. T2 generation of the obtained N22oe

lines was screened by planting seeds on 1/2 MS medium
supplemented with 50 µg/L hygromycin (Hgr) and lines showing

3:1 (Hgr-resistant:Hgr-susceptible) segregation were selected as
putative transgenic lines with single-copy of the transgene. Seeds

from individual lines of T3 generation were observed on selective
medium and those that showed 100% resistance to Hgr were

selected as homozygous lines. Homozygous lines with single-
copy of transgene were used for all experiments. To further

characterize these single-copy transgenic lines, genomic DNA
was extracted with two volumes of 2x CTAB extraction buffer (2%

CTAB, 10mMTris-HCl pH8.0, 20mMEDTApH8.0, 1.4MNaCl,
2% 2-ME). Fifty micrograms of genomic DNA were digested

completely with EcoRI, separated by electrophoresis on a 0.8%
agarose gel, and transferred by capillary action overnight onto

a Hybond-N+ nylon membrane (Amersham Biosciences, Little
Chalfont, UK) using 20X SSC solution. A 589 bp fragment of the

HptII gene was amplified using a pair of primers HptII-Probe-F
and HptII-Probe-R (Supplementary Table S1) and labeled with

DIG by the random priming method using a DIG High Prime
DNA Labeling and Detection kit (Roche Diagnostics, Shanghai,
China). Prehybridization, hybridization, and detection were

performed according to the manufacturer’s recommendations.

Phenotype Analyses for Drought and Salt
Tolerance and ABA sensitivity
For drought tolerance assay, ten 4-week-old N22oe and wild-type
(WT) seedlings were grown in the same pot with three replicates

and were subjected to drought stress treatment by withholding
watering for 15 days, followed by recovery with normal water
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supply for another 7 days. The survival ratio and fresh weight

of the plants were calculated at 12 days after re-watering. Plants
that were green and healthy young leaves after re-watering were

regarded as survivals. Survival ratio was calculated as the ratio
of number of survived plants over the total number of treated

plants. For salt tolerance assay, 100 seeds were germinated on 1/2
MS medium supplemented with or without 150 mM NaCl under

28◦C/25◦C (day/night) with a 12 h photoperiod. At 6 days after
germination, shoot height and fresh weight of at least 30 seedlings

of each line were measured. For ABA sensitivity assay, 60
seeds were germinated on 1/2 MS medium containing different

concentrations of ABA under 28◦C/25◦C (day/night) with a 12 h
photoperiod. At 6 days after germination, the germination rates

and shoot and root lengths for each line were recorded.

Physiological and Biochemical
Measurements
Content of free proline in leaves of rice plants was determined

as previously described (Bates et al., 1973). Briefly, leaves were
harvested, weighed, and extracted in 3% sulfosalicylic acid. An

aliquot of each extract (2 mL) was incubated with 2 mL of
ninhydrin reagent [2.5% (w/v) ninhydrin, 60% (v/v) glacial acetic

acid, and 40% 6 M phosphoric acid] and 2 mL of glacial acetic
acid at 100◦C for 40 min, and the reaction was terminated on

ice bath. Four milliliters of toluene solution were added to the
reactions, followed by vortex and incubation at 23◦C for 30 min,
followed by measurement of the absorbance at 520 nm. Content

of total soluble sugars in leaves of rice plants was measured as
previously described (Bailey, 1958). Leaf samples were weighed

and then extracted by 80% ethanol at 80◦C for 30 min with
occasional agitation. The supernatant was filtered and brought

to a final volume of 10 mL with 80% ethanol. One milliliter
of the extract was incubated with 5 mL anthrone reagent at

95◦C for 15 min, and then the reaction was terminated on ice,
followed by measurement of the absorbance at 620 nm. Relative

water content (RWC) in leaves of rice plants was measured as
previously described (Schonfeld et al., 1988). Fully expanded

leaves from three- to four-leaf stage soil-grown plants were
detached tomeasure the leaf fresh weight (WF), turgid leaf weight

(WT), and dry weights (WD), and RWC were calculated from the
equation

RWC (%) = (WF − WD)/(WT − WD) × 100%.

Transpiration rate in leaves was measured using LI-6400

Photosynthesis System (LI-COR, Lincoln, NE, USA). Five flag
leaves of 3-month-old plants grown in greenhouse were enclosed

in a leaf chamber with a built-in red and blue light source at
PAR of 800 µmol·m−2·s−1 in the gas exchange analyzer. The

chamber CO2 concentration was controlled at 390 ppm using an
automatic CO2 controller in the LI-6400 system. Measurements

were performed at 10:00 AM, 12:00 PM, 14:00 PM, and 16:00
PM in a clear day for each leaf and at least eight measurements

for each plant at each time point were collected to calculate the
transpiration rate. Content of Na+ in root and shoot tissues was

analyzed according to a previously described protocol (Jabeen
et al., 2014). Briefly, shoots and roots were harvested from at least

ten 4-week-old N22oe and WT seedlings grown hydroponically

in modified Hogland solution supplemented with or without
150 mM NaCl. Samples were washed three times with deionized

water, grinded to fine powder with liquid nitrogen and then
dried at 70◦C for 3 days. After weighting, the dried samples

were digested with 10 mL nitric acid until clarification and the
Na+ content was measured using a flame atomic absorption

spectrometry (AA6300, Shimadzu, Japan). Stomatal closure was
examined according to the method described previously (You

et al., 2013). Briefly, fully expanded leaves from 8-week-old plants
grown under normal or drought stress condition were detached

and fixed in 2.5% glutaraldehyde solution. Stomatal status was
monitored by scanning electron microscopy (SU8010, Hitachi,

Japan).

Quantification of Endogenous ABA
Content
Leaf tissues (300mg) were ground in liquid nitrogen. The powder

was extracted with 2 mL 80% methanol and kept overnight at
–20◦C, followed by centrifugation at 4◦C for 10min at 12,000× g.

The supernatant was collected, dried under nitrogen gas and
dissolved in 0.5 mL 2% ammonia solution. Crude extracts were

further purified by Oasis MAX SPE columns (Waters Corp.,
Milford, MA, USA) that were sequentially preconditioned with

2 mL methanol and 2 mL 2% ammonia solution. After the
supernatant was loaded, the columns were sequentially washed
with ammonia solution (2%) and 2 mL methanol. ABA was

eluted with 4 mL methanol containing 1% formic acid. The
eluent was dried under nitrogen gas and dissolved in 0.5 mL 80%

methanol. Quantification of ABA was performed by a HPLC-
Triple quadrupole liquid chromatography-mass spectrometry

system (Model 1290/6460, Agilent Technologies, Santa Clara,
CA, USA) with stable isotope-labeled ABA as a standard

according to a previously described method (Fu et al., 2012).

qRT-PCR for Gene Expression Analysis
Total RNA was extracted from frozen leaf samples using

TRIzol reagent (Invitrogen, Shanghai, China) and then treated
with RNase-free DNase (TaKaRa, Dalian, China). First-strand

cDNA was synthesized from 1 µg of total RNA using AMV
reverse transcriptase (TaKaRa, Dalian, China) according to the

manufacturer’s recommendation. qRT-PCR was performed on
a CFX96 real-time PCR system (Bio-Rad, Hercules, CA, USA)

using Fast Essential DNA Green Master kit (Roche Diagnostics,
Shanghai, China). Each qRT-PCR reaction contained 12.5 µL 2x

Fast essential buffer (Roche Diagnostics, Shanghai, China), 1 µg
cDNA and 10 µmoL of each of gene-specific primers in a final
volume of 25µL. A riceActin gene was used as an internal control

to normalize the data and relative expression levels of genes of
interest were calculated using the 2−��CT method. Gene-specific

primers used in qRT-PCR are listed in Supplementary Table S1.

Microarray Analyses of Gene Expression
Profiling
Leaf samples were collected from 3-week-old N22oe and WT
plants and microarray analyses were performed using Affymetrix
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Rice GenomeArray by standard protocol. All procedures for total

RNA extraction, probe preparation, hybridization, scanning, data
collection, and bioinformatics analyses were carried out at Beijing

Capitalbio Biotechnology Company Ltd (Beijing, China). Genes
with a twofold change in the expression level between N22oe and

WT plants were defined as differentially expressed genes.

Statistical Analysis
All experiments were repeated independently for at least three

times and data were subjected to statistical analysis using the
Student’s t-test at p = 0.05 level.

RESULTS

ONAC022 is a Stress-Responsive NAC
Gene in Rice
The ONAC022 gene encodes a 316 aa protein with a typical NAC
domain, which can be divided into five subdomains, namely A,

B, C, D, and E (Ooka et al., 2003) (Figure 1A). In addition,
the C-terminal region of the ONAC022 protein also contains

newly identified unique conserved C1 and C2 domains that are
absent in other NAC proteins (Kato et al., 2010) (Figure 1A).

Phylogenetic analysis suggests that ONAC022 belongs to Group
B (Nuruzzaman et al., 2010) or Phylogeny Group IV (Fang et al.,

2008), which contains 14 members (Figure 1B). Phylogenetically,
ONAC022 is closely related to rice ONAC095 and Arabidopsis

ANAC036, showing 62 and 52% of identity at amino acid level,
respectively, but is less related to other known stress-responsive

NAC proteins in rice (Figure 1B). Bioinformatics analysis
indicates that the promoter region (1.5 Kb upstream of the start

codon) of the ONAC022 gene contains some stress response-
related cis-elements, including one ABRE element, two MYB

binding sites, two TCA elements, one TC-rich element and one
GCC box (Figure 1C). To explore the possible involvement of
ONAC022 in abiotic stress response, we analyzed the expression

patterns of ONAC022 in rice plants after treatment with abiotic
stresses and ABA. qRT-PCR analyses revealed that the expression

of ONAC022 was significantly and rapidly induced within 2 h
after salt and drought treatment, leading to fourfold to sixfold

of increases (Figures 2A,B). Treatment of rice plants with
ABA induced the expression of ONAC022, showing threefold to

fourfold of increase during 6–12 h after treatment (Figure 2C).
These data indicate that ONAC022 is a stress-responsive NAC

gene in rice.

ONAC022 is a Nucleus-Localized
Transcriptional Activator
To examine the subcellular localization of ONAC022,
agrobacteria carrying pFGC-EGFP:ONAC022 and pFGC-

EGFP (as a negative control) were infiltrated into leaves of
4-week-old Nicotiana benthamiana plants that expressed a

red nuclear marker RFP–H2B protein (Chakrabarty et al.,
2007). Confocal micrographs showed that the GFP:ONAC022

fusion protein was solely and clearly localized to the nucleus,
co-localized with the known nucleus marker RFP–H2B protein

(Figure 3A), whereas the GFP alone distributed ubiquitously

throughout the cell without specific compartmental localization
(Figure 3A). These data demonstrate that the ONAC022 protein

is localized to nucleus of the cells.
To examine whether the ONAC022 protein had DNA

binding activity, GST-ONAC022 fusion protein was purified to
homogeneity in native PAGE. EMSA results revealed that the

GST-ONAC022 protein bound to the biotin-labeled wNACRS
fragment, which contained the CATGTG and CACG core motifs

(Xie et al., 2000; Trans et al., 2004), forming a specific DNA-
protein complex, but did not bind to the biotin-labeled mNACRS

fragment (Figure 3B), in which the CATGTG and CACG
motifs were replaced with the sequences AAAAAA and AAAA,

respectively. In the competition binding assay, binding of GST-
ONAC022 to the labeled wNACRS fragment was attenuated

in the presence of excess unlabeled wNACRS fragment in the
reaction but was not affected by unlabeled mNACRS fragment
(Figure 3B). The purified GST protein did not bind to the

wNACRS fragment (Figure 3B). These results indicate that the
ONAC022 protein could specifically bind to the cis-element

NACRS of the NAC proteins.
To determine whether ONAC022 had transcriptional

activator activity, the full ONAC022 protein, an N-terminal
fragment ONAC022�C (lacking 151-316 aa at C-terminal)

and a C-terminal fragment ONAC022�N (lacking 1-150 aa
at N-terminal) were each fused to the GAL4 DNA-binding

domain of the pBD vector (Figure 3C). All yeast transformants
grew well in SD/Trp− medium (Figure 3C). On SD/Trp−His−

medium, only transformants carrying pBD-ONAC022 or
pBD-ONAC022�N grew and showed β-galactosidase activity,

whereas transformants carrying pBD-ONAC022�C and pBD
empty vector did not (Figure 3C). These results indicate that

the ONAC022 protein is a transcriptional activator and that the
C-terminal region of ONAC022 is required for its transactivation

activity.

Generation of the
ONAC022-Overexpressing (N22oe)
Transgenic Rice
The ONAC022 gene was transformed into rice cv. Xiushui134

under the control of the maize ubiquitin promoter (Figure 4A).
A total of 23 independent transgenic lines were generated. After

screening by Hgr resistance phenotype on 1/2 MS medium,
three independent transgenic lines (N22oe-33, 34, and 37) were

selected as candidates of single copy lines and were confirmed
by Southern blotting with a fragment of the Hgr gene as a

probe. Because there is no EcoRI sites in the region between
LB and RB in the pCoUm vector, a single band of the EcoRI-

digested genomic DNA from each of these three lines was
detected (Figure 4B), indicating that the transgenic lines N22oe-

33, 34, and 37 contained a single copy of the transgene. qRT-PCR
analysis showed that the ONAC022 gene was expressed normally

in the transgenic lines (T3 generation) and the expression
levels in N22oe-33, 34, and 37 lines were 27, 22, and 11

times higher than that in WT plants, respectively (Figure 4C).
During the experiments under normal watered condition in
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FIGURE 1 | Continued
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FIGURE 1 | Continued

Characterization of rice ONAC022 protein and gene. (A) Alignment of ONAC022 with rice ONAC095, SNAC1 (OsNAC9), and SNAC2 (OsNAC6) and

Arabidopsis ANAC036. Identical amino acids are shaded in black and the conserved NAC domain is boxed. Black arrowed lines indicate the locations of the five

highly conserved subdomains A–E, while red arrowed lines show the locations of the newly identified C1 and C2 domains. (B) Phylogenetic tree analysis of

ONAC022 with other known stress-responsive rice NAC proteins. Sequence alignment was performed using Clustal X1.81 program and phylogenic tree was

created and visualized using MEGA 5.05. Protein sequences used for alignment are as follow: ONAC012 (Os05g37080), ONAC022 (Os03g04070), ONAC017

(Os11g05614), ONAC049 (Os08g02160), ONAC059/ENAC1 (Os01g64310), ONAC063 (Os08g33910), ONAC066 (Os03g56580), ONAC075 (Os01g66490),

ONAC087 (Os05g34600), ONAC095 (Os06g51070), ONAC096 (Os07g04560), ONAC134 (Os12g05990), ONAC140 (Os12g43530), ONAC002/SNAC1/OsNAC9

(Os03g60080), ONAC048/SNAC2/OsNAC6 (Os01g66120), ONAC058/OsNAP (Os03g21060), ONAC122/OsNAC10 (Os11g03300), ONAC131 (Os12g03040),

ONAC068/OsNAC4 (Os01g60020), ONAC009/OsNAC5 (Os11g08210), ONAC054/RIM1 (Os03g02800), ONAC045 (Os11g03370). Reported names and functions

in stress response of the known stress-responsive NAC genes were given in parentheses in the tree and listed at right of the tree, respectively. (C) Distribution of

major stress-related cis-elements in the promoter region of the ONAC022 gene.

FIGURE 2 | Induction of ONAC022 expression by drought, salt, and abscisic acid (ABA). Two-week-old seedlings were exposed to drought (A), 150 mM

NaCl (B), or treated by foliar spraying with 100 µM ABA (C) and leaf samples were collected at indicated time points for analyses of gene expression by qRT-PCR.

Relative expression levels as compared to those of the actin gene at each time point are presented as the means ± SD from three independent experiments. ∗Above

the columns indicate significant differences at p ≤ 0.05 level with corresponding controls.

greenhouse, we noticed that the N22oe plants showed growth

retardation (Figure 4D), leading to 25–29% of reduction in plant
height (Figure 4E), as compared to WT plants. In addition,

we also noted that the panicles of the N22oe plants grown
under greenhouse condition were smaller than the WT plants

(Figure 4F), leading to significant reductions in grain numbers
per panicle and 1000-grain weight (Figures 4G,H). These data

indicate that overexpression of ONAC022 has a negative effect
on growth and a penalty on grain yield in transgenic rice. No

significant difference in other morphological and developmental
characters such as tiller number, flowering and heading was
observed between the N22oe and WT plants.

Increased Drought and Salt Tolerance in
N22oe Plants
To examine whether ONAC022 plays a role in abiotic stress
tolerance, we compared the drought and salt tolerance of the

N22oe and WT plants at vegetative growth stage. Before drought
stress treatment, the N22oe and WT seedlings exhibited similar

growth status (Figure 5A). The WT seedlings started to show
leaf rolling at 10 days (Figure 5B) and became severe leaf rolling

and wilting at 12 days after withholding water (Figure 5C).
During the drought stress process, however, the N22oe seedlings

showed delayed and less leaf rolling and did not show wilting
symptom during the drought stress process, as compared with

the WT seedlings (Figures 5B,C). After re-watering regularly for

12 days, only 24% of the WT seedlings were recovered, while 85,
78, and 66 of the N22oe-33, 34, and 37, respectively, survived

(Figures 5D,E). Similarly, the fresh weights of individual N22oe
plant were significantly higher thanWT at 12 days after recovery,

giving approximately 50% of increase (Figure 5F). These data
demonstrate that the N22oe plants exhibit increased tolerance

to drought stress and that ONAC022 plays a critical role in rice
drought stress tolerance.

We next compared the salt tolerance of the N22oe and WT
plants. No significant difference between the N22oe andWT lines
was observed for seed germination and seedling growth on 1/2

MS medium without supplement of NaCl (Figure 6A, upper).
However, in the presence of 150 mM NaCl, seed germination

and seedling growth of the WT were markedly inhibited at
7 days after planting on 1/2 MS medium. By contrast, seeds of

the N22oe-33, 34, and 37 lines germinated and the seedlings
grew normally on 1/2 MS medium supplemented with 150 mM

NaCl (Figure 6A, lower) although the seedling growth of the
N22oe lines was inhibited to some extent as compared with those

grown on NaCl-free medium (Figure 6A). The shoot length of
the N22oe seedlings was similar to that of the WT seedlings

when grown under normal condition, but was significantly
higher than the WT seedlings when grown under NaCl stress,

leading to twofold to threefold of increases (Figure 6B). The
root length of the N22oe seedlings was also higher than that
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FIGURE 3 | Continued

Subcellular localization and transactivation activity of the ONAC022 protein. (A) ONAC022 is localized in nucleus. Agrobacteria carrying

pFGC-Egfp-ONAC022 or pFGC-Egfp empty vector were infiltrated into leaves of Nicotiana benthamiana plants expressing a red nucleus marker protein RFP–H2B

and leaf samples were collected at 24 h after infiltration for observation under a confocal laser scanning microscope. Images were taken in dark field for green

fluorescence (left) and red fluorescence (middle right), white field for cell morphology (middle left) and in combination (right), respectively. (B) DNA binding activity of

ONAC022. Wild type version of the cis-element sequence (wNACRS) and a mutated version (mNACRS) were used. Electrophoretic mobility shift assays were

performed using the recombinant GST-fused ONAC022 protein. Biotin-labeled wNACRS and mNACRS probe and biotin-labeled wNACRS probe in combination

with unlabeled wNACRS or mNACRS probe were incubated with GST-fused ONAC022 protein or a purified GST preparation as a negative control. Specific

DNA-protein complexes and free probes are indicated by the arrowheads on left. (C) ONAC022 has transactivation activity. Yeast cells carrying pBD-ONAC022,

pBD-ONAC022�C, pBD-ONAC022�N or pBD empty vector (as a negative control) were streaked on SD/Trp− plates (left) or SD/Trp−His− plates supplemented

with x-α-gal (right) for 3 days at 28◦C.

FIGURE 4 | Characterization of the ONAC022-overexpressing transgenic rice lines and their agronomic traits. (A) Schematic diagram of the

overexpression construct used for rice transformation. HptII, hygromycin (Hgr) phosphotransferase II; LB, left border; RB, right border; Ubi, maize ubiquitin promoter;

35S, CaMV 35S promoter. (B) Southern blot analysis of copy number of the transgene in T4 generation of the N22oe lines. Genomic DNA (∼50 µg) extracted from

the N22oe and wild-type (WT) plants was digested with EcoRI and probed with a DIG-labeled fragment of the HptII gene. (C) Expression levels of the ONAC022

gene in the N22oe lines. (D) Growth phenotypes of the N22oe plants at heading stage under normal watered condition in greenhouse. (E) Reduced plant height of

the N22oe plants grown under normal watered condition in greenhouse. (F) Comparison of the panicles between the N22oe and WT plants grown under normal

watered condition in greenhouse. (G) Numbers of grains per panicle between the N22oe and WT plants grown under normal watered condition in greenhouse.

(H) Weights of 1000-grain from the N22oe and WT plants grown under normal watered condition in greenhouse. Data presented (C,E,G,H) are the mean ± SD from

three independent experiments and different letters above the columns indicate significant differences at p ≤ 0.05 level with corresponding WT.

of the WT seedlings when grown under normal condition or

NaCl stress and showed 70–85% increase over the WT seedlings
when grown under NaCl stress condition (Figure 6C). Also, the

lateral root numbers of the N22oe seedlings were much more
than that of the WT seedlings when grown under NaCl stress

condition, leading to 1.5- to 3-fold of increases (Figure 6D).

We also measured the Na+ content in shoots and roots of
WT and N22oe seedlings grown under normal or salt stress

condition. When grown in normal Hogland solution, the Na+

content in roots and shoots showed no significant difference
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FIGURE 5 | Increased drought tolerance in N22oe plants. (A–D) Phenotype of the N22oe and WT seedlings at different stages during the drought stress

experiments. The N22oe seedlings were grown in barrels each with WT seedlings as a control. (E) Survival ratios of the N22oe and WT plants at 12 days after

re-watering. (F) Growth biomass of the seedlings after drought stress treatment. Data presented in (E,F) are the mean ± SD from three independent experiments

and different letters above the columns indicate significant differences at p ≤ 0.05 level.

between WT and N22oe seedlings (Figures 6E,F). The Na+

contents in roots and shoots of plants grown in Hogland solution

supplemented with 150 mM NaCl were significantly increased
as compared to those in plants grown normal Hogland solution

(Figure 6E). However, the Na+ content in roots and shoots of

the N22oe plants were significantly reduced by 25–55 and 32–47,
respectively, as compared to those in WT plants (Figures 6E,F).

These results suggest that the N22oe plants show increased salt
tolerance and that ONAC022 functions importantly in rice salt

tolerance.

Frontiers in Plant Science | www.frontiersin.org 10 January 2016 | Volume 7 | Article 4

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Hong et al. ONAC022 Improves Abiotic Stress Tolerance

FIGURE 6 | Increased salt tolerance in N22oe plants. (A) Growth performance of the N22oe and WT seedlings grown on 1/2 MS medium supplemented with or

without 150 mM NaCl. (B,C) Shoot and root length of the N22oe and WT seedlings grown on 1/2 MS medium supplemented with or without 150 mM NaCl.

(D) Number of lateral roots of the N22oe and WT seedlings grown on 1/2 MS medium supplemented with or without 150 mM NaCl. (E,F) Na+ contents in roots and

shoots of the N22oe and WT seedlings grown in modified Hogland solution with or without 150 mM NaCl. Data presented in (B–F) are the mean ± SD from three

independent experiments and different letters above the columns indicate significant differences at p ≤ 0.05 level with corresponding WT.

Increased Contents of Stress-Related
Metabolites and Reduced Transpiration
in N22oe Plants
To explore the possible physiological mechanism responsible
for the increased drought and salt tolerance in N22oe plants,

we compared some stress-related physiological changes between

the N22oe and WT plants grown under normal and drought

conditions. Under normal growth condition, the proline contents
in the N22oe plants were markedly higher than the WT
plants, leading to 20–78% of increases (Figure 7A), whereas

no significant difference in the contents of soluble sugars was
observed between the N22oe and WT plants (Figure 7B). At

10 days after drought stress treatment, the proline and soluble
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sugar contents were increased significantly both in N22oe and

WT plants as compared with those in plants grown under
normal condition (Figures 7A,B). However, the increases in

proline and soluble sugar contents in N22oe plants were much
evident than those in WT plants under drought stress condition,

resulting in 32–73 and 55–110% of increases for the proline
and soluble sugar contents, respectively (Figures 7A,B). The

rates of water loss in detached leaves of the N22oe plants were
approximately 8–15% lower than those in detached leaves of

the WT plants during a period of 3–7.5 h after detachment
(Figure 7C). Similarly, the transpiration rates in leaves of the

N22oe plants under normal sunlight condition were reduced
by 0.5–1.17%, as compared with those in WT plants, at 12:00,

14:00, and 16:00 (Figure 7D). Furthermore, we also examined
the stomatal density and behavior between the N22oe and WT

plants grown under normal and drought stress conditions. No
difference in stomatal density was observed (Figure 7E) between
the N22oe and WT plants, but the percentages of open stomata

in leaves of the N22oe plants grown under drought condition
were significantly lower than that in the WT plants (Figure 7F).

These results indicate that increased contents of stress-related
metabolites, reduced transpiration rates and less open stomata

may be the causes that confer the increased drought tolerance in
the N22oe plants.

Increased ABA Sensitivity in N22oe
Plants
The ABA sensitivity of the N22oe lines was examined and
compared with WT by analyses of seed germination and seedling

growth. On 1/2 MS medium without ABA, seeds of the N22oe
and WT lines germinated normally and no significant difference

was observed between the N22oe and WT lines (Figures 8A,B).
However, on 1/2 MS medium supplemented with 3 µM or 6 µM

ABA, germination of seeds of the N22oe lines was significantly
inhibited as compared with theWT line (Figures 8A,B), resulting

in 35–54% of reduction in seed germination rate as compared
with the WT at the same ABA concentration (Figure 8B).

Similarly, the N22oe seedlings grew better than those of the WT
seedlings on 1/2 MS medium without ABA (Figure 8C) and

had longer shoots and roots, leading to 17–27 and 11–23% of
increases for shoot and root lengths (Figures 8D,E). However,

significant growth inhibition of the N22oe seedlings grown on 1/2
MSmedium with 3 µMor 6 µMABAwas observed (Figure 8C),

resulting in 45–52 and 67–85% of reduction for shoot length at
3 µM or 6 µM ABA and 66–72 and 83–93% of decrease for

root length at 3 µM or 6 µM ABA, respectively, as compared
with the WT seedlings (Figures 8D,E). These data indicate that
overexpression of ONAC022 results in increased ABA sensitivity

of the transgenic rice.

Increased ABA Biosynthesis and
Contents in N22oe Plants
The increased ABA sensitivity in the N22oe plants led us
to examine whether overexpression of ONAC022 affects the

endogenous level of ABA and its biosynthesis in transgenic
rice. As shown in Figure 9A, the endogenous ABA content

in the N22oe-33 and 37 plants was significantly higher than

that in the WT plants, leading to 60 and 46% of increases,
respectively. Meanwhile, the expression of several genes involved

in ABA biosynthesis such as OsNCED1, OsNCED3, OsNCED4,
OsNCED5, and OsPSY was upregulated in the N22oe plants

grown under normal condition, resulting in increases of 2.8-
to 14.9-fold for OsNCEDs and 1.7- to 2.6-fold for OsPSY

over those in WT plants (Figure 9B). These results suggest
that overexpression of ONAC022 can upregulate the expression

of many ABA biosynthesis-related genes and thus increase
endogenous ABA content in the N22oe plants.

Upregulated Expression of ABA- and
Stress-Responsive Genes in N22oe
Plants
To gain further insights into the mechanism of the increased
drought and salt tolerance in N22oe plants, the gene expression

profiles between 3-week-old N22oe and WT plants grown under
normal condition were determined and compared using the

Affymetrix rice gene chip. A total of 1059 genes were identified as
differentially expressed genes (486 up-regulated and 573 down-

regulated) that showed a >twofold change in the transcript
levels in N22oe plants (Supplementary Figure S1), compared

with the transcript levels in WT plants, including a number of
stress-responsive genes encoding for protein phosphatase 2Cs

(LOC_Os11g01790 and LOC_Os12g01770), late embryogenesis
abundant proteins (LOC_Os03g20680 and LOC_Os01g50910)

and bZIP protein (LOC_Os02g14910; Supplementary Table
S2). Furthermore, we selected 11 stress-responsive genes and

compared their expression in the N22oe and WT plants grown
under normal conditions. As shown in Figure 9C, the expression
levels of OsPP2C06/OsABI2, OsPP2C49, and OsPP2C68, three

members of the PP2C family known to be involved in abiotic
stress tolerance (Singh et al., 2010), were up-regulated in the

N22oe plants, showing increases of 1.3- to 10.5-fold over
those in WT plants. Several stress-related TF genes such as

OsbZIP23 (Xiang et al., 2008), OsDREB2a (Dubouzet et al.,
2003), OsMYB2 (Yang et al., 2012), and OsAP37 (Oh et al.,

2009) were up-regulated in the N22oe plants, giving increases
of 0.34- to 1.51-fold over those in WT plants (Figure 9C).

Furthermore, the expression levels of some stress-related genes
like OsRAB21 (Xiong et al., 2014), OsLEA3 (Xiao et al., 2007),

OsERD1 (a homolog of Arabidopsis AtERD1; Kiyosue et al.,
1994), and OsP5CS1 (Xiong et al., 2014) in N22oe plants were

also upregulated with increases of 0.3- to 1.4-fold for OsERD1
and OsP5CS1 and 14- to 35-fold for OsRAB21 and OsLEA3

over those in WT plants (Figure 9C). These data indicate
that overexpression of ONAC022 in N22oe plants, affects the

expression of a set of stress-related genes and thus confers an
increased drought and salt tolerance in transgenic rice.

DISCUSSION

The NAC TFs represent a quite large family with 151 members

in rice (Fang et al., 2008; Nuruzzaman et al., 2010). Although at
least 10 rice NAC genes such as ONAC002 (SNAC1/OsNAC9; Hu
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FIGURE 7 | Physiological changes inN22oe plants. (A) Proline contents in leaves of the N22oe and WT plants grown under normal and drought stress condition.

(B) Soluble sugar contents in leaves of the N22oe and WT plants grown under normal and drought stress condition. Four-week-old plants were subjected for

drought stress treatment by stopping watering and leaf samples were collected at 6 days after drought treatment. (C) Rates of water loss in detached leaves of the

N22oe and WT plants. Leaves were detached from 4-week-old N22oe and WT plants grown under normal conditions and placed on lab bench for drought

treatment. Leaf samples were collected at indicated time points and subjected for measuring water loss. (D) Transpiration rate of the N22oe and WT plants.

Transpiration rates in six flag leaves of 3-month-old N22oe and WT plants grown under greenhouse condition were determined by Li-6400 instrument at indicated

time points. (E) Stomatal aperture of the N22oe and WT plants grown under normal and drought condition. Scale bar = 50 µM. (F) Percentage of open stomata in

leaves of the N22oe and WT plants grown under normal and drought condition. Data presented in (A–D,F) are the mean ± SD from three independent experiments

and different letters above the columns indicate significant differences at p ≤ 0.05 level with corresponding WT.

et al., 2006; Redillas et al., 2012), ONAC068 (OsNAC4; Kaneda
et al., 2009), ONAC048 (SNAC2/OsNAC6; Nakashima et al., 2007;

Hu et al., 2008), ONAC009 (OsNAC5; Takasaki et al., 2010;

Song et al., 2011; Jeong et al., 2013), ONAC058 (OsNAP; Zhou
et al., 2013; Chen et al., 2014; Liang et al., 2014), ONAC122

(OsNAC10; Jeong et al., 2010; Sun et al., 2013), ONAC131 (Sun
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FIGURE 8 | Increased ABA sensitivity of the N22oe seedlings. (A,C) Growth performance and (B) germination rate of the N22oe and WT seedlings on 1/2 MS

medium supplemented with or without different concentrations of ABA. Photos were taken at 6 days after germination. (D,E) Shoot and root lengths of the N22oe

and WT seedlings grown on 1/2 MS medium supplemented with or without different concentrations of ABA. The shoot and root lengths were measured at 6 days

after germination. Data presented in (D,E) are the mean ± SD from three independent experiments and different letters above the columns indicate significant

differences at p ≤ 0.05 level with corresponding WT.

et al., 2013), ONAC054 (RIM1; Yoshii et al., 2009), ONAC045
(Zheng et al., 2009), and ONAC017 (OsNAC111; Yokotani et al.,
2014) have been shown to play important roles in abiotic and

biotic stress responses; however, the biological function of most
ONAC genes is not known. In the preset study, we demonstrated

that ONAC022 is a stress-responsive NAC with transcriptional
activator activity and play an important role in drought and salt

stress tolerance in rice. The Arabidopsis ANAC036, the closest
ortholog of ONAC022, was found to be involved in the growth of

leaf cells (Kato et al., 2010) but its role in abiotic stress response
remains unclear.

Our previous comprehensive analysis using publicly available

microarray expression data identified a total of 63 ONAC genes,
including ONAC022, that exhibited overlapping expression

patterns in rice under various abiotic (e.g., salt and drought) and
biotic (e.g., infection by fungal, bacterial, and viral pathogens)

stresses (Sun et al., 2015). In this study, we further verified
that the expression of ONAC022 was induced significantly by
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FIGURE 9 | Increased ABA content and upregulated expression of ABA biosynthetic and stress-responsive genes in N22oe plants. (A) Increased ABA

contents in the N22oe plants. (B) Expression of ABA biosynthesis-related genes in the N22oe plants. (C) Expression of stress-responsive genes in the N22oe plants.

Leaf samples were collected from 30-day-old seedlings grown under normal condition and subjected for analyses of ABA content and gene expression. ABA in leaf

samples was extracted and quantified by HPLC. FW, fresh weight. Expression of the ABA biosynthetic and stress-responsive genes was analyzed by qRT-PCR and

relative expression levels were shown as folds of the level of the actin gene. Data presented are the mean ± SD from three independent experiments and different

letters above the columns indicate significant differences at p ≤ 0.05 level with corresponding WT.

drought, salt, and ABA (Figure 2), indicating that ONAC022

can respond to multiple environmental cues. This is partially
supported by the fact that the promoter region of the ONAC022

gene contains several stress-related cis-elements such as ABREs
and GCC box (Figure 1C), which are present in promoters of

stress-responsive genes that are regulated by DREB and ERF TFs,
respectively (Yamaguchi-Shinozaki and Shinozaki, 2005, 2006;

Mizoi et al., 2012; Licausi et al., 2013). The ONAC022 protein
can bind specifically to a canonical NAC recognition cis-element

fragment wNACRS in vitro (Xie et al., 2000; Trans et al., 2004) and
has transcriptional activity that is dependent on its C-terminal

(Figures 3B,C). This is in agreement with a common knowledge
that NAC proteins have a C-terminal transcription activation

domain (Hu et al., 2006; Takasaki et al., 2010; Liang et al.,

2014). The C-terminal region of ONAC022 contains a newly

identified C1 domain (Figure 1A), which comprises the putative
NAC subdomain E and its immediately downstream sequence,

indicating that the C1 domain in ONAC022 may be involved in
the DNA-binding ability (Duval et al., 2002; Kato et al., 2010).

The observations that the N22oe plants showed improved
drought and salt stress tolerance as revealed by higher survival

ratio and better growth performance under drought and salt
stress condition (Figures 5 and 6) demonstrate that ONAC022

is a positive regulator of drought and salt stress tolerance
in rice. Several other rice NAC genes including ONAC001

(SANC1/OsNAC9; Hu et al., 2006; Redillas et al., 2012),ONAC048
(SNAC2/OsNAC6; Hu et al., 2008; Takasaki et al., 2010; Song

et al., 2011; Jeong et al., 2013), ONAC009 (OsNAC6; Nakashima
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et al., 2007), ONAC122 (OsNAC10; Jeong et al., 2010), ONAC058

(OsNAP; Chen et al., 2014), and ONAC045 (Zheng et al., 2009)
were previously reported to play positive roles in improving

drought and salt tolerance when overexpressed in transgenic
rice. The mechanisms responsible for the improved drought

and salt tolerance in the N22oe plants can be, at least
partially, explained by several morphological, physiological, and

biochemical changes observed in the present study. Firstly,
accumulation of compatible solutes such as soluble sugars and

free proline, which act as osmolytes to facilitate osmo-regulation,
molecular chaperones to stabilize proteins or regulators of the

antioxidant system, is a common phenomenon in response to
abiotic stress (Liu and Zhu, 1997; Garg et al., 2002). It was

observed that the N22oe plants accumulated higher levels of
free proline under normal condition and high levels of free

proline and soluble sugars under drought stress condition, than
the WT plants (Figures 7A,B). High levels of free proline
in the N22oe plants may due to an upregulated expression

of OsP5CS1 (Figure 9C), whose overexpression in transgenic
rice led to stress-induced accumulation of free proline and

increased abiotic stress tolerance (Zhu et al., 1998). Thus,
increased accumulation of free proline and soluble sugars in the

N22oe plants may partially account for the improved drought
and salt tolerance. In this context, similar observations have

also been observed in transgenic rice overexpressing ONAC009
(OsNAC5) and ONAC058 (OsNAP; Song et al., 2011; Chen et al.,

2014). Secondly, reduced rates of water loss in detached leaves,
decreased transpiration rate and increased stomatal closure in

leaves of whole plants were observed in the N22oe plants
(Figures 7C,D), which may be the factors that contribute to

the improved drought and salt tolerance in the N22oe plants.
It is well known that stomatal behavior and/or stomatal density

on leaves of plants affect greatly the rates of water loss and
transpiration under drought stress condition. For example, it was

previously found that increased stomatal closure at the early stage
of drought stress was an important factor causing reduced rates
of transpiration/water loss and improved drought tolerance in the

ONAC002 (SNAC1)-overexpressing rice (Hu et al., 2006). SNAC1
was induced strongly in guard cells of rice plants, suggesting

that increased stomatal closure is likely a target of regulation by
ONAC002 (SNAC1; Hu et al., 2006). However, whetherONAC022

plays a role in regulating stomatal behavior under drought stress
condition and density and thereby contributes to the increased

drought tolerance of the N22oe plants need to be examined
further. Thirdly, it is well accepted that root system size correlates

with the tolerance to water stress and that a longer root system
should facilitate water absorption from soils and thus strengthen

drought tolerance under water-deficit conditions. For example,
drought-resistant rice varieties have a larger and more highly

branched root system than drought-sensitive varieties (Price
et al., 1997). We also noted that the N22oe plants had larger root

system, as revealed by longer roots andmore lateral roots than the
WT plants, when grown under salt stress condition (Figure 6),

indicating a possible role for ONAC022 in regulating root system
under stress condition and thereby improving stress tolerance.

This is consistent with several observations that overexpression
of ONAC122 (OsNAC10; Jeong et al., 2010), ONAC002 (OsNAC9;

Redillas et al., 2012), and ONAC009 (OsNAC5; Jeong et al., 2013)

in transgenic rice and ONAC002 (SNAC1; Liu et al., 2014) in
transgenic cotton resulted in enhanced root system or altered

root architecture involving an enlarged stele and aerenchyma
but is contrary to the observation that the ONAC002 (SNAC1)-

overexpressing rice plants had no difference from WT plants in
terms of root depth and volume (Hu et al., 2006).

Abscisic acid plays a critical role in regulating abiotic stress
response in plants. In the present study, our results suggest that

ONAC022may function as a positive regulator of stress response
through modulating an ABA-mediated pathway to improve

drought and salt tolerance in the N22oe rice. This hypothesis
is supported by several lines of evidence presented in this

study. Firstly, expression of ONAC022 was significantly induced
by exogenous ABA (Figure 2C), similar to several previously

reported stress-responsive rice NAC genes such as ONAC122
(OsNAC10; Jeong et al., 2010), ONAC048 (SNAC2/OsNAC6;
Nakashima et al., 2007; Hu et al., 2008), ONAC009 (OsNAC5;

Takasaki et al., 2010; Song et al., 2011), ONAC058 (OsNAP; Chen
et al., 2014; Liang et al., 2014), and ONAC002 (SNAC1; Hu et al.,

2006). Secondly, the N22oe plants exhibited an increased ABA
sensitivity than theWT in terms of seed germination and seedling

growth (Figure 8). This is consistent with the observations
that overexpression of ONAC058 (OsNAP; Chen et al., 2014),

ONAC002 (SNAC1; Hu et al., 2006), and ONAC048 (SNAC2; Hu
et al., 2008) in transgenic rice led to improved abiotic stress

tolerance and hypersensitivity to exogenous ABA. Thirdly, the
endogenous ABA content in the N22oe plants was higher than

that in WT plants (Figure 9A), accompanying with upregulated
expression of some of the ABA biosynthesis-related genes such

as OsNCEDs (Figure 9B), which is generally considered to be
the rate-limiting step in the stress-induced ABA biosynthesis

pathway (Qin and Zeevaart, 1999; Taylor et al., 2000; Iuchi et al.,
2001). These data indicate that overexpression of ONAC022may

influence the biosynthesis of ABA via modulating directly or
indirectly the expression of ABA biosynthesis-related genes. This
is similar to the observations that the root-specific overexpression

of ONAC002 (OsNAC9) and ONAC122 (OsNAC10) significantly
upregulated the expression level of OsNCEDs in transgenic rice

(Jeong et al., 2010; Redillas et al., 2012) and that overexpression
of OsMYB481, a stress-responsive MYB TF, led to a significant

increase in expression of ABA biosynthetic genes and a high
level of the endogenous ABA in transgenic rice plants (Xiong

et al., 2014). Generally, as a critical stress hormone, high level
of the endogenous ABA might strengthen and/or accelerate

stress response and thus correlates with improved abiotic stress
tolerance. For example, mutation in OsDSM2/OsBCH1, one of

three putative β-carotene hydroxylases that are predicted for the
biosynthesis of ABA precursor zeaxanthin, resulted in reduced

level of the endogenous ABA and decreased drought stress
tolerance (Du et al., 2010), whereas RNAi-mediated suppression

of OsABA8ox3, one of three ABA 8′-hydroxylases involved in
catabolism of ABA, led to a high level of the endogenous ABA

and improved drought stress tolerance (Cai et al., 2015). Lastly,
the increased endogenous ABA levels in plants will generally

initiate ABA-mediated pathway that regulates the expression of
many stress-responsive genes (Xiong et al., 2002). In the present
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study, we observed that a large number of the stress-responsive

genes were differentially expressed in N22oe plants (Figure 9C)
and the expression of some early ABA signaling and regulatory

genes such as OsPP2C06/49/68 (Singh et al., 2010), OsbZIP23
(Xiang et al., 2008), OsDREB2a (Dubouzet et al., 2003), OsMYB2

(Yang et al., 2012), and OsAP37 (Oh et al., 2009) and late
ABA-responsive stress-related genes such as OsRAB21 (Xiong

et al., 2014), OsLEA3 (Xiao et al., 2007; Duan and Cai,
2012), and OsP5CS1 (Xiong et al., 2014) was significantly

upregulated in the N22oe plants (Figure 9C), demonstrating
an activated ABA-mediated pathway in the transgenic plants.

Overall, these data suggest that ONAC022 in the N22oe
plants may accelerate the ABA synthesis via modulating the

expression of the ABA biosynthesis-related genes and thus
activate an ABA-mediated pathway to regulate the expression

of stress-responsive genes. However, it cannot be ruled out
the possibility that ONAC022 regulates abiotic stress response
through an ABA-independent pathway because the expression

of OsERD1, which is known to be involved in the ABA-
independent pathway (Shinozaki and Yamaguchi-Shinozaki,

2007), was also upregulated significantly in the N22oe plants
(Figure 9C).

Growth retardation has been observed in transgenic rice
plants overexpressing stress-responsive TFs such as ONAC048

(OsNAC6) in rice (Nakashima et al., 2007). In the present
study, we also noticed that the N22oe plants showed a stunted

growth phenotype and smaller panicles compared with the WT
plants (Figure 4), indicating that overexpression of ONAC022

in transgenic rice has adverse effects on growth and yield
formation. This is similar to the observation that overexpression

of ANAC036, the closest ortholog of rice ONAC022, in
Arabidopsis led to a dwarf phenotype by reducing cell size in

leaves and stems (Kato et al., 2010) but differs from several
reports that overexpression of ONAC058 (OsNAP), ONAC002

(OsNAC9), and ONAC122 (OsNAC10) in transgenic rice had
no significant effects on growth under normal condition and
improved yield production under drought stress condition

(Jeong et al., 2010; Redillas et al., 2012; Chen et al., 2014).
The fact that a large portion of genes encoding proteins

involved in developmental and reproduction processes were
differentially expressed in N22oe plants (Supplementary Figure

S1) supports the involvement of ONAC022 in rice growth
and development. However, the adverse effects of ONAC022

on rice growth and panicle development may be due to
re-allocation of energy between stress tolerance and normal

growth/development, and the mechanisms need to be further
investigated.

In summary, results presented in this study demonstrate

that ONAC022 functions as a stress-responsive transcriptional
activator and overexpression of ONAC022 in transgenic rice can

significantly improve drought and salt stress tolerance through
an ABA-mediated pathway. Our findings presented in this

study, together with several previous reports (Hu et al., 2006,
2008; Jeong et al., 2010; Chen et al., 2014), demonstrate that

overexpression of a single regulatory gene such as ONAC022 is a
promising strategy to improve the abiotic stress tolerance in rice

and other commercially important crops. However, functional
analysis with knockout mutants is necessary to determine

whether ONAC022 is required for abiotic stress tolerance in
rice. Further investigations on the identification of ONAC022-

regulated target genes will be helpful to elucidate the mechanism
of ONAC022 in regulating abiotic stress tolerance. As the N22oe

plants gain an improved drought and salt tolerance with a penalty
on grain production under unstressed condition, it is necessary
to evaluate in detail their performance on abiotic stress tolerance

and grain yield under natural or stressed conditions before
consideration of their potential use as novel materials in breeding

program.
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