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A B S T R A C T

Ge­netic en ­gi ­neer­ing can be the so­lu ­tion to achieve the eco­nom­i­cally fea ­si ­ble pro­duc­tion of

mi­croal­gal based bio ­fu ­els and other bulk ma­te ­ri ­als. A good num­ber of mi­croal­gal species can

grow mixotroph­i­cally us­ing ac ­etate as car ­bon source. More ­over, ex ­per­i­men ­tal ev ­i­dence

sug ­gests that the biosyn­the­sis of acetyl-CoA could be a lim­it ­ing step in the com ­plex

mul ­ti ­fac ­tor-de­pen­dent biosyn­the­sis of acyl ­glyc ­erides and point to acetyl-CoA syn­thetase (ACS)

as a key en­zyme in the process. In or ­der to test this hy ­poth­e­sis we have en ­gi ­neered the model

chloro ­phyte Chlamy​domonas rein ​hardtii to over ­ex ­press the en­doge­nous chloro ­plas ­tic acetyl-CoA

syn ­thetase, ACS2. Ex­pres ­sion of the ACS2 en ­cod­ing gene un ­der the con­trol of the strong

con­sti­tu ­tive RbcS2 pro­moter in ni ­tro­gen-re­plete cul­tures re ­sulted in a 2-fold in ­crease in starch

con­tent and 60% higher acyl-CoA pool com­pared to the parental line. Un ­der ni­tro­gen de­pri­va ­tion, the

Cr-acs2 trans­for­mant shows 6-fold higher lev ­els of ACS2 tran ­script and a 2.4-fold higher

ac ­cu ­mu ­la ­tion of tri­a­cyl­glyc ­erol (TAG) than the un­trans­formed con­trol. Analy ­sis of lipid

species and fatty acid pro­files in the Cr-acs2 trans ­for­mant re ­vealed a higher con­tent than the parental strain

in the ma­jor gly ­col­ipids and sug­gests that the en­hanced syn ­the­sis of tri­a­cyl­glyc ­erol in the

trans ­for­mant is not achieved at ex ­pense of mem­brane lipids, but is due to an in ­crease in the car­bon flux

to ­wards the syn­the­sis of acetyl-CoA in the chloro ­plast. This data demon ­strates the po ­ten­tial of

en ­gi ­neer­ing the chloro ­plas ­tic ACS to in ­crease the car­bon flux to ­wards the syn­the­sis of fatty acids

as an al ­ter ­na ­tive strat­egy to en­hance the biosyn­the­sis of lipids in mi­croal ­gae.

1. Introduction

In the last decades there has been an in­creas ­ing in­ter ­est in

ex­ploit­ing mi ­croal­gae for the pro ­duc ­tion of bio­fuel

pre ­cur ­sors, such as tri­a ­cyl ­glyc­erol (TAG) and starch, which can

be trans­formed into biodiesel and bioethanol, re­spec­tively [1–5].

How­ever, un ­til now the com­mer ­cially vi­able pro­duc ­tion of

these com­pounds has been re­stricted by the high cost of pro ­duc ­ing

al­gal bio ­mass at large scale and by the fact that these com­pounds are

usu ­ally ac­cu­mu ­lated un­der stress con ­di­tions, such as

ni­tro­gen star ­va­tion, which lim­its al­gal growth and there­fore

re­duces their over­all yield [6].

Ge ­netic en­gi­neer­ing of mi­croal­gae can pro ­vide a

so­lu­tion to in­crease strain pro­duc ­tiv­ity and fa­cil­i ­tate the

de­vel ­op­ment of the eco ­nom­i ­cally fea ­si ­ble pro ­duc ­tion of

mi­croal­gal based bio ­fu­els and other bulk ma ­te­ri­als [7–11].

The first at ­tempt to en­gi­neer TAG biosyn­thetic­

path­ways in mi­croal­gae was the pi ­o ­neer­ing work of Duna­hay

and co-work ­ers, car ­ried out in the 1990's within the Aquatic species

pro ­gram (ASP) of the US De ­part ­ment of En­ergy, to in­crease the

TAG pro­duc ­tiv­ity in the di­atom Cy​clotella cryp​tica by

over­ex­press­ing the na­tive acetyl-CoA car ­boxy­lase (AC ­Case)

[12], which cat ­alyzes the first com ­mit­tal step in fatty acid

biosyn ­the ­sis and is con ­sid­ered a lim­it ­ing step in lipid

biosyn ­the ­sis; how­ever, the 2-fold in ­crease ob­served for AC ­Case

ac­tiv­ity in the trans­for ­mants did not lead to an in­crease in lipid

con ­tent [13]. Since then, ex ­ten ­sive re ­search has been done to

in­crease the con­tent of TAG in plants [14] and mi­croal­gae [8], or to

mod ­ify their fatty acids pro­files, en ­rich ­ing the pres­ence of acyl

groups that bet­ter con ­form the need of cer­tain nu­tri­tional or

in­dus ­trial ap­pli­ca­tions [15,16].

At­tempts to en­gi­neer lipid pro­duc ­tion in­clude

over­ex­pres­sion of en­zymes in­volved in the biosyn ­the­sis of

fatty acids (Duna­hay et al., 1996; [17]) and/ ­or TAG as­sem ­bly [18–21]

as well as block­ing com ­pet­i ­tive­
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path­ways, such starch biosyn­the ­sis [22] or ca ­tab ­o ­lism of lipids

[23]. Sev ­eral ap­proaches have also fo ­cused on us­ing the

tran ­scrip­tion fac ­tors, which reg ­u ­late lipid biosyn­thetic

path­ways [24,25], or en­hanc­ing avail­abil ­ity of the re­duc ­ing

agent NADPH, by over­ex­pres­sion of genes en ­cod ­ing

NADP-malic en ­zyme, which has been used to in ­crease the lipid

con ­tent in Dunaliella salina [26] and Phaeo ​dacty​lum

tri​cor ​nu​tum [27]. The de ­gree of suc­cess of these ge­netic

ap­proaches is largely vari ­able, but in many cases the re ­sults

ob­tained are not those ex­pected [8].

Chlamy​domonas rein ​hardtii has emerged as model or­gan ­ism to

study lipid me­tab ­o ­lism in green al­gae [28]. Much of the re ­search

ef­fort in C. rein ​hardtii has fo ­cused on en­gi­neer­ing the last steps

of the lipid biosyn ­thetic path­way, namely the di­a ­cyl ­glyc­erol

acyl­trans­ferase (DGAT), cat ­alyz ­ing the last acy ­la­tion step, and

con ­sid­ered a key lim­it ­ing step with great im ­pact on TAG

ac­cu­mu ­la­tion. Two evo­lu­tion ­ary un ­re­lated DGAT

isoen­zyme fam ­i ­lies, DGAT1 and DGAT2, dif­fer ­ing in acyl

speci­fity and ex ­pres­sion pat ­terns have been de­scribed [29]. The

di­ver ­si­fi­ca­tion of DGAT2 acyl­trans­ferases has been

ob­served in C. rein ​hardtii, where five re ­lated genes have been

iden­ti ­fied [30], com ­pli­cat­ing the se­lec ­tion of any tar ­get

isoen­zyme. Over­ex­pres­sion of three of the five type 2 acyl-CoA

di­ayl ­glyc­erol acyl-trans ­ferase (DGAT) in C. rein ​hardtii had no

ef­fect on in­tra ­cel­lu­lar TAG lev ­els or fatty acid pro­files [31].

How­ever, it was fi ­nally demon ­strated that over ­ex­pres­sion of the

forth iso­form, DGTT4, strongly in­duced TAG ac ­cu­mu­la­tion

[32]. In this work we pro ­pose an al­ter ­na­tive ap­proach, fo ­cused

on in­creas ­ing the car ­bon flux to ­wards the syn ­the ­sis of fatty

acids, by over­ex­pres­sion of the plas ­tidic acetyl-CoA syn ­thetase

(ACS2), which cat ­alyzes the con­ver ­sion of ac ­etate to acetyl-CoA in

the model mi ­croalga Chlamy​domonas rein ​hardtii. The study of the

trans­for ­mants ob­tained has con ­tributed to in­crease our

knowl ­edge about the role of ACS in lipids and starch

ac­cu­mu ­la­tion and has shown the va ­lid­ity of this ap­proach to

in­crease their con­tent in mi­croal­gae.

C. rein ​hardtii is a chloro ­phyte that can grow mixotroph­i ­cally

us­ing ac ­etate as car ­bon source. How ­ever, de ­spite the

im­por ­tant role that ac­etate plays on fatty acid syn ­the ­sis [33], many

as­pects of its as­sim ­i ­la­tion and me ­tab ­o ­lism re ­main

un­clear. Ac ­etate is con­verted into acetyl-CoA via two pos ­si ­ble

path­ways: 1) through the ac­tion of acetyl-CoA syn ­thetase (ACS); and

(2) in two steps cat ­alyzed by ac­etate ki­nase (ACK) and phos­phate

acetyl­trans­ferase (PAT), with ac ­etate-phos ­phate as

in­ter ­me ­di­ate. The pres ­ence of three dif­fer ­ent ACS

isoen­zymes and two ACK-PAT with dif­fer ­ent pre ­dicted

lo­ca­tions in Chlamy​domonas, to­gether with the fact that

acetyl-CoA, a key mol ­e ­cule of the meta­bolic cross ­roads

con ­nect­ing lipid and car ­bo­hy­drate me ­tab ­o ­lism in many cell

com­part ­ments, can ­not cross or­ganelle mem­brane by sim ­ple

dif­fu­sion, as does ac­etate, sug ­gests that acetyl-CoA can be

syn ­the ­sized in sev­eral sub­cel ­lu­lar com­part ­ments [34].

Un ­der ni­tro­gen-re ­plete con ­di­tions acetyl-CoA, de ­rived

from ac­etate is catabolised via the TCA cy ­cle or an­abolised via the

gly ­oxy ­late cy­cle. In C. rein ​hardtii, all the en­zymes of the

gly ­oxy ­late cy­cle have been iden­ti ­fied and most of them have been

lo­cal ­ized in the per ­ox­i ­so­mal mi ­cro ­bod ­ies [35].

Acetyl-CoA could also be ob­tained, via a plas ­tidic pyru­vate

de­hy­dro ­ge­nase, from pyru­vate, which can be syn ­the ­sized in

the plas ­tid from the Calvin cy ­cle in­ter ­me ­di­ates (PGA) or

through the gly­colytic path­way; in C. rein ​hardtii many gly­colytic

en­zymes have been found in both the plas ­tid and the cy­tosol [36].

Ad ­di­tion ­ally, un­der het ­erotrophic ni­tro­gen-lim­it ­ing

con ­di­tions acetyl-CoA can also be ob ­tained from the cit­rate

avail­able in the cy ­to­plasm, which is cleaved into ox­aloac­etate and

acetyl-CoA by the cit­rate lyase (ACL), as has been doc ­u ­mented in

oleagi­nous yeast [7] and in some mi­croal­gae [37].

De ­spite this com­plex panorama, ex­per ­i ­men­tal ev­i ­dence

mi­croal­gae [38]; ii) ac­etate avail­abil­ity has been shown to limit

the syn ­the ­sis of lipids in some mi­croal­gal species [39]; iii) and

fail ­ure to get higher lipids con ­tent by over­ex­pres­sion of

acetyl-CoA car ­boxy­lase (AC ­Case) in some species, could be due to a

lim­i ­ta­tion of acetyl-CoA sup ­ply which is the sub ­strate for

AC ­Case. More ­over, sev ­eral pro­teomic and tran ­scrip­tomic

com­par ­a ­tive stud ­ies of al­gal cells grown in nor­mal and in

dif­fer ­ent oil-ac ­cu­mu­lat­ing con ­di­tions demon­strated that

ACS2, en­cod ­ing a chloro ­plas ­tic acetyl-CoA syn ­thetase, is

up-reg ­u ­lated un­der all con ­di­tions in C. rein ​hardtii [39,40] and

other chloro ­phytes, such as Dunaliella [41]. Ex­pres­sion of a

bac ­te­r ­ial ACS gene in the het­erotrophic mi­croalga Schizochytrium

sp. al ­lowed con ­sump­tion of the ac­etate pro ­duced dur ­ing its

fer ­men­ta­tive growth and an im­por ­tant in­crease in lipid

ac­cu­mu­la­tion [42]. Fur ­ther ­more, knock­down of cit­rate

syn ­thase (CIS) the first step of TCA cy ­cle, which di­verts acetyl-CoA

flux to the syn ­the ­sis of amino acids and car ­bo­hy­drates via

ox­aloac­etate, causes an in ­crease of TAG level in C. rein ​hardtii,

while its over­ex­pres­sion has shown to pro ­voke a de­crease of TAG

level [43]. Sim ­i ­larly, a C. rein ​hardtii mu ­tant lack ­ing ICL1,

en­cod ­ing isoc ­i ­trate lysase, a crit ­i ­cal gene in the

afore ­men­tioned gly­oxy ­late cy­cle, was also doc ­u ­mented to

have en­hanced TAG ac­cu­mu­la­tion com ­pared to wild type cells

[44].

On the other hand, ex ­pres­sion of plas ­tid acetyl-CoA syn­thetase

(ACS) in Ara ​bidop​sis, did not lead to sig­nif­i ­cant changes in the

lipid con ­tent of de­vel ­op­ing seeds or leaves [45,46], in ­di­cat­ing

that there are im ­por ­tant dif­fer ­ences in the reg ­u ­la­tory

mech ­a ­nisms and the rate-lim­it ­ing steps in dif­fer ­ent

or­gan ­isms.

In or­der to un­der ­stand the role of ACS in lipid and starch

ac­cu­mu­la­tion in N-starved cells of C. rein ​hardtii and to find

al­ter ­na­tive strate ­gies to en­hance lipid con ­tent in mi­croal­gae,

we have stud ­ied the ac ­cu­mu­la­tion of TAG and starch in C.

rein ​hardtii trans­genic cells over­ex­press­ing an en­doge­nous

chloro ­plas ­tic acetyl-CoA syn ­thetase, and char­ac­ter­ized their

lipid species and fatty acid pro­files.

2. Materials and methods

2.1. Strains and culture conditions

C. rein ​hardtii cell-wall de­fi ­cient strain 704 (cw15, arg7, mt+),

de­nom ­i ­nated as con ­trol or parental strain within this man­u ­script,

was kindly pro ­vided by Dr. Emilio Fernández [47] and cul ­tured

pho ­tomixotroph­i ­cally in liq­uid or agar so­lid­i ­fied

Tris-Ac ­etate-Phos ­phate (TAP) medium [34] at 20 °C and 70 rpm,

un­der con ­tin­u ­ous white light ir ­ra­di­a ­tion of 100 μE m  s .

In or­der to in­duce TAG ac­cu­mu­la­tion, C. rein ​hardtii cells at

the mid ­dle of the ex­po­nen ­tial phase of growth (OD  = 0.8–1)

were har ­vested by cen ­trifu ­ga­tion, washed and re­sus­pended in

N-free TAP medium. When in­di­cated ad­di­tional ac­etate was

sup ­plied to the TAP medium to achieve a fi ­nal ac­etate

con ­cen ­tra ­tion of 50 mM. Mi­croal­gal growth was fol­lowed by

spec­tropho ­to­met­ri­cal mea ­sure­ment of the op­ti ­cal den ­sity

at 660 nm or by de­ter ­mi­na­tion of the dry weight. For dry weight

de­ter ­mi­na­tion, 2 mL of al­gal cul ­ture was har ­vested by

cen ­trifu­ga­tion, washed with am ­mo­nium for­mate 50 mM, dried

at 90 °C or freeze-dried for 48 h and the mass de ­ter­mined us­ing an

an­a ­lyt­i ­cal bal ­ance. For cell den ­sity, Cel ­lome­ter Auto T4

Bright Field Cell Counter (Nex­celom Bio ­science, LLC.) was used

load­ing 20 μl of al­gal cul ­ture into the cell cham­ber, and data were

processed by the soft­ware.

The DH5α Es​cherichia coli strain, used for in vivo

am ­pli­fi­ca­tion of DNA, was cul ­tured in LB medium as

pre ­vi­ously de­scribed [48].

2.2. Construction of the transformation plasmid Phyco105-​CrACS2

฀−2 ฀−1

฀660



Rich Text Editor, editor3

http://web8.elsevierproofcentral.com/en/index.html?token=SPIN2f398b682ebb97217adb6def1ac8d0426&type=AU[09/02/2018 12:05:27]

sug ­gests that the biosyn ­the ­sis of acetyl-CoA could be a lim­it ­ing

step in the com­plex multi-fac ­tor de­pen ­dent biosyn­the ­sis of

acyl­glyc­erides and point acetyl-CoA syn­thetase (ACS) as a key

en­zyme in the process: i) A cor­re­la­tion has been ob ­served

be­tween the in­tra ­cel ­lu­lar acetyl-CoA lev ­els af­ter ni­tro­gen

star ­va­tion and the abil ­ity to ac­cu­mu ­late TAG in sev­eral ­

The bi­nary plas ­mid, Phy ­co105, de­rived from the plas­mid

pSI103 built by Sizova et al. [49], was used for ex ­pres­sion of the

CrACS2 cDNA from C. rein ​hardtii. Phy­co105, kindly pro­vided by

Phyco ­Ge ­net ­ics SL,­

2
R. Rengel et al. Algal Research xxx (2018) xxx-xxx

con ­tains two cas ­settes, one with the APHVIII gene from

Strep​to​myces ri ​mo ​sus, cod ­ing for an amino­gly­co­side

3’phos ­pho ­trans­ferase that con ­fers re ­sis­tance to the an­tibi­otic

paro­momycin, un­der the con ­trol of the strong con ­sti­tu­tive

pro ­mot ­ers RBCcS2 and HSP70A and ter ­mi­nated by the 3′
un­trans­lated re­gion of RBCS2 and other with a polylinker re ­gion

flanked by the same reg­u ­la­tory re­gions.

In or­der to iso­late the ACS2 (EDO98345) en ­cod ­ing gene, to­tal

RNA was ob ­tained by the RNAeasy plant minikit from Qi­a ­gen

ac­cord­ing to man­u ­fac ­turer's in­struc­tions and sin­gle strand

cDNA was syn ­the ­sized from to­tal RNA ac­cord­ing to the

Su­per ­script II RNaseH-re­verse tran ­scrip­tase man­ual

(In ­vit­ro­gen). ACS2 was am ­pli­fied by PCR, us ­ing 1 μL of the

cDNA as tem­plate, and the Phu ­sion High-Fi ­delity DNA Poly ­merase

(Ther ­mofisher). Spe ­cific for ­ward and re ­verse primers were

mod­i ­fied to con ­tain the XhoI and EcoRI re­stric­tion sites. The

re­sult ­ing PCR prod ­uct was lig ­ated into the pSpark vec­tor

(Can­vax, Spain) and fur ­ther sub ­cloned into the XhoI-EcoRI sites of

polylinker re­gion of the mi­croal­gal ex­pres­sion vec ­tor

Phy ­co105 to gen ­er­ate the Phy ­co105-CrACS2 plas ­mid (Fig. 1

suppl mat).

2.3. Nuclear transformation of C.​ reinhardtii

Trans ­for ­ma ­tion was car ­ried out us ­ing the glass-bead method

of Kin ­dle [50] with mi­nor mod­i ­fi­ca­tions. C. rein ​hardtii cells

were grown to a cell den ­sity of about 10  cells per mL, har ­vested by

cen ­trifu­ga­tion and re ­sus ­pended in fresh TAP medium to ob­tain

a 100-fold con ­cen ­trated cell sus ­pen ­sion. The con ­cen ­trated cell

sus ­pen ­sion (0.6 mL) was added to a con ­i ­cal tube con­tain­ing

0.3 g of ster ­ile glass beads (0.4–0.6 mm Φ), 0.2 mL of 20%

poly­eth ­yl­ene gly ­col 8000 and about 1 μg of the de ­sired plas ­mid.

Cells were vor­texed for 8 s, re­sus ­pended in 50 mL of fresh ster ­ile
TAP medium and in­cu­bated in the dark overnight. Af­ter this

in­cu­ba­tion in the ab­sence of an­tibi­otic, the cells were pel­leted

and spread onto agar plates con­tain ­ing TAP medium with

paro­momycin (30 μg mL ). Trans ­formed colonies were vis ­i ­ble

af­ter 5 days.

2.4. Lipids extraction and fractionation

For to­tal lipid ex­trac­tion, 10 mL aliquots of C. rein ​hardtii

cul ­tures grown in TAP ni­tro­gen-free medium were pel ­leted by

cen ­trifu­ga­tion and freeze dried. To­tal lipids were ex­tracted from

freeze dried cells, fol­low ­ing the pro ­to­col de­scribed by Abida et

al., [51] and sep ­a ­rated into neu ­tral lipids, gly ­col ­ipids and

phos­pho ­lipids frac­tions by solid-phase ex­trac­tion (SPE) on

sil­ica Pre ­Sep columns (LiChro ­lut Si 500 mg 2 mL) from Merck

Mil ­li ­pore. The three frac ­tions were evap­o ­rated un­der

ni­tro­gen and dis ­solved in 200 μL of chlo­ro­form (neu­tral lipids)

or 200 μl of chlo­ro­form/­methanol 2:1 (po ­lar lipids). Each ex­tract

was split into two 100 μL frac­tions; one frac­tion was used for lipids

species sep­a ­ra­tion and quan ­tifi­ca­tion by ESI-MS/ ­MS, and the

other was sub ­jected to methy­la­tion, for GC-FID analy­sis.

2.5. GC- ​FID analysis of fatty acid methyl esters

Fatty acid methyl es ­ter (FAMEs) de ­rivates, ob­tained as

pre ­vi­ously de­scribed [52], were an ­a ­lyzed by gas

chro­matog­ra­phy flame ion ­iza ­tion de ­tec­tion (GC-FID) us­ing

an Ag ­i ­lent 7890A gas chro ­mato­graph fit­ted with an Ag ­i ­lent

DB-23 (30 m × 0.25 mm × 0.25 μm) col ­umn as de­scribed pre­vi­ously

[53], with mi­nor mod­i ­fi­ca­tions. A 1 μL aliquot of each sam­ple

was an ­a ­lyzed with a 1:5 split in ­jec­tion and con ­stant flow rate of

1.5 mL min . The oven tem ­per ­a ­ture cy ­cle was ini ­tially held at

150 °C for 2 min and then in ­creased to 250 °C at a rate of 10 °C min .

The tem­per ­a ­ture was then held for 5 min, for a to ­tal run time of

17 min per sam ­ple. Analy ­sis was car ­ried out us ­ing Ag ­i ­lent

Men­haden oil (Lar­o ­dan) and quan­ti ­fied us ­ing pen ­tade­canoic

acid (0.4 mg mL ) as in­ter ­nal stan ­dard.

2.6. Quantitative lipid analysis

Quan ­ti ­ta­tive analy ­ses of tri­a ­cyl ­glyc ­erols (TAG),

phos­pho ­lipids (PL), phos­phatidylethanolamine (PE),

phos­phatidyl ­glyc­erol (PG), the galac­tolipids di­galac­to­syl

di­a ­cyl ­glyc­erol (DGDG) and mono­galac­to­syl

di­a ­cyl ­glyc­erol (MGDG), and the be ­taine lipid

di­a ­cyl ­gliceryltrimethyl­ho­moser ­ine (DGTS) were car ­ried out

us­ing elec­tro­spray ion ­iza ­tion tan ­dem triple-quadru ­pole mass

spec­trom­e ­try (4000 QTRAP; SCIX; ESI-MS/ ­MS).

Phos­phatidyl­choline (PC) which seems to be ab­sent in C.

rein ​hardtii [28,54] and phos­phatidyli­nos ­i ­tol (PI), pre ­sent at very

low level, were not tar ­geted for analy­sis. The lipid ex ­tracts were

in­fused at 15 μL min  with an auto-sam ­pler (HTS-xt PAL, CTC-PAL

An ­a ­lyt­ics AG, Switzer­land). Data ac­qui­si ­tion and acyl group

iden­ti ­fi­ca­tion of the po­lar lipids was as de­scribed in Ruiz-Lopez

et al., [55] with mod ­i ­fi ­ca­tions. The in ­ter­nal stan ­dards for

po­lar lipids were sup ­plied by Avanti (Al ­abaster, AL, USA),

in­cor ­po­rated as 0.080 nmol of di14:0-PE, 0.800 nmol of di16:0

DGTS, and 0.080 nmol of di14:0-PG. The stan­dards dis­solved in

chlo­ro­form and 25 μL of the sam­ples in chlo ­ro­form were

com­bined with chlo­ro­form/­methanol 300 mM am ­mo­nium

ac­etate (300:665:3.5 v/­v/v) to make a fi ­nal vol­ume of 1 mL.

The ESI-MS/ ­MS method de ­scribed by Li et al. [56] was mod ­i ­fied

to quan­tify TAG con ­tents. For quan ­ti ­fy­ing TAG, 15 μL of lipid

ex­tract and 0.857 nmol of tri15:0-TAG (Nu-Chek Prep, Elysian, MN,

USA) were com­bined with chlo ­ro­form/­methanol/­300 mM

am ­mo­nium ac­etate (24:24:1.75: v/­v/v), to fi ­nal vol ­umes of 1 mL

for di­rect in ­fu­sion into the mass spec­trom­e ­ter. TAG

mol ­e ­c ­u ­lar species were de­tected as [M + NH ]  ions by a

se­ries of dif­fer ­ent neu ­tral loss scans, tar­get ­ing losses of fatty

acids. The as processed us­ing the pro ­gram Lipid View Soft ­ware

(SCIEX, Fram­ing­ham, MA, USA) where iso­tope cor ­rec ­tions are

ap­plied. The peak area of each lipid was nor ­mal­ized to the in­ter­nal

stan ­dard and fur­ther nor ­mal­ized to the weight of the ini­tial

sam ­ple. There is vari­a ­tion in ion­iza ­tion ef­fi ­ciency among acyl

glyc­erol species with dif­fer ­ent fatty acyl groups, and no re­sponse

fac ­tors for in­di­vid­ual species were de­ter­mined in this study;

there­fore, the val ­ues are not di ­rectly pro ­por ­tional to the TAG

con ­tents of each species. How­ever, the ap ­proach does al­low a

re­al­is ­tic com­par ­i ­son of TAG species across sam­ples in this

study.

2.7. Fluorescence assay of neutral lipids labeled by Nile red staining

Non po­lar lipids were mea ­sured by Nile Red (Sigma-Aldrich)

flu­o ­res ­cence stain­ing (ex ­ci­ta­tion 485–512 nm and emis ­sion

at 590–610 nm) us­ing a flu­o ­res ­cent mi­croplate reader (Flu­ostar

Omega, BMG Labtech). A 0.2 mL aliquot of C. rein ​hardtii cul­ture was

in­cu­bated with 2 mL of PBS buffer and 10 μL of the flu­o ­res ­cent

dye Nile Red (0.1 mg mL  in ace­tone) at 40 °C for 10 min. Blank

mea­sure­ments (cells in­cu­bated with ­out Nile Red stain) were

sub ­tracted from test sam ­ples and to ­tal flu­o ­res ­cence was

ex­pressed as ar­bi­trary flu­o ­res ­cent units or nor­mal­ized to the

flu­o ­res ­cence of con­trol cells. All mea ­sure­ments were done in

trip ­li ­cate.

2.8. Determination of Acyl- ​CoA pool composition

To an­a ­lyze the in­tra ­cel ­lu­lar acyl-CoA pool, 2 mL of freshly

har ­vested cells were frozen in liq ­uid ni­tro­gen and acyl-CoAs were

ex­tracted as de­scribed by Lar­son and Gra ­ham [57] and an ­a ­lyzed

us­ing LC-MS/MS + MRM in pos­i ­tive ion mode. The

LC-MS/ ­MS + MRM analy ­sis (us­ing an AB ­Sciex 4000 QTRAP) was

per ­formed as de­scribed by Haynes et al. [58] (Ag­i ­lent 1200 LC
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Chem­sta­tion soft ­ware. Re­ten ­tion time and iden ­tify of each peak

was cal ­i ­brated us­ing FAME 37 Com­po­nent FAME mix

(Su ­pelco) and methy­lated Qualmix­

sys­tem; Gem­ini C18 col ­umn (Phe ­nomenex), 2 mm in­ner

di­am ­e ­ter, 150 mm length, par­ti ­cle size ­
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5 μm). For the pur ­pose of iden­ti ­fi­ca­tion and cal ­i ­bra ­tion,

stan ­dard acyl-CoA es ­ters with acyl chain lengths from C14 to C20 were

pur ­chased from Sigma as free acids or lithium salts.

2.9. Starch analysis

In­tracelullar starch con ­tent was de ­ter ­mined in freeze dried

al­gal pel ­lets from 2 mL of C. rein ​hardtii cul ­ture, us­ing a

com­mer ­cial amy­loglu­cosi ­dase/α-amy­lase en ­zy­matic kit

(K-TSTA, Megazyme) ac­cord­ing to the man­u ­fac ­turer's

in­struc­tions.

2.10. Neutral lipid staining and visualisation by confocal microscopy

Non po­lar lipids and oil droplets were vi­su­al­ized us­ing

BOD­IPY stain ­ing and con ­fo­cal mi­croscopy es ­sen ­tially

ac­cord­ing to Goven ­der et al. [59]. Cells were grown in ni ­tro­gen

re­plete or de­plete con ­di­tions and non-po ­lar lipids and neu ­tral

lipids were stained af­ter 48 h with BOD­IPY 490/ ­503 (Sigma). An

aliquot of 0.5 mL cells were pel­leted at 12000 rpm and re-sus ­pended in

TAP medium con ­tain ­ing 1 μg mL  BOD­IPY 490/ ­503 (di­luted

from a stock of 1 mg mL  in DMSO). Cells were in­cu­bated for

10 min, pel ­leted by cen ­trifu­ga­tion and washed with TAP medium.

Cells were then re-sus­pended in 15 μL TAP medium prior to con­fo­cal

mi­croscopy (Zeiss LSM 780, 63× ob­jec ­tive lens). Im­ages were

processed us­ing the Zen 2010 soft­ware (Carl Ziess Mi­croimag­ing).

2.11. Genomic DNA preparation and PCR screening of transformants

In­te­gra ­tion of the RBCS2-ACS2  cas ­sette in the genome of C.

rein ​hardtii trans­for ­mants was checked by PCR us ­ing 1 μL of

ge­nomic DNA in a to­tal vol ­ume of 25 μL con­tain ­ing 10 pmol of

each primer, 0.2 mM dNTPs, 0.5 U Taq DNA poly ­merase from Biotools

(B&M Labs, Madrid, Spain), 2.5 μl of spe ­cific 10× buffer (con­tain­ing

2.5 mM MgCl ), and 1% di ­methyl­sul­fox ­ide (DMSO). The PCR

pro ­gram was: 0.5 min at 96 °C, 0.5 min at an­neal­ing

tem ­per ­a ­ture, and 1.5 min at 72 °C for 30 cy­cles. Al ­gal ge­nomic

DNA was iso ­lated by the Gene­JET ge ­nomic DNA pu­rifi ­ca­tion

kit from Life Tech­nolo­gies.

2.12. qRT- ​PCR analysis

qPCR ex­per ­i ­ments were per ­formed on a Mx3000P

Mul ­ti ­plex Quan­ti ­ta­tive PCR Sys ­tem (Strat­a ­gene) us­ing

1 μL of the cDNA, syn­the ­sized from to­tal RNA ac­cord­ing to the

Su­per ­Script II RNaseH-re ­verse tran ­scrip­tase man ­ual

(In ­vit­ro­gen), as tem ­plate and Bril ­liant SYBR® Green QPCR

Mas­ter Mix (Ag ­i ­lent Tech­nolo ­gies, La Jolla, CA, USA).

Cy­cling con­di­tions were: 10 min at 95 °C for ac­ti ­va­tion of the

Hot start Taq poly ­merase and 40 cy­cles for the melt­ing (30 s at

95 °C), an­neal­ing (30 s at 62 °C) and ex ­ten ­sion (30 s at 72 °C). Each

qPCR mea­sure­ment was car ­ried out in trip ­li ­cate us­ing primers

for ei­ther the chloro ­plas ­tic acetyl-CoA syn ­thetase (ACS2), or the

al­pha-car ­boxyl­trans­ferase sub ­unit (ACX1) of chloro ­plas ­tic
acetyl-CoA car ­boxy­lase en ­cod ­ing genes (Table 1, suppl

ma ­te­r ­ial). The UBC8 gene, en ­cod ­ing an ubiq ­ui­tin lig­ase

polypep­tide (XM_001697453), which ex ­pres­sion was pre ­vi­ously

shown to be con­sti­tu­tive un­der the dif­fer ­ent con ­di­tions used

[60,61] was used as house ­keep­ing gene to nor­mal ­ize mRNA

abun­dance. 2  ap­proach was used to cal­cu­late fold change

[62].

3. Results and discussion

3.1. Generation and screening of CrACS overexpression lines

C. rein ​hardtii was trans ­formed with the Phy ­co105-CrACS2

plas ­mid, ob­tained as de­scribed in Section 2.2, in which the

chloro ­plas ­tic acetyl-CoA syn ­thetase en­cod ­ing cDNA is un ­der

the con ­trol of the chimeric con ­sti­tu­tive tan ­dem HSP70A-RbcS2

pro ­moter. The re­sult ­ing trans­for ­mants were grown un ­der

an­tibi­otic se ­lec ­tive pres­sure, and the cor ­rect in­te­gra ­tion of

the RbcS2-CrACS2 cas ­sette in the se­lected trans­for ­mants was

checked with spe ­cific primers that an­neal with the RbcS2 pro ­moter

and the ACS cDNA (Fig. 1a). In all the trans ­for ­mants stud ­ied, a

1600 bp frag­ment cor ­re­spond­ing to the RbcS2-ACS2

con ­struc­tion was found, con ­firm ­ing its cor ­rect in­ser ­tion in the

genome of the mi­croalga (Fig. 1b).

In or­der to per ­form a pre ­lim­i ­nary screen ­ing,

un­trans­formed con­trol and Cr-acs2 trans­for ­mants were

trans­ferred to ni­tro­gen-de ­pleted TAP me­dia at the same ini­tial

cell den ­sity to in­duce the ac­cu­mu­la­tion of­

Fig. 1. Screen ­ing of Cr-acs2 over­ex ­pres ­sion trans ­for­mants. (a) Schematic map of the RbcS2-HSP70A-ACS2-RbcS2 UTR cas ­sette, in ­di ­cat­ing the an ­neal­ing sites for the

PCR primers and the am ­pli­con length. (b) Agarose gel elec­trophore ­sis show­ing the in ­te­gra ­tion of the RbcS2-ACS2 cas ­sette in the mi ­croal­gal genome of five

trans ­for­mants. The parental strain has been in ­cluded as a neg­a­tive con­trol; the PCR was car­ried out as de­scribed in Section 2.11. (c) Com­par ­i­son of neu­tral lipids

con­tent in the parental strain and the trans ­for­mants, de ­ter ­mined by stain ­ing with Nile Red af ­ter 72 h of ni ­tro­gen star­va ­tion. Data gen­er­ated from three in ­de ­pen­dent

ex ­per ­i ­ments. Er ­ror bars in ­di ­cate stan­dard de­vi ­a­tion.
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neu ­tral lipids, which con ­tent was de ­ter ­mined by stain­ing with Nile

Red dye and mea ­sur ­ing flu­o ­res ­cence emis­sion as de­tailed in

Methods section 2.7. The cell den­sity did not in­creased

sig­nif­i ­cantly over the three days in which the cul ­tures were

main­tained with­out ni­tro­gen (Fig. 2-suppl mat). Trans­for ­mant

Cr-acs2-4 con ­sis­tently ac­cu­mu ­lated more than twice the neu­tral

lipid con ­tent of the parental strain af­ter 72 h of ni­tro­gen

star ­va­tion (Fig. 1c). This clone was there ­fore se­lected for fur ­ther

stud ­ies.

3.2. TAG accumulation under nitrogen starvation in the Cr-​ACS2- ​4
transformant

To fur ­ther char ­ac­ter ­ize the re ­sponse to ni­tro­gen

star ­va­tion in the ACS2-over­ex­press­ing trans­for ­mant

(Cr-acs2-4), the TAG con ­tent was stud ­ied by elec­tro­spray

ion ­iza ­tion tan ­dem triple-quadru­pole mass spec­trom­e ­try
(ESI-MS/ ­MS) be­fore and 48 h af ­ter trans­fer to N-de­prived medium

and ex ­pressed as mol­e ­c ­u ­lar species within the syn­the ­sized

TAG (Fig. 2a) and as to ­tal TAG (Fig. 2b). In ad ­di­tion, the

ac­cu­mu ­la­tion of lipid bod ­ies was ex ­am ­ined by

flu­o ­res ­cence mi ­croscopy with the stain ­ing flu­o ­rophore

BOD­IPY, in both the parental and the trans ­for ­mant strains (Fig.

2c–h).

Cells from the Cr-acs2 trans­for ­mant and the un ­trans­formed

parental line were grown in stan ­dard con ­di­tions; at the mid­dle of the

ex­po­nen ­tial phase of growth both cul­tures were har ­vested by

cen ­trifu­ga­tion, washed and trans ­ferred to TAP medium with ­out a

ni­tro­gen source. The Cr-acs2 trans­for ­mant shows more and larger

lipid droplets than the con ­trol un ­trans­formed strain cul­tured

with­out N for the same time (Fig. 2c–h). The TAG con ­tent in

ni­tro­gen re ­plete medium is neg­li ­gi­ble, how­ever af­ter

trans­fer ­ence to ni­tro­gen free medium it in­creases to 15 and 30 fold

rel ­a ­tive to the cor ­re­spond­ing N re­plete cul ­tures, for the

parental and the trans ­for ­mant strain re­spec­tively. Fur ­ther ­more,

the to­tal TAG con ­tent in the trans­for ­mant was 2.4-fold higher than

in the parental strain af­ter 48 h of N de­pri­va­tion (Fig. 2a–b). All the

TAG mol ­e ­c ­u ­lar species are higher in the trans ­for ­mant, be­ing

the in­crease of the same or­der for all the species. This data sup ­ports

the hy­poth­e ­sis that over­ex­pres­sion of the chloro ­plas ­tic ACS

en­hances ac­cu­mu ­la­tion of TAG, and con ­firms this en­zyme as

an ef­fec ­tive tar ­get to in­crease neu ­tral lipids ac­cu­mu­la­tion

in C. rein ​hardtii by ge­netic en­gi­neer­ing.

3.3. The acyl-​CoA intracellular pool in the ACS transformant is larger

than in the wild type

Mon­i ­tor­ing of the in­tracelullar lev ­els of acyl-CoA of­fers

in­ter ­est­ing in­for ­ma ­tion about the po­ten ­tial bot­tle­necks

for TAG biosyn­the ­sis. There­fore, cells from both the Cr-acs2

trans­for ­mant and the cor ­re­spond­ing parental line were grown,

har ­vested, trans­ferred to ni­tro­gen de ­prived TAP medium, as

de­scribed in Section 3.2., and used to fol­low the in­tra­cel­lu­lar

acyl-CoA evo­lu­tion over time of N de­pri­va­tion, which was

an­a ­lyzed by LC-MS/ ­MS as de­tailed in Section 2.8. In N-re­plete

cul ­tures, Cr-acs2 trans­for ­mant ex­hib­ited 60% higher

in­tra ­cel ­lu­lar con ­tent of acyl-CoAs rel­a ­tive to the parental

strain (Fig. 3). The acyl-CoA pool is rapidly con ­sumed when C.

rein ​hardtii cells are trans­ferred to N de­prived medium due to the

de­mand of sub­strates for the syn ­the ­sis of TAG, which, as we will

see later, is higher and more pro ­longed in the time in the Cr-acs2

trans­for ­mant as com­pared with the parental strain. In the ab ­sence of

ni­tro­gen source, acyl-CoA re­serves are se ­verely re ­duced in both

the ACS trans­for ­mant and the parental con ­trol strains, but re ­main

higher in the trans­for ­mant.

The fact that the in ­tra ­cel­lu­lar pool of acyl-CoA is con ­sumed

dur ­ing N star ­va­tion pro ­vides strong ev­i ­dence to sug­gest that

fatty acid syn­the ­sis, rather than TAG as ­sem ­bly, is the main

bot­tle­neck for the syn­the ­sis of neu­tral lipid in this mi­croalga, in

agree ­ment with pre ­vi­ous re­ports, such as those from La Russa et al.

[31], who did not find sig­nif­i ­cant al­ter­ation in the

in­tra ­cel ­lu­lar ac ­cu­mu­la­tion of TAG by over­ex­pres­sion

of sev­eral DGATs en ­zymes, or Fan et al. [63], who demon ­strated that

the ad­di­tion of oleic acid to the growth medium of C. rein ​hardtii

in­creased oil pro­duc ­tion. Fur ­ther ­more, our data sug ­gests that

car ­bon sup ­ply, rather than fatty acid syn ­the ­sis it ­self, is the

lim­it ­ing fac ­tor in the pro­duc ­tion of oils in mi­croal­gae. The

higher acyl-CoA in­tra ­cel­lu­lar level in Cr-acs2 trans­for ­mant

cor ­rob ­o ­rates that over­ex­pres­sion of ACS2 pro ­vides higher

avail­abil ­ity of sub­strates for the syn ­the ­sis of acyl-CoAs, which

con ­tribute to the syn­the ­sis of TAG dur­ing ni­tro­gen

de­pri­va­tion. How­ever the main source of acyl groups for the

syn ­the ­sis of TAG in these con ­di­tions is degra ­da­tion of

mem­brane po­lar lipids and their de novo biosyn ­the ­sis, as will be

dis­cussed be­low.

Fig. 2. Ac­cu ­mu­la­tion of neu­tral lipids and TAG in the con­trol and the acs2 Chlamy​domonas trans ­for­mant. (a) The abun ­dance of dif­fer ­ent mol­e­c­u ­lar species

within the TAG syn ­the ­sized af­ter 48 h of N star­va ­tion in the con ­trol strain (■) and in the Cr-acs2 trans ­for­mant (■) was de ­ter ­mined by ESI-MS/ ­MS. (b) To­tal TAG

con­tent ob­tained adding the con­tent of all the mol­e­c­u ­lar species was de­ter ­mined in the con ­trol and the trans ­for­mant be ­fore and 48 h af­ter trans ­fer ­ence to N

de ­prived medium. As ­ter ­isks de ­note sta­tis­ti ­cally sig ­nif­i­cant dif­fer ­ences in the trans ­for­mant re ­gards to the parental strain (t-test, p < 0.05). (c–h) Flu ­o ­res­cence

mi­croscopy de­tec­tion of neu­tral lipid ac­cu ­mu­la­tion by BOD­IPY stain ­ing in ACS2 over­ex ­press­ing trans ­for­mant (c-e) and con ­trol (f-h) strains, af­ter 48 h of

ni ­tro­gen star­va ­tion: (c,f) chloro ­phyll aut ­o ­flu­o ­res­cence, (d,g) BOD­IPY stained lipids (e,h) com­bi ­na ­tion of both. Bar: 10 μm.
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Fig. 3. Ef ­fect of ACS2 over­ex ­pres ­sion on the acyl-CoA pool of ni ­tro­gen starved

C. rein​hardtii cells. To­tal Acyl-CoA pool of con ­trol un­trans ­formed (Parental

strain,■) and ACS2 trans ­for­mant (Cr-acs2, ■) lines of C. rein ​hardtii cul ­tured in

ni ­tro­gen de ­pleted TAP medium was de ­ter ­mined by LC-MS/ ­MS over time of N

de ­pri­va ­tion. Val­ues are the av ­er ­age of three bi­o ­log­i­cal repli ­cates and

bars in ­di ­cate stan ­dard de ­vi ­a­tion. As­ter ­isk shows sig ­nif­i­cant

dif­fer ­ences in the Cr-acs2 trans ­for­mant with re ­spect to the parental strain (t-test,

p < 0.05).

3.4. Influence of differential initial acetate concentration on TAG and

starch accumulation

To fur ­ther in ­ves ­ti ­gate the in­flu­ence of ex­ter ­nal ac ­etate

sup ­ply on TAG and starch ac ­cu­mu ­la­tion, mid log cul ­tures of the

parental con ­trol and the acs2-trans ­for ­mant strains were trans ­ferred

to ni­tro­gen de ­prived TAP medium, with two dif­fer ­ent ini­tial

ac­etate con ­cen ­tra ­tions of 16.6 and 50 mM; 16.6 mM is the

stan ­dard ac­etate con ­cen ­tra ­tion in TAP medium [34], while 50 mM

ac­etate was ob ­tained by sup ­ple ­ment­ing stan ­dard TAP medium

with ad­di­tional sodium ac ­etate. Sam­ples were col ­lected every 24 h
af­ter ni­tro­gen de ­pri­va­tion to de­ter ­mine the con ­tent of

starch and neu ­tral lipids, as­sayed us­ing Nile red stain­ing. We found

that neu­tral lipids as­sayed by Nile Red method and TAG

de­ter ­mined by ESI-MS/ ­MS, show sim­i ­lar pro ­files over time in

ni­tro­gen de ­pri­va­tion, demon ­strat­ing that Nile red

flu­o ­res ­cence as­say ac ­cu­rately pre ­dicts the

ac­cu­mu ­la­tion of neu ­tral lipids in the C. rein ​hardtii. Other

au­thors have pre­vi­ously val­i ­dated the cor ­re­la­tion be ­tween

Nile Red flu­o ­res ­cence as­say and the oil con ­tent in this

mi­croalga [64].

This ex­per ­i ­ment has al­lowed us to con­firm that

ac­cu­mu ­la­tion of neu ­tral lipids un­der N de­pri­va­tion is

higher in the Cr-acs2 trans­for ­mant and is boosted by ac­etate in both

the Cr-acs2 and the cor ­re­spond­ing parental line, and re ­veals that the

in­cre ­ment is higher in the trans­for ­mant (Fig. 4a). In ­creas ­ing

ac­etate con ­cen ­tra ­tion to 50 mM leads to recorded val ­ues of 8000

flu­o ­res ­cence units in the trans­for ­mant af­ter 72 h of ni­tro­gen

star ­va­tion, 50% higher than the neu ­tral lipids ac­cu­mu ­lated in the

parental strain in the same con ­di­tions (Fig. 4a) and 1.5 fold the value

reached at 16.6 mM of ac ­etate. Neu­tral lipid con ­tent in­creases in the

parental strain dur ­ing the first 48 h of ni­tro­gen de ­pri­va­tion, but

af­ter this point fur ­ther ac ­cu­mu ­la­tion is only ob ­served in the

50 mM ac ­etate treat­ment. This lim­i ­ta­tion is not ob ­served for the

Cr-acs2 trans­for ­mant; in this case ni­tro­gen star ­va­tion in­duces

neu ­tral lipid ac ­cu­mu ­la­tion con ­tin­u ­ously over the whole

ex­per ­i ­men­tal time un­der both ac­etate con­cen ­tra ­tions.

In con ­trast to lipids, starch ac­cu­mu ­la­tion is not en ­hanced by

in­creas ­ing ac­etate, nei ­ther in the con ­trol, as ex­pected from

pre ­vi­ous re

Fig. 4. Ef ­fect of ac­etate con­cen ­tra ­tion on car­bon stor ­age prod­ucts of ACS2

over­ex ­press­ing C. rein ​hardtii trans ­for­mant (Cr-acs2) and the

cor ­re ­spond­ing un ­trans ­formed parental line cul ­tured un­der N

de ­pri­va ­tion. (a) Neu ­tral lipids and (b) starch con­tent in parental and Cr-acs2

trans ­for­mant strains were fol­lowed over time in N starved cul ­tures with 16.6 mM and

50 mM as ini­tial ac­etate con­cen ­tra ­tion. Neu ­tral lipids were mea­sured by Nile

Red flu­o ­res­cence stain ­ing and ex ­pressed as rel ­a­tive flu­o ­res­cence units.

Val­ues are the av ­er ­age of three bi ­o ­log­i­cal repli ­cates and bars in ­di ­cate

stan ­dard de ­vi ­a­tion. As­ter ­isk in ­di ­cates sta­tis­ti­cally sig ­nif­i­cant

dif­fer ­ences in the trans ­for­mant with re ­gard to parental strain (t-test, p < 0.05).

ports [65], nor in the trans­for ­mant line. The starch lev­els ob­served

in N-re­plete cul ­tures of the con ­trol and the Cr-acs2 trans­for ­mant

are 55 and 115 mg g  DW, re ­spec­tively. Upon trans­fer to

ni­tro­gen lack ­ing medium, starch con ­tent is sig­nif­i ­cantly

in­creased. In­ter ­est­ingly, the dif­fer ­ences be ­tween the Cr-acs2

trans­for ­mant and the un ­trans­formed con­trol get smaller over time,

be­com­ing prac­ti ­cally in­signif­i ­cant af­ter 72 h of ni­tro­gen

star ­va­tion. The max­i ­mum in­tracelullar con ­cen ­tra­tion of

starch reached is prac ­ti ­cally the same for the two ac­etate

con ­cen ­tra ­tions as­sayed, around 40% of the dry weight for both the

Cr-acs2 trans­for ­mant and the un ­trans­formed con­trol, al­though

this level is reached ear ­lier in the trans­for ­mant (Fig. 4b).

The dif­fer ­ences found in the ac­cu­mu­la­tion of starch and

TAG in the trans­for ­mant and the con ­trol cells sug ­gest that the

ori­gin of the car ­bon source for the syn ­the ­sis of each stor­age

com­pound un­der ni ­tro­gen star ­va­tion is dif­fer ­ent. In stress

con ­di­tions the me­tab ­o ­lism of ac­etate via acetyl-CoA

syn ­thetase path ­way seems to be much more im­por ­tant for the

pro ­duc ­tion of TAG than for the ac­cu­mu­la­tion of starch, which

must be mainly syn­thetized from other car­bon in­ter­me ­di­ates.

Over­ex­pres­sion of the chloro ­plas ­tic acetyl-CoA syn ­thetase,

be­sides pro­vid­ing higher lev ­els of basal starch and acyl-CoA to the

trans­for ­mant than to the parental strain in N-re­plete con ­di­tions,

can, un­der ni­tro­gen stress, pro ­vide higher flux of acetyl-CoA for

fatty acids. The data ob ­tained in the pre­sent re ­search is in agree ­ment

with pre ­vi­ous ev­i ­dence that pointed ac­etate avail­abil­ity as a

key fac ­tor for the ac ­cu­mu­la­tion on TAG in C. rein ​hardtii

[65,66] and other chloro ­phytes [67] and with re ­cent stud ­ies that

cor ­re­late the in­tra ­cel ­lu­lar level of acetyl-CoA in dif­fer ­ent

chloro ­phyte mi­croal­gae with its abil ­ity to ac­cu­mu ­late

triglyc­erides [38].

฀−1
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3.5. Characterization of lipids species and fatty acid profiles in transgenic

lines overexpressing acetyl-​CoA synthetase

To study the in­flu­ence of ACS2 over­ex­pres­sion on the

com­po­si­tion of mem­brane lipids, the fatty acid pro­file of to­tal

lipids (Fig. 5) and the dis ­tri­b ­u ­tion of the main lipid species (Fig. 6)

were fol­lowed over time of ni­tro­gen de ­pri­va­tion in both the

Cr-acs2 and the parental strain, cul­tured in stan­dard TAP medium

(16.6 mM ac ­etate). The to­tal lipids ac­cu­mu ­lated un­der

N-star ­va­tion in the Cr-acs2 trans­for ­mant and in the con ­trol

un­trans­formed cells were ex­tracted, sep ­a ­rated into the

dif­fer ­ent lipid frac­tions (neu­tral, phos­pho ­lipids and

gly ­col ­ipids) by SPE and an ­a ­lyzed by ESI-MS/ ­MS. To­tal lipid

were methy­lated and the (FAMEs) an­a ­lyzed by GC-FID.

Glob­ally the fatty acid pro ­fil­ing cor ­re­sponds to that

ob­served in other stud­ies of ni­tro­gen stressed C. rein ​hardtii cells

[68,69], how­ever, there are small dif­fer ­ences be ­tween the parental

and Cr-acs2 trans­for ­mant strains. Our re ­sults show that in both

strains, ni­tro­gen star ­va­tion causes a bias in the fatty acid pro ­file
to­wards sat­u ­rated and low un ­sat­u ­rated fatty acids,

specif ­i ­cally palmitic (C16:0) and oleic (C18:1) acids, which are the

more abun­dant fatty acids in TAG, while the polyun­sat­u ­rated fatty

acid, such as 16:4n6 and 18:3n3, more abun­dant in mem­brane lipids,

suf ­fer a strong de ­crease un­der ni­tro­gen de ­pri­va­tion. A more

de­tailed look re­veals that in the trans­for ­mant line the in­crease in

the mono ­sat­u ­rated oleic acid is around 48% af­ter 72 h of

ni­tro­gen de ­pri­va­tion, much higher than in the parental strain, for

which oleic acid in ­crease barely reach 29%. In ­ter ­est­ingly, this

ob­ser ­va­tion sup ­ports the hy­poth­e ­sis that oleic acid

ac­cu­mu ­la­tion in TAG, may be sen ­si ­tive to acetyl-CoA

avail­abil ­ity (Smith R., per ­sonal com­mu ­ni­ca­tion). It can also

be ob­served that the polyun­sat­u ­rated acids, 16:4n6 and 18:3n3

suf ­fer a > 50% de­crease in the parental strain, while are only re ­duced

in around 30% in the trans­for ­mant. This in ­di­cates that

degra ­da­tion of mem­brane lipids, which are rich in these PU­FAs,

con ­tributes to the syn­the ­sis of neu­tral lipids; how­ever the higher

con ­tent of neu ­tral lipids ob­served in the trans­for ­mant is not due to

a higher degra ­da­tion of the mem­brane lipids.

Ad ­di­tion ­ally, sep ­a ­ra­tion and quan ­tifi­ca­tion of the

ma ­jor po­lar lipids re­veals that, in the con­trol strain, the big

in­crease in TAG ac­cu­mu ­la­tion upon trans­fer ­ence to

ni­tro­gen star ­va­tion is ac­com­pa­nied by a re­duc ­tion in the

main po­lar lipid species, in agree ­ment with pre ­vi­ous re­ports

[68,69]. In the trans­formed strain, ni­tro­gen de ­ple ­tion causes, as

hap

pens in the con­trol un­trans­formed strain, a de­crease in some of main

lipid com­po­nents of the thy­lakoid mem­brane, such as

mono­galac­to­syl di­a ­cyl ­glyc ­erol (MGDG),

sul­fo­quinovo­syl di­a ­cyl ­glyc ­erol (SQDG) or

phos­phatidyl­glyc­erol (PG), al ­though this de ­crease is lower than in

the parental strain. The de ­crease of MGDG is par­tic­u ­larly

note­wor ­thy, which af­ter 72 h with ­out ni­tro­gen is re ­duced in

>70% com­pared to the parental strain, while in the acs2 trans­for ­mant

MGDG de­clines only 37%. Fur ­ther ­more, di­galac­to­syl

di­a ­cyl ­glyc­erol (DGDG), the sec ­ond most abun­dant lipid in the

plas ­tid mem­branes, which slightly de ­creases in the con ­trol,

in­creases around 30% in the trans­for ­mant (Fig. 6). The be ­taine lipid

di­a ­cyg ­lyc ­eryltrimethyl­ho­moser ­ine (DGTS), the ma­jor

ex­traplas­tidic lipid in C. rein ​hardtii, which is slightly re ­duced in the

con ­trol (5%), does not show a sig­nif­i ­cant in­crease in the Cr-acs2

trans­for ­mant, af­ter 72 h of ni­tro­gen de­pri­va­tion.

It is in­ter ­est­ing to note that we have not found

phos­phatidyl­choline (PC) nei­ther in the parental, nor in the

trans­formed strain. Al­though this ubiq ­ui­tous phos ­pho ­lipid is

es­sen ­tial for most eu­kary­otes and has been found in sev­eral

species of Chlamy​domonas [54], it seems to be ab­sent in

Chlamy​domonas rein ​hardtii, where the role of PC could have been

re­placed by the non-phos­pho ­rous be ­taine lipid DGTS [28].

Thus, over ­ex­pres­sion of ACS2 re­sults in higher TAG

pro ­duc ­tion and a cer ­tain bias to sat­u ­rated or low un­sat­u ­rated

fatty acids upon trans­fer ­ence to ni­tro­gen de ­prived medium.

Ad ­di­tion ­ally, af­ter some days in the ab­sence of ni­tro­gen a

con ­sid­er­able degra ­da­tion of mem ­brane lipids, which

con ­tributes to the syn­the ­sis of neu­tral lipids can be ob­served;

how­ever this degra­da­tion is less acute in the acs2 trans­for­mant,

in­di­cat­ing that the higher TAG in ­cre ­ment in the mod ­i ­fied

strain is due to an in­crease in the car­bon flux to ­wards the

syn ­the ­sis of acetyl-CoA in the chloro ­plast rather than to a higher

de­crease of po­lar lipid species.

It is gen ­er­ally ac ­cepted that fatty acid syn ­the ­sis is largely

re­liant on ex­oge ­nous ac­etate in C. rein ​hardtii, but there is

cer ­tain con ­tro­versy about the con ­tri­bu­tion of pre ­ex­ist­ing

mem­brane lipids as source of fatty acids for the syn­the ­sis of TAG.

Fan et al. [63,65] main ­tain that oil ac­cu­mu­la­tion in re­sponse to

N star­va­tion is mainly de ­pen ­dent on de novo fatty acid syn ­the­sis

in the chloro­plast, while Juer­gens et al. [33] have ob­served, by 13C

la­belling time course stud ­ies, that there is a con ­sid­er­able turnover

of mem­brane lipids dur ­ing nu­tri­ent de ­pri­va­tion in mixotrophic

cul ­tures of C. rein ​hardtii. Sim­i ­lar re­sults were ob ­served by

Siaut et al. [69] who con­cluded that there is a con ­sid­er­able

degra ­da­tion of plas ­tidial mem­brane lipids at the be­gin­ning of

the oil ac ­cu­mu­la­tion phase in N de­prived C. rein ​hardtii

cul ­tures. Our analy­sis of the­

Fig. 5. Time course evo­lu ­tion of fatty acid com ­po­si­tion of to ­tal lipids iso­lated from N-de ­prived con ­trol (PARENTAL STRAIN) and trans ­for­mant (Cr-acs2) C.

rein ​hardtii strains cul ­tured in stan ­dard TAP medium (16.6 mM ac­etate). Sam ­ples from both strains were col ­lected be ­fore and af­ter 24, 48 and 72 h of N star­va ­tion and fatty

acid methyl es ­ters (FAME) pre­pared from to ­tal lipids were sep­a­rated and an ­a­lyzed by FID-GC. Val ­ues are the av ­er ­age of four mea­sure ­ments from two bi ­o ­log­i­cal

repli­cates and bars in ­di ­cate stan­dard de­vi ­a­tion. As­ter ­isks de ­note sig­nif­i­cant vari­a­tions in lipid con­tent at 72 h with re ­spect to 0 h (t-test, p < 0.05).
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Fig. 6. Time course evo­lu ­tion of the ma ­jor po­lar mem­brane lipids species in N

de ­prived con ­trol (PARENTAL STRAIN) and trans­for­mant (Cr-acs2) C.

rein ​hardtii strains cul ­tured in stan ­dard TAP medium (16.6 mM ac­etate). The ma ­jor

lipid classes in gly ­col ­ipids and phos­pho ­lipids ex­tracts from both strains were

iden­ti ­fied by ESI-MS/ ­MS analy­sis be­fore, and af ­ter 24 h and 72 h of N

de ­pri­va ­tion. Ab ­bre ­vi ­a­tions: mono­galac­to ­syl di ­a­cyl ­glyc­erol

(MGDG), di ­galac­to ­syl di ­a­cyl ­glyc­erol (DGDG), phos­phatidyl glyc­erol

(PG); sul ­folipid sul ­fo­quinovo­syl di ­a­cyl ­glicerol (SQDG),

di ­a­cyg­lyc ­eryltrimethyl­ho­moser­ine (DGTS), phos ­phatidylethanolamine (PE).

Val­ues are the av ­er ­age of four mea ­sure ­ments from two bi ­o ­log­i­cal

repli ­cates and bars in­di ­cate stan ­dard de ­vi ­a­tion. As­ter ­isks de ­note

sig ­nif­i ­cant vari­a­tions in lipid con­tent at 72 h with re ­gard to 0 h (p < 0.05).

com­po­si­tion of mem­brane lipids in ni­tro­gen de ­prived

cul ­tures shows a strong de ­crease of the main po­lar lipids over time of

N de­pri­va­tion, in agree ­ment with the con ­tri­bu­tion of

mem­brane lipids turnover to the ac­cu­mu ­la­tion of TAG, but

com­par ­a ­tive analy­sis be­tween the trans ­for ­mant and the

parental strain sug ­gests that an in­crease in the car­bon flux to ­wards

the syn ­the ­sis of fatty acids in the chloro­plasts, rather than higher

mem­brane lipids turnover, is re­spon­si ­ble for the higher

ac­cu­mu ­la­tion of TAG in the Cr-acs2 trans­for ­mant.

3.6. Differential expression levels of chloroplastic acetyl-​CoA synthetase

and acetyl- ​CoA carboxylase

To com­plete this study we have an­a ­lyzed the tran ­script lev ­els

of two en­zymes: the chloro ­plas ­tic acetyl-CoA syn ­thetase (ACS2),

the en ­zyme over­ex­pressed in this work; and the

α-car ­boxyl­trans­ferase sub ­unit of the chloro ­plas ­tic acetyl-CoA

car ­boxy­lase (AC ­Case-ACX1), which is di ­rectly in­volved in the

con ­ver ­sion of acetyl-CoA into mal ­onyl-CoA, the first step in the

biosyn ­the ­sis of fatty acids. The ex ­pres­sion pro ­file of these two

genes over time in N de­pri­va­tion (Fig. 7a–b) and also the ra ­tio
be­tween their ex ­pres­sion lev ­els in the trans­for ­mant and the

parental un­trans­formed strain (Fig. 7c–d) have been an­a ­lyzed by

real-time quan­ti ­ta­tive PCR.

These ex­per ­i ­ments con ­firmed that ACS2 is over ­ex­pressed in

the trans­for ­mant, which, re­sulted in a tran ­script level 50% higher

than in the con­trol parental strain (N-re ­plete medium; Fig. 7c).

Fur ­ther ­more, pro­fil­ing of ACS2 ex­pres­sion over time dur­ing N

de­pri­va­tion showed that ACS2 is up-reg ­u ­lated upon N

de­pri­va­tion both in the con ­trol and the trans ­for ­mant, reach­ing

6-fold the basal tran ­script level af ­ter 24 h of N de­pri­va­tion (Fig.

7a). The ACS2 tran ­script level is al ­ways higher in the trans­for ­mant,

e.g. 6-fold higher in the trans ­for ­mant than in the con ­trol af ­ter 48 h
of ni­tro­gen de­pri­va­tion (Fig. 7c).

These re ­sults are in agree ­ment with pre ­vi­ous stud ­ies.

Ra­manan et al. [39] ob ­served that the ACS2 gene is highly

up-reg ­u ­lated un­der mixotrophic and ni ­tro­gen-lim­ited

con ­di­tions found­ing a cor ­re­la­tion be ­tween the

up-reg ­u ­la­tion of the ACS2 gene and the for ­ma ­tion of lipid droplets

in C. rein ​hardtii. Good­e ­nough et al. [40] also con ­cluded, af­ter

RNA-seq tran ­scrip­tome analy­sis of sev­eral N-starved ac­etate-fed

wild and mu ­tant strains of C. rein ​hardtii, that ACS2 is a sen ­si ­tive

gene for which ex­pres­sion was stim ­u ­lated by ac­etate in N starved

cul ­tures. In other mi­croal­gae, such as Dunaliella ter​ti ​olecta, a

sim ­i ­lar in­crease of ACS tran ­script lev ­els af­ter

ni­tro­gen-de ­fi­cient cul­ti ­va­tion has been ob­served [41].

Fig. 7. Tran­scrip ­tion lev ­els of ACS2 (a,c) and ACX1 (b,d) genes in re ­sponse to ni ­tro­gen de ­pri­va ­tion. Sam ­ples of con­trol and acs2 trans ­for­mant cul ­tures, col ­lected

at the in ­di ­cated time af ­ter trans ­fer ­ence to ni ­tro­gen free medium, were processed for mRNA iso­la­tion and the ex ­pres ­sion of the in ­di ­cated genes an ­a­lyzed by

quan ­ti ­ta­tive RT-PCR. Mea ­sure ­ments were nor­mal­ized to se ­lected en ­doge ­nous genes and pre ­sented as fold-change rel ­a­tive to tran ­script lev ­els at 0 h (N re­plete

cul ­tures) (a,b) and as the ra ­tio be­tween the ex ­pres ­sion level in the trans ­for­mant and in the parental un ­trans ­formed strain (c,d). Er ­ror bars rep ­re­sent 95% con­fi ­dence

in ­ter ­vals from three repli ­cates.

8



Rich Text Editor, editor3

http://web8.elsevierproofcentral.com/en/index.html?token=SPIN2f398b682ebb97217adb6def1ac8d0426&type=AU[09/02/2018 12:05:27]

R. Rengel et al. Algal Research xxx (2018) xxx-xxx

Chloro ­plas ­tic AC ­Case is a tetrameric com­plex, con ­sist ­ing of

bi­otin car ­boxy­lase, bi­otin car ­boxyl car ­rier pro ­tein, and α- and

β- car ­boxyl ­trans­ferases, re ­spon­si­ble for the for ­ma ­tion of

mal­onyl-CoA in the chloro­plast. As­sem ­bly of the four sub­units of

AC ­Case is very well co­or­di­nated, as is their reg­u ­la­tion [70].

In this work we have cho­sen the α-car ­boxyl ­trans­ferase sub ­unit

(ACX1) to eval ­u ­ate the ex­pres­sion level of the Acetyl CoA

car ­boxy­lase. We have found that the ex ­pres­sion level of ACX1 is

not in­duced by N de­pri­va­tion (Fig. 7b). Sim ­i ­lar re­sults were

ob­served by Ra­manan et al. [39] and Schmollinger et al. [71], who

found that BCX1, the β-car ­boxy­lase sub ­unit of AC ­Case, was

down-reg ­u ­lated un­der N lim­i ­ta­tion. While Good­e ­nough et

al. [40] found a tran ­sient down-reg ­u ­la­tion fol­lowed by an

in­duc ­tion af ­ter 24 h of N star ­va­tion for both the ACX1 and BCX1

sub ­units.

Cu­ri­ously, al­though ACX1 did not showed higher lev­els

rel ­a ­tive to N re­plete cells (time 0 h); ACX1 tran ­script level is around

2-fold higher in the trans ­for ­mant than in the con­trol strain (Fig.

7d). Higher sub­strate avail­abil ­ity for the acetyl-CoA car ­boxy­lase

in the trans­for ­mant could be the cause for this in­duc ­tion. Al­though

the in­flu­ence of acetyl-CoA on AC ­Case at tran­crip ­tional level has

not been stud ­ied, sev ­eral pre­vi­ous stud ­ies have re­vealed that

suf ­fi­cient acetyl-CoA lev­els to­gether with stro ­mal

ap­pro ­pri­ate re­dox pool are nec ­es­sary to ac­ti ­vate AC ­Case

[36,38].

4. Conclusions

The ACS2 over­ex­press­ing C. rein ​hardtii trans­for ­mant

ac­cu­mu ­lated more starch re ­serves and had a larger acyl-CoA pool

than the cor­re­spond­ing parental line. In nu ­tri­ent re­plete

non-stressed cul ­tures, the mech ­a ­nisms that trig­ger the

ac­cu­mu ­la­tion of TAG are not ac ­tive, and the ex ­cess acetyl-CoA

is mainly stored as starch and ac­cu­mu ­lated as in­tracelullar

acyl-CoA, both of which are higher in the ACS over ­ex­press­ing

trans­for ­mant, reach ­ing val ­ues 100% (in the case of starch), and 60%

(in the case of acyl-CoAs) higher than in the parental un­trans­formed

strain.

Upon trans­fer to N-de­pleted medium, the biosyn ­the ­sis of starch

and TAG is rapidly in­duced, how­ever their biosyn­thetic dy­nam­ics

are very dif­fer ­ent. An ex­am ­ple of this is that in ­creas ­ing

ac­etate con ­cen ­tra ­tion en ­hances TAG pro­duc ­tion, but not

starch ac ­cu­mu ­la­tion, nei­ther in the parental nor in the acs2

trans­for ­mant strain. TAG con ­tent of N-de­prived Cr-acs2

trans­for ­mant cells is much higher than that of the parental

un­trans­formed line grown in the same con­di­tions; af­ter 3 days of

ni­tro­gen de ­pri­va­tion with an ini­tial con ­cen ­tra­tion of

ac­etate of 50 mM, the con ­tent of neu ­tral lipids in the ACS

trans­for ­mant is 52% higher than in the con­trol grown in the same

con ­di­tions and up to 16-fold higher than in the N re­plete con ­trol

cells. Al ­though the fi­nal oil con­tent in mi­croal­gae is

de­ter ­mined by many fac ­tors, we can con ­clude that the

con ­tri­bu­tion of plas ­tidic ACS is very im­por ­tant for es­sen ­tial

the ac­cu­mu ­la­tion of stor­age lipids.

On the other hand, al ­though the basal starch con ­tent is two-fold

higher in the Cr-acs2 than in the trans­for ­mant, the starch

ac­cu­mu ­lated af­ter 72 h of N de­pri­va­tion is prac ­ti ­cally the

same in the trans­for ­mant and the parental strains, demon ­strat­ing that

the ori­gin of these two C stor­ages is clearly dif­fer ­ent and show ­ing

that in N de­prived medium the ac ­etate me ­tab ­o ­lized via

acetyl-CoA syn ­thetase is pri­or­i ­tized to ­wards the biosyn ­the ­sis

of TAG. This is in agree­ment with re­cently pub ­lished data, pro­vided

by car ­bon 13C iso ­tope la­bel ­ing, that showed that in mixotrophic

cul ­tures, starch is pre ­dom­i ­nantly ob­tained from

pho ­to­syn ­thet ­i ­cally as­sim ­i ­lated CO , while fatty acid

syn ­the ­sis is mainly sup­plied by ex­oge ­nous ac­etate [33] and with

the ob­ser ­va­tions of Fan et al. [65], that sug ­gest that car ­bon

avail­abil ­ity is a key fac ­tor con ­trol ­ling car ­bon por ­tion ­ing

be­tween starch and oil in C. rein ​hardtii.

Over­ex­pres­sion of ACS2 re ­sults in higher ACS2 tran ­script

lev ­els, en­hanced TAG pro ­duc ­tion and a ma ­jor bias to

u ­rated fatty acids upon ni­tro­gen star ­va­tion, but not in higher

de­crease of po­lar lipid species, in ­di­cat­ing that the higher

in­cre ­ment in the TAG con­tent of the trans­for ­mant is not achieved

at ex­pense of other po­lar plas ­tidial lipids, but due to an in ­crease in

the car ­bon flux to ­wards the syn ­the ­sis of acetyl-CoA in the

chloro ­plast.

Over­ex­pres­sion of Cr-ACS2 by ge­netic en­gi­neer­ing

in­creases the avail­abil ­ity of acetyl-CoA, such that un­der

ni­tro­gen lim­i ­ta­tion it is mainly used for the syn ­the ­sis of TAG,

thus this is a good strat ­egy to in­crease the ac­cu­mu ­la­tion of

lipids, par ­tic­u ­larly TAG, in C. rein ​hardtii, that could be

suc ­cess­fully ap­plied to other mi­croal­gal sys­tems.

Si­mul ­ta­ne­ous over­ex­pres­sion of ACS with other en­zymes

cat ­alyz­ing down­stream steps of the path ­way or the syn­the­sis of

spe ­cific high value fatty acids could pro ­vide higher yields of

tai­lor-made lipids that bet ­ter con ­form to the re­quire­ments of

cer ­tain en­er­getic or nu­tri­tional ap­pli­ca­tions.

Sup ­ple ­men­tary data to this ar ­ti ­cle can be found on ­line at

https:­// ­doi.­org/ ­10.­1016/­j.­algal.­2018. ­02.­009.
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In or­der to iso­late the ACS2 (EDO98345) en ­cod ­ing gene, to­tal

RNA was ob ­tained by the RNAeasy plant minikit from Qi­a ­gen

ac­cord­ing to man­u ­fac ­turer's in­struc­tions and sin­gle strand

cDNA was syn ­the ­sized from to­tal RNA ac­cord­ing to the

Su­per ­script II RNaseH-re­verse tran ­scrip­tase man­ual

(In ­vit­ro­gen). ACS2 was am ­pli­fied by PCR, us ­ing 1 μL of the

cDNA as tem­plate, and the Phu ­sion High-Fi ­delity DNA Poly ­merase

(Ther ­mofisher). Spe ­cific for ­ward and re ­verse primers were

mod­i ­fied to con ­tain the XhoI and EcoRI re­stric­tion sites. The

re­sult ­ing PCR prod ­uct was lig ­ated into the pSpark vec­tor

(Can­vax, Spain) and fur ­ther sub ­cloned into the XhoI-EcoRI sites of

polylinker re­gion of the mi­croal­gal ex­pres­sion vec ­tor

Phy ­co105 to gen ­er­ate the Phy ­co105-CrACS2 plas ­mid (Fig. 1

suppl mat).

qPCR ex­per ­i ­ments were per ­formed on a Mx3000P

Mul ­ti ­plex Quan­ti ­ta­tive PCR Sys ­tem (Strat­a ­gene) us­ing

1 μL of the cDNA, syn­the ­sized from to­tal RNA ac­cord­ing to the

Su­per ­Script II RNaseH-re ­verse tran ­scrip­tase man­ual

(In ­vit­ro­gen), as tem ­plate and Bril ­liant SYBR® Green QPCR

Mas­ter Mix (Ag ­i ­lent Tech­nolo­gies, La Jolla, CA, USA).

Cy­cling con ­di­tions were: 10 min at 95 °C for ac ­ti ­va­tion of the

Hot start Taq poly­merase and 40 cy­cles for the melt­ing (30 s at

95 °C), an ­neal­ing­

(30 s at 62 °C) and ex ­ten ­sion (30 s at 72 °C). Each qPCR

mea ­sure­ment was car ­ried out in trip ­li ­cate us­ing primers for

ei­ther the chloro ­plas ­tic acetyl-CoA syn ­thetase (ACS2), or the

al­pha-car ­boxyl­trans­ferase sub ­unit (ACX1) of chloro ­plas ­tic
acetyl-CoA car ­boxy­lase en ­cod ­ing genes (Table 1, suppl

ma ­te­r ­ial). The UBC8 gene, en ­cod ­ing an ubiq ­ui­tin lig­ase

polypep­tide (XM_001697453), which ex­pres­sion was pre ­vi­ously

shown to be con ­sti­tu­tive un­der the dif­fer ­ent con ­di­tions used

[60,61] was used as house ­keep­ing gene to nor­mal­ize mRNA

abun­dance. 2  ap­proach was used to cal­cu­late fold change

[62].

In or­der to per ­form a pre ­lim­i ­nary screen ­ing,

un­trans­formed con­trol and Cr-acs2 trans­for ­mants were

trans­ferred to ni­tro­gen-de ­pleted TAP me­dia at the same ini­tial

cell den ­sity to in­duce the ac­cu­mu­la­tion of neu ­tral lipids,

which con ­tent was de ­ter ­mined by stain­ing with Nile Red dye and

mea ­sur ­ing flu­o ­res ­cence emis­sion as de ­tailed in Methods

section 2.7. The cell den ­sity did not in­creased sig­nif­i ­cantly over

the three days in which the cul­tures were main­tained with ­out

ni­tro­gen (Fig. 2-suppl mat). Trans ­for ­mant Cr-acs2-4

con ­sis­tently ac­cu­mu­lated more than twice the neu ­tral lipid

con ­tent of the parental strain af­ter 72 h of ni­tro­gen star ­va­tion

(Fig. 1c). This clone was there­fore se­lected for fur­ther stud ­ies.
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