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Abstract

B-box proteins have emerged as prominent mechanisms for controlling growth and developmental processes and in some

instances responses to biotic and abiotic stresses in plants. These proteins mediate transcriptional regulations and protein–

protein interactions in cellular signalling processes. B-box proteins thereby play an important role in coordinating physiological

and biochemical pathway flux and are therefore ideal targets for controlling stress responses in plants. In this study, the

overexpression of an Arabidopsis thaliana B-box gene (BBX29) in sugarcane (Saccharum spp. hybrid) has led to enhanced

drought tolerance and delayed senescence under water-deficit conditions when compared to the wild-type plants. Transgenic

plants maintained a higher relative water content and better protected its photosynthetic machinery. These plants accumulated

more proline and displayed enhanced enzymatic antioxidant activity under drought conditions. Overexpression of AtBBX29

further alleviated the build-up of reactive oxygen species and curtailed oxidative damage, resulting in transgenic plants with

improved health and higher survival rates during dehydration. Our results suggested that the AtBBX29 gene influenced an array of

physiological and biochemical mechanisms in sugarcane to the advantage of the crop and might be a target to genetically

engineer drought tolerance into sugarcane. This is the first report to elucidate B-box protein functionality in a polyploid crop

such as sugarcane.
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Introduction

Sugarcane (Saccharum spp. hybrid) is one of the most impor-

tant crops in the world, grown mostly for its high sucrose

content and as an important biomass source for biofuel pro-

duction. Sugarcane is a very productive but high water-

demanding crop, and its growth and sugar content are

restricted by drought (Inman-Bamber and Smith 2005).

Global climate change is causing frequent and severe drought

spells worldwide, which became especially prevalent over the

past decade in regions such as southern Africa (Nhamo et al.

2019). Therefore, sustainable production through induced tol-

erance towards limited water resources is of significant impor-

tance in this crop (Kumar et al. 2014).

The complexity of the sugarcane genome makes trait im-

provements through conventional breeding challenging;

therefore, the alternative use of genetic engineering may con-

tribute towards the sustainable production of this crop (Gentile

et al. 2015; Piperidis et al. 2010). Stress tolerance in plants is

controlled by the ever-evolving diverse physiological and bio-

chemical strategies that involve differential expression of

genes in pathways related to stress responses (Li et al.

2016). Transcription of these genes is mainly controlled by

regulatory genes, such as transcription factors (TFs), which

can act as molecular switches by binding to conserved cis-

acting elements in promoter regions of target stress response

genes, leading to enhanced stress tolerance (Gahlaut et al.
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2016). Genetic engineering can target these regulatory genes

in order to potentially generate drought-tolerant sugarcane va-

rieties and can contribute to enhancing our understanding of

the linked pathways in plant abiotic stress tolerance (Bartels

and Sunkar 2005).

BBX proteins’ nomenclature was set to represent a sub-

group of the zinc finger protein family, characterised by one

or two conserved B-box domains and stabilised by specialised

tertiary structure binding Zn2+ ions. In addition to the B-box

motifs at the N-terminus, sometimes a CCT (CONSTANS,

CO-like, TOC1) domain is present at the C-terminus

(Khanna et al. 2009; Robson et al. 2001). The B-box motifs

are composed of ~40 amino acids in length and are divided

into two types, B-box1 and B-box2, based on their consensus

sequence and the spacing of the zinc finger binding domain

(Gangappa and Botto 2014). A total of 32 BBX proteins have

been identified in Arabidopsis thaliana (Khanna et al. 2009),

which are simplified into five clusters (I-V) according to the

presence or absence and topology of their B-box and CCT

domains (Crocco and Botto 2013).

B-box proteins are likely to be involved in DNA binding,

RNA binding or protein–protein interactions (Gangappa and

Botto 2014). Functionally, BBX proteins have been linked to

regulatory networks controlling plant development and

growth, photoperiodic regulation, circadian rhythm and re-

sponses to biotic and abiotic stresses (Datta et al. 2007; Ding

et al. 2018; Crocco and Botto 2013; Han et al. 2020; Kumagai

et al. 2008; Xu et al. 2017; Zhang et al. 2017). In addition,

recent analysis of gene expression profiles implies that BBX

proteins are involved in plant hormone signalling including

abscisic acid (ABA), brassinosterioids, gibberelling, cytokinin

and auxin signals (Cao et al. 2019; Fan et al. 2012; Sánchez

et al. 2004; Sun et al. 2010; Wang et al. 2013b; Huang et al.

2012). However, the role of B-box zinc finger TFs in plant

stress is still poorly understood. In a review compiled by

Gangappa and Botto (2014), 13 of the 32 Arabidopsis BBX

genes were linked to an abiotic stress response, mostly cold

and salt stress. The majority of these genes also responded to

an ABA input signal leading to increased expression.

Specifically, in relation to drought tolerance, the MdBBX10

gene from apple was upregulated under salt and osmotic

stresses and when overexpressed in Arabidopsis enhanced

drought tolerance by increasing the transgenic plants’ ability

to scavenge reactive oxygen species (Liu et al. 2019). The rice

zinc finger protein, OsMSR15 containing a B-box motif, en-

hanced drought tolerance in Arabidopsis. These transgenic

plants had higher levels of proline, displayed less membrane

damage and increased the expression of a number of stress

response genes (Zhang et al. 2016).

AtBBX29 is a B-box zinc finger protein, part of the BBX

protein family in Arabidopsis thaliana. Since this protein has

a single B-box domain, it falls within structure group V

(Crocco and Botto 2013). It functions as a sequence-specific

DNA-binding transcription factor. Since it is a member of the

CONSTANS gene family, putative functions such as

flowering regulation have been assigned to this gene

(Putterill et al. 1995). CmBBX29, a homologue isolated from

chrysanthemum, has also been linked to the regulation of

flowering when overexpressed in Arabidopsis (Chen et al.

2020). A study by Mikkelsen and Thomashow (2009) identi-

fied AtBBX29, which they named CONSTANS-like (COL1),

as being upregulated by low temperature in a CBF-

independent manner. Further investigations revealed an eve-

ning element (EE) motif (AATATCT), an MYB TF CCA1

binding site (AAAAATCT) and six ABA response element

(ABRE)-like motifs, one of which was part of a G-box

(CACGTG), in the promoter of this gene. The G-box has been

implicated in a number of ABA-regulated gene expression

pathways, which include the binding of bZIP TFs (basic

region/leucine zipper motif) (Droge-Laser et al. 2018).

Furthermore, the AtBBX29 TF is conceived to play a role in

photosynthetic machinery and chloroplast redox conditions

(Soitamo et al. 2008). Therefore, due to its perceived link with

especially ABA, the purpose of our study was to investigate if

overexpression of BBX29 from A. thaliana will provide im-

proved tolerance to water-deficit stress in sugarcane. In select-

ed transformed sugarcane plants, we particularly measured

plant growth as well as physiological and biochemical activ-

ities after exposure to drought when compared with wild-type

plants.

Materials and Methods

Vector Construction

The full-length BBX29 transcription factor (TF) gene (acces-

sion number: At5g54470) was amplified from Arabidopsis

thaliana Columbia ecotype (Col-0) cDNA using Q5 High-

Fidelity DNA Polymerase (New England Biolabs, Ipswich,

USA) and forward (5′- GCAGGTCGACGGATCATGG

GGSSGAAGAAGTGCGAGTT-3 ′) and reverse (5’-

GAATTCCCGGGGATCTCAATAAAACGAAGACGACG

ATGA-3′) primers containing BamHI sites. The ampliconwas

cloned into the BamHI site of the pUbi510 vector to generate

the recombinant plant expression vector, pUbi510:AtBBX29,

which contains an ubiquitin promoter and cauliflower mosaic

virus (CaMV) terminator. The recombinant vector was trans-

formed using a standard heat-shock protocol into DH5α

Escherischia coli cells and sequenced.

Genetic Transformation of Sugarcane

Embryogenic callus was initiated from Saccharum spp. hy-

brid, cultivar NCo310 immature apical inner leave roll tissue

and placed on MSC3 medium (4.43 g/L MS (Murashige and
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Skoog 1962) with vitamins), 20 g/L sucrose, 0.5 g/L casein,

3 mg/L 2,4 D (2,4-dichlorophenoxyacetic acid) and 2.22 g/L

gelrite; pH 5.8). Cultures were incubated in the dark at 26 °C

and sub-cultured onto fresh media every 2 weeks. Prior to

bombardment, as described by Bower and Birch (1992), em-

bryogenic callus was placed on osmoticum medium

(MSC3Osm), consisting of the basic MSC3 medium with

the addition of 0.2 M of each mannitol and sorbitol, at 26 °C

for 4 h in the dark.

A DNA precipitation mix was prepared containing 5 mg

sterilised tungsten (Grade M10: Biorad, #165–2266), mixed

with 5 μL each of the pUBi510:AtBBX29 (1 μg/μL) and

pEmuKN (1 μg/μL; selection vector; Last et al. 1990) vectors,

50 μL 2.5 M CaCl2 and 20 μL 0.1 M spermidine. The

pEmuKN selection vector contained the neomycin

phosphotransferaseII (nptII) gene as selection marker.

For bombardment, 5 μL of the DNA precipitation mix was

placed into the centre of a 1 mm2 metal grid above the target

callus. Target tissue was placed 16.5 cm below the particle

source and the helium bombardment pressure set at 1000 kPa.

Biolistic particle delivery was done using a homemade system

where the vacuum chamber was evacuated to reach 80 kPa

before the precipitation mix was discharged. Bombarded tis-

sue was cultured on selection medium (MSC3) containing

45 mg/L geneticin for 8 weeks in the dark at 26 °C. Putative

transformed calli were transferred to selection medium lack-

ing 2,4-D and incubated at 26 °C at a 16/8-h light/dark pho-

toperiod (50 μmol photons m−2 s−1 of luminosity) under cool

white fluorescent lights (Osram, L 58 V/740) for somatic em-

bryo formation. Regenerated plantlets were allowed to grow

to a height of ~5 cm and developed roots prior to transfer to

the glasshouse.

Molecular Analysis of Transgenic Sugarcane

Leaf tissue was harvested from each putative transformed

plantlet and non-transgenic WT sugarcane and grinded to a

fine powder using liquid nitrogen. Genomic DNA was ex-

tracted using the ZR/Plant/Seed DNA MiniPep Kit (Zymo

research, USA). Transgene integration was confirmed through

standard PCR amplification using 200 ng of genomic DNA as

template in combination with gene-specific and ubiquitin pro-

moter primer (UbiFor: 5′-ATACGCTATTTATTTGCTTGG-

3′) pairs. Amplicons were separated and visualised through

gel electrophoresis.

Total RNA was extracted from leaf tissue harvested from

transgenic and WT plant lines and grinded to a fine powder

using liquid nitrogen and the Maxwell®16 LEV Plant RNA

Kit (Promega, Madison, USA). cDNA was synthesised from

1 μg RNA using the Reverse Aid H minus First strand cDNA

synthesis Kit (ThermoFisher Scientific, Waltham, USA) ac-

cording to the manufacturer’s protocol. Semi-quantitative RT-

PCR was performed using cDNA template to access relative

levels of transgene expression. Transgene-specific forward

(5′-CTAATTTTCTGGTGGCGAAACACATGCG-3′) and

reverse (5′- CAATGGTCTAGAT TGGTTCTCCTCCTG

CATTTC-3′) primers and primers designated for the actin

gene (5′-TCACACTTTCTACAATGAGCT-3′ and 5′-

GATATCCACATCACACTTCAT-3′) used as internal refer-

ence gene were used in combination with GoTaq DNA poly-

merase in standard PCRs and visualised through gel

electrophoresis.

Analysis of Plant Growth under Normal
Environmental Conditions

To observe the phenotypes of plants under normal conditions,

harden off transgenic and wild-type sugarcane plants were

transferred and grown in big 56 cm pots containing a 2 : 1

mix of potting soil and sand in a growth tunnel under natural

light and temperature. The plants were regularly watered, re-

ceived fertiliser during the watering regime, and were allowed

to grow for 8 months. Agronomic growth measurements of

plant height, leaf width, leaf length and internodes lengths

were taken from 3 stalks of each of the four (4) biological

repeats for each transgenic and wild-type (WT) line. Plant

height was measured from the soil level to the top visible

dewlap leaf (TVD). The TVD is the first leaf from the top of

the plant that has a visible dewlab formed on the stalk. The

TVD was also used as a measuring point for the leaf width,

which was recorded 10 cm away from the dewlap following

the length of the leaf. The internode length was measured for

internodes 7, 8 and 9; internodes were counted from the top to

the bottom of the stalk, youngest to oldest, respectively.

To determine the carbohydrate content, mature (internode

9) and immature (internode 3) internode tissues were harvest-

ed from the 8 months old transgenic andWT sugarcane plants.

Total soluble carbohydrates were extracted from 20 mg

grinded frozen internode tissue using the ethanol extraction

method described by Chow and Landhäusser (2004). Sugar

levels were measured us ing the BOEHRINGER

MANNHEM/R-BIOPHARM Enzymatic BioAnalysis/Food

Analysis kit (R-Bopharm, Boehringer Manheim, Darmstadt,

Germany) following the manufacturer’s instructions.

Absorbance was measured at a wavelength of 340 nm using

a VesrsaMax ELISA Microplate reader and the sucrose, glu-

cose and fructose concentrations were expressed as

μmol/g FW.

Analysis of Transgenic Sugarcane Plants under
Drought Conditions

Three transgenic lines and WT sugarcane were multiplied

in vitro on half strength MS (½ MS) medium containing 2%

sucrose, 2 mg/L 1-naphthalene-acetic acid (NAA)) and 0.22 g/

L gelrite; pH 5.8. Twenty five rooted in vitro plantlets per
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genotype were harden off in the glasshouse by planting in

20 cm pots containing a homogenous mixture of soil

consisting of 2 : 1 : 1 palm peat:sand:vermiculite and placed

in the glasshouse at 26 ± 2 °C. Plants were watered every two

days and fertilised with 3 g/L Hydrotech Generic Fertiliser

(Hydrotech, Stellenbosch, SA) and 2.5 g/L calcium nitrate

[(Ca2(NO3)
2] every two weeks.

Four-month-old healthy plants in the tillering stage of de-

velopment were deprived of water and subjected to drought

for 21 days. The soil surface of each pot included in the trial

was covered with a plastic disc to ensure slow drying of the

soil. The soil moisture content of all pots were measured every

second day using the ProCheck (Decan Devices, Washington,

USA) probe inserted 9 cm deep into the soil and recorded

three readings per pot around the plant stem. Once water

was withheld, physiological measurements were taken every

second day using the top visible dew lap leaf (TVD) as the

measuring point. Plant growth was recorded by measuring the

plant height and length and width of the TVD of the transgenic

and WT plants included in the trial. Measurements were re-

corded every 7 days on days 0, 7, 14 and 21 without water

(ww). In addition, on the same days, leaf material above and

below the TVDwere harvested, flash frozen in liquid nitrogen

and stored at − 80 °C for further biochemical analysis.

Physiological Analysis of Plants Exposed to Drought

Leaf discs from transgenic and WT plants were cut from

the TVD and fresh weights (FW) recorded immediately.

The leaf discs were then floated on distilled water at room

temperature overnight and the full turgid weight (TW)

recorded. The leaf discs were then dried at 80 °C for

2 days and the dry weight (DW) recorded. According to

Smart and Bingham (1974), RWC was calculated as a

percentage using the formula: RWC % = [(FW – DW)/

(TW – DW)] × 100.

Stomatal conductance and chlorophyll fluorescence were

measured at three surface positions on the TVD of four plants

per genotype using a Decan Leaf Porometer SC-1 (Decagon

Devices, Pullman, USA) and OS-30p + (OPTI-SCIENCES,

Hudson, USA) fluorometer, respectively. Measurements were

taken every two days, starting with non-stress plants on day 0

of the trial. Clip shutters were applied twenty minutes prior to

recording chlorophyll fluorescence.

Total chlorophyll in the sugarcane leaves was extracted

from 100 mg material using 80% (v/v) acetone according to

the method described by Hiscox and Israelstam (1979). The

extraction procedure was repeated three times, and all collect-

ed supernatant phases were combined and the absorbance

measured at wavelengths 663 and 645 nm according to

Arnon (1949). Total chlorophyll content was calculated using

the formula: μg/mL = 20.2 (A645) + 80.2 (A663).

Electrolyte Leakage and Lipid Peroxidation

The electrolyte conductivity (EC) in the TVD leaf cells was

measured using the AD31 waterproof pocket EC/TDS temp

probe (Adwa Instruments, Szeged, Hungary), according to the

method described by Valentovic et al. (2006). Harvested tis-

sue was immersed in deionised water for 24 h and the EC of

the solution recorded (EC1). The tissues were then frozen in

liquid nitrogen, placed back into deionised water and

disintegrated by vortexing and the EC (EC2) measured.

Electrolyte leakage (EL) was calculated as: % = [(EC1)/

(EC2)] × 100.

Lipid peroxidation was determined by measuring the

malondialdehyde (MDA) content following the method of

Heath and Packer (1968) where the absorbance of the pre-

pared extracts was measured at 532 nm and 600 nm. Leaf

samples were grinded and extracted in 6% trichloroacetic acid

(TCA) and subsequently reacted with 0.5% thiobarbituric acid

(TBA), boiled at 95 °C for 30 min, centrifuged and cooled

before the absorbance was read. MDA concentrations were

calculated using the extinction coefficient of 155 mM cm−1.

Measurement of ROS, Antioxidants, Proline and ABA
Accumulation

In situ detection of hydrogen peroxide (H2O2) was conducted

according to the method described by Daudi and O’Brien

(2012) using 3,3-diaminobenzidine (DAB) staining (1 mg/

mL in 10 mM phosphate buffer; pH 3.8). Superoxide radicals

(O2
−) were detected using nitroblue tetrazolium (NBT) stain-

ing (3 mg/mL in 10 mM phosphate buffer; pH 7.8) according

to a method described by Kumar et al. (2014). The TVD of

transgenic sugarcane lines and WT sugarcane was used as a

test material. Chlorophyll was removed by de-staining the leaf

discs in 96% ethanol at 60 °C for both DAB and NBT histo-

chemical staining experiments. In addition, H2O2 was quanti-

fied by homogenising 100 mg of grinded leaf tissue in 0.1%

TCA followed by centrifugation (Junglee et al. 2014). Whilst

working in the dark, the supernatant was collected and mixed

in 1 : 2 ratio with 5 mM potassium phosphate buffer (pH 7)

and 1M potassium iodide (KI). The absorbance wasmeasured

at 390 nm.

For the measurement of anti-oxidase enzyme activity,

100 mg of grinded plant leaf tissue was homogenised in ex-

traction buffer (0.1MK2HPO4, 0.1 mMEDTA, and 1% (w/v)

polyvinylpyrrolidone [PVP]; pH 7). The total protein content

of the extracts was quantified using a standard Bradford Assay

(Bradford 1976). All assays were conducted using four bio-

logical repeats of transgenic and WT sugarcane plants and

readings were measured in triplicate.

CAT activity was determined using the Catalase Kit

(Sigma-Aldrich, Saint Louis, USA), according to the manual

s p e c i f i c a t i o n s a n d t h e a c t i v i t y d e t e rm i n e d
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spectrophotometrically by measuring the quinoneimine dye

formation at 520 nm. SOD activity was determined using

the SOD Assay Kit (Sigma-Aldrich, Saint Louis, USA), ac-

cording to the manufacturer’s guidelines at 450 nm. SOD was

expressed as inhibition rate preventing oxidation of water-

soluble tetrazolium salt (WST) from forming formazan.

Glutathione activity in stress and unstressed transgenic and

WT plants were measured per the protocol of Sahoo et al.

(2017), as total oxidised glutathione (GSSG) and reduced glu-

tathione (GSH). Plant extracts were prepared by

homogenising 200 mg of grinded leaf tissue in 6%

metaphosphoric acid containing 1 mM EDTA and 0.5 M po-

tassium phosphate buffer (pH 7.5). Following the initiation of

the enzyme reaction, reduced glutathione was measured at

412 nm. GSSG was measured after the addition of 2-

vinylpyridine to the prepared extracts and enzyme activation

at 412 nm for 5 min and 15 s intervals.

The proline content in leaf tissue from the different geno-

types under water-deficit stress was determined by

homogenising 50mg of grinded material in 3% sulfosalicyclic

acid following Bates et al. (1973). Proline concentrations were

measured at an absorbance of 520 nm.

Abscisic acid (ABA) was extracted by lyophilizing 400 mg

leaf tissue harvested from the different plant types under stress

and unstressed conditions. The dried material was

homogenised in 80% methanol as per Liu et al. (2014). The

ABA content of the extracts was quantified using the

Phytodetek ABA test kit (Agdia, Indiana, USA) according

to the manufacturer’s specification.

Statistical Analysis

All measurements were taken from four biological repeats

(n = 4) with measurements done in triplicate. The data was

presented as themean ± standard deviation (SD) and subjected

to one-way ANOVA for analysis of variance and significance

in responses of transgenic lines against WT at p values ≤ 0.05

(*), ≤ 0.01 (**) or ≤ 0.001(***) followed by Benferroni’s or

Tukey’s multiple comparison tests. Analysis was done with

Graphpad Prism software version 5.0 (Motulsky 2014).

Results

Cloning and Sequence Analysis of AtBBX29

The full-length cDNA sequence of AtBBX29 (TAIR accession

number: AT5g54470) was amplified from Arabidopsis

thaliana. The open reading frame of AtBBX29 is 648 bp in

length and encodes for 216 amino acid residues. Only one B-

box motif is present at amino acid residue coordinates 6 to 42,

with two pairs of cysteine and histidine residues present,

showing the typical, mostly conserved residues found in all

B-box1 motifs seen in structural group V of the BBX protein

family of Arabidopsis (Fig. 2a). The transgene was cloned

into the pUbi510 plant expression vector to generate

pUbi510:AtBBX29 (Fig. 2b).

Molecular Confirmation of Putative Transgenic
Sugarcane Plants

Sugarcane embryogenic calli were regenerated and

bombarded with the pUbi510:AtBBX29 vector (Fig. 1) and,

at the end of the transformation experiment, five putative

transformed clones were regenerated via somatic embryogen-

esis. The transgenic sugarcane plants were confirmed by po-

lymerase chain reaction (PCR) amplification of the AtBBX29

gene (Fig. 2c) and lines T1.1, T1.6 and T1.8 were selected for

functional validation. Semi-quantitative reverse transcription

(RT)-PCR confirmed expression of the AtBBX29 gene in the

transgenic sugarcane, while no expression was detected in the

wild-type (WT) plants. Two transgenic lines, T1.1 and T1.6,

showed relatively low transgene transcript levels, while trans-

genic line T1.8 had relatively high AtBBX29 transcript levels.

The internal control actin transcripts were present in all the

plants (Fig. 2d).

Growth Performance of Transgenic Plants Under
Normal Irrigation

The growth responses of the WT and transformed plants over-

expressing AtBBX29 were assessed after eight months of

growth under normal environmental conditions with a consis-

tent watering regime (Supplementary Fig. S1). All the trans-

genic plants had comparable morphologies with the WT

plants, with no significant difference in the internode length

or plant height. Only leaf length and width differ significantly

in transgenic lines T1.8 and T1.1, respectively, when com-

pared to the WT plants (Supplementary Fig. S1).

Sucrose content in the immature (I 3) and mature (I 9)

internodes of the AtBBX29 transgenic and WT plants was

the same. As expected, sucrose was much higher in the mature

versus immature internodes (Fig. 3a). Glucose and fructose

levels were similar in immature cane tissue in all the geno-

types. Variation and significant lower levels of glucose and

fructose were seen in I 9 in some of the transgenic lines (T1.1

and T1.8) compared to WT (Figs. 3b and c).

Phenotypic Response of WT and Transgenic
Sugarcane Exposed to Drought

Four-month-old AtBBX29 transgenic sugarcane, lines T1.1,

T1.6 and T1.8, and WT plants were exposed to 21 days of

water-deficit stress, after which the plants were rewatered

(Fig. 4). The relative water content (RWC) of all the plants

decreased during the drought treatment, consistent with the
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massive drop in soil moisture content in the pots. However,

most of the transgenic plants maintained a significantly higher

RWC during the drought treatment, especially towards the

end of the stress period, than the WT plants (Fig. 5). Plant

growth was similar in all the genotypes during the drought

period (Supplementary Table SI). However, the WT plants

started to exhibit stress symptoms without water (ww) by

day 14, where 6% of the plants died and 47% of the plants

started to display stress-induced damage, such as the chlorosis

of leaf tips and leaf curling and wilting. In contrast, between

77 and 83% of the transgenic plants showed no signs of stress,

with only 17 to 23% of the plants showing minimal damage,

such as leaf tip yellowing.

Extended drought (21 days ww) increased WT plant

death to 63% (Fig. 5c), whereas most of the transgenic

lines survived longer (T1.1 and T1.6 between 40 and

50%) and remained healthy. By day 21 ww, leaf length

was reduced by an average of 12 cm, while the trans-

genic lines remained mostly unaffected. The same re-

sponse was observed in the values obtained for plant

height where the transgenic plants tended to be higher

than the WT plants but not at significant levels due to

the increased variations seen among individual plants

within a genotype (Supplementary Table S1).

When rewatered, 20% of the transgenic and 4% of the

WT plants recovered and formed new green leaves

(Fig. 4). The adaptive responses of plants to drought can

be ABA-dependent or ABA-independent. ABA levels

were measured in the leaves of the transgenic and the

WT plants during the dry period. No significant difference

was detected in ABA content between the transgenic and

the WT plants under normal environmental conditions or

under drought conditions (data not shown).

AtBBX29 Involved in the Protection of Photosynthetic
Machinery Under Drought Stress

The role of AtBBX29 in maintaining the photosynthetic

capacity of the plants during the 21 days of drought was

investigated by measuring chlorophyll fluorescence (Fv/

Fm), stomatal conductance and chlorophyll content

(Fig. 6). No significant differences were found for these

parameters under non-stress conditions. However, chlo-

rophyll fluorescence was higher in the transgenic plants,

with lines T1.8 and T1.1 significantly higher, under mild

drought stress conditions (5 days ww) than in the WT

plants. Under extended severe drought stress conditions

(21 days ww) all the transgenic lines maintained a high

photosynthetic rate, significantly higher in T1.8 and

T1.1, than the WT plants. From the 10th day of stress,

the stomatal conductance of the WT plants was signifi-

cantly reduced compared to the levels in all the

Fig. 1 Generating in vitro putative transformed sugarcane (Saccharum

spp. hybrid cv. NCo310) plantlets from bombarded embryogenic callus.

Callus was initiated from a immature inner leaf roll explants isolated from

stalk material, followed by the b regeneration of callus prior to

transformation. c Bombarded callus was placed on selection media, and

surviving calli (indicated by arrow)were allowed to dmultiply and e form

somatic embryos, which developed into f sugarcane plantlets with roots
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transgenic lines. Chlorophyll content in the WT and

transgenics declined as the drought period was extended

but the levels were not significantly different between

the genotypes.

Fig. 2 Sequence of AtBBX29. a The highly conserved sequence of the B-

box domain present in AtBBX29 aligned with the distinct B-box1 motif in

the Arabidopsis B-box family of proteins. Conserved residues across all

Arabidopsis proteins are indicated by letter height for each amino acid,

with a bit score of 4 as described byKhanna et al. (2009). b The AtBBX29

gene cloned into the pUbi510 plant expression vector containing an ubiq-

uitin promoter and CaMV terminator. Furthermore, PCR confirmation of

transgenic sugarcane by BBX29 gene amplification. c The transgene was

present in four of the putative transformed sugarcane lines (T1.1, T1.6,

T1.8 and T2.1); d semi-qualitative RT-PCR confirmation of transgene

expression in transgenic lines T1.1, T1.6 and T1.8 using actin as an

internal control.M is a PstI λ marker,WT the wild-type negative control,

P the positive plasmid control, and – the negative H2O control

Fig. 3 The levels of total soluble

sugars in the immature and

matured internodes (I 3 and I 9) of

AtBBX29 transgenic sugarcane

(T1.1, T1.6 and T1.8) and WT

plants measured after 8 months of

growth under normal

environmental conditions.

Measurements include a sucrose,

b glucose and c fructose content.

Data is presented as means ± SD

of nine biological replicate (three

stalks each from 3 plants; n = 9).

The asterisks indicated (*) and (**)

significant difference between the

transgenic and WT plants at p ≤

0.05 and p ≤ 0.01
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AtBBX29 Overexpression Alleviating Drought-
Induced Oxidative Stress by Improving Antioxidant
Capacity

Abiotic stress leads to the accumulation of reactive oxygen

species (ROS), which plants scavenge through an enhanced

antioxidant defence system. All the WT and transgenic plants

showed a low production of ROS, indicated by a weak stain-

ing of both diaminobenzidine (DAB) and nitroblue tetrazoli-

um (NBT), and low quantified H2O2 values under non-

stressed conditions (0 days ww). As the drought period con-

tinued, the transgenic lines exhibited a slightly lower accumu-

lation of O2
− and H2O2 than the WT sugarcane plants, which

displayed some increase in dark brown and blue staining

streaks outside the midrib area of the leaf structure (Figs. 7a

and c). However, the staining patterns were difficult to inter-

pret and H2O2 was therefore quantified; significantly lower

levels of H2O2 were detected in most of the transgenic plants

compared to the WT plants under mild and under severe

water-deficit stress conditions (Fig. 7b).

Oxidative damage was predicted by measuring the final

products of lipid peroxidation in the transgenic andWT plants

exposed to water-deficit stress. In addition, electrolyte leakage

(EL) was measured to reflect membrane permeability.

Malondialdehyde (MDA) content was significantly lower in

the transgenic plants under severe dry conditions (21 days

ww) (Fig. 7d). The EL levels stayed the same in all the geno-

types across the water-deficit stress period (Fig. 7e).

In defence against ROS, plants generate antioxidants,

which comprise enzymatic and non-enzymatic activities.

Fig. 4 A sample representation of the phenotypic variation of AtBBX29

transgenic sugarcane lines (T1.1, T1.6 and T1.8) and WT plants under

drought. Drought was initiated by deprivation of water for a period of

21 days. Phenotypic analysis was evaluated every 7 days of water

deprivation and recovery after 14 days of rewatering
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The activity of the enzymatic antioxidants, superoxide dismut-

ase (SOD) and catalase (CAT), was significantly higher in the

transgenic plants than in the WT plants under severe drought

stress conditions (Figs. 8a and b). The ratio of reduced gluta-

thione (GSH) and oxidised glutathione (GSSG) accumulation

is a measure of oxidative stress. Reduced glutathione in-

creased during the dry period in all the plants but not at sig-

nificantly different levels in the transgenic and WT plants

(Fig. 8d). The GSSG levels of the overexpression lines were

slightly higher than in theWT plants under normal conditions.

The GSSG levels decrease in transgenic plants, with T1.8 at

significantly lower levels from the WT. The GSSG levels

stayed constant in the WT plants under mild water-deficit

stress conditions (up to 14 days ww).

Proline is known to act as a compatible osmolyte and an

ROS scavenger to counteract water-deficit stress. The trans-

genic and WT plants had similar low levels of proline under

non-stress conditions (Fig. 8c). These levels remained low

under mild stress (7 days ww) in all the genotypes but, by

day 14 ww, the proline levels increased significantly in trans-

genic lines T1.1 and T1.8 compared to the WT plants. Under

severe stress (21 days ww), all the transgenic plants had sig-

nificantly higher levels of proline.

Discussion

In sugarcane, water-deficit stress impairs stalk and leaf

growth, reduces leaf area, causes leaf rolling and senescence

and influences photosynthesis (reviewed by Ferreira et al.

2017). Since mechanisms to escape drought are not possible

in this perennial crop, sugarcane must either avoid dehydra-

tion through sustaining high water status, mostly by reduced

stomatal conductance, or tolerate dehydration through mech-

anisms necessary to maintain plant function, such as osmotic

adjustment (Blum 2005). What happens in the case of sugar-

cane is that it uses the C4 photosynthetic pathway that domi-

nates most grass species in tropical and subtropical regions. It

decreases stomatal conductance and the transpiration and pho-

tosynthetic rate, mostly due to stomatal limitations under mild

water-deficit conditions and, under severe dehydration, uses

avoidance adaptations, which reduce biomass accumulation,

while tolerance mechanisms allow growth maintenance dur-

ing stress conditions (Inman-Bamber and Smith 2005). In this

study, we characterised the in planta physiological and bio-

chemical responses of transgenic sugarcane lines overexpress-

ing AtBBX29 during irrigation and induced water-deficit

stress.

Fig. 5 Comparative analysis of a soil moisture content of all pots and b

relative water content (%) in the leaves of transgenic sugarcane (T1.1,

T1.6 and T1.8) andWT plants prior to and after induction of water-deficit

stress. Data is presented as means ± SD of four biological repeates (n = 4).

The asterisks indicated significant difference between the transgenic and

WT plants at p ≤ 0.05. c Survival rates (%) based on morphological ap-

pearance in terms of leaf chlorosis, wilting and dry brittle leaf tissue. For

each genotype, a total of 25 healthy plants were included in the pot trial.

Each value represents the number of plants counted at a specific time

point and expressed as a percentage
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BBX29 is a C2H2-type zinc finger protein classified ac-

cording to its conserved cysteine and histidine residues and it

contains one single B-box domain. When overexpressed in

sugarcane, it did not change the phenotype of the mature sug-

arcane plants, the plants growing normally and accumulating

sucrose in the stalks at levels similar to the WT plants. The

overexpression of AtBBX29, however, reduced the levels of

glucose and fructose in the mature stalks. In sugarcane, su-

crose is produced through photosynthesis in the leaves of the

plant and then transported to the stem via the phloem. There, it

can be either stored in the stem or converted into glucose and

fructose, which are utilised to provide energy required for

growth. Growth reduces the sucrose in the stem but allows

the plant to increase both its sucrose production and its storage

(Wang et al. 2013a). The overexpression of AtBBX29 might

therefore decrease the conversion from sucrose into the mono-

saccharides, fructose and glucose. The transgenic plants, in

contrast to the WT plants that operated in reduced CO2 fixat-

ing conditions, seemingly compensated for the balances found

among sucrose used for growth and therefore the formation of

glucose and fructose, sucrose production and sucrose storage.

Alternatively, in the transgenic plants during the maturation

phase, left-over glucose and fructose were converted more

quickly into sucrose, again for storage, hence the lower mono-

saccharide concentrations.

The overexpression of AtBBX29 provided better tolerance to

drought by delaying the onset of leaf senescence, indicated by

leaf tip yellowing and leaf rolling and wilting in the untrans-

formed plants, retention of photosynthetic capabilities undermild

and severe dehydration stress and overall better survival rates.

The transgenic plants overexpressing AtBBX29 in the tillering

phase of growth (when they were four months old) maintained

shoot height and leaf length during dehydration and also recov-

ered better from the stress compared to the WT plants (a 20%

transgenic versus 4%WT recovery rate). Although water-deficit

stress significantly decreased the RWC in the WT plants (36%),

such severe decrease was not found in the transformed plants

(27% average decrease across lines). Relative water content usu-

ally serves as a crucial indicator of how plants manage dehydra-

tion conditions, which are directly linked to soil moisture content

(Hammad and Ali 2014). The transgenic plants, despite a huge

decline in soil moisture content to almost completely dry soil,

maintained a highRWC.The function of BBXproteins in abiotic

stresses is still poorly understood. To date, in the Poaceae spe-

cies, the OsBBX1, OsBBX2, OsBBX8, OsBBX19 and OsBB24

genes have been linked to abiotic stress responses, including

drought, through changes in their expression profiles, which po-

tentially signify roles in the plants’ stress response (Shalmani

et al. 2019). In addition, a fewBBXgenes have been functionally

annotated with regard to drought stress. The overexpression of

Fig. 6 Analysis of photosynthetic machinery of transgenic sugarcane

(T1.1, T1.6 and T1.8) and WT plants prior to (day 0) and after

exposure to water-deficit stress (7, 14 and 21 days ww). Measurements

include the a chlorophyll fluorescence (Fv/Fm), b stomatal conductance

and c chlorophyll content of the different plants. Data is presented as

means ± SD of four biological replicates (n = 4). The asterisks (*), (**)

and (***) indicate significant differences compared to theWT at p ≤ 0.05,

0.01 and 0.001, respectively

428 Plant Mol Biol Rep (2021) 39:419–433



ZFP genes, namely ZFP179, 182, 245, 252 and 36, regulated

drought tolerance in transgenic rice through oxidative and anti-

oxidant defence in an ABA-dependant manner (Sun et al. 2010;

Zhang et al. 2012, 2014). In dicotyledonous plant species, two

BBX genes from Arabidopsis, BBX5 and BBX24 (also called

AtCOL4 and STO), have been linked to osmotic stress tolerance,

also through the ABA-dependant signalling pathway (Min et al.

2015; Nagaoka and Takano 2003). The overexpression of

MdBBX10 from apple enhanced drought stress tolerance in trans-

genic Arabidopsis by enhancing the plants’ ability to scavenge

reactive oxygen species (Liu et al. 2019). Similarly, in the pro-

moter regions of the tomato genes SIBBX7 and SlBBX12, ABA

responsive elements were identified, which most likely also in-

dicated a link to drought responses (Chu et al. 2016).

In the current study, we further found that the overexpres-

sion of AtBBX29 had beneficial consequences for survival

through changes in the photosynthetic performance of the

plants following drought induction. Changes in photosynthet-

ic performance during dehydration normally occur through

adjustments in stomatal conductance and chlorophyll

maintenance (Cornic and Massacci 1996). The transgenic

plants maintained significantly higher stomatal conductance

across the period of induced water-deficit stress when com-

pared to the WT plants. In sugarcane, stomatal closure is a

common tolerance mechanism that prevents transpiration

(Inman-Bamber and Smith 2005). Drought induced a reduc-

tion in total chlorophyll content in all the genotypes, as re-

corded in various sugarcane varieties exposed to drought

(Silva et al. 2013; Zhao et al. 2013). Furthermore, under nor-

mal or mild stress conditions, all the plants displayed Fv/fm

values close to 0.75 or higher at 0.81 in some of the transgenic

plants, which reflects Photosystem II (PSII) functionality

(Bjorkman and Demming 1987; Maxwell and Johnson

2000). However, after long exposure to water-deficit stress

(21 days ww), most of the transgenic lines maintained a sig-

nificantly higher photosynthetic capacity (Fv/fm ratio) than

the WT plants, which suggests a unique protection of PSII

in the transgenic plants. Similarly, the ectopic expression of

SlZF2, a zinc finger protein containing a B-box domain, en-

hanced salt tolerance in tomato by delayed senescence and

Fig. 7 Assessment of physiological characteristics involved in oxidative

damage in transgenic and WT plants under control and drought stress

conditions. In vivo detection of a H2O2 and c O2
− and accumulation of

b H2O2, d malondialdehyde (MDA) and e electrolyte leakage in the

leaves of transgenic (T1.1, T1.6 and T1.8) and WT plants under water-

deficit stress, on days 0 to 21 without water. Data is presented as means ±

SD of three biological replicates (n = 3). Astrisks (*), (**) indicates sig-

nificant difference between transgenic and WT plants at p ≤ 0.05 and p ≤

0.01
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specifically by the maintenance of photosynthesis (Hichri

et al. 2014). Photosynthesis is essential for the maintenance

of the entire plant function and for the balance of the resources

for growth and stress adaptation in sugarcane (Ferreira et al.

2017).

Plants naturally produce ROS, such as hydrogen peroxide and

superoxide, during normal metabolic processes, such as photo-

synthesis (Hussain et al. 2012), and play crucial roles as signal-

ling molecules (Gill and Tuteja 2010). However, water-deficit

conditions promote the production of these molecules to toxic

levels, which can destroy cellular components, including DNA,

membrane lipids and proteins (Ashraf 2009; Gill and Tuteja

2010; Xie et al. 2019). In this study, the observed enhanced

tolerance to drought in the AtBBX29 transgenic plants can, in

part, also be attributed to the upregulation of the antioxidant

system. The transgenic plants accumulating significantly lower

levels of H2O2 than the WT plants during dehydration, since

plants can detoxify ROS through antioxidant defence systems.

In addition, MDA levels were also significantly lower in most of

the transgenic plants at the end of the drought period.

Malondialdehyde is a marker of oxidative stress and results from

lipid peroxidation (de Dios Alche 2019). Low levels of lipid

peroxidation have been associated with cell survival through

the continuous activation of signalling pathways, which results

in adaptation and higher antioxidant ability, reflecting increased

resistance to water-deficit stress. Thus, the decrease in MDA

level and H2O2 content observed in this study indicated that the

transgenic sugarcane plants suffered less oxidative injury com-

pared to the WT plants after drought treatment.

C2H2 zinc finger TF proteins have been known to support

stable ROS levels through enhanced antioxidant scavenging sys-

tems in transgenic plants (Davletova et al. 2005; Gadjev et al.

2006; Rizhsky et al. 2004; Huang et al. 2009). A zinc finger

protein containing a B-box domain,MdBBX10 from apple, spe-

cifically enhanced drought tolerance in the transgenic plants by

improving their ability to scavenge reactive oxygen species (Liu

et al. 2019). Similarly, when a B-box containing C2H2-type zinc

finger protein, PtrZPT2–1 from orange, was overexpressed in

tobacco, it decreased ion leakage, MDA content and H2O2 accu-

mulation after drought treatment in the transgenic plants (Liu

et al. 2017). Antioxidant enzymes levels, including SOD and

CAT, and the corresponding ROS detoxification genes expres-

sion levels furthermore increased in these transgenic plants.

SOD scavenges O2
− to generate H2O2 and oxygen and

CAT decomposes H2O2 to water and oxygen (Mittler 2002).

In this study, both SOD and CAT levels increased during

drought in the AtBBX29 transgenic plants, while these antiox-

idant levels stayed mostly constant in the WT plants. The

overexpression of ZFP245 and ZFP179 in rice increased ac-

tivities of SOD and peroxidase in response to multiple stress

conditions and resulted in increased stress tolerance (Huang

et al. 2009; Sun et al. 2010). In sugarcane, studies have

Fig. 8 Antioxidant and osmolyte activities in transgenic (T1.1, T1.6 and

T1.8) and WT plants exposed to water-deficit stress. Measurements in-

clude a superoxide dismutase (SOD) activity, presented as the rate of

WST inhibition; b catalase; c proline content and d glutathione content.

Data is presented as means ± SD of three biological replicate (n = 3).

Asterisks (*), (**) and (***) indicate significant difference between trans-

genic and WT plants at p ≤ 0.05, 0.01 and 0.001
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showed that the activity of SOD and CAT is genotype-depen-

dent, where increased activity is displayed mostly in sugar-

cane cultivars tolerant to water-deficit conditions (dos Santos

et al. 2015; Hemaprabha et al. 2013; Jangpromma et al. 2012;

Sales et al. 2015). These findings also suggest that the over-

expression of AtBBX29 may have played a similar role in

targeting the expression of antioxidant genes for the removal

of ROS and may have enhanced the protection of the trans-

genic sugarcane from oxidative stress damage.

The biochemical changes caused byAtBBX29 overexpression

included increased proline content after drought exposure.

Proline is known to provide protection to plants under drought

stress by acting as osmolyte, antioxidant and signalling defence

molecule responsible for osmotic adjustment, ROS detoxifica-

tion and protein stabilisation (Yadav et al. 2019; Ashraf and

Foolad 2007; Hayat et al. 2012). A B-box containing zinc finger

protein is known to enhance plant drought tolerance through

increased levels of osmotic adjustment substances. For example,

the overexpression of ZFP252 in rice or OsMSR15 in

Arabidopsis enhanced salt and drought tolerance in the transgen-

ic plants with higher proline content, with the plants displaying

enhanced transcript levels of P5CS (Δ’-pyrroline-5-carboxylate

synthetize), an important gene related to proline glutamate bio-

synthesis (Xu et al. 2008; Zhang et al. 2016). Previous studies in

sugarcane have suggested that the accumulation of high proline

content acts as an osmoregulator and an antioxidant when water

is limited (Abbas et al. 2014; Cia et al. 2012; de Oliveira et al.

2018; Molinari et al. 2007). A study by Molinari et al. (2007)

reported that, in transgenic sugarcane overexpressing P5CS, in-

stead of osmotic adjustment, proline accumulation was increased

to enhanced biomass and the photochemical efficiency of PSII

under drought conditions was protected.

In conclusion, we found, as a new result that the overexpres-

sion of AtBBX29 in sugarcane increased tolerance to drought by

delaying the onset of water-deficit stress and maintaining vital

photosynthetic processes for longer. It furthermore improved os-

motic regulation, upregulated the antioxidative system and lim-

ited ROS damage after drought treatment in the transgenic lines

by reducing theMDA level and H2O2 content and increasing the

proline level and antioxidant enzyme activity. To understand the

role of AtBBX29 in the abiotic stress response in sugarcane in

full, further molecular analysis, including the detection of inter-

active gene expression activity, may provide novel insights into

AtBBX29-mediated abiotic stress tolerance worthy of further elu-

cidation in the future.
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