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Abstract: 

Objective: The immune system plays a key role in protecting against cancer. Increased 

immune infiltration in tumor tissue is usually associated with improved clinical outcome, but 

in colorectal cancer (CRC), excessive immune infiltration has also been shown to lead to worst 

prognosis. The factors underlying this immune overdrive phenotype remains unknown. 

Design: Using RNA sequencing data from The Cancer Genome Atlas, the expression of over 

1,000 transposable element (TE) subfamilies were quantified using the “REdiscoverTE” 

pipeline. Candidate prognostic and immunogenic TEs were screened by survival and 

correlation analysis, respectively. Based on these candidates, a TE expression score was 

developed and CRC patients were clustered using the “kaps” algorithm.  

Results: In CRC, we found that the TE expression score stratified patients into four clusters 

each with distinctive prognosis. Those with the highest TE expression were associated with 

immune overdrive and had the poorest outcomes. Importantly, this association was 

independent of microsatellite instability status and tumor mutation burden. To link TE 

overexpression to the immune overdrive phenotype, we showed that cell lines treated with 

DNA methyltransferase inhibitors also had a high TE expression score and activation of 

cellular innate immune response pathways. Finally, a pan-cancer survey of TE expression 

identified a subset of kidney renal clear cell carcinoma with a similar adverse immune 

overdrive phenotype with poor prognosis.  

Conclusion: Our findings reveal that TE expression is associated with immune overdrive in 

cancer and is an independent predictor of immune infiltration and prognosis in CRC patients. 
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1. What is already known about this subject? 

• Cancers with high immune infiltration generally have better prognosis, but it is unknown 

why a subset of colorectal cancers (CRC) with high immune infiltration have the poorest 

outcomes. 

• Transposable element (TE) expression has been shown to be strongly associated with 

immune infiltration in cancers but its role in patient prognosis is unclear. 

• TEs can be reactivated by DNA hypomethylation in cancers, resulting in immune response 

via viral mimicry. 

2. What are the new findings? 

• A TE expression score has been developed that is predicative of prognosis in CRC patients 

where those who have the highest TE score show an immune overdrive phenotype and have 

the worst prognosis. 

• The TE expression score predicts prognostic and immune infiltration independent of 

microsatellite instability and tumor mutation burden (TMB). 

• Immune response pathways and infiltrate profiles of high TE expression CRC recapitulates 

those of DNA methyltransferase inhibitor treated cells where TEs are reactivated, 

suggesting that TE overexpression may drive immune infiltration in CRC. 

• A pan-cancer analysis found that kidney renal clear cell carcinoma shares are a similar TE 

expression associated immune overdrive phenotype with adverse prognosis. 

3. How might it impact on clinical practice in the foreseeable future? 

• Our work highlights the importance of TE expression in evaluating CRC patient prognosis. 

• The association of TE expression with the immune overdrive phenotype independent of 

MSI and TMB status suggests that by considering TE expression, there may be new 

opportunities to identify MSS CRC patients for immunotherapy and develop new strategies 

to harness TE driven immune response. 
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Introduction: 

   Almost half of the human genome is comprised of transposable elements (TEs). They are 

also known as “jumping genes” with the ability to move or make copies of themselves to other 

locations in the genome. TEs are divided into class 1 retrotransposons and class 2 DNA 

transposons, both of which are further subclassified into subclasses, superfamilies and over 

1,000 subfamilies [1]. TEs are mainly epigenetically silenced in normal tissues [2]  but can 

become reactivated due to DNA hypomethylation in cancers [3], resulting in the transcription 

of retrotransposons into RNA or direct transposition of DNA transposons. One potential 

consequence of the reactivation of TEs is to stimulate the immune system via viral mimicry [4, 

5]. For instance, the human endogenous retrovirus (hERV) was shown to be reactivated by 

DNA methyltransferase (DNMT) inhibitors, which was accompanied by the up-regulation of 

viral defense pathways in ovarian [6] and colorectal [4] cancer cells. Recently, it has been 

shown that some TEs such as hERVs can also serve as tumor antigen signals [5]. These 

observations have demonstrated the critical roles of TEs in anti-tumor immunity. Nonetheless, 

how TE expression influences cancer progression and clinical outcome remains unclear.  

   Patients whose cancer have higher immune cell infiltration tend to have better prognosis. For 

instance, Immunoscore has been developed based on the density of CD3+ and cytotoxic CD8+ 

T cells in the tumor and the invasive margin in colorectal cancer (CRC) [7], and has been 

shown to have prognostic value superior to American Joint Committee on Cancer (AJCC) stage 

classification [8]. Intriguingly, a recent study identified a high-risk subgroup of CRC patients 

with high tumor immune infiltration as indicated by high CD8A and CD274 gene expression 

[9]. Termed “immune overdrive” signature, the subgroup of patients with this signature 

included both microsatellite instability (MSI) and stable (MSS) status, increased TGF-β 

activation and overexpression of immune response and checkpoint genes. While whether such 
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patients are likely to benefit from immune checkpoint inhibitors therapy remain to be evaluated, 

the underlying factor behind this phenotype remains unknown. 

Given the recent evidence for the role of TEs in triggering cancer immune response, in this 

study, we report that TE overexpression is a key factor associated with the immune 

microenvironment in CRC. Importantly, TE overexpression is predicative of an immune 

overdrive signature that is associated with poor prognosis in a MSI and tumour mutation burden 

(TMB) independent manner. We show that the TE expression maybe induced by genome-wide 

hypomethyation, which is common in CpG island methylator phenotype (CIMP) cancers. 

Finally, we show that the phenomenon of TE expression-immune overdrive is not restricted to 

CRC but also present in other cancer types. 

Materials and Methods 

Quantification of transposable element expression 

    We used the REdiscoverTE pipeline to quantify TE subfamily expression based on RNA 

sequencing data as described by Kong et al [10]. A detailed description of the pipeline is 

described in the Supplementary Methods.  

Search for TEs associated with survival and immune activation 

    To select out the potential TEs associated with survival, we performed univariable Cox 

regression analysis on four endpoints for survival analysis in CRC cohort including overall 

survival (OS), DSS (disease specific survival), DFI (disease-free interval) and PFI 

(progression-free interval) [11]. To estimate the correlation of TEs with immune activity, we 

included a total of 29 immune activation indices. See Supplementary Methods for further 

details. 

Patient and Public Involvement: 

No patient or members of the public were involved in the design of this study. 
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Results: 

Identification of TEs associated with survival and immune activation in CRC 

    To establish whether TEs are associated with CRC prognosis and immune activation 

(summarised in Fig. S1A), we first quantified TE expression by applying the recently 

developed “REdiscoverTE” pipeline [10] on TCGA CRC RNA sequencing data which has 

been shown to outperform three existing methods by the original paper including Repenrich 

[12] , SalmonTE [13] and the approach used by Rooney et al [14]. In brief, the pipeline 

quantifies the number of reads mapping to each TE subfamily without uniquely identifying 

individual instances in the genome. Our downstream analysis was focused on 1,052 TEs 

subfamilies, which were classified into five classes including long terminal repeats (LTR), 

DNA, long interspersed nuclear element (LINE), short interspersed nuclear element (SINE) 

and Retroposon (Fig. S1B). The expression pattern of these five classes is shown in Fig. 1A, 

indicating that Retroposon and SINE had higher expression followed by LINE while LTR and 

DNA had lowest expression [10]. 

    To identify prognostic TEs, we performed survival analysis on each TE in terms of four 

endpoints, respectively, including OS, DSS, DFI and PFI. 365 candidate TEs had survival 

differences for at least one endpoint (Fig. 1B, Table. S1) with seven significant in all the four 

endpoints (Fig. S1C-G). Using a permutation test (see Methods), we estimated the average of 

false discover rate (FDR) to be 1.35% (Fig. S1H). Interestingly, almost all of the hazard ratio 

of the candidate TEs were greater than one, indicating that higher TE expression generally 

contributed to worse survival (Fig. 1C). Similar analysis was performed at family and class 

level, respectively. Retroposon showed significant differences in terms of three endpoints (Fig. 

S1I and J). Further multivariable Cox regression analysis for these retroposons suggested five 

to be independent predictors of survival for at least one endpoint (Fig. S1K-M). 
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    Next, we correlated individual TEs with 29 immune indices to identify immunogenic TEs 

(see methods, Fig. S1N) and found that 14 out of the 1,052 TEs had significant positive 

correlation with at least one immune index (Spearman’s correlation ≥ 0.4, p < 0.0001, Fig. 1D 

and E). The FDR of the significant immune-TE associations was estimated to be 0.7% (Fig. 

S1O).  

To integrate the results of the prognostic and immune TE associations, we overlapped the 

365 survival and the 14 immune positively correlated TEs. Nine overlapping TEs were 

identified and used for further exploration (Fig. 1F). All nine TEs were overexpressed 

compared with normal tissue in at least one cancer type with seven being statistically 

significant [10] (Fig. S1P). Thus, these TEs can be generally considered to be overexpressed 

in cancer samples. 

Generation of CRC subtypes based on TE score and clinical outcome 

Based on the nine TEs identified above, we first explored the relationship between their 

expression, finding that most were positively correlated with each other (Fig. S2A). As such, 

to generate a combined TE score, we averaged the normalised TE expression across CRC 

samples. We applied the kaps algorithm [15] to the normalised TE score with OS (see 

Supplementary Methods, Fig. S2B-G) and identified four-risk groups termed TE cluster 1 to 4 

with increasing TE score (Fig. 2A). There were significant differences among these four 

clusters in terms of some molecular features (Fig. 2B-E, Fig. S2H, Table. S2). Specifically, 

cluster 4 showed higher fraction of MSI samples (33%) but lowest for cluster 1 (11%) (P = 

0.0001, Fig. 2B).  Cluster 4 also had more samples with CpG island methylator phenotype 

(CIMP) (30%) (P = 0.0228, Fig. 2C). We also observed some overlaps between TE clusters 

and other two molecular subtypes including consensus molecular subtype (CMS) [16] (Fig. 2D) 

and immune subtypes [17] (Fig. 2E). Lastly, there were significant survival differences among 

these four clusters (log-rank P = 0.0035 for OS, P = 0.011 for DSS, P = 0.12 for DFI and P = 
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0.022 for PFI, Fig. 2F-I). Generally, cluster 4 showed worse survival while cluster 3 showed 

the most favorable outcomes (cluster 4 versus 3 with HR = 2.36, 95%CI = 0.96-5.80, P = 0.05 

for OS, HR = 3.99, 95%CI =1.12-14.16, P = 0.02 for DSS and HR = 3.05, 95%CI = 1.34-6.94, 

P = 0.005 for PFI). Notably, cluster 4 had a very poor survival rate after relapse while cluster 

3 had superior survival rate after relapse (Fig. 2I).   

TE score is a prognostic and immune infiltration predictor independent of MSI and 

tumor mutation burden 

    In CRC, it is well established that patients with tumors that are MSI or have high TMB 

generally have better prognosis [18, 19]. As TE cluster 4 are slightly enriched with MSI tumors 

compared with other groups (33% versus 19%, 16% and 11% in clusters 3, 2 and 1 

respectively), we sought to determine whether TE score is an independent predictor of 

prognosis and immune infiltration. After adjusting for clinical factors, cluster 4 remained an 

independent prognostic variable for three endpoints with HR against cluster 3 of 3.98 (95%CI: 

1.09-14.57, P = 0.037) for OS, 9.52 (95%CI: 1.18-76.54, P = 0.034) for DSS and 2.79 

(95%CI:1.07-7.31, P = 0.036) for PFI (Fig. 3A-C). Subgroup analysis indicated that the four 

cluster were well separated especially in MSI samples (Fig. 3D and E). Moreover, TMB 

(defined as non-silent mutations per megabase, Mb) [20] correlated poorly with TE score (r = 

0.13, Fig. 3F) and displayed no difference among the TE clusters (Fig. 3G).   

    To test if the TE clusters can independently predict immune infiltration, we used CD8A, a 

maker of CD8+ T cells and a T cell-inflamed gene expression profile (GEP) [21]. Firstly, we 

observed strong correlations between TE score with CD8A (r = 0.43, Fig. 3H) and GEP (r = 

0.51, Fig. 3I), respectively. Multinomial logistic regression analyses demonstrated that cluster 

4 was a significant predictor for CD8A and GEP and notably displayed the highest odds ratio 

(OR) of 6.3 for CD8A (Fig. 3J) and 5.4 for GEP (Fig. 3K). Furthermore, TE score showed 

much higher OR than TMB with 2.3 versus 1.3 for CD8A (Fig. 3L) and 3.0 versus 1.4 for GEP 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.07.14.20129031doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.14.20129031
http://creativecommons.org/licenses/by-nc/4.0/


 9 

(Fig. 3M). Our results demonstrated that TE clusters and TE score are predicative of immune 

infiltration and prognosis independent of MSI and TMB. 

Immune overdrive is associated with TE score and expression 

    To further confirm that the TE expression score is associated with immune activation, we 

examined the differences of tumor immune microenvironment (TME) among TE clusters. Both 

GSVA and MCPcounter analyses indicated that cluster 4 displayed higher fractions of most 

immune cell types especially for T cells, macrophages and dendritic cells, while cluster 1 

showed a lack of immune infiltration (Table. S3, Fig. 4A, Fig. S3A). Further, cluster 4 

displayed the highest gene signatures of immune infiltration followed by cluster 3, 2 and lowest 

for cluster 1 (Fig. 4B). These signatures included T cell, lymphocyte, leukocyte infiltration 

signatures, hot tumor signature and tumor associated macrophage (TAM) ratio. Cluster 4 also 

displayed highest expression of T helper 1 (Th-1) immune response and regulatory genes, 

MCH I/II molecules, higher IFN-γ response rate and T cell exhaustion status  (Fig. 4B, Fig. 

S3B and C).  

Next, we investigated association of TE clusters with genetic changes but did not find 

distinctive differences among the clusters except for SNV/Indel neo-antigens (Fig. 4D). 

Specifically, we investigated associations with hotspot mutations by focusing on 95 CRC 

specific drivers [22, 23] (see Supplementary Methods, Fig. S3D). Only TP53 (29% in cluster 

4 versus 17% in other three clusters) and BRAF (14% in cluster 4 versus 2.4% in other three 

clusters) displayed significance (P = 0.0001 and P = 0.0378 for TP53 and BRAF respectively). 

As for the copy number changes shown in Fig. S3E, there was no distinctive differences among 

TE clusters.  

To elucidate the molecular phenotype associated with the TE clusters, we further analyzed 

dysregulated pathways among TE clusters. We found that cluster 4 and 2 displayed stronger 

immune evasion-associated signatures including TGF-β response, extracellular matrix (ECM) 
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gene expression, VEGF target, Epithelial–mesenchymal transition (EMT) and innate anti-PD1 

resistance (IPRES) signatures (Fig. 4E, Fig. S3F). Furthermore, 32 out of 50 hallmark gene 

sets were dysregulated among TE clusters and most were upregulated in cluster 4 (Fig. 4F). 

Similarly, 24 out of 39 drug targetable pathways were significantly different among TE clusters 

indicating the potential therapy targets for individual clusters such as ALK and PI3K pathways 

in cluster 4, anti-apoptosis and epidermal growth factor (EGF) signals in cluster 3, plasma 

membrane signal in cluster 2 and MYC pathway in cluster 1 (Fig. S3G).  

Finally, we compared the expression of two markers including CD8A and CD274, which 

were used to identify immune overdrive by Fakih et al [9]. Our results demonstrated that cluster 

4 also displayed higher expression of these two markers (Fig. S3H and I), implying the 

comparability of immune overdrive identified by TE cluster and these two markers. More 

importantly, based on the classification of risk groups identified by Fakih et al [9], we found 

that risk group (IV*) characterized by immune overdrive signature also displayed highest TE 

score, followed by risk group III* and I/II (Fig. S3J). Together, these results suggest that the 

immune overdrive phenotype is characterized by the highest TE score (i.e. cluster 4), highest 

immune infiltration, poorest survival, immune evasion activity (e.g. TGF-β signal), and higher 

expression of immune response and checkpoint genes.  

Activation of innate immune response in CRC with high TE score recapitulates TE 

reactivation by DNA methyltransferase inhibitors 

To link TE overexpression to the activation of immune response, we compared immune 

pathway activation in DNMT inhibitors, 5-azacytidine (5-aza) or 5-aza-2’-deoxycytidine  

(decitabine) treated cancer cell lines and the CRC TE clusters. Generally, activity of hallmark 

gene sets was consistent in three DNMT inhibitor treated cell lines (Fig. 4F). Interestingly, we 

observed large overlaps of the significant up-regulated pathways in treated groups of these 

three data sets and CRC TE cluster 4 (n=21, Fig. 4G, Table. S4). Furthermore, by quantifying 
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the TE expression in decitabine treated GBM cell lines (GSE80137), we found that TE score 

were highest in the decitabine treated groups compared to control group (Fig. 4H).  

As the DNMT inhibitor treated samples are all derived from cell lines, to further confirm 

that TE expression signals are mainly derived from tumor cells in bulk CRC tissue rather than 

the TME, we investigated TE expression in a high-depth single cell RNA sequencing (scRNA-

seq) breast cancer dataset [24] (Fig. S3K). Importantly, the proportion of reads mapping to TEs 

was highest in tumor cells (P = 0.0019, Fig. S3L).  

TEs trigger intracellular immune response by viral mimicry  

    To comprehensively examine pathways driven by TE overexpression in CRC, we applied a 

weighted correlation network analysis (WGCNA) [25] to find gene modules that were 

associated with TE score (see Supplementary Methods). Our results suggested that two of the 

module genes were strongly positively correlated with TE score (r= 0.5 for greenyellow module, 

r = 0.46 for brown module, Fig. 5A, Fig. S4A-G, Table. S5). There were 39 and 389 genes in 

greenyellow and brown module, respectively. To determine the function of these modules, we 

performed GO and KEGG enrichment analysis using these genes (Fig. 5B and C). Genes in the 

greenyellow module were enriched in innate immune pathways, while the brown module was 

more enriched in adaptive immune response such as differentiation, migration and activation 

of immune cells.  

We then further compared the expression of some critical genes that might be involved in 

the response to TE reactivation. As expected, most of these genes were highly expressed in 

cluster 4 followed by cluster 3 and 2 and lowest in cluster 1 (Fig. 5D). Specifically, the 

secretion and production of IFN α and β were increased in cluster 4 which indicated type I IFN 

response.  Similarly, TE suppressors such as APOBECs, ADAR, NOD2, MOV10, MOV10L1 

and CTCFL were also upregulated in cluster 4.  It has been shown that CTCFL, a germline-

specific transcription factor, functions as suppressor of SVA expression by directly binding to 
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and regulate SVA repeats [26]. These findings support a role for TE overexpression triggering 

innate immune response in a manner similar to viral invasion. 

Pan-cancer analysis identified immune overdrive phenotype in kidney renal clear cell 

carcinoma 

    Finally, to determine if the TE induced immune overdrive phenotype is also present in other 

cancer types and to ensure that our findings are not cohort specific, we examined TE expression 

in another 23 cancer types. Firstly, several cancer types showed higher TE score such as kidney 

renal clear cell carcinoma (KIRC), diffuse large B-cell lymphoma (DLBC) and head and neck 

squamous cell carcinoma (HNSC) while CRC and adrenocortical carcinoma (ACC) were 

generally lower (Fig. S5A, Table. S6). By performing univariable Cox regression analysis on 

the TE score in each cancer type, we found that apart from CRC, KIRC also had significantly 

increased HR (HR = 1.78, 95%CI = 1.43 - 2.22, P value < 0.0001, Fig. 6A, Table. S7). Further 

correlation analysis indicated that TE score correlated well with GEP across the cancer types 

(r = 0.45, Fig. S5B). Individually, the best correlations were observed in SKCM, HNSCC and 

CESC followed by CRC and PRAD (Fig. 6B).  

As some KIRC appeared to exhibit an immune overdrive phenotype, we carried out similar 

analyses as we had done for CRC. Eight of the nine TEs had similar trends of expression across 

samples except for Trigger12A (Fig. 6C). As with CRC, we identified four KIRC clusters with 

differing prognostic outcomes with cluster 4 having the worst outcomes (Fig. 6D-F) and 

enrichment of molecular subtypes (Fig. S5C). Like CRC, cluster 2 also had relatively short OS 

while cluster 3 had favorable survival rate after relapse. After adjusting by clinical features, 

cluster 4 remained significant for all three endpoints and cluster 2 were significant for OS and 

PFI (Fig. S5D-F). 

    Consistently, cluster 4 in KIRC also displayed highest immune infiltration and immune 

evasion phenotypes (Fig. S5G-J). As with CRC, there were no distinctive differences for 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.07.14.20129031doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.14.20129031
http://creativecommons.org/licenses/by-nc/4.0/


 13 

genetic changes among these TE clusters (Fig. S5K). Finally, most of the genes involved in the 

response of TE reactivation had higher expression in cluster 4 also showing similar immune 

regulation patterns with CRC (Fig. S5L-R).  

Discussion:  

Molecular subtyping based on genomic and transcriptomic data has facilitated improved 

understanding of molecular features in cancers and has guided targeted strategies in cancer 

treatment [27]. For instance, MSI is a critical subtype in CRC which has been associated with 

high immune infiltration (e.g. CD8+ T cells) [18] and lower risk of relapse [28]. Generally, 

cancers with higher immune infiltration had better survival including CRC [7, 17]. However, 

an immune overdrive phenotype is also observed in CRC, characterized by high immune 

infiltration but poorest survival [9]. The immune overdrive phenotype can be reproduced using 

a nine TE expression signature where TE cluster 4 was characterized by the immune overdrive 

phenotype with the highest TE score, poorest survival but also highest immune infiltration. Our 

findings highlight the importance of TE expression on not only immune infiltration but also on 

patient prognosis in CRC. 

Compelling evidence indicates the critical roles of reactivated TEs in cancer development 

and progression resulting from the loss of TEs suppression [12, 29]. Generally, epigenetic 

regulation, especially DNA methylation and histone modification, are the best-known 

mechanisms of TE silencing. Indeed, studies have demonstrated that epigenetic alterations 

could lead to carcinogenesis in which TE reactivation might be a potential secondary cause 

[30]. The global loss of methylation can lead to TE reactivation and is often accompanied by 

the hypermethylation of tumor suppressor genes in cancers [31]. For instance, the reactivation 

of LINE1 caused by DNA hypomethylation has been observed in several cancer types 

including CRC [32], LIHC [33], and BRCA [34]. It has been shown that DNMT inhibitor 

treatment could stimulate innate immune response accompanied by TE reactivation including 
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hERVs and other class of TEs [4, 6, 10]. Our analysis based on cell line data showed that 

DNMT inhibitor treated cells shared many of the dysregulated gene pathways as CRC patients 

in cluster 4. Although this observation is not direct mechanistic evidence supporting DNA 

demethylation driven TE overexpression induced immunogenicity in CRC patient samples, it 

shows a possible relation between TE expression and immune response. 

    Previous studies have profiled the landscape of TE expression across human tissues and 

indicated that TE expression is much higher in solid tissues compared with in whole blood [35, 

36]. This is in line with our findings based on high depth scRNA-seq dataset of breast cancer 

that cancer cells are the main contributor of TE expression. Thus, TE expression might reflect 

a cancer cell intrinsic characteristic [37]. Besides, our analysis revealed that TE score was 

generally correlated with not only the proportion of reads mapping to TEs but also TE 

expression at class level in both bulk CRC, KIRC and scRNA-seq dataset (Fig. S6A-D). This 

indicated that our TE score might reflect global TE expression more generally. Importantly, 

we found TP53 mutations enriched in cluster 4. TP53 can function to restrain TEs and TP53 

mutations may potentially cause reactivation of TEs [38], which may reflect another 

mechanism for the observed TE overexpression.   

Innate immune system is essential for pathogen recognition and initiation of protective 

immune response through the recognition of pathogen associated molecular patterns (PAMPs) 

by its pattern recognition receptors (PRRs) [39]. Nucleic acids including RNA and DNA are 

critical PAMPs especially for viruses. We found that, upon TE overexpression, some important 

PRRs of innate immune signals were up-regulated. Indeed, TE-derived RNAs are very 

prevalent and can form dsRNA in the nucleus. Annealing of these hybirds is relaxed 

by adenosine (A)-to-inosine (I) editing through ADAR or cytidine (C)-to-uridine (U) 

deamination editing through APOBEC3s [37, 40]. However, the unedited hybirds are prone to 

bind with RNA sensors and further stimulate downstream immune response by viral mimicry 
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represented by increased IFN response. To date, it remains unknown whether individual classes 

of TEs are prone to activate different PRRs [41]. TE reactivation can also stimulate immune 

response through other mechanisms, for example, LTR can function as prompters or enhancers 

of IFN-stimulated genes [42] and hERVs can a source of antigens [43]. Further investigations 

will be required to establish the mechanism underlying the association between TE 

overexpression and immune overdrive. 

Currently, measuring and interpreting TE expression is still challenging [44]. Mappability, 

polymorphisms and transcript identity are three main difficulties for TE transcription study. 

Although some approaches can also measure TE expression at locus-specific level such as 

SQuIRE [45] and Telescope [46], the main disadvantage is the low confidence of measurement 

of youngest TE subfamilies because of less uniquely alignable sequence. Currently, the best 

way to assess locus-specific TE expression is using full-length RNA-seq data derived from 

long-read sequencing technologies such as provided by PacBio or Oxford Nanopore [47]. 

Nevertheless, in this study, we explored the association between TE expression and immune 

activation at a landscape level. Our goal was not to identify to locus-specific TE expression, 

and verify their biological function. Thus, measuring the total transcriptional output from a 

group of related TEs, such as TE family and subfamily levels is sufficient to support our 

findings. 

    It has been suggested that CRC with MSI could benefit from immune checkpoint blockade 

(ICB) therapy. Moreover, epigenetic therapy has been proven to increase tumor 

immunogenicity and modulate the response to immunotherapy [4]. Thus, there are several 

potential strategies for the treatment of patients amongst TE clusters. MSI tumors in cluster 4 

are prone to relapse, therefore, patients in this cluster might benefit from combined ICB and 

chemotherapy. Currently, some clinical trials such as ATOMIC, are ongoing with the aim to 

investigate the efficiency of ICB for MSI-H CRC. Our findings indicated that patients with 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.07.14.20129031doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.14.20129031
http://creativecommons.org/licenses/by-nc/4.0/


 16 

highest TE score might have higher risk of recurrence and benefit from ICB. In addition, as we 

showed that TE clusters is predicative of prognosis independent of MSI status and TMB, MSS 

patients with high TE expression score may also benefit ICB. Furthermore, our results found 

that activation of TGF-β, ALK, PI3K pathways were enriched in cluster 4. Therefore, these 

specific pathways might be useful as targets for therapy in combination with ICB. Finally, 

epigenetic therapy combining with ICB might be suitable for patients in cluster 1 and 2 with 

relative lower expression TE. More studies and clinical trials will be needed to confirm these 

strategies.  

    In conclusion, our results highlight the importance of TE expression in evaluating CRC 

patient prognosis. The association of TE expression with the immune overdrive phenotype 

independent of MSI and TMB status suggests that by considering TE expression, there may be 

new opportunities to identify MSS CRC patients for ICB and develop new strategies to harness 

TE driven immune response. 
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Figure legends: 

 

Figure 1. Identification of TEs associated with survival and immune sets in CRC. (A) 
Normalized TE expression pattern at class level including Retroposon, SINE, LINE, LTR, 

Satellite and DNA. (B) Stacked plot showing the number of subfamily TE with significant 

log rank p value (p < 0.05) for each of the four endpoints including DFI, DSS, OS and PFI. 

TEs were annotated at class level. (C) Distribution of hazard ratios of significant TEs from 

(B) for each of the four endpoints. TEs were annotated at class level. (D) Number of immune 

sets significantly correlated with each TE (Cor ≥ 0.4, p < 0.0001). (E) Spearman’s correlation 

between candidate TE expression (n=14) and 29 immune sets. Heatmap colors indicate the 

correlation coefficient. (F) Venn diagram showing 9 TEs overlapped between candidate 

prognostic TEs and immunogenic TEs. 

 

Figure 2. Generation of TE score-based CRC clusters and comparison of molecular 

association. (A) Top scatter plot showed the TE score in decreasing order from left to right. 

Bottom heatmap displayed the expression profiles of the 9 TEs across four TE clusters as 

ordered by the TE score. Each TE was annotated at family and class level, respectively. (B-

E) Stacked plots showing the fractions of molecular features across four TE clusters 

including MSI status (B), CIMP (C), CMS subtypes (D) and immune subtypes (E). (F-I) 

Prognostic value of four TE clusters with Kaplan-Meier survival analysis for OS (n = 589) 

(F), DSS (n = 567) (G), DFI (n = 223) (H) and PFI (n = 589) (I). The hazard ratios (HR) and 

95% confidence intervals (CIs) for pairwise comparisons in univariable analyses (log-rank 

test) are displayed in each Kaplan-Meier plot. Numbers below the x-axes represent the 

number of patients at risk at the selected time points. The tick marks on the Kaplan-Meier 

curves indicated the censored patients. MSI, microsatellite instability; CIMP, CpG island 

methylator phenotype; CMS, consensus molecular subtype. 

 

Figure 3. Prognostic value of TE cluster and immune infiltration prediction. (A-C) 
Forest plots showing multivariable Cox regression analysis of TE cluster adjusted by clinical 

features for OS (A), DSS (B) and PFI (C). All variables were set as categorial variable. 

Samples with age < 65 was set as age low group and ≥ 65 for high group. Solid dots represent 

the HR of death and open-ended horizontal lines represent the 95 % confidence intervals 

(CIs). All p-values were calculated using Cox proportional hazards analysis (ns: p > 0.05, *: 

p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001). (D-E) Prognostic value of 

four TE clusters with Kaplan-Meier survival analysis in two subgroups separated by MSI 

status (MSI in D, MSS in E) for three endpoints, respectively. DFI was excluded because of 

non-comparable sample size among TE clusters. P-value was calculated using log-rank test. 

Numbers below the x-axes represent the number of patients at risk at the selected time points. 

The tick marks on the Kaplan-Meier curves indicate the censored patients. (F) Spearman’s 

correlation between normalized TE score and non-silent mutation per Mb. (G) Violin plot 

comparing non-silent mutation per Mb among TE clusters (n.s.: p > 0.05). (H-I) Spearman’s 

correlation between normalized TE score and CD8A expression (H) and GEP (I), 

respectively. (J-K) Forest plots showing the odds ratio indicating immune infiltration 

determined by CD8A expression (J) and GEP (K) using multinomial logistic regression 

analysis adjusted by MSI status. (L-M) Forest plots showing the odds ratio indicating 

immune infiltration determined by CD8A expression (L) and GEP (M) using multinomial 

logistic regression analysis adjusted by TMB. Solid dots represent the adjusted OR and open-

ended horizontal lines represent the 95 % confidence intervals (CIs). OR to the right of 

dashed line (where OR = 1) indicates higher odds of immune infiltration while OR to the left 

of the dashed line indicates lower odds of immune infiltration.  
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Figure 4. Exploration of immune overdrive phenotype. (A) Gene set variation analysis 

showing fraction of 28 cell types. (B) Gene set variation analysis showing immune 

infiltration signatures. (C) TCR/BCR indexes comparison among TE clusters. (D) Genetic 

changes comparison among TE clusters. (E) Gene set variation analysis showing immune 

evasion signatures. P-value for each variable was calculated using Kruskal-Wallis test. For 

each variable, the median of normalized value in each cluster was shown. (F) Heatmap 

showing 50 hallmark gene sets score based on gene set variation analysis in three 5-aza 

treated cell line datasets across multiple cell lines and CRC TE clusters. (G) Venn diagram 

showing the overlapped significant pathways among cell line datasets and bulk CRC. (H) 

Comparison of TE score between treated and control groups in GSE80137. 

 

Figure 5. Weighted gene co-expression network analysis (WGCNA) based on TE score. 

(A) WGCNA consensus network modules correlated with TE score. Each row corresponds to 

a module, column to the TE score, respectively. Each cell contains the corresponding 

correlation coefficient and p-value. Individual gene modules were marked using different 

colors. (B) GO enrichment analysis of the genes in the brown and greenyellow module, 

respectively. (C) KEGG pathway enrichment analysis of the genes in the brown and 

greenyellow module, respectively. The size of the circle indicates the ratio of the genes 

mapped to each pathway. (D) Representative expression of genes or signatures involved in 

immune response and RNA sensor signals including RIG-I-like pathways, APOBECs, 

Oligoadenylate synthetases, RNA sensors, interferon-stimulated genes (ISGs), interferon 

secretion process and Toll-like receptors (TLRs). P-value for each variable was calculated 

using Kruskal-Wallis test. For each variable, the median of normalized value in each cluster 

was shown.  

 

Figure 6. Pan-cancer analysis of TE score and identification overdrive phenotype in 

KIRC. (A) Forest plot showing the univariable Cox regression analysis of OS on TE score 

across 24 cancer types. Solid dots represent the HR of death and open-ended horizontal lines 

represent the 95 % CIs. All p-values were calculated using Cox proportional hazards analysis 

(ns: p > 0.05, *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001). (B) 

Spearman’s correlation between TE score and GEP across 24 cancer types. X-axis indicates 

p-value and y-axis indicates correlation coefficient. (C) Top scatter plot showed the 

distribution TE score in decreasing order from left to right in KIRC. Bottom heatmap 

displayed the expression profiles of 9 TEs across four TE clusters as ordered by the TE score. 

Each TE was annotated at family and class level, respectively. (D-F) Prognostic value of four 

TE clusters with Kaplan-Meier survival analysis in KIRC for OS (n = 494) (D), DSS (n = 

483) (E) and PFI (n = 492) (F). The hazard ratios (HR) and 95% CIs for pairwise 

comparisons in univariate analyses (log-rank test) are displayed in each Kaplan-Meier plot. 

Numbers below the x-axes represent the number of patients at risk at the selected time points. 

The tick marks on the Kaplan-Meier curves indicate the censored patients.  
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Supplementary Materials 

 

Supplementary Methods 

 

Supplementary Figures: 

 

Supplementary Figure S1. Screening of candidate TEs. (A) Schematic workflow of this 

study. DSS, disease free survival; OS, overall survival; DFI, disease free interval; PFI, 

progression free interval; ECM, extracellular matrix; VEGF, vascular endothelial growth 

factor; EMT, epithelial-mesenchymal transition; IPRES, innate anti-PD1 resistance signature; 

TMB, tumor mutation burden; CIMP, CpG island methylator phenotype; CNV, copy number 

variation; SNV, single-nucleotide variant; TLR, Toll-like receptors; ISGs, interferon-

stimulated genes; DNMTi: DNA 

methyltransferase inhibitor. (B) Pie chart showing the fraction of 1,204 TEs at class level. (C) 

Venn diagram showing the overlaps of significant candidate TEs associated with four 

endpoints including OS, DFI, PFI, DSS. (D-G) Prognostic value of one representative TE 

(MSTA-int) with Kaplan-Meier survival analysis for OS (D), DSS (E), DFI (F) and PFI (G). 

The hazard ratios (HR) and 95% CIs for pairwise comparisons in univariable analyses (log-

rank test) are displayed in each Kaplan-Meier plot. (H) Density ridgeline plot showing FDR 

of univariable Cox regression analysis for each endpoint. Vertical line indicates the median 

value. (I-J) Forest plots showing univariable Cox regression analysis of TEs for four 

endpoints at family (I) and class (J) level, respectively. Solid dots represent the HR of death 

and open-ended horizontal lines represent the 95 % CIs. For TEs at family level, only those 

families significant with at least one endpoint were shown in (I). Six main TEs at class level 

were shown. (K-M) Forest plots showing multivariable Cox regression analysis of six 

Retroposon at three endpoints including OS (K), DSS (L) and PFI (M). For each Retroposon 

at each endpoint, four clinical features were included for multivariable Cox regression 

analysis including age, gender, MSI status and AJCC stage. Solid dots represent the HR of 

death and open-ended horizontal lines represent the 95% CIs. (N) Bar plot showing the 

number of genes in 29 immune sets. (O) Density ridgeline plot showing FDR of Spearman’s 

correlation between TEs and immune sets. Vertical line indicates the median value. (P) 

histogram of nine TEs by number of TCGA cancer types where they are overexpressed. 

 

Supplementary Figure S2. Clinical and molecular comparison among TE clusters. (A) 
Correlation matrix showing Spearman’s correlation coefficient among 9 TEs with each other. 

(B) Scatter plot of survival times (OS) against the prognostic factor (TE score). (C-E) 

Kaplan-Meier survival curves of the selected groups for K = 2 (C), K = 3 (D) and K = 4 (E). 

(F) Plot of the overall p-values against K with significance level α = 0.05. (G) Plot of the 

worst-pair p-values against K with significance level α = 0.05. (H) Heatmap showing the 

distribution of clinical and molecular features among four TE clusters. Each row represents 

one feature, column to each sample. P-value was calculated using chi-square test.  

 

 

Supplementary Figure S3. Comparison among TE cluster in terms of immune 

overdrive. (A) Cell fraction of 10 cell types estimated using MCPCounter algorithm. P-value 

for each variable was calculated using Kruskal-Wallis test. For each variable, the median of 

normalized value in each cluster was shown. (B) Heatmap showing the expression profiles of 

Th-1 signatures compromised of 20 genes. Samples in each column was ordered by TE score 

with decreasing order from left to right. (C) Heatmap showing the expression profiles of 

MHC genes. Samples in each column was ordered by TE score with decreasing order from 
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left to right. (D) Heatmap showing hotspot mutation profiles of 11 CRC drivers. Each row 

indicates one gene, each column indicates one sample. P-value was calculated using chi-

square test by comparing between cluster 4 and three clusters combined. (E) CNV plot 

showing the GISTIC score among four TE clusters. (F) Heatmap showing the expression 

profiles of IPRES signatures compromised of 24 pathways. Each row indicates one pathway, 

each column indicates one sample. Sample in each column was ordered by TE score with 

decreasing order from left to right. (G) Gene set variation analysis of 39 gene program and 

canonical targetable pathways. 24 significant pathways were shown. P-value for each 

variable was calculated using Kruskal-Wallis test. For each variable, the median of 

normalized value in each cluster was shown. (H) Violin plot showing the comparison of 

CD8A expression amongst TE clusters. (I) Violin plot showing the comparison of CD274 

expression amongst TE clusters. (J) Violin plot showing the difference of TE score among 

risk groups identified by Fakih et al (13) (****: p <= 0.0001). (K) t-SNE plot of TE 

expression profiles at subfamily level for 515 single cells. (L) Boxplot showing the 

proportion of reads mapping to TEs among cell types. P-value for each variable was 

calculated using Kruskal-Wallis test. 

 

 

Supplementary Figure S4. Construction of co-expression module using WGCNA. (A) 
Clustering dendrogram of CRC samples. One sample (TCGA−AA−3947−01) was considered 
as outlier and was removed in downstream analysis. (B-C) Soft-thresholding power selection 

in WGCNA. Analysis of the scale-free fit index for individual soft-thresholding powers. 

Analysis of the mean connectivity for individual soft-thresholding powers. The power = 10 

was chosen which is the lowest power for the curve that the scale-free topology fit index flat 

upon reaching a high value above 0.9 with a moderate mean connectivity. (D) Clustering 

dendrograms of genes included with dissimilarity based on topological overlap, together with 

assigned module colors. A total of 12 modules were identified and assigned into different 

colors. (E-F) Scatter plots of gene significance for TE score versus module membership in 

greenyellow (E) and brown (F) module, respectively. (G) Heatmap showing the topological 

overlap in WGCNA. Each row and column represents a gene, light color indicates low 

topological overlap, and progressively darker red indicates higher topological overlap. Darker 

squares along the diagonal represent modules. The gene dendrogram and module assignment 

are shown along the left and top. Heatmap on the right panel zooms into the brown and 

greenyellow modules. 

 

Supplementary Figure S5. Pan cancer analysis of TE score. (A) Comparison of TE score 

across 24 cancer types. (B) Spearman’s correlation between TE score and GEP in pooled 

cancer samples (n = 6,554). (C) Heatmap showing the comparison of clinical and molecular 

features among four TE clusters in KIRC. Each row represents one feature, while each 

column represents one sample. P-value was calculated using the chi-square test. (D-F) Forest 

plots showing multivariable Cox regression analysis of TE cluster adjusted by clinical 

features for OS (D), DSS (E) and PFI (F) in KIRC. All variable was set as categorial 

variable. Samples with age < 65 was set as age low group and ≥ 65 for high group. Solid dots 

represent the HR of death and open-ended horizontal lines represent the 95 % CIs. All P-

values were calculated using Cox proportional hazards analysis (ns: p > 0.05, *: p <= 0.05, 

**: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001). (G) Gene set variation analysis showing 

fraction of 28 cell types in KIRC. (H) Gene set variation analysis showing immune 

infiltration signatures in KIRC. (I) TCR/BCR indexes comparison among TE clusters in 

KIRC. (J) Genetic changes comparison among TE clusters in KIRC. (K) Gene set variation 

analysis showing immune evasion signatures in KIRC. P-value for each variable was 
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calculated using Kruskal-Wallis test. For each variable, the median of normalized value in 

each cluster was shown. (L-R) Representative expression of genes or signatures involved in 

immune response and RNA sensor signals in KIRC including RIG-I-like pathways (L), 

APOBECs (M), Oligoadenylate synthetases (N), RNA sensors (O), interferon-stimulated 

genes (ISGs) (P), interferon secretion process (Q) and Toll-like receptors (TLRs) (R). P-

value for each variable was calculated using Kruskal-Wallis test. For each variable, the 

median of normalized value in each cluster was shown.  

 

 

Supplementary Figure S6. Correlation between TE score and global TE expression. (A) 
Spearman’s correlation between TE score and the proportion of reads mapping to TEs in 

CRC. (B) Circle plot showing Spearman’s correlation between TE score and TE expression 

at five main class level (DNA, LINE, LTR, SINE and Retroposon) in CRC. (C) Spearman’s 

correlation between TE score and the proportion of reads mapping to TEs in scRNA-seq data 

of breast cancer. (D) Circle plot showing Spearman’s correlation between TE score and TE 

expression at the class level in KIRC. 

 

 

Supplementary tables: 

 

(The supplementary tables will be available upon publication of manuscript) 

 

Supplementary Table S1. Results of screening TEs associated with survival. 

Supplementary Table S2. Summary of clinical and molecular information from TCGA CRC 

samples analyzed 

Supplementary Table S3. Gene signatures used in this study. 

Supplementary Table S4. Overlapped significant pathways among DNMT inhibitor treated 

datasets and TE cluster. 

Supplementary Table S5. Two module gene list derived from WGCNA. 

Supplementary Table S6. Summary of clinical and molecular information from TCGA Pan-

cancer samples analyzed 

Supplementary Table S7. Univariable Cox regression analysis of TE score across 24 cancer 

types. 
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Figure 1 
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Figure 2 
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Figure 3 

 

  

●

●

●

●

●

●

●

●

●

ns

*

*

ns

***

ns

*

ns

****AJCC stage (III&IV vs I&II)
location (proximal vs distal)

lymphhatic.invasion (yes vs no)
MSI.status (MSS vs MSI)

age(high vs low)
gender(male vs female)

TE.cluster4 (ref=cluster3)
TE.cluster2 (ref=cluster3)
TE.cluster1 (ref=cluster3)

1 2 3 5 7 10 14
Hazard ratio

Multic ox for OS

●

●

●

●

●

●

●

●

●

ns

*

*

ns

*

ns

*

ns

****

1 2 4 5 7 9 16 64
Hazard ratio

Multic ox for DSS

●

●

●

●

●

●

●

●

●

ns

ns

*

ns

ns

ns

*

ns

****

1 2 3 5 7
Hazard ratio

Multic ox for PFI

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●●●
●

●

●
●●
●

●

●

●●
●

●
●

●

●
●

●●
●

●●

●

●

●
●

●

●
●

●

●
●●●
●
●
●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●
●
●●●

●

●

●

●

●
●
●
●
●

●●

●●

●●●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●●
●
●●
●

●

●

●

●

●

●●

●●
●

●

●

●

●

●
●
●

●
●
●●

●

●●
●●

●

●
●●

●

●

●
●

●●●
●
●

●

●
●
●

●

●

●●●●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●●●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●
●●●●●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●
●

●
●●
●

●
●
●

●
●

●

●
●
●
●
●

●

●●

●

●
●

●

●
●

●

●●
●●●●

●

●

●●

●
●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●
●●
●

●

●

●●

●

●●

●
●●

●

●

●

●
●●

●

●

●
●

●

●

●
●
●
●

●●

●

●●●
●●

●

●

●

●
●
●

●●
●●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
●
●

●●

●●
●
●●
●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●●●

●

●

●

●

●

●
●

●
●

●

●

●●
●
●●

●●●
●

●

●
●

●

●

●

●●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●
●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●●●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

2−2

20

22

24

26

28

−2 0 2
TE.score

N
on

.s
ile

nt
.p

er
.M

b

●●●● ●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●
●●

●

●

●
●●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●●●●●

●
●

●
●

●
●

●

ns

20

25

N
on

.s
ile

nt
.p

er
.M

b

●

●

●

●

●

●

●

●

●gender(male)
age(high)

stageIV

stageIII

stageII

MSI.status (MSI)
TE.cluster4
TE.cluster3
TE.cluster2

0 1 2 4 6 8 10 12
Odds ratio

Odds ratio on CD8A

●

●

●

●

●

●

●gender(male)

age(high)

stageIV

stageIII

stageII

TMB

TE.score

1.0 2.0 2.5
Odds ratio

Odds ratio on CD8A

●

●

●

●

●

●

●

●

●gender(male)
age(high)

stageIV

stageIII

stageII

MSI.status (MSI)
TE.cluster4
TE.cluster3
TE.cluster2

0 1 2 4 6 8 10
Odds ratio

Odds ratio on GEP

●

●

●

●

●

●

●gender(male)

age(high)

stageIV

stageIII

stageII

TMB

TE.score

1 2 3
Odds ratio

Odds ratio on GEP

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●
●
●
●●

●

●●●●
●
●

●

●

●

●

●
●

●

●●

●
●
●
●

●

●

●

●

●
●

●

●
●

●
●
●

●●

●●

●●
●
●
●

●
●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●●●

●●
●

●

●

●●
●
●
●

●

●
●
●
●

●

●
●

●
●
●

●

●

●
●

●

●

●●

●

●●

●
●

●

●●
●
●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●
●

●
●
●

●
●
●●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●●
●
●

●

●

●

●●
●
●●

●

●

●

●●
●

●

●●
●
●
●
●●

●

●

●
●
●

●

●

●●

●

●
●●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●●●
●●●
●

●
●

●
●

●●●

●

●

●●
●
●●
●
●
●
●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●●

●
●

●●
●
●

●

●●
●●

●●

●

●

●

●

●
●
●
●

●

●

●●
●●

●

●

●

●●
●

●●
●

●

●
●

●
●

●●●●

●

●●

●

●●

●
●

●

●

●
●

●●

●
●

●●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●●

●

●●

●●

●

●●

●

●
●
●
●
●

●

●●
●●
●
●●
●●
●

●

●

●

●
●

●

●

●

●

●

●
●
●

●●●

●

●●●●

●

●●●●

●

●●

●
●●●●●

●

●
●●

●●●
●

●

●●●●
●
●

●

●
●

●
●
●

●

●●

●

●●●

●

●●

●

●●

●

●●

●

●●●
●

●
●
●
●

●

●●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●●●

●

●
●●●

●

●

●
●
●

●
●
●

●

●

●

●

●
●●●

●

●

●
●●
●●

●

●
●
●
●●

●●
●
●

●

●●
●
●

●●

●
●

●
●
●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●●●

●
●
●

●

●

●
●
●
●
●

●●

●●

●
●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●
●
●
●●

●

●●●●
●
●

●

●

●

●

●
●

●

●●

●
●
●
●

●

●

●

●

●
●

●

●
●

●
●
●

●●

●●

●●
●
●
●

●
●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●●●

●●
●

●

●

●●
●
●
●

●

●
●
●
●

●

●
●

●
●
●

●

●

●
●

●

●

●●

●

●●

●
●

●

●●
●
●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●
●

●
●
●

●
●
●●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●●
●
●

●

●

●

●●
●
●●

●

●

●

●●
●

●

●●
●
●
●
●●

●

●

●
●
●

●

●

●●

●

●
●●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●●●
●●●
●

●
●

●
●

●●●

●

●

●●
●
●●
●
●
●
●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●●

●
●

●●
●
●

●

●●

●●

●●

●

●

●

●

●
●
●
●

●

●

●●●●

●

●

●

●●
●

●●
●

●

●
●

●
●

●●●●

●

●●

●

●●

●
●

●

●

●
●

●●

●
●

●●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●●

●

●●

●●

●

●●

●

●
●
●
●
●

●

●●
●●
●
●●
●●
●

●

●

●

●
●

●

●

●

●

●

●
●
●

●●●

●

●●●●

●

●●●●

●

●●

●
●●●●●

●

●
●●

●●●
●

●

●●●●
●
●

●

●
●

●
●
●

●

●●

●

●●●

●

●●

●

●●

●

●●

●

●●●
●

●
●
●
●

●

●●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●●●

●

●
●●●

●

●

●
●
●

●
●
●

●

●

●

●

●
●●●

●

●

●
●●
●●

●

●
●
●
●●

●●
●
●

●

●●
●
●

●●

●
●

●
●
●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●●●

●
●
●

●

●

●
●
●
●
●

●●

●●

●
●

●
●

●
●

●
●●

●

−6

−4

−2

0

−2 0 2

TE score

G
E

P

●
●

●
●

●

●

●
●

●

●
●

●

●

●
●
●

●

●●

●

●
●●

●

●

●●

●
●●

●

●

●
●
●
●

●

●
●

●●
●●
●●
●

●

●
●

●
●
●

●
●
●
●

●

●

●

●

●
●
●

●

●

●
●●

●●
●●

●●

●●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●
●●
●

●

●
●
●
●

●

●
●
●
●

●

●

●

●
●●●
●●
●

●

●

●

●
●●

●

●

●●

●

●●

●

●

●

●
●
●
●

●

●

●

●

●
●
●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●●●
●
●
●
●●

●
●

●●
●
●

●

●●
●

●

●

●
●
●
●

●

●
●
●

●●
●●

●

●●

●●

●●
●
●
●
●

●

●
●

●
●

●

●
●●
●

●
●
●

●
●
●●
●●
●●●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●●●
●
●

●
●

●

●

●●

●●●

●

●●●●●
●●

●
●

●

●

●

●

●
●●
●

●●
●
●

●

●

●
●●●

●

●
●
●
●

●

●●
●●

●●

●
●

●
●●

●
●

●
●

●
●
●
●
●

●
●●●

●

●
●●
●

●

●

●

●●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●●
●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●
●●
●

●●

●

●
●

●

●

●

●
●
●

●●

●

●●

●

●
●

●
●●
●

●

●
●

●
●
●

●

●
●

●

●

●

●●

●
●

●

●●

●

●

●
●
●
●

●

●

●

●●

●

●
●
●●
●●●

●

●

●
●
●

●●●●

●

●●●
●●●●
●●
●

●●

●
●●
●

●●
●

●

●
●

●

●
●
●

●
●
●

●

●●●●

●

●

●

●

●

●
●

●

●●
●

●

●

●●

●
●

●
●●

●●●

●

●

●●

●

●

●

●
●●
●

●
●
●

●

●

●

●
●●●

●

●

●●

●

●●
●●
●●
●●●
●
●
●
●

●●
●

●
●●●

●

●
●
●

●

●

●●●

●

●

●
●

●

●

●

●

●
●
●●

●

●
●●

●

●

●

●

●
●

●
●

●

●
●●

●●

●

●●

●●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●
●
●

●

●●

●

●
●●

●

●

●●

●
●●

●

●

●
●
●
●

●

●
●

●●
●●
●●
●

●

●
●

●
●
●

●
●
●
●

●

●

●

●

●
●
●

●

●

●
●●

●●
●●

●●

●●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●
●●
●

●

●
●
●
●

●

●
●
●
●

●

●

●

●
●●●
●●
●

●

●

●

●
●●

●

●

●●

●

●●

●

●

●

●
●
●
●

●

●
●

●

●
●
●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●●
●●
●
●
●●

●
●

●●
●
●

●

●●
●

●

●

●
●
●
●

●

●
●
●

●●
●●

●

●●

●●

●●
●
●
●
●

●

●
●

●
●

●

●
●●
●

●
●
●

●
●
●●
●●
●●●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●●●
●
●

●
●

●

●

●●

●●●

●

●●●●●
●●

●
●

●

●

●

●

●
●●
●

●●
●
●

●

●

●
●●●

●

●
●
●
●

●

●●
●●

●●

●
●

●
●●

●
●

●
●

●
●
●
●
●

●
●●●

●

●
●●
●

●

●

●

●●

●
●
●●

●

●
●

●

●

●

●

●

●

●

●●
●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●
●●●

●●

●

●
●

●

●

●

●
●
●

●●

●

●●

●

●
●

●
●●
●

●

●
●

●
●
●

●

●
●

●

●

●

●●

●
●

●

●●

●

●

●
●
●
●

●

●

●

●●

●

●
●
●●
●●●

●

●

●
●
●

●●●●

●

●●●
●●●●
●●
●

●●

●
●●
●

●●
●

●

●
●

●

●
●
●

●●
●

●

●●●●

●

●

●

●

●

●
●

●

●●
●

●

●

●●

●
●

●
●●

●●●

●

●

●●

●

●

●

●
●●
●

●
●
●

●

●

●

●
●●●

●

●

●●

●

●●
●●
●●
●●●
●
●
●
●

●●
●

●
●●●

●

●
●
●

●

●

●●●

●

●

●
●

●

●

●

●

●
●
●●

●

●
●●

●

●

●

●

●
●

●
●

●

●
●●

●●

●

●●

●●
●

3

6

9

−2 0 2
TE score

C
D

8
A

R = 0.51, P < 0.0001

R = 0.43, P < 0.0001

++
++++++++++++

+++++++++++++ +++ + +

+ +

++

+

++

+ ++ +

+

+ ++ ++++ + +

+++

+ ++

+++

+

p = 0.0022
Log−rank

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000

Time(days)

O
ve

ra
ll 

s
u

rv
iv

a
l 
p
ro

b
a
b
ili

ty

+++++++++++++++
+++++++++++++ +++ + +++ +

++

+

++

+ ++ ++ + + + +

+ ++ ++++ + +

+++ +

+ ++

+++

+ +

p = 0.017
Log−rank

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000

Time(days)

D
is

e
a
s
e
 s

p
e
c
if
ic

 s
u

rv
iv

a
l 
p
ro

b
a
b
ili

ty

+++++++

+++++
++++++++

++++++

++

+ + +

++

+

+++ ++ ++ + + +

+

+

++ ++ + + +

+++ +

+

++

++ +

p = 0.038
Log−rank

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Pr

og
re

ss
io

n−
fre

e 
in

te
rv

a
l 
p
ro

b
a
b
ili

ty

Time(days)

TE.cluster

cluster1
cluster2
cluster3
cluster4

OS DSS PFI

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++

+ +++
+++

++ ++ ++++++++ ++

+++

++++
+++++++++++++++++++++++++++++++++

++
++
+++
+++++++++++++++

+

++ +

++
+++
++

+++++
+++++

++++++ +

++ + +

++

+
+++

++++
++ ++++++

++++ + +

p = 0.14
Log−rank

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000

Time(days)

O
v
e
ra

ll 
s
u

rv
iv

a
l 
p
ro

b
a
b
ili

ty

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++

+
++++
+ +++ +++ ++ ++ ++++++++ ++

++++
+++++++++++++++++++++++++++++++++++++++

++
++
++++++
+++++++++++++++ + ++ +

++
++++
++

++++++++++++++++ +++ + +

+++

+
+++

++++
++ ++++++

++++ + +

p = 0.15
Log−rank

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000

Time(days)

D
is

e
a
s
e
 s

p
e
c
if
ic

 s
u

rv
iv

a
l 
p
ro

b
a
b
ili

ty

++++++++
++++++++++++++++++

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++ ++ +++ ++ +

+ ++++++ ++

+++
+
++++++++++

+++++++++++++++++++++++++++
++
+++++++++

+++
++++

++++++ + +

++
++++
++

++++++
++++++++++

+++ + +

+++

+
++
+
+++++

+ ++

++++

+

p = 0.15
Log−rank

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000

Time(days)

Pr
og

re
ss

io
n−

fre
e 

in
te

rv
a
l 
p
ro

b
a
b
ili

ty

OS DSS PFI

R = 0.13

TE.cl
us

ter
1

TE.cl
us

ter
2

TE.cl
us

ter
3

TE.cl
us

ter
4

MSI

MSS

A CB

D
F

G

E

H

KI

J L

M

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.07.14.20129031doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.14.20129031
http://creativecommons.org/licenses/by-nc/4.0/


 28 

Figure 4 

 

  

Immune.infiltration.signature

GEP

Lymphocyte.Infiltration

leukocyte.infiltration

IFN.gamma.signature

hot.tumor.signautre

Th1.signature

Tcell_infilt ration_1

CD4.T.cells.exhuasted

CD8.T.cells.exhuasted

TcClassII_score

TAMsurr_score

TAMsurr_TcClassII_ratio

MHC.II

MHC.I

T/B cell receptor score

TCR.Shannon

BCR.Shannon

TCR.Richness

BCR.Richness

TCR.Evenness

BCR.Evenness

Genetic changes

Aneuploidy.Score

Homologous.Recombination.De fects

Number.of.Segments

Fraction.Altered

SNV.Neoantigens

Indel.Neoantigens

Intratumor.Heterogeneity

P value

0

0.02

0.04

0.06

TE cluster

cluster1

cluster2

cluster3

cluster4

Immune evasion genesets

TGFB.response.wolf

UP.ECM.signature

WESTON_VEGFA_TARGETS

EMT_UP

IPRES

Cell fraction

Th1.angelova

Th17.angelova

Th2.angelova

MDSC.angelova

B.cells.naive.newman

B.cells.memory.newman

Plasma.cells.newman

T.cells.CD8.newman

T.cells.CD4.naive.newman

T.cells.CD4.memory.resting.newman

T.cells.CD4.memory.activated.newman

T.cells.follicular.helper.newman

T.cells.regulatory..Tregs..newman

T.cells.gamma.delta.newman

NK.cells.resting.newman

NK.cells.activated.newman

Monocytes.newman

Macrophages.M0.newman

Macrophages.M1.newman

Macrophages.M2.newman

Dendritic.cells.resting.newman

Dendritic.cells.activated.newman

Mast.cells.resting.newman

Mast.cells.activated.newman

Eosnophils.newman

Neutrophils.newman

Endothelials.Becht
Fibroblasts.Becht

GEO ID

GSE5816
GSE80137

GSE22250

cell line

A549
H1299
H157
H1819
H1993
H2347
H460
H526
HBEC2
HBEC2.Rep2
HBEC3
HBEC3.Rep2
HBEC4
HBEC4.Rep2
HCT116
MCF7

LNT.229
T98G
U.87

BT20
MCF.7
MDA.MB.231
MDA.MB.361
SKBR3
T47D
ZR.75.1

cancer type

Breat.cancer
Bronchial.epithelial
Colon.cancer
Lung.cancer
GBM
BRCA

time point

treatment

control
low
high

D6

D3
D4

B

C

D

F

E

A

−2 −1 0 1 2

GEO ID

cell line

cancer type

time point

group

GSE5816

C
R
C
 b

ul
k

GSE80137

G
S
E
22250

1

3 4

0

0
1 0

4 7

2 21 1

3 1

0

G

HALLMARK_CHOLESTE ROL_HOMEOS TASIS

HALLMARK_AND ROGEN_RESPONSE

HALLMARK_G LYCO LYSIS
HALLMARK_P ROTEIN_SECRETION

HALLMARK_PI3K_AKT_M TOR_SIGNALING
HALLMARK_RE ACTIVE_ OXYGEN_SPECIES_ PATHWAY

HALLMARK_M TORC1_SIGNALING
HALLMARK_UNFOLDED_P ROTEIN_RESPONSE

HALLMARK_UV_RESPONSE_DN
HALLMARK_N OTCH_SIGNALING

HALLMARK_WNT_BE TA_CATENIN_SIGNALING
HALLMARK_MI TOTIC_SPINDLE

HALLMARK_E2F_ TARGETS
HALLMARK_G2M_CHECKPOINT

HALLMARK_DNA_RE PAIR
HALLMARK_MYC_ TARGETS_V1

HALLMARK_MYC_ TARGETS_V2
HALLMARK_ADIPOGENESIS

HALLMARK_PE ROXISOME

HALLMARK_ OXIDATIVE_PHOSPHO RYLATION
HALLMARK_ FATTY_ ACID_ME TABOLISM

HALLMARK_BILE_ ACID_ME TABOLISM
HALLMARK_APICAL_SUR FACE

HALLMARK_HEDGEHOG_SIGNALING
HALLMARK_EST ROGEN_RESPONSE_L ATE

HALLMARK_EST ROGEN_RESPONSE_EAR LY
HALLMARK_UV_RESPONSE_UP

HALLMARK_APOP TOSIS
HALLMARK_TN FA_SIGNALING_VIA_NFKB

HALLMARK_HYP OXIA
HALLMARK_ANGIOGENESIS

HALLMARK_IL2_S TAT5_SIGNALING
HALLMARK_TGF_BE TA_SIGNALING

HALLMARK_APICAL_JUNCTION
HALLMARK_IL6_ JAK_S TAT3_SIGNALING

HALLMARK_INFLAMM ATORY_RESPONSE
HALLMARK_ALLOGRAFT_REJECTION

HALLMARK_KRAS_SIGNALING_UP

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION
HALLMARK_COMPLEMENT

HALLMARK_C OAGUL ATION
HALLMARK_P53_ PATHWAY

HALLMARK_M YOGENESIS
HALLMARK_XENOBI OTIC_ME TABOLISM

HALLMARK_INTERFE RON_GAMMA_RESPONSE
HALLMARK_INTERFE RON_ALPHA_RESPONSE

HALLMARK_SPERM ATOGENESIS
HALLMARK_ PANCREAS_BE TA_CELLS

HALLMARK_HEME_ME TABOLISM
HALLMARK_KRAS_SIGNALING_DN

●

●
●

●

●

●

●

●

●

●
●

●●

P = 0.0051

−1

0

1

control low dose

treatment

n
o

rm
a
liz

e
d
 T

E
 s

c
o
re

GSE80137H

−2−1012

−2−1012

−2−1012

−0.4−0.200.20.4

−0.4−0.200.20.4

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.07.14.20129031doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.14.20129031
http://creativecommons.org/licenses/by-nc/4.0/


 29 

Figure 5 

 

  

Module−trait relationships

−1

−0.5

0

0.5

1

TE.score

      magenta

blue

yellow

     greenyellow

     brown

      turquoise

     pink

     red

     green

black

      purple

      grey

−0.037
(0.4)

0.26
(7e−11)

−0.095
(0.02)

0.5
(5e−38)

0.46
(9e−33)

0.26
(2e−10)

0.029
(0.5)
−0.13
(0.002)

0.13
(0.002)

0.035
(0.4)

−0.07
(0.09)

−0.047
(0.3)

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

cytidine metabolic process
cytidine to uridine editing

DNA demethylation
regulation of single st randed viral RNA replication via dou ble stranded DNA intermediate

toll−like receptor 4 signaling path way
vascular endothelial gr owth factor receptor signaling path way

JAK−STAT cascade
extracellular matrix organization

collagen−containing extracellular matrix
regulation of tumor necrosis factor superfamily cytokine production

antigen processing and presentation of endogenous antigen
antigen processing and presentation of endogenous peptide antigen

cellular response to dsRNA
cellular response to exogenous dsRNA

MDA−5 signaling pathway
antigen processing and presentation

cytoplasmic pattern recognition receptor signaling path way
antigen receptor−mediated signaling path way

pattern recognition receptor signaling path way
positive regulation of interferon−alpha production

T cell differentiation
regulation of leukocyte cell−cell adhesion

double−stranded RNA binding
positive regulation of type I interferon production

lymphocyte dif ferentiation
regulation of T cell activation

immune response−activating cell surface receptor signaling path way
leukocyte cell−cell adhesion

regulation of lymphocyte activation
immune response−regulating cell sur face receptor signaling path way

positive regulation of innate immune response
interferon−gamma−mediated signaling path way

cellular response to inter feron−gamma
T cell activation

negative regulation of viral genome replication
negative regulation of viral life cycle

response to interferon−gamma
cellular response to type I inter feron

response to type I interferon
type I interferon signaling path way

defense response to virus
response to virus

brown greenyellow

GeneRatio

●
●
●

0.2
0.4
0.6

0.000

0.025

0.050

0.075

0.100
p.adjust

GO enrichment

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

Fc epsilon RI signaling path way

Complement and coagulation cascades

PD−L1 expression and PD−1 checkpoint path way in cancer

TNF signaling pathway

NF−kappa B signaling path way

T cell receptor signaling path way

Viral protein interaction with cytokine and cytokine receptor

B cell receptor signaling path way

Graft−versus−host disease
Intestinal immune network for IgA production

Leukocyte transendothelial mig ration

Natural killer cell mediated cytotoxicity

Rap1 signaling path way

Th1 and Th2 cell differentiation

Chemokine signaling path way

Th17 cell differentiation

Cell adhesion molecules (CAMs)
Cytosolic DNA−sensing path way

Hepatitis B

Toll−like receptor signaling path way

Human papillomavirus infection

RIG−I−like receptor signaling path way

Measles

Hepatitis C

NOD−like receptor signaling path way

Epstein−Barr virus infection

Herpes simplex virus 1 infection

Influenza A

brown greenyellow

GeneRatio

●

●
●
●

0.1
0.2
0.3
0.4

0.000
0.025
0.050
0.075
0.100

p.adjust

KEGG pathway enrichment

pvalue

0

0.02

0.04

0.06

median

z.score

−1

−0.5

0

0.5

1

ISGs

C6orf150

EIF2AK2

IFI16

IFI30

IFI35

IFI44L

IFI44

IFI6

IFIT1

IFIT2

IFIT3

IFIT5

IFITM2

IFITM3

IFITM5

MX1

OASL

STAT1

STAT2

IFNs.secretion

IFN_ALPHA_SECRETION
IFN_BETA_SECRETION
IFN_GAMMA_SECRETION
IFN_ALPHA_PRODUCTION
IFN_BETA_PRODUCTION
IFN_GAMMA_PRODUCTION

RIG−like

CXCL10
CYLD
DDX58
IL12A
TBKBP1
RIPK1
IFIH1
IL12B
TNF
IRF7
CASP10
TRADD
MAPK10
MAP3K1
DHX58
MAPK11
NFKBIA
ISG15
MAPK12
RNF125
TRAF3
IRF3
IKBKB
IFNE
DDX3X
ATG12
TRAF2
IKBKG
IKBKE
MAPK9
MAPK14
MAPK13
DAK

APOBECs

Oligoadenylate

synthetases

other RNA sensors

ADARB1
MOV10L1
NOD2
MOV10
ADARB2
TREX1
SAMHD1
ZC3HAV1
NLRP3
ADAR
RNASEL
AICDA
CTCFL

TLRs

TLR8
TLR7
TLR1
TLR6
TLR2
TLR5
TLR3
TLR10
TLR9
TLR4

A B

C
D

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.07.14.20129031doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.14.20129031
http://creativecommons.org/licenses/by-nc/4.0/


 30 

Figure 6 

 

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ACC

BLCA

BRCA

CESC

CRC

DLBC

GBM

HNSC

KICH

KIRC

KIRP

LGG

LIHC

LUAD

LUSC

OV

PAAD

PRAD

SARC

SKCM

STAD

THCA

UCEC

UCS

LTR21B
MER57F

HERV1_LTRd
MER65C

SVA_C

AluSq4

SVA_F

Tigger12A

MER92−int

repClass

DNA
LTR
Retroposon
SINE

repFamily

Alu
ERV1
SVA
TcMar−Tigger

expression

−10
−5
0
5
10

TE.cluster

−4
−2

0

2

4

0 100 200 300 400 500

z
 o

f 
T

E
 s

c
o

re

++++++++
++++++++++++++++++++++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++ +++++++++++++++++

++++++++++++

+

+++

++
+

++ +
++++

++

+ + + +

+ + ++

++++

++++++ +
++++

+
+
+++++++++++

+ + +

+ +++

+
+

++++
++

++
++++

++
+++++

++++++

+++++++++
++

++
++ +

+

p < 0.0001
Log−rank

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time(days)

O
v
e
ra

ll 
s
u

rv
iv

a
l 
p
ro

b
a
b
ili

ty

304 188 86 31 3
33 18 5 2 0
58 40 12 4 0
99 53 13 1 0−−−

−

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++++++

+
+ +++++

++
+

++ ++++++++ + + + + + +

+ + ++

+++++
+++++++ ++++++++

+
+++++++++++++ + ++ + +++

++++++

++++
++ ++++++

++++++++
+++++

+++++++

+
+++++++++

++

++
++ ++ +

p < 0.0001
Log−rank

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time(days)

D
is

e
a
s
e
 s

p
e
c
if
ic

 s
u

rv
iv

a
l 
p
ro

b
a
b
ili

ty

296 183 84 31 3
33 18 5 2 0
56 40 12 4 0
98 53 13 1 0−−−

−

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++ +++

++++++++++++

+++++

++
+++++++

+ +++++ +++++ + + +

+

+
++

+++++++ +++++++
+++++++++++++

++ ++++ + ++ + +++

+++
+
++

++
+
+
++

+++++++++++++ ++++++++++
+
+
+
++++++

++++

+

+ +

p = 0.00081
Log−rank

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000
Time(days)

Pr
og

re
ss

io
n−

fre
e 

in
te

rv
a
l 
p
ro

b
a
b
ili

ty

304 167 67 22 1
33 14 3 0 0
58 36 11 4 0
97 40 9 0 0−−−

−

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

GBM

OV

LUAD

LUSC

BRCA

KIRC

KIRP

UCEC

CRC

STAD

HNSC

LIHC

SKCM

CESC

THCA

BLCA

PRAD

LGG

SARC

PAAD

DLBC

KICH

UCS

ACC

0.00

0.20

0.40

0.50
0.55

0.00 0.05 0.20 0.40 0.60
P value

Sp
ea

rm
an

’s
 c

or
re

la
tio

n 
(r

)

●

●

● ●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

● ●

●

ns
n=79

ns
n=211

***
n=982

*
n=144

**
n=589

ns
n=27

ns
n=154

***
n=403

ns
n=66

****
n=494

ns
n=161

ns
n=300

*
n=147

ns
n=486

ns
n=481

**
n=404

ns
n=56

ns
n=246

ns
n=103

ns
n=73

ns
n=282

ns
n=491

ns
n=118

ns
n=56

1

2
3

25

AC
C

BLC
A

BR
C
A

C
ESC

C
R
C

D
LB

C

G
BM

H
N
SC

KIC
H

KIR
C

KIR
P

LG
G

LI
H
C

LU
AD

LU
SC

O
V

PA
AD

PR
AD

SAR
C

SKC
M

STA
D

TH
C
A

U
C
EC

U
C
S

H
a

z
a

rd
ra

ti
o

A

B C

D E F

cluste 4 vs 3   2.21(1.29 - 3.77)  0.003
cluste 4 vs 2   1.39(0.76 - 2.55)  0.2851
cluste 4 vs 1   2.44(1.73 - 3.44)  < 0.0001

cluste 4 vs 3   2.77(1.38 - 5.56)    0.0027
cluste 4 vs 2   1.91(0.85 - 4.27)    0.1097
cluste 4 vs 1   2.87(1.89 - 4.38)    < 0.0001

cluste 4 vs 3   2.56(1.38 - 4.76)     0.0021
cluste 4 vs 2   1.40(0.70 - 2.78)     0.3361
cluste 4 vs 1   1.98(1.37 - 2.85)     < 0.0001

 HR (95% CI)          p valueHR (95% CI)        p value HR (95% CI)           p value

cancer type

cluster1cluster2cluster3cluster4

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.07.14.20129031doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.14.20129031
http://creativecommons.org/licenses/by-nc/4.0/



