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Abstract. The ARF GTP binding proteins are be- 

lieved to function as regulators of membrane traffic in 

the secretory pathway. While the ARF1 protein has 

been shown in vitro to mediate the membrane interac- 

tion of the cytosolic coat proteins coatomer (COP1) 

and 3,-adaptin with the Golgi complex, the functions 

of the other ARF proteins have not been defined. 

Here, we show by transient transfection with epitope- 

tagged ARFs, that whereas ARF1 is localized to the 

Golgi complex and can be shown to affect predictably 

the assembly of COP1 and 3~-adaptin with Golgi 

membranes in cells, ARF6 is localized to the en- 

dosomal/plasma membrane system and has no effect 

on these Golgi-associated coat proteins. By immuno- 

electron microscopy, the wild-type ARF6 protein is 

observed along the plasma membrane and associated 

with endosomes, and overexpression of ARF6 does not 

appear to alter the morphology of the peripheral mem- 

brane system. In contrast, overexpression of ARF6 

mutants predicted either to hydrolyze or bind GTP 

poorly shifts the distribution of ARF6 and affects 

the structure of the endocytic pathway. The GTP 

hydrolysis-defective mutant is localized to the plasma 

membrane and its overexpression results in a profound 

induction of extensive plasma membrane vaginations 

and a depletion of endosomes. Conversely, the GTP 

binding-defective ARF6 mutant is present exclusively 

in endosomal structures, and its overexpression results 

in a massive accumulation of coated endocytic struc- 

tures. 

T 
HE compartmentalization of eukaryotic ceils into func- 
tionally distinct membrane-bound organelles demands 
a highly specified and tightly controlled transfer of 

membrane between compartments, a process referred to as 
membrane traffic (reviewed in Rothman, 1994; Kreis, 1992; 
Pryer et al., 1992). The general requirements for traffic in- 
clude the production of transport intermediates that are 
directed from their site of origin to specified target or- 
ganelles, where they undergo fusion to complete a single or 
unit step of traffic. These requirements are reflected in the 
distribution of biochemical components of membrane traffic, 
some of which are used in most, if not all steps, such as NSF 
and SNAPS (Rothman and Orci, 1992), as well as others 
whose involvement is limited to specific steps at specific 
compartments, such as the rab GTPases (Zerial and Sten- 
mark, 1993), and specific v- and t-SNARE interactions 
(Rothman, 1994). 

A successful membrane traffic system consists of a number 
of highly controlled processes, including the selective sort- 
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ing of components into and out of transport intermediates, 
and the correct targeting of these transport intermediates. In 
addition, membrane movement through organelles demands 
that such traffic be precisely controlled, on the one hand, to 
avoid potentially profound dysequilibrium, and on the other 
hand, to allow for changes in traffic that accompany altered 
metabolic needs, differentiation, and response to external 
signals. It is likely that this control is, in part, mediated by 
the many GTPases that are involved in traffic. The first evi- 
dence that GTPases were essential in traffic came from 
studies in Saccharomyces cerevisiae that resulted in the 
identification of Yptlp and Sec4p, both later characterized as 
members of the rab family of proteins (Salminen and No- 
vick, 1987; Touchot et al., 1987; Segev et al., 1988). There 
are more than 30 different mammalian rab proteins known 
(Chavrier et al., 1992), each of which has a distinct intracel- 
lular distribution (Chavrier et al., 1990). Evidence for the 
importance of rab proteins in specific steps of membrane 
traffic has been provided by either the overexpression of 
specific rabs or the overexpression of mutant rab proteins 
with altered GTP binding or hydrolysis activities (Gorvel et 
al., 1991; van der Sluijs et al., 1992; Bucci et al., 1992). The 
current view of the function of rab proteins is that they are 
involved in the specification of the "correctness" of mem- 
brane-membrane interactions at the level of docking, fusion, 
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or both (Zerial and Stenmark, 1993). The identification of 
lineage specific rab proteins further suggests that they may 
be involved in the actual specification of traffic pathways 
(Ayala et al., 1989; Lutcke et al., 1993). While each rab pro- 
tein has a well-defined location, multiple rabs may be found 
at the same location. This may reflect any of a number of is- 
sues such as the confluence of several traffic pathways at a 
single organelle, the possibility that different rabs function 
in different biochemical processes, and the possibility that 
more than one rab may cooperate in accomplishing a specific 
traffic step. 

The example of the rab proteins may prove to be repeated 
with other families of small GTPases involved in membrane 
traffic. A good candidate for a second, distinct family of such 
GTPases is the ADP-ribosylation factor (ARF) 1 (Tsuchiya 
et al., 1991; Clark et al., 1993). Currently, five ARF pro- 
teins have been identified by eDNA cloning from human 
cells, and this number is likely to increase (Clark et al., 
1993). ARF has received much attention over the recent 
years. It is abundant on Golgi-derived vesicles coated with 
coatomer (COP1) (Serafini et al., 1991), and its activation by 
a membrane-bound guanine nucleotide exchange protein 
identified in Golgi-enriched membranes appears to be the 
target of the drug Brefeldin A (BFA) (Donaldson et al., 
1992b; Helms and Rothman, 1992; Randazzo et al., 1993). 
Virtually all of the biology of ARF has been studied with 
ARF1. This protein rapidly cycles between the cytosol (in its 
GDP form) and specific target membranes (in its GTP form). 
Current biochemical evidence suggests that ARF1 functions 
to control the assembly of specific cytosolic coat proteins 
onto target membranes (reviewed in Donaldson and Klaus- 
ner, 1994). This appears to involve a stoichiometric require- 
ment for the interaction of ARF-GTP and COP1 with the 
membrane (Serafini et al., 1991). Inhibition of the activation 
of ARF with BFA prevents the association of Coat proteins 
with membrane, and it results in redistribution of Golgi 
membrane into the ER. While the actual effector interactions 
of ARF1 are not known, its role in the assembly of Golgi- 

• associated coat proteins provides the best described current 
picture for a function of a GTPase in membrane traffic. 

In vitro assays have implicated functions for ARF1 in a 
number of organelles, including the TGN, where recom- 
binant ARFI reconstitutes the GTP-dependent assembly of 
-y-adaptin containing coats onto membranes, precisely anal- 
ogous to its effects on Golgi COP1 (Stamnes and Rothman, 
1993; Traub et al., 1993). In addition, various in vitro assays 
have implicated ARF1 in ER to Golgi transport (Balch et al., 
1992), intra-Golgi transport (Taylor et al., 1992), endosome 
fusion (Lenhard et al., 1992), and nuclear envelope fusion 
(Boman et al., 1992). In any reconstitution, however, one 
must be able to distinguish the ability of a component to 
affect an assay from the role such a component plays within 
the cell. For example, ARFI in vitro may be able to comple- 
ment a function played by a different, but related protein 
within the cell. Many of these issues could be resolved by 
returning to the cell and determining whether ARFs, like 
rabs, represent a family of proteins, each with its own subcel- 
lular localization. 

1. Abbreviations used in this paper: ARF, ADP ribosylation factor; BFA, 
Brefeldin A; COP1, nonclathrin coatomer complex; GTP~S, guanosine 
5'-[3,-thio]triphosphate; HA, influenza hemagglutinin; TfR, transferrin 
receptor. 

In this paper, we report on the comparison of ARF1 with 
ARF6 to test the hypothesis that distinct ARFs will have 
specified locations and functions within the cell. We find that 
whereas ARF1 is localized to the Golgi region, where its ex- 
pression can be shown to affect the structure of and associa- 
tion of coat proteins with the Golgi complex, ARF6 is local- 
ized to the plasma membrane and early endosomes. ARF6 
appears to move through the endocytic pathway rather than 
between cytosol and membrane as does ARF1, according to 
its nucleotide cycle. Overexpression of mutants of ARF6 
profoundly affects the structures of both the early endosomes 
and the plasma membrane. Most striking is the accumulation 
of what may be a novel coat structure on endosomes induced 
by the expression of an ARF6 mutant that is deficient in 
nucleotide exchange. These findings suggest that ARF6 plays 
important roles in the regulation of organelle structure and 
membrane traffic in the cell periphery. 

Materials and Methods 

PCR Cloning and Mutagenesis of ARF Proteins 

As previously described (Hsu et al., 1992), total RNA from human 
erythroleukemia cells K562 were extracted, and first-strand eDNA was 
made using reverse transcriptase and random hexamers as primers (Perkin- 
Elmer Cetus Instruments, Norwalk, CT). Each 5' oligonucleotide started 
with a restriction endonuclease site (EcoRI for ARF1, ARF3, ARF5 and 
ARF6, and XhoI for ARF4), and then the first 18 bases of the ARF eDNA 
coding sequence. Each 3' oligonucleotide also started with a restriction site 
(XbaI), and then the antisense coding sequence for two tandem stop codons, 
followed by the hemagglutinin (HA) epitope tag or FLAG epitope tag and 
the last 24 bases of the various ARFs excluding the stop codon. ARFs with- 
out the epitope tags were generated by using the same 5' primers, and 
modified 3' primers that had the antisense sequence for the epitope tags 
deleted. 

For the mutagenesis of ARF6 (Q67L and T27N mutants), single amino 
acid substitutions in ARF6 were introduced by PCR using a 5' primer identi- 
cal to that used for reverse transcription PCR (see above) and a 3' primer 
containing the mutation. The following 3' primers were used: CCCAGC- 
TTAAGCTTGTAGAGGATCGTGTTCTTCCCTGC_AGCATCCA for ARFI/ 
T3IN, CCAGAGCGCJCCGGATCTTGTCTAGACCGCCCACATCCCAT- 
ACGTTG for ARF6/Q67L, and AATC.d3TCd3TCACCGACTCJCd2CAAG- 
CTTCAACTTGTACAGGATTGTGTTCTTGCCGC_~CGCGTC for ARF6/ 
T27N. The PCR products were digested with EcoRI/AflII for ARF1/T31N, 
XmaIII for ARF6/Q67L, EcoRI/BstEII for ARF6/T27N, and then used to 
replace the corresponding fragment in the wild-type, epitope-tagged ARFs. 
For the G2A mutant, a 5' primer containing the mutation and a 3' primer 
identical to that used for RT-PCR were used. The 5' primer sequence was 
~ T T C  C A T A ~  GAAGGTGCTATC C.AAAATCTTC GG. The 
amplified product was digested with EcoR1 and Xbal and subcloned into 
the expression vector. 

All PCR-generated sequences were verified by DNA sequencing (Se- 
quenase; U.S. Biochemical Corp., Cleveland, OH). 

Transient Transfections 

Human ARFs were subcloned into a modified form of the expression vector 
pCDLSRtx (Takebe et al., 1988), termed pXS, using the restriction sites de- 
scribed above. For transient transfections, cells were transfected using the 
calcium-phosphate method as previously described (Bonifacino et al., 
1989). For 100-ram dishes with 10 ml of medium, 20/~g of plasmid was 
used. For six-weil dishes, each well with 3 ml of medium, 5/~g of plasmid 
was used. 

Cells and Antibodies 

Monkey COS and human RD4 and 293 cells were grown in Duibecco's 
modified essential medium, 10% FCS, and penicillin/streptomycin. 

The following antibodies were used: mouse antibody 12CA5 against HA 
epitope (BAbCo, Berkeley, CA), rabbit antiserum against HA epitope 
(BAbCo), mouse monoclonal antibody M2 against the Flag epitope (IBI 
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Technology, New Haven, CT), rabbit antiserum against Tac antigen (D. 
Nelson, National Institutes of Health, Bethesda, MD), mouse antibody ID9 a~r 1 
against endogenous ARFs (R. Kahn), rabbit antiserum R5 against endoge- a~r 6 
nous ARFs (R. Kalm, Nil-I), rabbit antiserum against 13-COP (J. Lippincott- 
Schwartz) rabbit antiserum against clathrin (J. Keen, Thomas Jefferson 
University, Philadelphia, PA), rabbit antiserum against human transferrin amr x 
(Sigma Immunochemieals, St. Louis, MO), mouse antibody B3/25 against a~v 6 
human transferrin receptor (Sigma), rabbit antiserum against horseradish 
peroxidase (Sigma), mouse antibody 100/3 against 7-adaptin (Sigma), rab- 
bit antiserum against LAMPI (M. Fukuda, La JoUa Cancer Research Foun- amr x 
dation, La Jolla, CA), rhodamine-conjugated donkey antibody against astr 6 
mouse IgG (Jackson ImmunoReseareh, Laboratories, Inc., West Grove, 
PA), fluorescein-conjagated donkey antibody against mouse IgG (Jackson 
ImmunoResearch), fluorescein-conjugated donkey antibody against rabbit ~ r  1 AmP6 
IgG (Jackson ImmunoResearch), and rhodamine-conjugated donkey anti- 
body against rabbit IgG (Jackson ImmunoResearch). 

Indirect Immunofluorescence Microscopy 

Cells on coverslips were fixed in 2% formaldehyde in PBS for 10 rain at 
room temperature, washed twice with PBS, and then incubated for 5 rain 
in wash medium (PBS/10% FCS/0.02% sodium azide). Coverslips were 
then incubated in primary antibody (diluted in PBS/10% FCS/0.2 % sapo- 
nln/0.02 % sodium azide) for 1 h, washed three times (spaced apart with 
5 min incubations) in wash medium, incubated in secondary antibody (con- 
jugated to fluorescent dye and diluted as previously for primary antibody) 
for 1 h, washed three times (spaced apart with 5-rain incubations) in wash 
medium, and then washed finally with PBS alone. Coverslips were then 
mounted with fluoromount G (Southern Biotechnologies, Birmingham, 
AL). Microscopy (Carl Zeiss, Inc., Thornwood, NY) was performed with 
the 63X oil Planape lens. 

lmmunogold Electron Microscopy 

The procedures used were as described previously (Peters et al., 1991). The 
antibodies against the HA epitope, both monoclonal 12CA5 and polyclonal 
antiserum, have been characterized for EM, and they are described in detail 
previously (Bosshart et al., 1994). Briefly, samples were fixed in 2% 
paraformaldehyde and 0.2 % glutaraldehyde in 0.1 M phosphate buffer at pH 
7.4 for 1 h at room temperature or for clathrin labeling only in parafor- 
maldehyde for 24 h at room temperature. Cells were transferred in 0•2% 
paraformaldehyde, scraped, and collected. They were then processed for 
cryoelectron microscopy using an Ultracryo microtome and Diatome dia- 
mond knife (Leica, Inc., Deerfield, IL). 45-rim sections were cut at -125"C 
and collected with a mixture of sucrose and cellulose (Liou, W., manuscript 
in preparation). Cryosections were incubated at room temperature with an- 
tibodies for 30 min, washed, and incubated for 20 min with protein A gold. 
As a specificity control, untransfected cells were not labeled by either anti- 
HA antibodies. 

Results 

ARF1 and ARF6 Are Localized m Distinct Regions 
of the Cell 

Of the five human ARF genes reported in the literature 
(Kahn et al., 1991; Tsuchiya et al., 1991), ARFI and ARF6 
are most dissimilar in sequence, being only 66% identical 
at the amino acid level. We cloned each of the reported ARFs 
from human K562 cells by PCR from RNA, and we con- 
firmed the published sequences. The ARFs were cloned 
with their normal stop codons or with a carboxy terminal ex- 
tension corresponding to either the influenza HA (Wilson et 
ai., 1984) or FLAG epitopes (Hopp et al., 1988). The 
aligned sequences of ARFI and ARF6 are shown in Fig. 1. 
The ARFs were transiently expressed in a variety of cells 
using a modified form of the pCDLSRc~ vector (Takebe 
et al., 1988). Using the monoclonal antibody 1D9, which 
recognizes all known ARFs (Peters, J. P., unpublished obser- 
vation), we determined by quantitative immunoblotting that 
pCDLSRo~ gave between 20- and 80-fold increased levels of 
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Figure L Amino acid sequence comparison of human ARF1 and 
ARF6. The full sequence of ARFI is shown along with the aligned 
differences found in ARF6. The three point mutants used in this 
study are also shown, at glycine position 2 (both ARF1 and ARF6) 
substituted by alanine (G2A), at threonine positions 31 (ARF/) and 
27 (ARF6) substituted by asparagine (T31N and T27N respectively), 
and glutamine positions 71 substituted by isoleucine (Q71D for 
ARF1 and 67 substituted by leucine (Q67L) for ARF6. 

transfected ARF compared to total ARF on a per-cell trans- 
fected basis (data not shown). The actual fold overexpression 
compared to an individual ARF gene product could not be 
determined with available reagents. 

In all cell lines tested, ARF1 was localized to a compact 
perinuclear structure, as determined by indirect immuno- 
fluorescence microscopy (Fig. 2 A). In cells that appeared 
to express particularly high levels of ARF1, staining for the 
protein appeared in a diffuse reticular pattern, in addition 
to a Golgi-like structure. The predominant localization of 
ARF1 coincided with the distribution of/3-COP and several 
intrinsic Golgi proteins (data not shown). ARF6, however, 
localized clearly to different structures, being primarily at 
the plasma membrane and internal punctate structures (Fig. 
2 B). The latter partially colocalized with the distribution of 
transferrin receptors (see Fig. 5 D). Some of these internal 
structures were stained with antibodies to the cation-inde- 
pendent mannose-6-phosphate receptor (MPR), but the 
ARF6-positive internal structures were negative for staining 
with antibodies directed against the late endosomal/lysosomal 
protein, LAMP1 (not shown)• The localization of ARF6 
tagged with the FLAG epitope gave similar results (not 
shown). We also examined the localization of each ARF 
lacking the carboxy terminal epitope tag. Using either the 
monoclonal 1D9 or the polyclonal R5 antibody directed 
against ARE we were able to detect the overexpressed intro- 
duced protein in addition to the normal staining pattern of 
endogenous ARFs. These reagents demonstrated that essen- 
tially the same staining pattern was observed regardless of 
the presence of the epitope tag, and they assured us that the 
epitope tags were not altering the intracellular localization 
of the ARF proteins. 

As a further distinction between ARF1 and ARF6, we 
compared the effect of BFA on the localization of these 
ARFs. The involvement of ARF1 in the action of BFA was 
first suggested by the demonstration of the rapid redistribu- 
tion of ARF from the Golgi to the cytosol upon addition of 
BFA to cells (Donaldson et al., 1991a). As previously 
reported (Teal et al., 1994), ARF1 in the transfected cells 
was rapidly redistributed in response to the drug, whereas 
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Figure 2. Differential localization of ARFI and ARF6. Cells were transiently transfeeted with cDNA encoding HA-epitope-tagged ARF1 
or ARF6, and they were stained with mouse anti-HA antibody followed by rhodamine-labeled donkey anti-mouse antibody. Staining for 
ARF1 (A) reveals a tight, juxtanuclear pattern consistent with that of the Golgi apparatus while staining for ARF6 (B) is distributed in 
a widely scattered, peripheral pattern outlining the edges of the cell consistent with plasma membrane. Note the linear structures outlining 
membrane ruffles, and scattered, internal punctate structures consistent with endosomes. 

the membrane distribution of ARF6 was unaffected by the 
addition of BFA at 10/~g/ml after 1 h (not shown). 

ARF1, but Not ARF6, Supports Coatomer Binding 
to Golgi Membranes 

The distinct localization of ARF1 and ARF6 led us to exam- 
ine the effects of overexpression of the two proteins on the 
Golgi and its associated coat proteins. ARF1 has been shown 

to support the in vitro GTP-dependent association of COP1 
with Golgi membranes (Donaldson et al., 1992a; Palmer et 
al., 1993). ARFI localization to this organelle is consistent 
with such a function in vivo. Two pharmacologic treatments 
of intact cells that result in the release of COP1 from the 
Golgi complex are BFA and agents that cause energy deple- 

tion (Donaldson et ai., 1991b). The mechanism of action of 
the latter is likely to reflect a drop in GTP levels. We rea- 
soned that if an ARF protein is critical for coatomer binding 
in vivo, overexpression of that ARE although not capable of 
rendering the cell resistant to BFA, might allow coat assem- 
bly under conditions of limiting amounts of GTP. We thus 
used this bioassay to further distinguish ARF1 and ARF6 

function. 
When COS cells in culture were treated with 0.04% so- 

dium azide and 50 mM 2-deoxy glucose in media containing 
10 mM glucose, a redistribution of the/3-COP component 
of COP1 was observed in 100% of untransfected cells (Fig. 
3, A vs B). However, in cells overexpressing ARFI, ~-COP 
remained Golgi associated under these conditions (Fig. 3 B, 
arrowheads), indistinguishable from untreated cells. This 
effect was seen whether or not the carboxy terminal epitope 

tag was present (not shown). NH2-terminal myristoylation 
of the protein was required for this effect since cells overex- 
pressing the nonmyristoylated ARF1 (created by mutation of 
the second residue from glycine to alanine) showed no pro- 
tection of the /3-COP distribution upon energy depletion 
(Fig. 3 C). Although overexpression of ARF1 could protect 

/3-COP from these moderate energy depletion protocols, it 
failed to protect after more extreme treatments, such as an 
increase in the concentration of 2-deoxyglucose and sodium 
azide, or the use of glucose-free media in the incubation. The 
shift in the sensitivity of a/~-COP redistribution induced by 
the overexpression of wild-type ARF1 provides in vivo evi- 

dence for the ability of this protein to mediate B-COP associ- 
ation with the membrane. 

We next looked at the effect of overexpression of ARF6 in 
similar experiments. In contrast to ARF1, no alteration in the 
sensitivity of/3-COP distribution to energy depletion was ob- 

Figure 3. Differential effects of ARF1 and ARF6 in regulating the Golgi coat protein B-COE COS cells were transiently transfected with 
cDNAs encoding HA-tagged ARF1, ARF1/G2A, or ARF6. Cells were treated with 50 mM 2-deoxy glucose and 0.04% sodium azide in 
media containing 10 mM glucose for 30 min at 37°C to deplete energy levels in the cell, fixed, and then double labeled with mouse anti-HA 
and rabbit anti-B-COP antibodies, followed by fluorescein-labeled donkey anti-mouse and rhodamine-labeled donkey anti-rabbit antibod- 
ies. Staining for B-COP is shown, with arrowheads indicating cells that are transfected with the various ARF constructs in B-D. In the 
control experiment (A) without energy depletion, untransfected cells stained for B-COP in a Golgi-like pattern. After energy depletion, 
staining for B-COP is in a Golgi-like pattern in cells overexpressing ARFI (B, arrowheads), as compared to untransfected cells or cells 
transfected with ARF1/G2A (C) or ARF6 (D), where staining for B-COP is changed to a diffuse cytosolic pattern. 
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served at any level of ARF6 expression, again regardless of 
the presence of the epitope tag (Fig. 3 D). The failure of 
ARF6 to stabilize the membrane association of/3-COP was 
consistent with its distinct non-Golgi localization. ARF1 also 
supports the assembly of AP1 adaptor molecules (containing 
3'- and B'adaptins) to the TGN (Stamnes and Rothman, 
1993; Traub et al., 1993) in vitro. The membrane localiza- 
tion of 3' adaptin is lost when cells are treated with energy- 
depleting regimens (Robinson and Kreis, 1992). Similar to 
that observed for/~-COP, we found that ARF1, but not ARF 
6, shifted the dose response of 3'-adaptin redistribution in 
cells to the energy depletion regimen (data not shown). In 
contrast to energy depletion, overexpression of wild-type 
ARF1 had no protective effect against the addition of BFA for 
either/~-COP or 3"-adaptin. 

Expression and Localization of ARF6 Mutants 

Because the function of all low molecular weight GTP bind- 
ing proteins is determined by their GTP binding and hydroly- 
sis cycle, the use of specific pharmacologic reagents that 
block defined parts of that cycle has proven to be extremely 
valuable. For ARFI, the ability of BFA and GTPvS, the 
poorly hydrolyzable analogue of GTP, to inhibit GTP ex- 
change and GTP hydrolysis, respectively, greatly facilitated 
the elucidation of ARFI function in cells and in cell-free as- 
says (Donaldson and Klausner, 1994). Additionally, muta- 
tions in ARF1 that are predicted, based on sequence align- 
ments with ras (Bourne et al., 1990, 1991), to result in 
proteins defective in GTP binding and GTP hydrolysis have 
been generated. These mutant ARF1 proteins behave as 
predicted both in vivo and in vitro according to the model 
of ARF action. The expression of an ARFI mutant (T31N) 
defective in GTP binding results in an inability of COP1 to 
bind to Golgi membranes, as well as in the disassembly of 
this organelle, recreating the BFA phenotype (Dascher and 
Baich, 1994). Conversely, the mutation in ARF1 (Q71I or 
Q71L) predicted to slow the rate of GTP hydrolysis results 
in a constitutively active ARF1. Expression of this mutant in 
cells results in irreversible binding of coatomer to Golgi 
membrane, and it renders the coatomer association with 
Golgi membranes resistant to the effects of BFA (Tanigawa 
et al., 1993; Teal et al., 1994; Zhang et al., 1994). 

Since overexpression of the mutants in the ARF1 protein 
behaved as predicted from in vitro biochemical studies, 
recreating BFA and GTP3'S treatment, we reasoned that the 
analogous mutations in ARF6, when expressed in cells, 
could begin to elucidate the ARF6 cycle by demonstrating 
the consequences of blocking activation (GTP binding) and 
termination of activation (GTP hydrolysis). For this reason, 
we produced two point mutants of ARF6. One mutant, 
termed Q67L, altered the conserved glutamine at position 67 
to a leucine. This mutant is predicted to be defective in GTP 
hydrolysis and thus "locked" into the active GTP-bound 
state. Another mutant, T27N, contained a change of a con- 
served threonine at position 27 in ARF6 to an asparagine, 
and it is predicted to be defective in GTP binding. The be- 
havior of the T27N mutant vis-a-vis GTP binding has been 
confirmed (D'Souza-Schorey, C., and P. Stalfl, personal 
communication). Finally we mutated the glycine at position 
2 tO an alanine (G2A) to test whether the predicted NH2- 
terminal myristoylation of ARF6 was necessary for its intra- 
cellular localization. 

Before examining the consequences of the overexpression 
of epitope tagged ARF6, we further tested the validity of 
using overexpressed, epitope-tagged ARFs in these cells by 
comparing the effects of the GTP binding defective mutants 
of ARF1 (T3 IN) and ARF6 (T27N) on the distribution of 
/3-COP. As expected (Dascher and Balch, 1994), overexpres- 
sion of ARF1/T31N acted as an inhibitor of endogenous 
ARFI activation and fully mimicked the effects of BFA on 
the Golgi and the TGN. The mutant protein itself was 
diffusely distributed throughout the cell as was/~-COP (Fig. 
4, top row). In cells expressing ARF1/T31N the Golgi 
marker enzyme mannosidase II was also localized in an ER- 
like pattern and a complete block in the exit of newly synthe- 
sized proteins from the ER was observed (data not shown; 
see also Dascher and Balch, 1994). In contrast, overexpres- 
sion of the analogous ARF6/T27N mutant, at similar levels, 
had none of these effects. In transfected cells,/S-COP was 
localized in the perinuclear region, indistinguishable from 
that of/3-COP in untransfected cells (Fig. 4, bottom row). 
Additionally, in cells expressing the ARF6/T27N, there was 
no block in the transport of newly synthesized membrane 
glycoproteins to the cells surface (not shown). Thus, despite 
the very high levels of protein attained by overexpression, the 
action of the overexpressed ARFs appears to be specific. 

We expressed both wild-type and mutant ARF6 by tran- 
sient transfection, and we examined the intraceUular location 
of the epitope-tagged proteins by indirect immunofluores- 
cence microscopy. Compared to the wild-type ARF6, which 
was localized to both the plasma membrane and punctate 
endosomal-like structures (Figs. 2 B and 5 A), the distribu- 
tion of the Q67L mutant was more limited to the cell surface 
(Fig 5 B). In contrast, the distribution of the T27N mutant 
was shifted to internal structures. The T27N-positive inter- 
nal structures were heterogeneous in size; there were large 
granular structures as well as small punctate structures (Fig. 
5 C). Double labeling experiments revealed that many of 
these structures colocalized with the transferrin receptor 
(Fig. 5 D). These experiments demonstrate that the localiza- 
tion of ARF6 within the endosomal system can be perturbed 
by mutations that affect the GTP cycle, and they suggested 
that the GTP cycle of this protein may be coupled to its local- 
ization at different sites in this recycling membrane pathway. 

Effects of ARF6 Mutants on the Plasma Membrane 
and Endosomes at the Ultrastructural Level 

We analyzed the intracellular distribution of ARF6 and its 
mutants at the ultrastructural level by immtmogold labeling 
of cells that were transiently transfected with the different 
ARF6 constructs. The distributions of the various forms of 
ARF6 were consistent with the immunofluorescence obser- 
vations, and they were easily and repeatedly distinguished 
from each other in double-blind investigations. 

Quantitation of the specific immunogold signal revealed 
that ~40 % of the wild-type ARF6 was found on the plasma 
membrane and ,~40% was found on internal membrane 
structures, with the remaining label found scattered through- 
out the cytoplasm and nucleus (Fig. 6 A). Under higher 
magnification, we could appreciate that wild-type ARF6 was 
evenly distributed on the plasma membrane and was neither 
concentrated in nor excluded from coated pits (Fig. 6 A, in- 
set). The internal structures labeled were tubulovesicular or- 
ganelles (Fig. 6 B), morphologically characteristic of early 
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Figure 4. Effects of ARFI and ARF6 GTP binding defective mutants on/~-COP distribution. RD4 cells were transiently tramfected with 
cDNA encoding for HA-tagged ARFI/T31N or ARF6/T27N. Cells were stained with mouse anti-HA and rabbit anti-/5-COP antibodies 
followed by fluorescein-labeled donkey anti-mouse and rhodamine-labeled donkey anti-rabbit antibodies. Compared to untransfected cells, 
the staining for/~-COP in cells expressing HA-ARFFT31N is changed from its normal Golgi associated pattern to a diffuse, cytosolic pat- 
tern, while the staining for B-COP in cells expressing ARF6/T27N remains unalfected. 

endosomes, or the previously described CURL (Geuze et 
al., 1983). While no anti-human transferrin receptor (TfR) 
antibodies were available for cryoimmunoelectron micros- 
copy, double labeling experirnents indicated that these struc- 
tures were primarily negative for LAMP-l, a marker of late 
endosomes and lysosomes (data not shown). The endosomal 
structures contain a vacuolar region surrounded by tubulo- 
vesicular extensions that are believed to represent recycling 
structures (Geuze et al., 1983, 1984). Labeling for ARF6 in 
these structures was preferentially seen in these extensions. 
Compared to untransfected cells, cells expressing the wild- 
type ARF6 had similar numbers of coated pits and clathrin- 
coated vesicles. The Golgi cisternae appeared unaffected. 

We next evaluated the effect of the mutation predicted to 
prevent myristoylation (G2A) on the distribution of ARF6 
(Fig. 6 C). A similar mutation in ARFI had been previously 
shown to lead to a loss of myristoylation, membrane local- 
ization, and effector function. By immunoelectron micros- 
copy, the distribution of gold particles for this mutant 
seemed dispersed, with a loss of membrane localization. 
This protein could be found mainly in the cytoplasm, and to 
a lesser extent, in the nucleus and mitochondria. The label- 
ing intensity is higher than with wild-type ARF6 because the 
epitope is most likely better exposed in a cytosolic location. 
Membrane compartments appeared unperturbed in cells ex- 
pressing this mutant. 

We next examined the results of cells expressing the ARF6 
hydrolysis-defective mutant, Q67L. In this case, gold parti- 

cles were localized almost exclusively (~90 %) to the plasma 
membrane (Fig. 7). Most of the remaining staining was still 
membrane bound, but they were in internal structures that 
have yet to be characterized. The structure of the cell surface 
was profoundly altered in cells overexpressing the Q67L mu- 
tant. When compared to untransfected cells whose surface 
was smooth, the Q67L cells exhibited a marked increased in 
plasma membrane surface area with tortuous invaginations 
and sheetlike extensions. These extensive areas of the cell 
surface were largely devoid of coated pits. These invagina- 
tion, to a lesser extent, were also seen in cells overexpressing 
the wild-type ARF6. On the rest of the cell surface, the Q67L 
mutant appeared to be evenly distributed along the plasma 
membrane with no particular concentration in coated pits. 
Strikingly, compared to untransfected cells, cells expressing 
this mutant appeared to be depleted of structures that are 
characteristic of early endosomes. The number and the mor- 
phologic appearance of coated pits, clathrin-coated vesicles, 
lysosomes, and the Golgi apparatus in transfected cells did 
not appear to be altered compared to untransfected cells. 

Finally, we examined the distribution of the T27N mutant 
(Figs. 8 and 9). Consistent with the impression given by im- 
munofluorescence microscopy, at the ultrastructural level, 
>90 % of the gold particles labeling for this mutant was in 
intracellular structures. We did not find any significant 
proportion of the gold labeling in the cytoplasm or the nu- 
cleus. Only a few gold particles were seen in the mitochon- 
dria and on the plasma membrane, and occasionally 
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Figure 5. Localization of ARF6 and mutants by indirect immunofluorescence microscopy. RD4 cells were transiently transfected with HA- 
epitope tagged forms of ARF6 wild-type, Q67L, or T27N mutants. Cells were stained with mouse anti-HA antibody followed by rhodamine- 
labeled donkey anti-mouse antibody. For colocalization with TfR, cells were stained with rabbit anti-HA and mouse anti-Tt'R antibodies, 
followed by fluorescein-labeled donkey anti-rabbit and rhodamine-labeled donkey anti-mouse antibodies. Cells transfected with either 
ARF6 wild-type (A) or Q67L (B) revealed diffuse staining of the cell surface consistent with the plasma membrane. In cells expressing 
ARF6 wild-type (A), there is also staining for some internal punctate structures consistent with endosomes. In many cells expressing the 
T27N mutant (C), on the other hand, staining of this mutant ARF6 is mainly in scattered internal structures. These are heterogeneous 
in size, some being large granular structures, and others being small punctate structures. Both structures show significant costaining for 
TfR (D). 

Figure 6. Localization and effects of ARF6 wild-type and G2A mutant at the Ultrastructural level. 293 cells were transiently transfected 
with either HA-tagged ARF6 wild-type or G2A mutant, and were then processed for ultrathin cryosections. Samples were stained with 
an anti-HA antibody followed by protein A-conjugated gold particles (10 nm). (A) A transfected cell (left) shows specific gold labeling 
on the plasma membrane and internal vesicles. Some labeling in the cytoplasm is also seen. The inset for A shows a profile of the plasma 
membrane with a coated pit (arrowhead). Note that there is no particular enrichment in the coated pit. An untransfected cell (on the right) 
is devoid of labeling. (B) A higher magnification of a cell expressing ARF6 wild-type, shows specific labeling (arrowheads) present on 
tubular extensions of an endosomal structure. Labeling is also present on some vesicles and on the plasma membrane. (C) In a cell express- 
ing the ARF6 G2A mutant, labeling is randomly distributed over the cytoplasm, nucleus, and mitochondria. The Golgi complex and endo- 
somes appear unperturbed. An untransfected cell on the right shows no labeling, n, nucleus; e, endosome; p, plasma membrane; g, Golgi 
complex. Bar, 200 nm. 
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Figure 7. Localization and effects of the Q67L mutant at the ultrastrucmral level. 293 cells were transiently transfeeted with the HA-tagged 
Q67L mutant, and they were then processed for ultrathin cryosections. Samples were stained with an anti-HA antibody followed by protein 
A-conjugated gold particles (10 nm). In ceils overexpressing the Q67L mutant, the plasma membrane is transformed into areas of deep 
invagination (i). Few, if any, endosomal structures are observed. The Q67L mutant appears to reside mainly on the plasma membrane 
and its deep invaginations, n, nucleus; m, mitochondria; p, plasma membrane; i, invaginations. Bar, 500 nm; bar in inset, 200 nm. 

clustered in coated vesicles (Fig. 8, arrow). The plasma 
membrane and the Golgi complex appeared normal in these 
cells, despite of the marked transformation of the endosomal 
compartment. What appeared as large granular staining pat- 
terns seen by immunofluorescence microscopy represented, 
at the EM level, concentrations of the ARF in regions of < 2 
~m in diameter within the cell (Fig. 8). These areas con- 
tained vesicular membrane structures of heterogeneous sizes 
(100-300 nm in diameter) and shapes (Figs 8, inset, and 9), 
suggesting that they are tubulovesicular in nature. In fact, oc- 
casionally, profiles of short tubules could be appreciated. 
These structures were negative for LAMP-l, MPR, and 
cathepsin D (data not shown). The most prominent feature 
of these membrane structures was that they were heavily 
coated on their cytoplasmic face, where gold particles label- 
ing for the mutant ARF were seen (Fig. 8, inset). In Fig. 9 
we compared the appearance of these coated structures with 
clathrin-coated vesicles. Using double-immunogold label- 
ing, we found that most (>99%) of these coated structures 
that were positive for ARF were not labeled for clathrin (Fig. 
9). These coats often appeared thinner and less electron 

dense than the classical clathrin coats, and they were more 
reminiscent of the COP1 coats seen on Golgi-derived vesi- 
cles after incubation with GTP'yS and cytosol. 

Discussion 

In this study, we have made use of transient expression of 
epitope-tagged wild-type and mutant ARF proteins to ascer- 
tain the localization and function of these proteins in the cell. 
We show that ARFI and ARF6 have distinct effects on mem- 
brane traffic and organdie structure and function; the effects 
of ARF1 are limited to the Golgi apparatus and the TGN, 
while those of ARF6 are apparent in the endosomal and 
plasma membrane system. 

The considerable data accrued on the biochemical func- 
tion of ARF1 provides an excellent test for the validity of 
using overexpressed, epitope-tagged wild-type and mutant 
ARF proteins to ascertain function. Indeed, the defined roles 
of ARF1 vis-~t-vis membrane traffic (Donaldson and Klaus- 
ner, 1994) are reiterated by the results of the transient over- 
expression of mutant forms of epitope-tagged ARFI. First 
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Figure 8. Localization and effects of the T27N mutant at the ultrastructural level. 293 cells were transiently transfected with the T27N 
mutant, and they were then processed for ultrathin cryosections. Samples were stained with an anti-HA antibody followed by protein A-con- 
jugated gold particles (10 nm). Large aggregations of membranous structures that are labeled by the T27N mutant appear in the transfected 
cell. These regions are g2 #m in diameter. The inset shows a higher magnification of this area and reveals multiple-coated (arrowhead) 
tubulovesicular structures. Labeling for the T27N mutant is mainly on these coated structures. There is also some labeling in the mitochon- 
dria. The plasma membrane is sparsely labeled, with occasional labeling of a coated structure (arrow in the upper region of the main 
panel). An untransfected cell is seen in the upper right region of the main panel, and it is devoid of labeling, n, nucleus; m, mitochondria; 
p, plasma membrane. Bar, 1 #m; bar in inset, 200 nm. 

HA-ARF1 is predominantly localized to the Golgi and as- 

sociated structures over a wide range of expression levels. 

Second, the overexpression of  the tagged mutants affect the 

Golgi structure, association of  coat proteins, and intracellu- 

lar traffic, as predicted from in vitro biochemical and trans- 

port assays, as well as from the studies on the cellular effects 

of BFA. Therefore, overexpression of  ARF1 and the presence 

of  the COOH-terminal epitope tag do not result in non- 

physiological localization, nor do they inhibit the predicted 

effector functions of the protein. Furthermore, the effects 

and localizations of ARFI have no overlap with those of  

ARF6 for both wild-type and mutant versions of the pro- 

teins. The distinct effects of equivalently expressed epitope- 

tagged ARF1 serve as an internal specificity control for the 

novel but distinct effects of ARF6. 

ARF1, but Not A R I ~  Regulates 
the Assembly of  Coat Proteins onto the 
Golgi Complex In Vitro 

The localization of  ARF1 to the Golgi complex and as- 

sociated structures (Stearns et al., 1990) in intact cells is 
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Figure 9. A comparison of the endosomal coat accumulated by the T27N mutant versus the clathrin coat. 293 cells were transiently trans- 
fected with the T27N mutant, and they were then processed for ultrathin cryosecfions. Samples were stained first with a rabbit anticlathrin 
antibody followed by protein A-conjugated gold particles (15 urn), and then the mouse monoclonai anti-HA antibody (12CA5) followed 
by protein A-conjugated gold particles (10 rim). Vesicular profiles demonstrating immunolabeling with clathrin antibodies (15 tun gold) 
are shown with arrowheads. Bar, 200 rim. 

consistent with a growing body of experimental evidence 
that this protein can support the GTP-dependent assembly of 
at least two sets of coat proteins; the Golgi-associated COP1 
(Donaldson et al., 1992a; Palmer et al., 1993) and the TGN- 
associated AP1/clathrin complexes (Stamnes and Rothman, 
1993; Traub et al., 1993). A number of observations support 
that the ARF1 GTP cycle can determine the assembly and 
disassembly of these coat proteins within the intact cell. 
First, as previously shown, expression of a GTPase-defec- 
tive mutant of ARF1 protects the membrane association of 
/3-COP from the effects of either the addition of BFA or of 
energy depletion (Tanigawa et al., 1993; Teal et al., 1994; 
Zhang et al., 1994). In this study, we introduce a further ob- 
servation that ties wild-type ARF1 expression to the distribu- 
tion of these coats in vivo. Overexpression of wild-type 
ARFI has no obvious effect on Golgi structure. It does, how- 
ever, protect both/3-COP and ~,-adaptin from the effects of 
energy or GTP depletion. The protection afforded by the 

overexpression of ARF1 is actually a shift in the sensitivity 
to energy depletion. Thus, it requires more severe regimens 
(higher 2-deoxyglucose and/or lower glucose concentrations) 
to observe the redistribution of either/3-COP or 3,-adaptin 
in ARFl-overexpressing cells than in untransfected cells. 
One possible explanation for this effect is that it is the prod- 
uct of the concentrations for ARF1 and GTP that determine 
the ability of these proteins to bind to their target mem- 
branes. Thus, a drop in GTP levels can be compensated for 
by the increase in ARF1. These observations link the expres- 
sion of ARF1 to the membrane association of these proteins 
within the cell and show that, at limiting GTP levels, ARF1 
becomes limiting for coat protein assembly onto membranes. 

As discussed above, the specificity of the distinct ARF 
family members is clearly illustrated by the complete lack 
of effect of ARF6 and ARF6 mutants on any aspect of Golgi 
structure and function. This specificity suggests that even in 
cells perturbed by massive overexpression of ARF proteins, 
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the effects reflect defined targets of each member of the ARF 
family. 

The ARF6 GTP Cycle and Its Localization 
in the Recycling Endocytic Pathway 

Both the intracellular localization and the functional effects 
of ARF6 are nonovedapping with ARF1. At all levels of ex- 
pression observed, the distribution of wild-type ARF6 was 
mainly between the plasma membrane and TfR-positive re- 
cycling endosomes. There was no apparent fine structure to 
the plasma membrane distribution, and no obvious accumu- 
lation at coated pits was detected. We did however, have the 
impression that the endosomal wild-type ARF6 was prefer- 
entially found on the :tubulovesicular extensions of the recy- 
cling endosomes, suggesting that it may be recycled, via 
those structures, to the plasma membrane (Geuze et al., 
1983, 1984). While wild-type ARF6 is capable of associat- 
ing with both the plasma membrane and recycling endo- 
somes, the GTP cycle mutants reside either on the plasma 
membrane (Q67L) or in internal structures (T27N). Despite 
the fact that overexpression of either of these mutants pro- 
foundly perturbs the structure of the organelles on which 
each is found, their distribution and effects are distinct and 
essentially nonoverlapping. We can interpret the restricted 
localization as reflecting the GTP cycle requirements for 
ARF6 to exit from each location. Thus, the fact that the 
Q67L hydrolysis-defective mutant is restricted to the cell 
surface suggests that GTP hydrolysis is a prerequisite for 
ARF6 to be internalized. Conversely, the restriction of'127N 
to endosomes suggests that GTP loading is a prerequisite for 
its recycling from that structure to the cell surface. The fact 
that the wild-type protein can be found in both locations is 
consistent with its being able to both bind and hydrolyze 
GTPo While the precise membrane localization of ARF6 ap- 
pears to depend on its GTP state, association with mem- 
brane requires myristoylation, as demonstrated by the G2A 
mutation. 

The distinct distribution patterns for the two mutant pro- 
teins demonstrate an additional difference between ARF6 
and ARF1. ARFI rapidly cycles on and off the membrane in 
a manner that is coupled to its GTP binding and hydrolysis 
cycle, consistent with in vitro binding data (Regazzi et al., 
1991). In contrast, to date, we have no evidence that ARF6 
ever dissociates from the membrane, regardless of its nu- 
cleotide status. Furthermore, neither ATP depletion nor BFA 
appears to affect the membrane association or distribution of 
ARF6. The latter may reflect the possibility that ARF6 acti- 
vation is insensitive to BFA. 

Effects of ARF6 on the Structure of the Peripheral 
Membrane System 

Overexpression of mutant ARF6 proteins has profound 
effects on the structure of the plasma and endosomal mem- 
brane system. The function of this protein in the control of 
membrane dynamics and membrane-coat protein interac- 
tions may be elucidated by considering the effects of the two 
mutants. As with all such GTP-binding proteins, the func- 
tion(s) of each protein is tied to its GTP binding and hydroly- 
sis cycle. In all known cases, it is the GTP form of the protein 
that possesses active effector function. Thus, we may begin 
by asking where ARF6-GTP normally functions. 

The T27N mutant, as predicted, appears to be defective 

in binding of GTP (D'Souza-Schorey, C., and P. Stahl, per- 
sonal communication). If it acts as a competitive antagonist 
of the endogenous wild-type ARF6, the site where this "dom- 
inant negative" mutant accumulates should give us a clue as 
to where the activation of ARF6 is required. The most strik- 
ing consequence of the overexpression of the T27N mutant 
is the accumulation of large aggregates of coated tubulovesic- 
ular structures. These structures could represent either nn- 
fused endocytic structures that have acquired a new coat 
or recycling endosomal remnants, because of the partial 
colocalization with the transferrin receptor, the lack of local- 
ization with LAMP1 and M6PR, and the loss of undisturbed 
endosomal profiles. However, the exact identity of the coated 
structures and their biogenesis will require alternative ap- 
proaches, such as the microinjection of ARF6 mutant pro- 
teins and the evaluation of additional endosomal markers 
such as tab4 or rab5. If we assume that the overexpression 
of the T27N mutant is acting via the inhibition of produc- 
tion of ARF6-GTP, we must conclude that one of the func- 
tions of activated ARF6 would be to either inhibit the assem- 
bly or to stimulate the disassembly of the accumulated coat. 
The endosomai coat appears clearly different from classical 
clathrin coats by EM. Immunologically, this coat does not 
appear to have significant staining for clathrin (Fig. 9), 
/3-COP (Fig. 4), and ~- and ?-adaptins (not shown). Iden- 
tification of this novel endosomal coat material remains to 
be determined. 

The expression of the predicted hydrolysis-resistant mu- 
tant (Q67L) results in the elaboration of plasma membrane 
leading to extensive invaginations and sheet-like extensions. 
The restriction of the ARF6/Q67L to the cell surface sug- 
gests that hydrolysis of ARF6-GTP occurs at that site. This 
raises the possibility that an additional function of active 
ARF6 is to effect the structure of the cell surface. It remains 
to be determined how these morphological changes of 
ARF6-Q67L relate to those observed with T27N. 

Regulators of Surface Membrane Dynamics 

Despite the relatively long history of the study of receptor- 
mediated endocytosis, the detailed biochemistry of this pro- 
cess is only beginning to be unraveled (reviewed by Schmid, 
1993). As with all dynamic processes within the cell, the in- 
ternalization and recycling of molecules to and from the cell 
surface is likely to be subject to a complex array of switches 
and points of regulation. Throughout the exocytic and endo- 
cytic pathways, GTP-binding proteins appear to provide a 
prominent class of such switches. Two rab proteins, rab4 and 
rab5, have been reported to have significant effects on the dy- 
namics of membrane movement in the early endocytic path- 
way (van der Sluijs et al., 1992; Bucci et al., 1992). While 
overexpression of rab5 enhanced endocytosis and endosome 
fusion, overexpression of rab4 increased the rate of receptor 
recycling. A more direct demonstration of a regulator of en- 
docytosis is dynamin, a distinct GTP-binding protein that is 
involved in the early steps of clathrin-mediated endocytosis 
(Shpetner and Vallee, 1989). First connected to endocytosis 
when it was recognized as the gene responsible for the Dro- 
sophila shibire mutation (van der Bliek and Meyerowitz, 
1991), dynamin has been shown, via the effects of GTP- 
binding mutants, to be necessary for the endocytosis of sur- 
face transferrin receptor (van der Bliek et al., 1993; Her- 
skovits et al., 1993). Specifically, dynamin is required for 
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the constriction of coated pits to form coated vesicles 
(Damke et al., 1994). 

The results presented in this paper define ARF6 as a poten- 
tial regulator of membrane traffic in the peripheral mem- 
brane system. The profound effects on the structure of the 
plasma membrane and endosomes observed with the ARF6 
mutants provide compelling reasons to identify and under- 

stand the cellular effectors responsible for these changes. 
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