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Overfishing and nutrient pollution interact with
temperature to disrupt coral reefs down to
microbial scales
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Losses of corals worldwide emphasize the need to understand what drives reef decline.
Stressors such as overfishing and nutrient pollution may reduce resilience of coral reefs by
increasing coral-algal competition and reducing coral recruitment, growth and survivorship.
Such effects may themselves develop via several mechanisms, including disruption of coral
microbiomes. Here we report the results of a 3-year field experiment simulating overfishing
and nutrient pollution. These stressors increase turf and macroalgal cover, destabilizing
microbiomes, elevating putative pathogen loads, increasing disease more than twofold and
increasing mortality up to eightfold. Above-average temperatures exacerbate these effects,
further disrupting microbiomes of unhealthy corals and concentrating 80% of mortality in the
warmest seasons. Surprisingly, nutrients also increase bacterial opportunism and mortality in
corals bitten by parrotfish, turning normal trophic interactions deadly for corals. Thus,
overfishing and nutrient pollution impact reefs down to microbial scales, killing corals by
sensitizing them to predation, above-average temperatures and bacterial opportunism.
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ropical reefs continue to lose coral cover worldwide due to

a variety of anthropogenic stressors, including warming

ocean temperatures, nutrient pollution, sedimentation and
overfishing! 3. Thermal stress from sustained periods of high
temperature can kill corals by driving widespread coral bleaching
events and coral disease outbreaks>®”. Localized stressors can
also greatly impact corals. For example, elevated nutrients and
overfishing of herbivorous fishes increase algal abundance on
reefs8. Competition with these algae can compromise coral
recruitment, growth and survivorship®!®. The intersecting
impacts of these local stressors may ultimately compromise the
resilience of reefs to disturbances, such as hurricanes and thermal
anomalies! 112,

Algal competition and elevated temperatures may also impact
reefs by disrupting corals’ symbiotic microor%anisms, which
serve functions ranging from nitrogen fixation'> to patho3gen
inhibition'*. Decades of coral microbiology research!3-2¢
demonstrate that coral microbiomes are sensitive to multiple
stressors, including algal competition, elevated temperatures and
disease?®?272°_ On the basis of this research, several qualitative
and quantitative models have been proposed for the effects of
algal competition or temperature on the coral microbiome.
The DDAM hy;othesis (dissolved organic carbon, disease, algae
and microbes)?” suggests that turf and macroalgae secrete
dissolved organic carbon?®, which increases growth and oxygen
consumption of bacteria?*3? (but see ref. 31), ultimately harming
corals through hypoxia!”"?®32, Two additional, non-mutually
exclusive hypotheses are that algae produce allelochemicals that
directly harm corals, with possible downstream effects on the
microbiome?’ and that interactions with certain algae lead to
transfer of algae-associated microbes to corals!®3>,

Sea-surface temperatures also strongly impact the coral
microbiome!>162434  While mass coral bleaching caused by
high levels of thermal stress has received the greatest attention,
even modest increases in temperature appear to make corals more
vulnerable to opportunistic bacteria. Elevated temperatures
increase the release of dimethylsulfoniopropionate from corals.
Many opportunistic microorganisms chemotax along gradients of
dimethylsulfoniopropionate, potentially allowing them to target
thermally stressed corals®*. Elevated temperatures also increase
expression of virulence genes in some opportunistic bacteria®>,
alter innate immune gene expression in corals®® and inhibit
the protective role of bacteria in the coral mucus®’. These
observations have prompted mathematical models of competition
between coral mutualists and pathogens, suggesting that
temperature variation mediates changes between pathogen- and
mutualist-dominated stable states?>.

Together, this research strongly suggests that human impacts
such as overfishing and nutrient pollution may interact with
sea-surface temperatures to cause changes in coral reef benthic
communities and their microbiomes that together contribute to
coral mortality!”!826, Much of the foundational work on how
corals respond to global and local stressors has been done in
short-term, small-scale lab and field experiments based at the
organismal level (for example, refs 16,17,19,24,26). Therefore, it is
difficult to extrapolate these prior results to determine how
factors that are thought to contribute to coral decline interact to
alter coral benthic communities and their microbiomes over
ecologically realistic temporal and spatial scales. Therefore, we
designed a long-term field experiment to examine how altering
herbivory and nutrient pollution impacted coral-algal-microbe
interactions within the context of seasonal temperature variation.
Specifically, we sought to test the following main hypotheses over
ecologically relevant spatial and temporal scales: (1) exclusion
of herbivores and nutrient pollution both increase the
abundance, and diversity of turf and macroalgae, leading to
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intensified coral-algal competition and additive increases in coral
tissue loss and mortality; (2) coral-algal competition interacts
with above-average temperatures to shift coral microbiomes away
from their normal configuration and towards distinct, pathogen-
dominated stable states; and (3) alterations to the coral
microbiome due to increased algal competition or above-
average temperatures positively correlate with increased coral
disease, and reduced coral growth and survivorship.

To test these hypotheses, we conducted a 3-year field
experiment (June 2009-August 2012) that simulated overfishing
and nutrient pollution on a reef in the Florida Keys, USA. We
tracked their impacts on the benthic community, coral-microbe
dynamics and coral survivorship across multiple seasons. To
simulate nutrient pollution, four 9-m? plots of reef benthos were
enriched in nitrogen and phosphorus, while four control plots
remained at ambient nutrient levels (Methods). Enrichment
increased nitrogen and phosphorous concentrations approxi-
mately four- eightfold above ambient, similar to reefs impacted by
nutrient pollution (Methods). We simulated overfishing of
herbivorous fishes (for example, parrotfishes and surgeonfishes)
by nesting two 1 m? herbivore exclosures and two 1m? open-
topped exclosure controls within each plot (Supplementary
Fig. 1). This created factorial treatments of: (1) control,
(2) herbivore exclusion, (3) enriched nutrients and (4) herbivore
exclusion plus enriched nutrients (Supplementary Notes; Supple-
mentary Data 1 sheet b).

Results

Overfishing and nutrients increase algal cover and richness.
Herbivore exclusion rapidly increased algal cover up to sixfold,
species richness up to threefold (Fig. la,b) and altered algal
community composition (Supplementary Fig. 2; Supplementary
Data 1 sheets a—c). Excluding herbivores increased numerous
macroalgae (for example, Dictyota, Halimeda and Amphiroa) and
tall filamentous turf algae (>0.5cm; Supplementary Fig. 2;
Supplementary Notes) at the expense of crustose coralline algae
and closely cropped turf algae (< 0.5 cm), which are beneficial or
neutral for coral recruitment, settlement and growth!®. Nutrient
pollution only slightly increased algal richness (Fig. 1b), instead
nutrient pollution increased algal cover by driving seasonal
blooms of tall filamentous turf algae, Dictyota and Lyngbya
cyanobacteria. Overall, removing herbivorous fishes, and to a
lesser extent nutrient pollution, facilitated growth of algae known
to increase coral tissue loss or mortality via shading, abrasion and
allelopathy>839,

Algae or elevated temperature alter coral microbiomes. To
identify how algal communities and nutrient pollution affected
the coral microbiome, we collected DNA samples from the sur-
face mucus layer of 80 coral colonies (genera Porites, Siderastrea
and Agaricia) at approximately monthly intervals. From these
samples, 478 were used for 16S ribosomal RNA (rRNA) gene
amplicon analyses following quality control (Supplementary Data
2 sheets a-d). The phyla Proteobacteria, Cyanobacteria, Bacter-
oidetes and Actinobacteria were most abundant in all coral
genera, with a core set of 13 bacterial orders in >95% of all
samples (Supplementary Data 3 sheet a). Order Synechococcales
(phylum Cyanobacteria), a proposed coral mutualist'®, was
particularly abundant on control corals.

Increasing algal cover or elevated temperature suppressed the
typical, Synechococcus-dominated microbiome of healthy corals
and facilitated blooms of other microbes, including many putative
opportunists or pathogens (Fig. 2; Supplementary Fig. 3).
Alteromonadales, and 10 other orders, many of which were
Proteobacteria, increased in abundance as upright algal cover
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Figure 1 | Herbivore exclusion and nutrient pollution alter algal communities. (a) Upright algal cover (macroalgae, cyanobacteria and tall turf algae), with
herbivore exclusion and/or nutrient pollution over time. Total cover often exceeds 100% due to the three-dimensional algal canopy. (b) Macroalgal species
richness over time. P values are from mixed effect models (Supplementary Table Data 1c). Data are means £ s.e.m.

(including tall turf algae, cyanobacteria and macroalgae)
increased. Vibrionales and Oscillatoriales increased in abundance
with increasing temperature (Fig. 2a; Supplementary Data 3
sheets b-g).

Herbivore exclusion and ensuing coral-algal contact also
increased the relative abundance of many otherwise rare microbial
orders (Supplementary Table 1), increasing microbial community
richness and evenness (Supplementary Data 3 sheet f). In contrast,
nutrient pollution suppressed many taxa, allowed fewer bacterial
orders to dominate (Supplementary Table 1), and decreased
community evenness (Supplementary Data 3 sheet f).

Principle coordinates analysis (PCoA) identified transitions
from Synechococcus- to Proteobacteria dominance, as the most
important axis structuring coral microbiomes (First PCoA axis;
Fig. 2a,b). Proteobacteria blooms were accompanied by a drop-off
in community evenness (Fig. 2b) and represented 91.9% of
bacteria in the least even quartile of samples (Supplementary
Fig. 3¢). For example, during periods of above-average tempera-
tures, Vibrionales represented up to 62% of the microbial
community on individual corals, rising from a mean background
level of 5% on unstressed corals.

We used random forest analysis, a machine-learning method, to
summarize the extent to which the dominant microbe on coral
surfaces could be predicted from external conditions such as algal
contact and sea-surface temperature. Random forest analysis
predicted displacement of Synechococcus by blooms of other
microbes with 78.5% accuracy. Temperature and upright algal
cover (including both macroalgae and tall turf algae) were the most
informative predictor variables (Supplementary Data 3 sheet h).
Bacterial opportunists that displaced Synechococcus bloomed at
different combinations of temperature and overall upright algal
cover (Fig. 2¢; see Supplementary Data 3 sheet f for turf algae and
cyanobacteria specifically). However, conditions favoring different
opportunists overlapped, rendering the specific opportunist that
displaced Synechococcales partially stochastic and not predictable
from random forest analysis of ecological data (Supplementary
Data 3 sheet h).

Antibiotic-producing bacteria may play an important role in
protecting corals from outbreaks of harmful bacteria'®. In our
data, opportunistic Proteobacteria reached their highest
abundance in corals, where Actinobacteria were below ~2.5%
relative abundance (Supplementary Fig. 4), suggesting that
antibiotic-secreting Actinobacteria may help to protect corals
from opportunists. Actinobacteria, in turn, decreased with
increasing algal cover or elevated temperatures, suggesting that
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these stressors remove an important biotic barrier to potential
pathogens (Supplementary Fig. 3; Supplementary Data 3
sheets c,d).

Increasing algal cover or elevated temperatures also shifted the
predicted functional profiles of corals towards microbial patho-
genesis. We used the PICRUSt software package®” to estimate
the functional consequences of changes in microbial community
composition (Methods). According to these estimates, micro-
biomes subject to algal competition or above-average tempe-
ratures became enriched in pathways involved in opportunism
(for example, cell motility and secretion systems) and depleted in
pathways for antibiotic production that may help healthy
coral microbiomes resist invasion (Supplementary Fig. 5a,b;
Supplementary Data 4 sheets a,b). Increasing upright algal cover
was also correlated with predicted increases in the abundance of
genes for utilization of glycans and pentose sugars in the coral
microbiome (Supplementary Fig. 5a). Conversely, upright algal
cover was associated with decreases in seven categories of
metabolic pathways related to amino acid metabolism and four
related to lipid and fatty acid metabolism (Supplementary
Fig. 5a). These data support the idea that increased algal cover
promotes growth of microbes on the coral surface that are capable
of rapid microbial metabolism of algal sugars!”-263241,

Algae and temperature increase coral microbiome B-diversity.
Stressful conditions may shift coral microbiomes from one stable
state to another?®. We had originally hypothesized that algal
competition would produce such a shift in the structure of coral
microbiomes. However, we did not find any evidence for such
treatment-induced shifts between alternative stable states
(Supplementary Fig. 6a). Rather, we found that algal contact
and increased ambient temperatures reduced the overall stability
of the microbiome as a whole. This type of microbiome
destabilization was manifest as increased sample-to-sample varia-
bility and quantified using measures of microbiome [B-diversity
(for example, ref. 42). While B-diversity was originally used to
describe species turnover among habitats*?, in microbial ecology
host organisms are often treated as the relevant habitat. This
allows [-diversity measures to be used to compare inter-
individual variation in the microbiome. This notion has also
been generalized to measure species turnover within individuals
over time (intra-individual variation). However, few studies
(notably ref. 42) have emphasized the relationship between the
health of animal hosts and the variability of their microbiomes.
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Figure 2 | Algal competition and temperature combine to alter coral microbiomes by driving bacterial blooms. (a) Principle coordinates analysis plot,
summarizing weighted UniFrac distances between coral microbial samples (n=435). The main pattern we seek to show here is a shift from Synechococcus-
dominated communities (cyan) to dominance by a wide variety of other orders as one moves from left to right along PC1. Points are coloured to reflect the
most dominant (numerically abundant) microbial order in each sample. Sizes reflect quartiles of microbial community evenness (measured by equitability).
Orders that were significantly enriched by temperature or upright algal cover (Pearson regression, FDR g<0.05, Supplementary Table Data 3f and 3g) are
grouped together in the legend. Parentheses next to each order note the number of samples, in which that order was dominant. Orders that were dominant
in >15 samples are marked in bold. (b) Displacement of Synechococcales by varied Proteobacteria structured differences between stressed coral
microbiomes. Points plot the 1st PC axis (a) against the relative abundance of Synechococcales (cyan squares, dot-dashed line), Proteobacteria (orange
triangles, dashed line) and overall microbial community evenness (blue circles, dotted line). Lines show local regression (Loess regression, span=0.75),
with grey bars shading extending to twice the s.e. of the regression. (€) Combinations of algal cover (macroalgae, cyanobacteria and tall turf algae) and
naturally occurring seawater temperature that allowed algae- or temperature- enriched bacterial orders (a) to dominate coral microbiomes. The position of
each point, and its associated error bars, represents mean algal cover and temperature, and their s.e.’s, for all samples that were dominated by the labelled
bacterial order. Synechococcales, which dominated most (258/435) coral microbiome samples, are included as a reference. Taxa dominating >15 samples
are marked in bold. Coloured polygons enclose suites of taxa whose mean abundance increased with temperature (orange) or upright algal cover (green;
Supplementary Data 3 sheets f-h). Vibrionales and Oscillatoriales responded to both temperature and algal cover, but for Vibrionales only temperature was
significant.

In our experiment, algal contact or elevated temperature temporal variation manifested as increased dispersion of
drove blooms of microbial opportunists that destabilized samples from stressed hosts around a centroid of samples
coral microbiomes, increasing B-diversity between samples from healthy hosts, rather than discrete clusters of samples
taken from corals subject to these stressors (Supplementary representing healthy versus diseased hosts (Supplementary
Figs 6a-d and 7a-b). This increased inter-individual and/or Fig. 6).
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Algae-driven increases in B-diversity were largely consistent,
regardless of whether corals were analysed together or separately
by genus (although not individually significant for Porites;
Supplementary Notes). B-diversity increased in samples where
Synechococcus was displaced by Proteobacteria (Supplementary
Data 3 sheet 1), indicating that blooms of Proteobacteria
contribute to microbiome instability. Significant microbiome
destabilization was also found upon reanalysis of a previous
study!'®, in which Porites corals were placed in contact with
macroalgae (Supplementary Fig. 7c¢).

Algal contact induces coral disease and mortality. In this long-
term experiment, we found that radical changes to the coral
microbiome were strongly correlated with coral tissue loss and
mortality in the field (Fig. 3). Although corals in control plots
grew, gaining 36.8% of initial tissue area on average, other
treatments caused 30.6-36.1% tissue loss (Supplementary Data 5
sheets a-d) and six- ninefold increases in mortality (Fig. 3a).
Importantly, microbiome evenness was lower and instability
(B-diversity) higher (permutational t-tests, P=0.033 and
P=0.001, respectively) in corals that lost tissue by the end of the
experiment.

Direct algal contact increased coral microbiome instability
(Supplementary Fig. 7a), subsequent tissue loss (Fig. 3b,

Supplementary Data 5) and mortality (Supplementary
Fig. 8a—c). Competition with Dictyota algae caused the most
severe microbiome disruptions (Supplementary Fig. 7b) and the
greatest overall coral mortality (Supplementary Fig. 8c). Further,
as the diversity of algal competitors increased, so did microbiome
instability, the prevalence of tissue loss and coral mortality
(Fig. 3c). In Siderastrea corals, algal contact also increased by
twofold the prevalence of dark spot syndrome (DSS), a coral
disease with poorly understood aetiology (Fig. 3¢, Supplementary
Fig. 9a). DSS-affected Siderastrea had 5-fold greater prevalence of
tissue loss and, on average, lost tissue, while Siderastrea without
DSS had positive growth (Supplementary Fig. 9¢,d).

Random Forest analysis predicted coral tissue loss with
76.8 £0.11% accuracy using a mixture of benthic and microbial
data (Supplementary Data 3 sheet j). Because this analysis
compared the susceptibility of colonies to tissue loss rather than
the timing of tissue loss, temperature was not included as a
variable. The abundance of macroalgae and tall turf algae, which
increased coral morality (Supplementary Fig. 8c), were the most
important predictors of tissue loss. The next best predictors were
the abundance of Rhodobacterales and Rhodospirallales, two
putatively opportunistic microbial orders, both in the Proteo-
bacteria and both commonly enriched in diseased corals
(for example ref. 44). In this study, Rhodospirallales were
enriched by herbivore exclusion (Supplementary Table 1).
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Figure 3 | Multiple stressors disrupt coral microbial communities and produce coral mortality. (a) Cumulative coral mortality at end of experiment. P
values are from mixed effect models, letters over bars show differences in Tukey's post hoc tests. Herbivore removal significantly increased coral mortality
relative to controls (Tukey's post hoc test P<0.05), but not relative to nutrient pollution alone (post hoc test and mixed effects model P> 0.05). (b) Effects
of algal contact on coral tissue area, across treatments. P values from ANOVAs test the effect of algal contact within each treatment. (¢) Number of algal
taxa contacting corals versus microbiome B-diversity (weighted UniFrac distance), and the prevalence of coral tissue loss, mortality and Siderastrea dark
spot syndrome (DSS). (d) Seasonal distribution of coral mortality, coloured by treatment (a). Red line marks null expectation of equal mortality across
seasons. P value is from a Xz-test. (e) Microbial community B-diversity for corals with or without tissue loss, split by temperature. P values reflect non-
parametric t-tests of distances. (f) Temperature effects on coral microbial variability, evenness and relative abundance of Proteobacteria or Cyanobacteria.
Evenness and B-diversity data are means + s.e.m. Microbial and coral health data are averaged within each 1°C interval on the x axis. The vertical red line at
30°C indicates the point nearest to the MMM —+1°C value for our site (30.26 °C); temperatures beyond this result in accumulation of degree heating
weeks of coral thermal stress (Methods).
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Together, these data show that the rise of algae following chronic
nutrient enrichment and removal of consumer species disrupts
coral microbiomes, facilitates disease, increases tissue loss and
causes coral death.

Overfishing or nutrients induce seasonal coral mortality.
Surprisingly, coral mortality caused by simulated overfishing and
nutrient pollution was strongly seasonal. Although we observed
minimal coral bleaching, ~80% of coral mortality was concen-
trated in summer and fall (Fig. 3d), which include the warmest
months of the year. Yet this seasonal mortality occurred only when
herbivores were removed or nutrients increased, suggesting that
local stressors and temperature interact to kill corals. If seasonal
temperature variation and local stressors do interact to drive coral
mortality, we might expect years in which corals suffer greater sub-
bleaching thermal stress to correspond to greater coral mortality.

To put treatment outcomes in the context of seasonal
temperature variation and coral thermal stress, we calculated
raw sea-surface temperatures for our study site using both the
Pathfinder v5.2% and HYCOM Gulf of Mexico resources?
(Methods; Supplementary Fig. 10). From these we calculated
several standard derived measures of coral thermal stress*’. The
maximum monthly mean (MMM) is the average temperature of
the warmest month in long-term climate data for our site,
excluding the study period (that is, 1982-2009). In predictions of
coral bleaching, temperatures that exceed the MMM by >1°C
(hereafter MMM + 1°C) are considered ‘thermal stress™?’. The
level of thermal stress is then measured in degree heating weeks
(DHWSs), which accumulate weekly temperatures above the
MMM +1 within a 3-month timeframe (Methods). Because
the threshold for increased pathogenesis may be lower than that
for coral bleaching!®, we also calculated DHWs based on the
MMM (DHW-MMM) for reference, although the more standard
DHW-MMM + 1 °C was used in all calculations.

Although summertime temperatures during our experiment
exceeded the MMM +1°C, and positive DHW values
accumulated—indicating some thermal stress—in no cases did
these values rise to levels that would predict increased bleaching
risk (Supplementary Data 6). However, we did observe correla-
tions between sub-bleaching thermal stress and warm-season
coral mortality during 2009, 2010, 2011 and 2012, despite limited
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replication of seasons across years (that is, n=4). Across all
treatments, the extent of mortality in summer and fall was
positively correlated with the extent of sub-bleaching thermal
stress in DHWSs (r=10.960, P =0.03), an effect strengthened when
control corals were excluded (r=0.993, P=0.007).

Differences in microbiome stability between healthy and
unhealthy corals were exaggerated at temperatures above 30°C
(Fig. 3e), as was the displacement of likely beneficial Cyanobac-
teria by opportunistic Proteobacteria (Fig. 3f). Regressions using
local temperature data (Supplementary Fig. 10b) indicated that
both increasing abundance of Proteobacteria relative to Cyano-
bacteria and reduced microbial community evenness became
noticeable around the MMM (29.26°C) before becoming
pronounced around the MMM + 1°C (30.26 °C). This finding
suggests that the local MMM may be a critical temperature
threshold for the onset of bacterial opportunism.

Temperature variation explained differences in microbial
community structure over time better than other measured
seasonal parameters (Supplementary Notes). The accumulation of
thermal stress due to periods of above-average temperature also
appeared to influence microbial communities. Samples in which
sub-bleaching thermal stress had accumulated (that is,
DHWSs>0) showed increased B-diversity (permutational f-test
on weighted UniFrac distance matrices; P=0.001) relative to
samples from periods without thermal stress (DHWs=0).
Cumulative thermal stress also had small, but significant effects
on microbial communities after accounting for daily temperature
variation. As the difference in thermal stress between microbiome
samples increased, the weighted UniFrac distances between
microbial communities also increased (Mantel test, P=0.01
and r=0.176; Methods), even after accounting for the tempera-
ture on the day the sample was taken (partial Mantel test,
P=0.01 and r=0.17). These microbiological changes were
probably not due to confounding effects of coral bleaching, as
cumulative thermal stress stayed well below the four DHW
threshold for mass coral bleaching® (Supplementary Fig. 10a;
Supplementary Notes), and little visible bleaching was observed.

Nutrients alter the outcome of predation on corals. Coral
mortality patterns showed that nutrient pollution changes the
impact of important consumers on reefs. Parrotfishes preyed on
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Figure 4 | Effects of nutrient pollution and parrotfish predation on coral mortality and microbiology. (a) Mortality after predation on Porites corals in
control or nutrient pollution plots. P values reflect Fisher's exact test. (b) Effects of predation on the relative abundance of Proteobacteria and
Cyanobacteria in Porites corals in control or nutrient pollution plots. Parrotfish predation columns (in red) reflect samples taken after the first evidence of
parrotfish predation. Error bars in b reflect the 95% ClI of the ratio. P values are from non-parametric t-tests.
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63.4% of Porites corals in open plots, with a marginally higher
predation prevalence in nutrient-enriched plots (P =0.08;
Supplementary Data 5 sheet f). However, the ultimate outcome of
predation for coral health varied greatly under ambient versus
nutrient-enriched conditions. Under ambient conditions, the
impact of parrotfish predation was negligible, inducing tissue loss
in only 7% of bitten Porites and never inducing mortality.
However, in the presence of nutrient pollution, 92% of Porites
bitten by parrotfishes lost tissue and 62% eventually died (Fig. 4a).
Because other stressors increased potentially opportunistic
Proteobacteria compared with Cyanobacteria (primarily
Synechococcales), we compared the ratio of these bacterial phyla
in bitten corals. The combination of predation and nutrient
pollution, but not predation alone, increased the ratio of
Proteobacteria relative to Cyanobacteria (Fig. 4b).

Discussion

We demonstrate that overfishing and nutrient pollution alter
benthic communities, causing coral microbiome disruption, blooms
of opportunistic coral pathogens and long-term increases in coral
disease, tissue loss and mortality. This experimental framework,
which combines classical ecological field experiments with micro-
bial time series, allowed us to test key predictions of how coral reefs
respond to human impacts over ecologically important time scales
and with much greater microbiological detail than has previously
been possible in field experiments. The results changed our view of
how coral microbiomes respond to environmental stressors;
uncovered new interactions among corallivory, nutrient pollution
and bacterial opportunism; and quantified how local stressors
interact with seasonal temperature variation to impact coral
microbiomes and, ultimately, coral survivorship. Together, these
results show how altering important trophic interactions can
fundamentally reorganize coral reefs down to microbial scales, with
multiple negative consequences for reef health.

We predicted that simulated overfishing or nutrient pollution
would drive distinct benthic community changes and that these
benthic changes would additively increase coral mortality. More
specifically, we predicted that exclusion of herbivores would lead
to large increases in the abundance and diversity of macroalgae.
In contrast, nutrient pollution would only modestly increase
macroalgal cover and diversity, instead driving growth of
nutrient-limited but unpalatable members of the benthic
community such as Cyanobacteria. Similar to past work (for
example, refs 6-8), we show that herbivore removal rapidly leads
to over sixfold increases in algal abundance and threefold
increases in algal diversity, as well as intense coral-algal
competition. Many of the algal genera that increased, such as
Sargassum, Dictyota, Amphiroa and Turbinaria, cause coral tissue
loss or mortality via shading, abrasion and allelopathy>®3°.
Nutrient enrichment led to lower overall increases in algal
abundance, but facilitated growth of certain taxa such as
Cyanobacteria and filamentous turf algae, which can compete
intensely with corals!®. However, the consequences of these local
stressors for coral mortality deviated greatly from our prior
expectations. We expected herbivore removal and nutrient
pollution to have additive effects on corals, with their combined
effects causing much greater coral mortality than either
individually. Yet, while all treatments significantly increased
coral tissue loss and coral mortality above controls, levels of
mortality and tissue loss were similar under nutrient pollution,
herbivore removal or combined treatments. This pattern likely
resulted from different mechanisms of coral tissue loss and
mortality operating in the different treatments.

In the nutrient pollution treatment, we traced coral decline to
an unexpected interaction among corallivory, nutrient pollution,

bacterial opportunism and coral death. Parrotfishes are ke

herbivores on reefs, but also prey on corals as part of their diet*®.
This corallivory is relatively intense in the Florida Keys, USA
where populations of parrotfishes are robust*”. Here we found
that Porites corals bitten by parrotfish lost tissue and died at
much higher rates under nutrient-enriched conditions than in
ambient conditions. In fact, parrotfish corallivory caused no
mortality in ambient nutrient conditions. Microbial community
shifts towards Proteobacteria on the surface of bitten and
nutrient-enriched corals (but not bitten corals in ambient
nutrient  conditions) suggest that increased bacterial
opportunism following wounding may cause this increased
tissue loss and mortality. It is not clear whether the observed
increase in Proteobacteria is due to a proliferation of pathogens
vectored by parrotfish (as suggested for butterflyfishes®®) or
represents a more general nutrient-driven increase in
susceptibility to infection following wounding. In either case,
this unexpected observation is especially worrisome, as it shows
that nutrient pollution turns parrotfishes, which are normally
thought of as coral allies, into agents of mortality for some corals.
This finding is important given that nutrient pollution is a
problem on many reefs and that restoration of parrotfish
populations is an important goal as part of coral conservation
and management®!. Our data suggest that restoration of
parrotfishes without efforts to combat water quality issues could
have surprisingly negative consequences.

When herbivorous fishes were removed, coral-algal competi-
tion and disruption of the coral microbiome appeared to be the
main drivers of coral mortality. We showed that algal contact
increases coral microbiome richness, facilitates growth of many
conditionally rare taxa and increases overall microbiome
destabilization. This is broadly consistent with previous reports
of algal alteration of coral microbiomes through mechanisms
such as provision of algal neutral sugars*!, secondary effects of
alleotoxins on the coral microbiome?® and/or transfer of
microbes!®?3. In keeping with the prediction that local algal
competition will increase disease?”>> (for example, through
dissolved organic carbon?” or other mechanisms®®), we found
that the presence of algal competition corresponded to an
increased prevalence of DSS>? in Siderastrea corals. These algae-
induced changes to coral microbiology and disease prevalence
correlate with increased long-term coral tissue loss and mortality
in the field. Thus, our work shows that microbial interactions that
were predicted to be important drivers of coral mortality in
laboratory studies can be induced by overfishing and nutrient
pollution, with important and ecologically meaningful effects for
the long-term health of corals.

Our long-term results also provide strong contrasts with
existing models of coral microbiome dynamics. Qualitative and
quantitative models of the coral microbiome have generally
assumed that stress would shift coral microbiomes towards stable
states dominated by pathogens (for example, ref. 25). On this
basis, we predicted that coral-algal competition, nutrient
enrichment and/or above-average temperatures would shift coral
microbiomes to alternative stable states. While we did confirm the
general idea that multiple stressors increase the abundance of
fast-growing opportunists on the coral surface, our data do not
support a model in which overfishing and nutrient pollution,
ensuing algal competition, or seasonal temperature variation
drive coral microbiomes to specific alternative stable states.
Instead, we found that above-average temperatures or algal
contact destabilized the microbiome, shifting microbial commu-
nities from a stable to an unstable configuration. This finding
mirrors recent reports in disturbed human and primate
microbiomes*>3, suggesting an underexplored pattern that
may be common to many host-microbe systems.
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In other animal systems, increased microbiome variability
during stress is thought to reflect decreased ability of the host, or
its native microbiota, to regulate microbial community composi-
tion*2. Here we show that algal competition and periods of above-
average temperature intersect to influence, which bacteria
dominate coral microbiomes. Both of these factors promote
stochastic blooms of opportunistic bacteria that displace typically
dominant members of the coral surface mucus layer.
Microbiomes dominated by putatively opportunistic orders,
such as Vibrionales, Rhodobacterales, Flavobacterales and
Cytophagales were much less stable (as measured by increased
B-diversity of microbial communities) than those dominated by
Synechococcales. This is interesting because some coral
pathogens, such as Vibrio coralliilyticus have been shown to
suppress coral innate immune pathways®®. Immune suppression
may, in turn, affect the ability of a coral to regulate its
microbiome, increasing temporal and/or inter-colony variation
in microbiome composition.

Similarly, many reports have quantified the anti-microbial
properties of coral mucus'®, including the contribution of
antibiotic-producing Actinobacteria®*. Our long-term data set
suggests that Actinobacteria are important for suppressing
opportunists, as outbreaks of Proteobacteria opportunists were
more common when Actinobacteria were in low abundance on
the coral surface. In agreement with this model, corals exposed
to above-average temperature or algal contact showed
lower predicted abundances of microbial pathways involved in
antibiotic production. Algal contact also reduced the
abundance of Actinobacteria, suggesting that algal competition
following herbivore removal will lower the natural defenses

of corals against potential pathogens, including genera
such as Vibrio that are especially problematic at high
temperatures.

Finally, we find that local overfishing and nutrient pollution
interact with seasonal temperature variation to render corals
more vulnerable to blooms of harmful bacteria and increased
mortality during the warmest months. In contrast, mild,
sub-bleaching thermal stress during summer months did not
increase coral mortality under control conditions. Connections
between local stressors and temperature variation are often
discussed in the field in the context of climate change, and have
been incorporated into models of reef vulnerability or
resilience®>>°, as well as coral disease susceptibility'>. However,
experimental evidence connecting laboratory studies of microbial
dynamics to coral mortality in the field has been lacking. In our
data, bacterial opportunism increased at temperatures around the
local MMM, consistent with past predictions of a threshold at
which bacterial pathogenesis becomes especially problematic
based on laboratory studies'>. Also in agreement with previous
coral microbiome field studies'®, we observe blooms of Vibrio
during periods of above-average temperatures. Motility genes
were enriched in these microbiomes, supporting the idea that
chemotaxis towards thermally stressed corals, previously shown
in microfluidic experiments, may play an important role in coral
microbiome dynamics at above-average temperatures®*. We
extend these observations both by documenting how various
combinations of algal competition and temperature favour
different bacterial opportunists, and linking these blooms to
losses of protective symbionts such as Actinobacteria caused by
local stressors. Finally, our data connects microbiome
destabilization caused by these blooms to coral tissue loss in
the experiment overall, and especially in periods of high
temperature. Thus, multiple lines of evidence collected in this
study support an ecologically relevant role for coral microbiomes
in mediating coral mortality driven by the intersection of local
stressors and seasonal temperature variation.

8

Together, our results provide experimental data linking
prevailing models of how human impacts alter reef ecology’
with models of how coral microbiomes respond to algal
competition and temperature!>?>. They show that overfishing
and nutrient pollution increase the vulnerability of corals to
blooms of opportunistic microorganisms and that the impacts of
these local stressors are exacerbated by above-average
temperatures. Importantly, the coral species that suffered high
mortality rates in our experiments are now some of the most
abundant on Caribbean reefs®”>>8, Thus, some coral species that
have withstood the recent decline of more vulnerable relatives
may nonetheless be susceptible to increasing local stressors.
Clearly, sufficiently extreme thermal anomalies and mass
bleaching events will kill corals regardless of local factors.
However, our work suggests that conserving natural trophic
interactions by protecting herbivorous fishes and reducing
nutrient pollution may help stabilize coral microbiomes and
shield corals against temperature-driven bacterial opportunism
and mortality, at least in the near term!>.,

Methods

Experimental design. To simulate the effects of overfishing, nutrient loading or
the combination of these stressors, we conducted a 3-year field experiment. Four
pairs of 9-m? plots were established. One member of each of these pairs was
enriched with nitrogen and phosphorous, while the other remained at ambient
nutrient levels (Supplementary Fig. 1). These plots were >10 m from each other in
all cases. Each 9-m? plot was delineated into nine 1-m? subplots with metal nails
driven into the reef at the corners and centre of each plot. The locations of the plots
were selected such that initial variation in rugosity and algal cover within each
subplot was minimal. Within each plot, two randomly selected subplots were
enclosed with herbivore exclosures, while two other random subplots were selected
as exclosure controls. Exclosure controls were fitted with open-topped exclosures.
These controls allowed access by herbivorous fishes, but acted as controls for other
potential artifacts of the cages.

All exclosures were made of plastic-coated wire mesh with 2.5-cm diameter
holes. This diameter mesh generally excludes most fishes > 10 cm total length.
Smaller or juvenile herbivorous fishes are able to enter the exclosures, but these
smaller herbivores generally contribute little to overall grazing rates on reefs and
have minimal impacts on the algal communities®®. In addition, access by smaller
herbivores reflects patterns seen under intensive fishing, in which larger fish species
are preferentially harvested while leaving smaller size classes of fish®%6l. We
scrubbed both exclosures and exclosure controls every 4-6 weeks to remove fouling
organisms.

Nutrient pollution was simulated using slow-release fertilizer diffusers applied
to each nutrient enrichment plot. Each diffuser was a 15-cm diameter PVC tube,
perforated with six 1.5 cm holes. The open ends of the PVC tube were wrapped in
fine plastic mesh to keep fertilizer pellets inside, but allow diffusion of soluble
nutrients. A total of 175 g of Osmocote (19-6-12, N-P-K) slow-release fertilizer
was loaded into each diffuser. PVC enrichment tubes were attached to each metal
nail within the 9-m? enrichment plots for a total of 25 enrichment tubes per
enrichment plot. Nutrients were replaced every 30-40 days to ensure continued
delivery of N and P. Previous studies have shown Osmocote delivery using similar
methods to be an effective way of enriching water column nutrients in benthic
systems (for example, ref. 62).

Confirmation of the efficacy of nutrient enrichment. Nitrogen and phosphorus
levels were assessed in the water column above each enrichment and control plot as
in ref. 52. In July of 2009, 2010 and 2011, divers used 60-ml syringes to slowly draw
water from ~ 3 cm above the benthos in either control or enriched plots. Samples
were taken ~ 30 days after nutrient diffuser deployment to ensure that enrichment
occurred across the duration of diffuser deployment. Immediately after collection,
samples were filtered (GF/F) into acid-washed bottles, placed on ice, returned

to the laboratory and frozen until analysed. Dissolved inorganic nitrogen

(DIN = ammonium and nitrite 4 nitrate) and soluble reactive phosphorus
concentrations were determined via autoanalyser. We also assessed nutrient
enrichment efficiency by analysing tissue carbon:nitrogen (C:N) levels in the
common alga Dictyota menstrualis. The nutrient content of macroalgae such as
D. menstrualis reflects ambient nutrient conditions over longer time scales (that is,
weeks to months) than ambient water column nutrients (ref. 63 and references
therein). We collected D. menstrualis from both enriched and control treatments
during the same months as water samples. Tissues were dried at 60 °C, ground to a
powder and analysed for %C and %N content with a CHN Carlo-Erba elemental
analyzer (NA1500). Nutrient data from both water and algal tissue for each
replicate were averaged across summers for statistical analysis via analysis of
variance (ANOVA).
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Quantification of the herbivorous fish community. Periodically throughout the
study, we used 30 x 2m belt transects (n=38) to quantify the density of different
herbivorous fishes. Divers slowly swam the length of each transect counting
individuals of the different herbivorous fishes in the genera Sparisoma, Scarus,
Acanthurus and Kyphosus. Fishes were identified to species and their length

was estimated to the nearest centimetre. We used published length:weight
relationships®* to convert fish densities into herbivore biomass. We analysed these
data with one-factor ANOVA examining potential differences in herbivore biomass
over time.

Quantification of benthic cover. At least once every season (for example, spring,
summer, fall, winter at 12-14 week intervals), we visually quantified benthic cover
within four, 50 x 50 cm quadrats in each of the 1 m? treatment areas. These
quadrats were divided into 49 points, and benthic organisms under each point were
identified to species or genus. Algae that are challenging to identify taxonomically
under field conditions (for example, crustose coralline algae and filamentous algae)
were classified into algal functional groups. Filamentous algae were classified into
short algal turf (<0.5cm in height) or algal turf (>0.5cm in height) given that
taller, thicker algal turf can often be deleterious to coral health and growth!C.

Benthic cover was quantified in June 2009 1 week before treatments were
initiated to provide a baseline from which to assess changes in algal abundance and
community structure. No significant differences among treatments in algal
abundance could be detected at the beginning of the experiment (see initial time
points in Fig. 1a,b), as expected given random assignment of subplots to treatment
conditions. Further, during the summer of each year (2009-2012) when algal cover
was often at its highest, we also surveyed open areas of reef (areas that did not have
three-sided exclosure controls) within the 9-m? plots to assess whether the
exclosure controls had any effect on algal abundance or community composition.
We did not detect any differences in algal abundance or community composition
between the open unmanipulated areas and exclosure controls (Supplementary
Data 1).

Coral tissue growth or loss analyses. At the beginning of the experiment, we
mapped each coral colony in the experimental plots that were >2cm in diameter
and took close-up photographs of these corals in situ. Subsequently, we photo-
graphed each of these corals every ~ 16 weeks throughout the experiment for a
photographic record of changes in coral colony health. In each picture a ruler or
object of known size was placed next to the coral to provide scale. In total, we
tracked the fate of 226 individual corals spread across each of the treatments for
over 3 years. The most common corals were Porites porites (41.1 % of corals),
Agaricia spp. (17.7 % of corals), Siderastrea siderea (15.5 % of corals) and

P. astreoides (11.5 % of corals).

These corals allowed us to evaluate the impact of the different treatments on
coral growth or tissue loss across the time course of the experiment. We scored
growth or tissue loss on a 12-point scale, with bins corresponding to amounts

of tissue loss that could be readily observed in photographs (for example,
—2=10-25% tissue loss). We scored the tissue loss or gain of each coral over the
course of the experiment on the following scale: —6=100% tissue loss, —5=
75-90% loss, —4 =50-75% loss, —3=25-50% loss, —2=10-25% loss, — 1=
0-10% loss, 0 =0% loss/gain, 1 =0-10% gain, 2 =10-25% gain, 3 =25-50% gain,
4=150-75% gain, 5=75-90% gain and 6>100% gain. We then converted these
scores to mean loss/gain by averaging the range corresponding to that score. For
example, a coral with a — 3 score would be converted to a —37% tissue loss value.
Only nine corals grew >100% (score =6) over the course of the experiment. For
these corals, we estimated the growth for each coral at 100-500% at 50% intervals
(for example, 100, 150, 200% and so on). Statistical analyses were conducted based
on the raw tissue gain/loss scores, but converted to percentages in the presentation
for ease of interpretation. Further, at each time point we scored each coral for:
(1) algal competition as measured by direct contact with algal competitors (and the
identification of that algal competitor), (2) the presence of overlying sediment on
the coral, (3) predation scars from parrotfishes and invertebrate corallivores (only
the former were observed at appreciable levels), and (4) signs of bleaching or
disease. The primary coral disease observed was DSS (see ref. 52 for additional
discussion).

Statistical analysis of benthic cover and coral health. Algal cover was analysed
using mixed effects models to determine whether the response variable differed
among enrichment treatment, herbivore treatment and seasons, as well as whether
there was an enrichment x herbivore x season interaction (Supplementary Data 1
sheet ¢). The nested, split-plot design of the experiment was incorporated into the
model by nesting replicates of the exclosures and exclosure controls within ambient
or nutrient-enriched plots. We analysed cover for important species or functional
groups, as well as for overall upright algal cover, which is a proxy for the com-
petitive environment of corals. Upright algal cover included all macroalgae and tall
filamentous turf, but excluded crustose coralline algae and short filamentous turf as
these two functional groups are relatively benign for corals!’. In addition, we
assessed how herbivore exclusion, nutrient pollution and season impacted algal
community structure via PCoA of Bray-Curtis divergences, as well as
permutational MANOVA (PERMANOVA).

Per cent coral mortality per treatment and coral tissue loss were analysed using
similar mixed models to algal cover. For growth measures, corals were nested
within ambient or enriched plots, but we did not incorporate season as we only
analysed change in tissue for corals at the end of the experiment. We calculated
tissue loss statistics either excluding or including corals that suffered total colony
mortality. Corals that died suffered total colony morality and therefore 100% loss
of live tissue area. Including these corals in coral growth analyses resulted in
non-normal distributions that could not be corrected via transformations.
Therefore, we analysed coral growth both excluding the corals that died, which
satisfied normality requirements for the analyses, and including the corals that
died. Both analyses produced relatively consistent results (Supplementary Data 5),
with the exception that only the interaction of herbivory x nutrient loading was
significant in Porites corals (rather than each factor also being individually
significant) when total colony mortality was excluded. We used a y>-test to
determine if coral mortality was higher or lower than expected across different
seasons given the null hypothesis that coral mortality would be distributed evenly
across seasons (25% of total mortality per season).

To assess the impact of algal competition and parrotfish predation on coral
mortality for Porites spp., (the corals with the highest mortality rates), we used
Fisher’s exact test to test for differences in the proportion alive versus dead corals
across enrichment and/or herbivore exclusion treatments. We also used Fisher’s
exact tests to determine how factors such as competition with different types of
algae (that is, corals with or without algal contact) led to loss/gain of coral tissue or
coral death/survival.

Mixed effects models were run using the ‘nlme’ package and post hoc
comparisons conducted using the ‘multcomp’ package in R v3.0.0. Fisher’s exact
tests on contingency tables were run using JMP software (SAS). PCoA of
Bray-Curtis divergences and PERMANOVA of benthic community data were
conducted in QIIME 1.8.

Field sampling of coral mucus for microbial analysis. Coral mucus microbial
communities were studied in depth for three coral genera common to the study
region and most abundant within the plots: Siderastrea (Siderastrea siderea only),
Porites and Agaricia. We used 16S rRNA gene surveys to study the microbial
changes in the coral mucus across the course of treatment, focusing especially on
whether detectable microbial changes accompanied specific routes to mortality or
tissue loss in corals. (For metadata and sequencing statistics, see Supplementary
Data 2; for OTU table in BIOM format, see Supplementary Data 7). We focused on
mucus communities because these are thought to provide a barrier against invasion
by opportunistic pathogens, and can be sampled non-destructively from the same
individuals over time. We deemed other methods, such as collecting live coral
tissue, too harmful and invasive to the coral for our goal of monitoring the coral
microbiome over the long term.

Coral-associated bacteria and archaea were collected using sterile syringe
removal of the coral surface mucus layer on SCUBA. A sterile syringe was used to
first agitate the coral and then remove 10 ml of mucus using negative pressure.
Once on the surface, the sample was placed in a sterile 15ml conical tube, frozen
on dry ice for the return trip and kept frozen until processing. At a number of time
points, 15 ml water sample controls were collected from >1m above the reef and
treated identically to mucus samples in downstream processing. In this study, we
did not attempt to evaluate changes in Symbiodinium abundance or taxonomy, as it
has not yet been established that mucosal abundances of Symbiodinium types
reflect abundances within tissues, and destructive tissue sampling would preclude
time-series analysis of the same coral colonies.

Quantification of sub-bleaching thermal stress. We calculated cumulative
thermal stress using the DHW metric of National oceanic and atmospheric
administration (NOAA’s) Coral Reef Watch?’. These calculations rely on a
climatological baseline for the mean temperature of the warmest month known as
the MMM. We calculated the MMM for our site using the NOAA Pathfinder v5.2
data set, the US official climate data record for sea-surface temperature*’, and
found that the MMM for our site was 29.26 °C (Supplementary Data 6). Data used
spanned 1982-2008, and excluded study dates. Temperatures that exceed the
MMM by +1°C are generally regarded as constituting thermal stress*’. We
calculated an MMM + 1 °C threshold of 30.26 °C for our site. Temperatures above
the 30.26 °C threshold for accumulation of DHWs at our site only occurred during
the warm seasons (3 months centred on the warmest month, August).

DHWs represent the extent to which temperatures exceeded the MMM + 1°C
in a given season. Temperatures were above 30.26 °C for 7 weeks (total) during all
sampling years, resulting in the accumulation of <1 DHW during each of the
study years (Supplementary Fig. 10a). In predictions of coral bleaching,
accumulation of four DHW s is often associated with minor to moderate
bleaching®. We saw little bleaching within experimental plots, consistent with
sub-bleaching levels of thermal stress. Sub-bleaching thermal stress may
nonetheless negatively affect reef health if it increases the abundance and/or
virulence of bacterial pathogens. For example, one recent model'® proposes that
bacterial pathogens may become problematic for corals at temperatures, exceeding
the MMM (a lower threshold than the MMM + 1 °C threshold used in coral
bleaching studies). We therefore related our microbiological data to both the
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MMM + 1°C for coral thermal stress during coral bleaching, and the MMM
threshold proposed for bacterial pathogens (Supplementary Fig. 10b).

Coral mucus microbiome sample processing and sequencing. In the laboratory,
coral mucus samples were thawed, centrifuged and supernatant decanted. DNA
was purified using an organic extraction as previously described?. After DNA
extraction, microbial 16S amplicon libraries were generated using the primers 515F
and 806R, both with added 454 sequencing adaptors and with Golay barcodes
added to the reverse primer. Triplicate 25 pl reactions were conducted using the
GoTagq Flexi system from Promega (Madison, WI, USA) with the following
conditions per reaction: 1 x clear buffer, 1 mM dNTPs, 5mM MgCl, 1 pM of each
primer, 1u Taq polymerase and 1l of extracted DNA template. Thermocycling
was conducted as follows: 1 cycle of 94 °C for 3 min; 35 cycles of 94°C for 455,
50°C for 60s and 72 °C for 90s; and 1 cycle of 72 °C for 10 min. Amplification
success was checked on a 1.5% agarose gel, and successful triplicate reactions were
pooled and cleaned using AMPure magnetic beads from Agencourt. Before
sequencing, libraries were quantified using a Qubit dsDNA HS kit from Invitrogen
and then pooled into equimolar ratios. The pooled library was checked for
amplicon length and purity on an Agilent Bioanalyzer 2100 and then sequenced on
a 454 Roche pyrosequencer (GSJunior platform) at the Oregon State University’s
Center for Genome Research and Biocomputing Core Laboratories.

Microbial community data quality control. The QIIME (v.1.8) software
pipeline® was used for quality control, selection of operational taxonomic units
and analyses of community diversity (Supplementary Data 2). Sequence libraries
were demultiplexed, and sequences with quality scores less than a mean of 35 were
removed. Error-correcting barcodes were used to detect and recover sequences
whose barcode sequence had exactly one sequencing error. Barcode sequences with
two or more errors were removed. Sequences were clustered into operational
taxonomic units (OTUs), at a 97% 16S rRNA gene identity threshold using
USEARCH 6.1.544, and the subsampled open-reference OTU-picking protocol in
QIIME v.1.8 (ref. 65, using greengenes 13_8 as the reference®®. This OTU-picking
protocol clusters all reads, but assigns reference ids to OTUs in greengenes, which
can be useful in comparisons across studies. Chimeric sequences were removed
with UCHIME. OTUs represented in the overall analysis by only a single count
(singletons) account for a large proportion of noisy reads. Because our emphasis
was overall community trends (rather than exploration of the rare biosphere of
corals), singleton sequences were removed. Representative sequences for each OTU
were classified taxonomically according to the greengenes taxonomy version 13_8%
using the Ribosomal Database Project (RDP) Classifier software v. 2.2. Sequence
alignment and phylogenetic inference for the representative sequence of these OTU
is described below in the context of B-diversity analysis.

We took additional steps to account for aspects of the data set unique to
host-associated samples. Because coral mucus can contain some amounts of
sloughed tissue, we tested whether coral mitochondria were present in any mucus
samples. Similarly, because Symbiodinium and other photosynthetic microbial
eukaryotes frequently inhabit coral mucus, chloroplast sequences are frequently
observed in microbial diversity surveys of corals. As our interest was primarily in
cellular bacteria and archaea rather than organelles, coral mitochondrial sequences
and 16S sequences classified as chloroplasts with at least 70% confidence by the
RDP classifier were removed before analysis.

Because we observed that many mitochondrial sequences were not efficiently
identified by RDP, we also removed sequences with very high (1 —e ~°°) sequence
similarity and at least 90% sequence similarity to a reference coral mitochondrial
sequence. A table of the coral mitochondrial sequences used is available as
Supplementary Data 2 sheet b. These thresholds were selected with care to avoid
indiscriminate removal of o-proteobacteria sharing evolutionary ancestry and 16S
rRNA gene sequence similarity with mitochondria. The e-value for mitochondrial
removal was selected by testing several e-values (1 —e 10,1 —e =301 —¢~%0 and
1— e~ 109 For each e-value the best BLAST (Basic Local Alignment Search Tool)
similarity against NCBI’s nr database was examined. We selected the highest (most
lenient) e-value that removed mitochondria, but not related bacteria. Ata 1 —e ~>°
BLAST e-value threshold, the best BLAST hit of all removed 16S rRNA sequences
was coral mitochondria, and this threshold was therefore selected for the screen.
The final OTU table after quality control (QC) used for our analysis described in
this manuscript can be found in Supplementary Data 7.

Analysis of microbial p-diversity. Microbial community B-diversity was
calculated based on the weighted UniFrac distance matrix®”. This is a phylogenetic
measure of community similarity that takes into account organismal abundance
and phylogeny®’. Phylogenetic trees used to calculate this metric were constructed
in QIIME 1.8 (ref. 65) through alignment of representative sequences of each OTU
with PyNAST against the greengenes core set alignment®®, and approximate
maximum likelihood phylogenetic inference with FastTree. We considered

the pool of distances between samples within each metadata category of interest
(for example, algal competition or categories of temperature) using QIIME’s
make_distance_boxplots.py. Significance was assessed by non-parametric -tests,
each with 1,000 Monte Carlo permutations (permutation is important in this
instance to account for the non-independence of distances). The effect of this
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procedure is to ask whether different factors increase the dispersion of
communities. PCoA plots of B-diversity were visualized in the Emperor software.
‘When multiple categories (for example, different algal types) were tested for effects
on B-diversity, the false discovery rate (FDR) for multiple comparisons was
controlled at a threshold of q=0.05 using the Bejamini-Hochberg method.

Comparison of microbial and environmental distance matrices. Mantel tests
test for correlation between two distance matrices. For example, a matrix of
geographic distances for sample sites might be tested for correlation against a
matrix of genetic distances. The partial Mantel test is an extension that tests for
correlation between two distance matrices after accounting for the effects of a third,
confounding, distance matrix. We used permutational Mantel tests to test whether
between-sample variation in continuous environmental factors such as thermal
stress, temperature or algal cover correlated with differences in the weighted
UniFrac distance matrix®” between coral microbial communities. When data on
hypothesized confounding factor was available, we used partial Mantel tests to test
significance after accounting for the confounding parameter. For example, seasonal
variation in algal cover might potentially confound the effects of temperature on
microbial communities- partial Mantel tests were used to test for such effects. All
Mantel and partial Mantel tests were performed in QIIME 1.8 (ref. 65) using the
script compare_distance_matrices.py

Analysis of microbial community richness and evenness. Microbial community
richness, evenness and B-diversity were calculated in QIIME v.1.8. Richness and
evenness were calculated using the chaol and equitability statistics, respectively, in
QIIME’s alpha_diversity.py, collate_alpha.py and compare_alpha.ph scripts. In
each case, the data were repeatedly (10 x ) rarified to 500 reads per sample. Values
for chaol and equitability were calculated for each rarified table, and averaged into
a single value and compared across categories. Significance of results was assessed
by FDR-corrected non-parametric ¢-tests with 1000 Monte Carlo permutations,
using ¢ <0.05 as the significance threshold.

Equitability was calculated as defined in the QIIME software package.
Specifically, the Shannon entropy (using a base 2 logarithm) was divided by the
base 2 logarithm of the number of observed OTUs. Thus, for a sample with »n
OTUs considered in turn (n;, 1y, 13, ..., n;), the equitability/evenness was
calculated as:

sMH(GLAG)
log, n

The effects of treatment, temperature, coral genus and individual coral head on
richness and evenness were analysed using linear models in R (3.1.1). Seawater
temperatures were binned into low temperature’, ‘moderate temperature’ and
‘high temperature’ categories, with thresholds at <24 °C for ‘low temperature’
and >30°C for ‘high temperature’. The high temperature threshold represents
the MMM from the NOAA Pathfinder v5.2 SST data set*® (see above).

The specific form of these linear models in the R language was:
Im(alpha_diversity ~ treatment * seawater_ temperature_category * coral_genus +
individual_coral_head). The significance of each effect was compared with ANOVA
(Supplementary Data 3 sheet f).

Random forest analysis. Random forest analysis is a machine-learning method
for supervised classification. We used random forest analysis (Supplementary Data
3 sheets i-j) to (i) determine the conditions under which Synechococcales would be
displaced as the most abundant order in the coral microbiome, and (ii) generate a
model predicting whether specific coral colonies would lose tissue using ecological
(for example, long-term contact with algae from photo series) and microbiological
data (the abundance of different bacterial orders).

For both analyses, random forest was conducted in QIIME v.1.8 with the script
supervised_learning.py. In both models, the random forest was constructed with
1,000 decision trees and validated by 10-fold cross-validation. This analysis resulted
in an overall prediction accuracy, a per-category prediction accuracy and a ranking
of feature importance, defined as the amount of accuracy gained or lost when a
specific feature was not included in the model. It is worth noting that we employed
random forest analysis primarily to provide a summary of the overall predictive
power of the data; the internal complexity of the algorithm does not allow
inferences to be made about the relationships between variables, beyond their
empirical influence on accuracy. For mechanistic insight we rely on other analyses
presented here.

In the first model, we sought to predict the dominant (most abundant) order of
bacteria in samples given only non-microbial data about the coral colony from
which the sample was taken at that point in time. A total of 127 features were used
in the prediction including: herbivore exclusion, nutrient addition, coral species
(species were converted to binary variables), per cent cover of different macroalgae,
turf algae and cyanobacterial mats from quadrat surveys, singly and grouped by
functional type (for example, total macroalgae), plot and subplot number, measures
of instantaneous and weekly average temperatures and salinities, season (quarter),
and the simultaneous presence of parrotfish bites and nutrient enrichment. Given
these features, we asked the model to predict the dominant order of microorganism
in each DNA sample, with our main purpose being to determine whether the
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conditions under which Synechococcus was dominant were predictable. No
microbiological data were included in the input feature table, so all predictions
about the microbiology were based on externally observable features.

In the second model, we sought to test whether data about the competitive
environment and microbial community composition of specific coral colonies
could predict whether they would lose tissue over the 3-year study period. This
model included features representing herbivore exclusion, nutrient pollution and
coral genus; long-term competition with any algae or (as separate features) with
turf algae, visible Cyanobacteria mats, Dictyota, Sargassum or Halimeda; the
presence of bleaching, DSS or signs of parrotfish predation; the initial diameter of
the coral colony in centimeters; and microbiological data (averaged across all
samples from each individual) on the abundance of the phyla Proteobacteria,
Cyanobacteria, Bacteroidetes, Firmicutes, Acidobacteria and Actionobacteria
overall, and six specific microbial orders of interest due to their prominence in this
data set and/or the literature!341:44 (Synechococchales, Vibrionales,
Rhodobacterales, Alteromonadales, Rickettsiales, Rhodospirallales and
Pseudomonadales).

Predicting coral microbiome function. To predict potential functional
consequences of observed changes in microbial taxonomy across treatments,
functional profiles for each microbial sample were predicted using the PICRUSt
tool*”. This tool uses hidden state prediction, a form of evolutionary modelling
closely related to ancestral state reconstruction, to put bounds on genomic copy
numbers of each gene family in uncultivated environmental microorganisms, using
their position in a reference bacterial phylogeny relative to all bacteria or archaea
with sequenced genomes**®%, These per genome estimates are then combined,
taking into account 16S rRNA copy number variation, to estimate a functional
profile (or ‘virtual metagenome’) for a microbial community based on the
information available in all sequenced genomes. The resulting metagenomes have
been used in recent analyses of human and environmental microbiomes, and have
in at least one study been shown to correlate with overall metabolite profiles
(reviewed in ref. 68). The accuracy of the method depends on several factors?®8,
but the availability of reasonably related reference genomes is generally the most
important. Availability of such genomes can be summarized through a Nearest
Sequenced Taxon Index (NSTI) score. This score is the average branch length
between each member of the community (OTU) and its closest sequenced relative,
weighted by abundance. In these data, NSTI scores ranged from 0.03 to 0.18, with a
mean of 0.11. This was within the range of soil and mammal microbiomes that
have previously been predicted with reasonable accuracy (as assessed using paired
16S rRNA/shotgun metagenomes from the same samples)*’,

We used PICRUS to predict functional profiles for all 16S rRNA samples, and
summarized these profiles of predicted gene family abundance into Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways and functional categories.
We then tested whether functional changes in coral microbiomes correlated with
either temperature increase, extremes of temperature or the abundance of upright
algal cover within a subplot (Supplementary Fig. 5a,b). To test the effects of
extremes of temperature (either hot or cold) on coral microbiomes, the imputed
abundance of KEGG functional categories (level 3) across samples was regressed
against the squared deviation of temperature from 28 °C, which is the average
temperature across samples, and also approximates the annual average temperature
at the study site over 32 years (calculated from NOAA Pathfinder v5.24). The
effects of upright algal cover or increasing temperature were tested by Spearman
regression against KEGG functional category abundance. The FDR across KEGG
categories was controlled in all cases at g<0.05.

Comparing PICRUSt results with previous experiments. To compare whether
the functional categories predicted to change in this field study were broadly
consistent with previous laboratory experiments, we compared PICRUSt data with
a previous study that exposed corals to several stressors in aquaria and sequenced
their metagenomes. KEGG pathways correlated with extremes of temperature
(squared deviation from 28 °C, see ‘Predicting coral microbiome function’, above)
in this study were compared with KEGG categories that increased or decreased in a
previous experiment, in which Thurber et al.?%, exposed the Pacific coral Porites
compressa to thermal stress. Metagenomes from that study?* were annotated with
KEGG pathways in MG-RAST using default parameters (BLAST e-value <1077,
60% coverage and 15% alignable). We compared the 25 categories that increased by
>1% with temperature stress to the present study.

Macroalgal contact as a driver of microbial p-diversity. We sought to test
whether the increase in B-diversity with macroalgal contact that we saw in this data
set is a common pattern in coral-algal competition. We reanalysed data from a
previously published experiment!® that studied the effects of macroalgal contact on
coral microbiomes of P. astreoides (Supplementary Fig. 7c). In that study,
macroalgae were placed in direct contact with P. astreoides corals, and the
microbial communities of the macroalgae, corals without algal competitors and
corals with algal competitors assessed using terminal restriction fragment length
polymorphism!®. We translated the table of terminal restriction fragments from
this study into a QIIME-compatible .biom format OTU table, and tested whether
B-diversity (measured by Bray—Curtis divergence in terminal restriction fragment

profiles) was greater in corals exposed to macroalgae than control corals or control
algae using analyses described above (see Analysis of Microbial B-diversity).

Data availability. Processed microbial data are available as Supplementary Data 7
(OTU tables in BIOM format). Metadata for coral microbiome samples are
available as Supplementary Data 2 sheets c,d, respectively. Short-read amplicon
sequence data (as fasta and qual files) are deposited in the QIITA database, as study
id: 10482. Other relevant data are available from the authors.
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