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1. INTRODUCTION

The efficient solution of many technical problems leading to initial-value problems
for ordinary differential equations (typical examples are stiff problems) by multistep
difference methods calls not only for high asymptotic accuracy but also for satisfying
other requirements. One of such requirements is Dahlquist’s A-stability which has
often proved very reasonable. It is well-known, however, that in the class of basic
methods for the numerical solution of initial-value problems (linear multistep
methods, Runge-Kutta methods), A-stable methods of order higher than 2 do not
exist (Dahlquist []963]). This to a great extent negative result made us to seek a larger
class of methods that would include A-stable methods of arbitrarily high order. Since
it is also well-known that A-stable linear multistep methods are necessarily implicit
(cf. again Dahlquist [1963]), the implicit character of our methods will be emphasized
in such a way that instead of computing the approximate solution at one point from
the (known) approximate solutions at / preceding points (as it is in the case of linear
I-step methods) we shall compute the approximate solutions at k successive points
simultaneously from some (generaly nonlinear) system of equations, supposing that
the solution is known at [ successive points. For this reason our methods will be called
overimplicit methods.

In the paper, necessary and sufficient conditions for the convergence of over-
implicit methods are given and the existence of A4-stable methods of arbitrarily high
order is studied.

2. OVERIMPLICIT MULTISTEP METHODS

In this section we define a general overimplicit multistep method. For the sake of
simplicity, we shall treat only one differential equation of the first order

(2.1) Y =f(x,y) in <a, by
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(a, b being finite numbers) with the initial condition
(2.2) y(a) =1.

Let us note, however, that all what follows is true also for systems of ordinary dif-
ferential equations. The right-hand term of the given differential equation is assumed
to be defined, continuous and satisfying the Lipschitz condition with respect to y
(with a constant Lindependent of x) inthestripa < x £ b, —0 < y < o0 so that
the solution of the problem (2.1), (2.2) exists and is unique in the whole interval
{a, by. The approximate solution will be sought at the points x; = a + ih, i =
=0, 1,... (or at some of them), where h > 0 is the mesh-size, and will be denoted
by y;. One step of the method under consideration consists — as it was already
mentioned — in computing the values y,41, --.» Yn4r Of the approximate solution at
the POINtS X415 -evs Xpiy (ASSUMING Yy_141s ..., ¥ t0 be known) simultaneously
from the system

(2~3) Voot | F B Voerwr | = hC| fosr ) + hD Y £ 144

Yn+i Y Juri Ju

where f; = f(x;, y;), Cis a square matrix of order k and B, D are k x I matrices.

The fact that the function f(x, y) satisfies the Lipschitz condition guarantees the
existence and the uniqueness of the solution of (2.3) for any sufficiently small 4 so
that one step of our method is well-defined. In order to describe the whole method it
is necessary, moreover, to indicate how to continue in the following step, i.e., how to
choose I new initial values. The method will be practicable obviously only in the case
when the new initial values will be chosen fom the values y,_;.,, ..., Vo4 Because
this may be done in different ways, specify the new initial values as y, ;4145 ---
..ws Yu+s Where sis an integer, 1 < s £ k. Hence our method is characterized not only
by the matrices B, C, D but also by the parameter s. Let us note that if s < k it is
necessary to forget the values y,4s1 15 - -+ Ynsr just computed and to recompute them
in the following step. To simplify the notation, we shall always denote the value of the
approximate solution at the point x; by only one symbol y; even though this value
need not be the same in different phases of the computation. This licence cannot
cause any misunderstanding.

3. CONVERGENCE OF OVERIMPLICIT METHODS

Before formulating the main result of this section it is necessary to introduce some
concepts and notations.

Definition 3.1. The metod (2.3) given by the matrices B = {b;;}, C = {¢;},
D = {d;;} and a parameter s is said to be of order p (P positive integer) if the
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following k(p + 1) conditions are satisfied:

! 1 k !
(3.1) 1+ 2 by=0, i — 2 bl —J) =.Zlcff + 2 dy
J= J= J=

ji=1
1 k 1
P (=1 Y by~ ) = [ Y e T+ ()T (- )
j=1 j=1 j=1
v=2,..,p; i=1,..,k.

Definition 3.2. The method (2.3) is said to be consistent if it is of order at least one.

Let us draw the reader’s attention to the fact that both the consistence and the
order of the method are local properties of the method, i.e., they depend only on
the matrices B, C, D and do not depend on the parameter s.

Definition 3.3. Let y € C' and put
(3.2) W +8) T+ B[yx— (- )] - hC[y(x+h |-
y(x + kh) _y(;c) y'(; + kh)
— hD —y’(a‘c — (I =1 h)| = L(y(x); h).
| v(x)
The vector L(y(x); k) with components L{y(x); h) is called the local error of the
method.

The conditions (3.1) express that the local error of the method (2.3) is of order h?*1.
More precisely, we have

Lemma 3.1. Let the method (2.3) of order p be given; let y(x) € C**({a, b)) and
let Y = max [y"*"(x)|. Then there exists a constant K (depending only on the
matrices B, C, D) such that

- (33) IL{y(x); )| < KYhr*1
fori=1,...,kand for any x € (a, b) for which L(y(x); h) has sense.

Proof follows directly from Taylor’s formula.

Since we are dealing with the muitistep method it can be expected that the con-
vergence will not be guaranteed by the single assumption that the local error is small
but that some other conditions similar to Dahlquist’s stability conditions will have
to be fulfilled (cf., for example, Henrici [1962]). In order to be able to formulate them
let us introduce some further notation. ,
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Let the method (2.3) be given and let firstly I < 5. Define the matrix R by the
equation

(3'4) R = [ol,s~b ’h ol,k—s]

where O, , is m x n null matrix') and I, is the unit matrix of order I. Further, define
the matrix E by the equation

(3.5) E= —RB.
Secondly, let I > s and define the matrx S by

(36) S = [, 0,0.].

Further, let

(3.7) i= [l ~ 1],2)

construct the matrix

(3'8) B = [ok,(i+1)s—l> B]
and divide the matrix $B{") into i + 1 square blocks in such a way that
(3.9) SBY = [B,,...,B]].

Finally, construct the matrix

(3.10) E = T os,s ’s os,s ° os,s
g .. 65’,3

o,, ..... o,,1,

e —B,

After introducing the matrix E we are able to define the stability of the overimplicit
method (2.3).

1) If some index of the matrix O, is zero then O, , does not occur in (3.4) at all.
2) The symbol [a] denotes the integral part of the number a.
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Definition 3.4. The overimplicit method (2.3) is said to be stable if there exists
a constant I" such that forn =0, 1, ...

(3.11) e < r¥)

where E is defined for 1 < s by (3.5) and for | > s by (3.10).

Remark 3.1. The condition (3.11) can be expressed alternatively in such a way
that the spectral radius of E is less than or equal to 1 and that only linear elementary
divisors correspond to eigenvalues of magnitude 1.

Let us note that only the matrix B and the parameter s are concerned in Definition
3.4.

Now we can formulate the basic theorems concerning the convergence of over-
implicit methods.

Theorem 3.1. A stable and consistent overimplicit method is convergent.*)

Before proving this theorem, we remind a useful lemma omitting its easy proof (cf.,
for examnple, Babugka, Prager, Vitasek [1966]).

Lemma 3.2. Let ¢(v), ¥(v), x(v) be defined for v =0,...,n and let x(v) = 0 for
v =0,..., n Further, let

(3.12) o(v) = ¥(v) +v2:x(u) o) for v=0,..,n.
Then

(3.13) o(v) £ Y(v) +:§:x(,u) l/l(p)s:lil(l + x(s)) for v=0,..,n.

Proof of Theorem 3.1. Let e; = y; — y(x;). Then we have for n = rs + [ — 1,
r =0, 1, ... according to (3.2)

. (3-14) en+1" + Bje,—ys1 | = hC f(xn+1s J’n+1) “f(ansJ’(an)) +
e, +k_j €n f(xn +k yn+k) - f(xn+k: y(xn+k))
+ hD f()_cn~!+1, .Vn-l+1) - f(xn»-zns y(xn—l+1)) - L(J/(xn); h)

f(;cm yn) - f(xn! y(xn))

3) Here one can take an arbitrary norm of the matrix as a linear mapping; for the definiteness
let us consider the spectral norm.

4) The convergence is understood in the usual sense, cf., for example, Henrici [1962).
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or

(3-15) €| +Ble,iiy =hC¢,(l'21 Cnt1 +th§,(.l—)z+1 Cn—1+1 —L(J’(xn)§h)

€hik €n Cntk €n
where
(3.16) P =149, 0....0
0 Tt
D
0 .... 04,1
with

f(xr’ yr) f(x” y(X')) fOI" €, #* 0
3.17 ;= ’

0 for e,=0 or for r<0
so that
(3.18) lo.] = L

where L is the Lipschitz constant of the right-haﬁd term of the given differential
equation.

Our first task now is to find a bound of the norm of the vector L. The solution y(x)
of (2.1) and (2.2) has in {a, b) continuous derivative so that we can define the
function
(3.19) w(e) = sup [y'(x) — y'(x*)]

L x“-’ecza b>

and it holds

(3.20) lim w(e) = 0.

=0

Obviously, there exist constants 95,1]), 6$2), 65 and 6(*) smaller than orequal to 1 in the
absolute value such that

Y%as) = ¥(x) + jhy(x,) + jh65) w(jh)
Yn-a-jy) = ¥(xa) = (L= ) hy'(x) ~ (1 = j) hOZ) (1 = j) h),
Y(*ar) = V(x) + 65} o(jh),

Y ($a-a-p) = V() + 055 (1 = j) )
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and, consequently, by (3.2) we have
1
L{y(); B) = (1 + 3 by) y(xa) +
=
1 k 1 ,
+ h[i — > - )by — Yy~ Zdij])’(xn) +
i=1 j=1 i=t
1
+ ih0") w(ih) — hzl(l — )62 o((l = J) ) by; —
=
k !
= 1Y 03 o(jh) ey = hZ 0nF (1 = 7) B) dy
=1 =

Owing to the consistency, the coefficients at y(x,) and y'(x,) vanish. Thus there exists
a constant M (depending only on the given method) such that
(3.21) |L(y(x.); h)| = Mho(h max (k, 1 — 1))

fori=1,..,kandn=1-1,...
Further, let for any integer r

(3~22) e = (e(r~1)s+b cen e(r—l)s+l+k—1)T

equating the components with negative indices, if any, to zeros. Analogously, let for
r=1,2,...

(3-23) t, = ("'L1(Y(x(r-1)s+z—1)§ h)7 cees _Lk(y(x(r—l)s+l—1); h))T

In further considerations two cases must be already distinguished: I < sand | > s.
Let firstly I < s. Let us define the vector e{® in this case by the equation

(3.24) e® = Re,

where R is the matrix defined by (3.4). Using this notation, it is possible to rewrite
(3.15) in the form

C(325) ey + Bel” = hCO®®, e,,, + DBDED 1 t,,, . r=0,1,...

Since the matrix | — hkCBY), | is obviously regular for

(3.26) h<hy<——

it follows immediately from (3,25) that

(327)  eprr = = (I = hCBY, )~1 Be® + k(1 ~ hCa®, )~! DOVe® +
+ (1 — hCBW, )t e,
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for h £ hy and r = 0, 1, ... Hence the error in a given step depends, as it can be
expected, only on the component e{® of the error in the preceding step. Therefore,
we shall be interested only in the behaviour of this component. From (3.27) we

obtain
(3.28) 2, = —R(l — hCPY, )~! Be» +
+ hR(I — hCBE, )~ DOPe® + R(I — hCBY, )1 ¢,
or
(3.29) e, + RBe® = R(I — (I — hC®®, )™!) Be® +
+ hR(I — hCO®, )~* DPPe® + Rl — hCBY, )" 1t,.,, r=0,1,.

With the help of (3.5), the last equation can be rewritten in the form
(3.30) e =Ee +v,, r=0,1,...

where

(331) v, =R[(I — (I — hC®L, )" ") B + h(l — hCPE, )~ DBV e +
+ R(l — h€®, )1 ¢,

Now realizing that the inequalities

e - Y
e E G B

are obviously true for any matrix V with [V] < 1 and using (3.21) we conclude from
(3.31) for h < hy that

0+ =

(3.32) Iv.] = hofle®] + Mhpes(h max (k, I — 1))
where

_leilel + o], ,_ _ 1
(3.33) 1 - hL|C| b P=iz hL|c|’

From (3.30) it follows

r—1
(334 6] = Ee + T E1,, r=0,1,..
v=0
Since the method under consideration is stable, we get from (3,34)
r—1
le?ll < rec”] + T X [v.] .
v=0
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or, using (3.32),
r—1

(335) || s T||e?| + ha Y. |e?] + rIMhpew(h max (k, | — 1)).
v=0

Further, using this inequality and Lemma 3.2, we get

(3.36) €] = Ille] + rIMhBew(h max (k, | — 1)) +

+ Fhariz[l’“egz)n + v['MhBow(h max (k, I — 1))] (1 + Tha)y =17
or, after an elementary modification
(337)  [e?] < I[(1 + Thay |e] + TMpa(h max (k, I 1))(”_”?_?_1

Finally, with respect to obvious inequalities

(1 + Tha) — 1

(1 + Thay < ™",
I'a

é rhel‘arh ,
we have from (3.37)
(3.38) €] = re™"|e| + I'Mprhe’™"o(h max (k, I — 1)).

Choosing now the initial conditions so that |lef”] — 0 for h — 0 and using (3.20)
and (3.27), we get from (3.38) the assertion of our theorem in the case | < .

Consider now the case I > s. Let us define in this case the vector e{") by
(3.39) ) = Se,
where the matrix § is defined by (3.6). Now (3.15) can be rewritten in the form
(3.40) e, + BO[e®] = hCd®, e, + MDDV [ ] + ¢,y
for r = 0, 1, ..., where i is defined by (3.7), B is the matrix (3.8) and

(3‘41) (D¢“))(l) = [ok( rs-b DQ)(') :

Since it is obviously
+1
(D@i?)(l) = Dﬂ@“'_. )f)>s+z

where
(342) DM = [ok,(,'*l)s’l’ D]

407



it is possible to rewrite (3.40) in the form

1 k Dli+1 1
(343) ey + BV e = hCB( e, + hDWBLED FeD] + ¢,
e® ey

or, for h satisfying (3.26),

(s.44) o1 = — (1 — hCO®,) " BO o] +
o
+ H(I ~ HOBE, )™ DOBEID, | [ol] + (1 — HCBD, ) b1,
o

r=0,1,...

The error depends therefore only on the component e of the vector e and so we

shall study only the behaviour of this component as we did in the preceding case.
From (3.44) we have

(3.45) e = —S(I — hCd®, )~ BV [ ] +
i
+ hS(I — hC®®, )~ DOBLED | [elD] + S(I — €Y, )71 ¢,
i
or
(3.46) el); + SBW [eD ] = S[I — (I — hCp®, )"'] B® [eV] +
+ hS(I - th&EB{l)‘l D(l)‘pgi—*—i}-)i))su e-(—1~)i + S(l - hC@f_?,rl)“l tige
e:il)
Using now (3.9), we can write
(3.47) e +Boel, + ...+ BeV=v,, r=0,1,...
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where
(3.48) v, =S[I - (I — hCB{, )~ '] BY [e™M]] +
i
+ hS(f — h€CDW, )" DDBLDD L [eD]] + S(1 — hCd®, )71 ¢,y .

e

If we put
(3.49) 7,=|eP ], w =10
§ 0
e Viti
forv = —i, —i + 1,..., we can rewrite (3.48) in the form
(3.50) Nor = En, +w,, v=—i —i+1,..
where E is defined by (3.10), or
(3.51) n, =E%Viy_, + Vil E'tw,, v=—i —i+1,..
n=-i,

Using the conditions of stability, we have from (3.51)

(2 I = Tl + 7S .
It is obviously
(3.53) [w,|| £ holln,] + MhBw(h max (k, I — 1))

. where « and § are defined by (3.33). Hence we get from (3.52) after the same ar-
rangement as in the case I < s the inequality

(354)  |m| S TP g + TMB(v + i) he™ P w(h max (k, 1 — 1)).

Using now the obvious inequality ||e{]| < ||| we get immediately the assertion of
our theorem even in the case I > s. The proof of Theorem 3.1 is complete.

Remark 3.2. Using the standard procedure consisting in the investigation of

special differential equations it can be proved that the conditions of Theorem 3.1 are
also necessary.
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Theorem 3.2. Let a stable overimplicit method of order p = 1 be given. Let the
solution of the problem (2.1), (2.2) have continuous derivatives up to order p + 1.
Finally, let the initial conditions by which the approximate solution is determined
be given with the accuracy of order O(h?). Then the discretization error is also of
order O(hP).

Proof. The proof of this theorem is a trivial modification of that of Theorem 3.1
with the use of Lemma 3.1.

4. A-STABILITY OF OVERIMPLICIT METHODS

The main goal of this section is to prove that there exist A-stable methods of
arbitrarily high order in the class of overimplicit multistep methods. First of all, let
us remind the definition of Dahlquist’s A-stability (Dahlquist [1936]).

Definition 4.1. Let « be a complex constant with negative real part. A numerical
method for solving initial-value problems for ordinary differential equations is
said to be A-stable if any solution of the difference equation which arises by aplying
the given method to the differential equation y' = oy converges to zero for n — 0.

In order to facilitate our task, we will seek A-stable methods of arbitrarily high
orders in the subset of the class of overimplicit methods for which I = 1 and B =
= (—1, ..., =1)T (which are consequently stable) and which are of order at least k.
Thus, in what follows we shall deal only with the formulae of the form

(4'1) Yor1 | = | Vn + hc fn+1 + hfnd
Yn+k Yn fn+k

where C is a square matrix of order k and d is a k-dimensional vector. Moreover,
C and d are such that

(4.2) yx+h) | =]yx)|+hrC|y(x+h) |+ hy(x)d+ OH**1)

y(x + kh) y(x) y'(x + kh)
holds for any sufficiently smooth function y(x) and for some p = k. Since these
formulae do not need any starting procedures and since they are of order at least k

we shall call them selfstarting overimplicit almost optimal methods.
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We show first of all that the above class is not empty. If we recall the basic idea of
the multistep methods of Adams type we are led naturally to the subset of the class
of selfstarting methods of the form

(4.3) y,,+l<——y,,———J~ P(x)dx, i=1,...,k

Xn
where P(x) is the interpolating polynomial of degree k which has the values f, ., at
the points x,;, i = 0, ..., k. These methods will be called the selfstarting methods
of Adams type. They can be obviously rewritten in the form

k
(44) Ynti = V0 = h.zo'yijf(xn+j’ yn+j) > i= 17 LS k
j=

where

(4.5) yis = J 1,(1) dt

V]
and lj(t) is the elementary Lagrange interpolating polynomial for the points ¢t =
=0,...,k, i.e., the polynomial of degree k which has the value 0 at the points
t=0,...,k, t & jand the value 1 at the point ¢t = j. It is obvious that a selfstarting
formula of Adams type is even of order k + 1.

Selfstarting overimplicit almost optimal methods are defined as methods of the
form (4.1) whose order is at least k. Let us examine the conditions on € and d which
guarantee that the corresponding method will be of order k. If we substitute | = 1
and b;y = ~1,dy =d, (d = (dy, ..., d;)") into (3.1) we get

k
(4.6) Seytdi=i, i=1,..k,
j=1

If we introduce the notation

(4.7) e=[17, M=l 0... 0
: 0. e

: oo

1 0 0 k

we can rewrite (4.6) in the form

(4.8) Ce+d = Me
2CMe = M?e

KCM*~le — Mte .
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Thus, the equations (4.8) are necessary and sufficient conditions for the formula (4.1)
to express a selfstarting overimplicit almost optimal method.

Now, let us examine the A-stability of the formula (4.1). If we use this formula for
solving the differential equation y’ = «y, where « is a (complex) constant, we get

(4.9) (1 = z€) [ ypuy | = yae + zd)
yn+k

where

(4.10) z = oh.

Since only the value y, ., where s is an integer, 1 < s < k, is used as the initial value
in the following step of the method we are actually interested only in the values y,
r = 0,1, ... By Cramer’s rule we obtain immediately

P(z)
4,11 1) = =2 Vrss =0,1,...
(4.11) Ye+1) () Y r
where
(4.12) Q(z) = det (I — zC)

and P(z) is the determinant of the matrix which arises from the matrix I — zC by
replacing its s-th column by the vector e + zd. Hence we can formulate

Theorem 4.1. The necessary and sufficient condition for the A-stability of the
formula (4.1) is that

Py z)

(4.13) ()

for any z with Re z < 0.

Proof. The statement is obvious and it follows immediately from Definition 4.1
and from (4.11).

We can see that the A-stability of the given selfstarting overjﬁ]p]i.cit almost optimal
method depends on the behaviour of the polynomials P(z), Q(z) and, consequently,
in order to attain our main aim it will be substantial to be able to construct a self-
starting overimplicit almost optimal method with det (I — zC) equal to any given
polynomial. Thus, the following theorem will be of basic importance in the further
investigation.
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Theorem 4.2. To every polynomial Q(z) with the coefficient 1 at z° there exists
one and only one selfstarting overimplicit almost optimal method, for which (4.12)
holds.?)

Proof. First of all let us study the structure of the class of selfstarting overimplicit
almost optimal methods in more detail. Let us note that if such a method is given and
if a vector t is defined by

(4.14) t = 1 MFtle — CMFe,
k+1

then the corresponding matrix € and the vector d satisfy
(4.15) Me =vCMle, v=2,..,k,

Mt le = (k + 1) CMre + (k + 1)t
and

(4.16) d = Me — Ce.

Conversely, let an arbitrary vector t be given. Let us define the matrix C by (4.15)‘
This is possible because the system (4.15) can be rewritten in the form

(4.17) MYV = CMV(I + M) + [0,...,0,(k + 1) t]
where V is the Vandermonde matrix for numbers 1, 2, ..., k, i.e.,
o B

o s s

and the matrix MV(I + M) is therefore regular. Further, let us define the vector d
by (4.16). Then the matrix C and the vector d define obviously a selfstarting over-
implicit almost optimal method. Thus, we have found that there exists a one-to-one
correspondence between the class of selfstarting overimplicit almost optimal methods
and the k-dimensional vector space.

%) The words “‘one and only one” refer here to the matrix € and the vector d from (4.1).
Because an overimplicit method is given not only by € and d but also by the parameter s, there
exist in fact exactly £ methods having the property of Theorem 4.2 and differing only by the value
of the parameter s.
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Further, let be given a selfstarting overimplicit almost optimal method again and
let

(4.19) _i a;z' = det (I — zC).

k

Then the polynomial Y a,_;A’ is obviously the characteristic polynomial of the
i=0

matrix € and by Cayley-Hamilton theorem one has

M

(4.20) ak—ici =0

0

i

and, consequently, after multiplying by Me,

(4.21) a,_,C'Me = 0,
)

k
i=

From (4.8), since C satisfies (4.8), we have

(4.22) CMe = — 1 Mitte, i=0,.. k—1
@i+ 1)
Using (4.22) we can rewrite (4.21) in the form
(4.23) ia L mirte—= Ly
' o TN+ 1) k!

where t is defined by (4.14). It is easy to verify that (4.23) can be rewritten in the
form

(4.24) MYN | % | = 1 t — ——/—L—— Mitie
: k! (k + 1)
ay

where ¥ is defined by (4.18) and N is given by

(425) N = —l 0 e 0 .
1.
0 - .
. . 0
0 .O ’i
I
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Since the matrix MVN is obviously regular we can verify conversely that ay, ..., a3
solving (4.24) (with a given t) and a, = 1 satisfy

k
(4.26) Y ajz' = det (I — zC)
o

where C is the matrix of the selfstarting overimplicit almost optimal method given
by t.
Now the proof of Theorem 4.2 is already easy. To a given polynomial Q(z) =
k
= Y a;z' with ay = 1, it is sufficient to compute the vector t by (4.23) and then with
i=0
this ¢ to compute € from (4.17) and d from (4.16). The above argument guarantees
that € and d obtained in this way will give the required selfstarting overimplicit
almost optimal method.

Remark 4.1. Let us note that for the selfstarting method of Adams type the vector t
defined by (4.14) is the null vector because the method is of order k + 1.

If the selfstarting overimplicit almost optimal method is given by a polynomial Q(z)
in the sense of Theorem 4.2 it will be useful in what follows to express the coefficients
of the polynomials P(z) from (4.11) by the coefficients of Q(z). This is the contents
of the following theorem.

k
Theorem 4.3. Let a polynomial Q(z) = Y. a;z° with ay = 1 be given. Then for the
=0
polynomials P(z) defined by (4.11) it holds

(4.26) Py(z) =)f (i Sj_i. .ai) 2, s=1,...,k.

Proof. By Cramer’s rule, the vector (V4 1, .-, Vasx)' defined by (4.9) satisfies
(4.27) Q=) [yaer | = ya [ Pi(2) |-
.;'n—Hc P k(z)
However, y,+; is the approximate solution of the differential equation y’ = ay by

the overimplicit method of order k and, consequently, for any solution y(x) of this
differential equation

(4.28) 0(z) y(x + h) | - y(x) I?l(z) = O(h**1).
y(x + kh) P,(2)
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In particular, for ¢ = 1
(4.29) Q(h) e — P(h) = O(W**Y), s=1,...,k.

Comparing the coefficients at the same powers of h on the left- and the right-hand
sides of (4.29) we obtain (4.26) immediately.

Since by means of Theorem 4.2 we are able to construct a self-starting overimplicit
almost optimal method such that the polynomial Q(z) given by (4.12) is an arbitrary
polynomial given in advance, the further course of our study will be to choose this
polynomial to have some convenient properties. The choice of this polynomial will
be closely connected with the Padé approximation of the exponential function.

Thus, let

(4.30) R(z) =i§0riz"
where
(4.31) - (2k — i) k!

itk — i) (2k)

Then R(z)/R(—z) is the Padé approximation of €7, i.e., it holds

(4.32) ef = k%%)z—) + 0(22"“) for z—0

cf., for example, Varga [1962]). From (4.32) it can be easily obtained

i (i
(4.33) (=0 h:rj’ j=0,..k,
<o (j — i)!

—1)'r,
i=o (j — i)!

i

E

=0, j=k+1,...2%.

The following lemmas will be useful in the proof of the basic statement of this
section.

Lemma 4.1. All the zeros of the polynomial R(z) given by (4.36) and (4.31) have
negative real parts (cf. Birkhoff, Varga [1965]).

Proof. To prove this lemma the so-called Routh criterion will be used. We shall
formulate it for our purpose in this way (cf. Gantmacher [1966]):
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k
Routh criterion. Let a polynomial S(z) = Y s;z' with real coefficients be given.

i=0
Let us define the polynomials S,(z) and Sy(z) by

[k/2]

(4.34) Sue) = %, (=1 50272,

[(k—1)/2]

Siz) = ¥ (1) smpjad T
j=0

Further, let us suppose that there exist nonzero polynomials S;(z), ...

with decreasing degrees and numbers o;, i = 1, ..., k such that

(4.35) Siz) = 0z Siifz) = Sivalz), i=1,..,k—1,
Sk(z) = oz Sk+1(z).

s Sk+ I(Z)

Finally, let all o;, i = 1, ..., k have the same signs. Then all the zeros of the poly-

nomial S(z) have negative real parts.

In the proof of our lemma we shall investigate the polynomial

(4.36) S(z) = (3") ‘R (2)

instead of R(z) so that s; = (k + j)!/(j! (k — j)!). We shall show that ;s and the

polynomials Sz} from the Routh criterion are given by
(4.37) a;=22i—1), i=1,..,k
and

(4.38)
Wemir2l 0k — ) (j+i— 1) (k—j—i+ 1)

Si(z) = —1y AT AT kS L
$ j;o (=) (B—Dr @ +2i—2)jl1(k—2j—i+ 1) :
respectively. Indeed, Si(z) = @z Sy4(z) and for i < k
(4.39) @,z Si41(2) — Siua(z) =
[(k—i)/2] ! — i — i)
_ (—1)/ ( ) (j + l) (k Jj— i) 2(2i — 1) FF2mivt
%o (k —j)' (2 + 20t jt (k — 2j — i)t
_[(kuiw‘l)lzl ) ( 2j)' (+i+ ])' (k—Jj—i— 1) Zk—2j-i-1
=0 (k=0 (2 +2i+ 21k —2j—i-1)
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Substituting j — 1 for j into the second sum in (4.39) we get

! .
(4.40) 0,2 S;41(2) — Sisa(2) = (2—:} (215' 2(2i — 1) =i+t +
[(k~-i)/2] (2/6 21) (] 4 l)’ (k -—j- i)'

+ 3 (=

(k——])' (2 + 2i)1(j — 1! (k—zj-—l)"

(A1) 202k =24+ )\ agein
j k—2j—i+1

where ¢ is equal to zero for k — i even and equal to (—1)*~#*1/2for k — i odd. But
now it is already easy to see that the right-hand term of (4.40) is exactly Sy(z).

Lemma 4.2. Let U(z) be a polynomial with real coefficients and of degree at least
one. Further, let all the zeros of U(z) have positive real parts. Then

(4.41) lﬂ(:i) <1

U(z)

for any complex z such that Re z < 0.

Proof. The statement is obvious when one realizes that |(z + z,)/(z — £,)| < 1
for Re z; > 0 and Re z < 0 and that U(z) has real coefficients.
Now we have all ready for the proof of the basic theorem of this section.

Theorem 4.4. In the class of overimplicit methods there exist A-stable methods of
arbitrarily high orders.

Proof. Let be given an integer k, k = 1, and an integer s, 1 < s < k. Let

(4.42) 0(z) = R(—sz) = Z (=) ris'z’

where R(z) is defined by (4.30). By Theorem 4.2 construct for this polynomial Q(z)
the corresponding selfstarting overimplicit almost optimal method, which is con-
sequently of order k. We shall prove that with s given above this method is A-stable.
To show this let us compute the corresponding polynomial Py(z) (cf. (4.11)). By
Theorem 4.3 and by (4.33), the coefficients p; of Py(z) satisfy

_¢ 9 dr =gy (D
Y T R ) ot

for j =0, ..., k and, consequently,
(4.44) Py(z) = R(sz) = Q(—z).
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However, (4.44), Lemmas 4.1 and 4.2 and Theorem 4.1 imply our statement im-
mediately. Theorem 4.4 is proved.

It can be seen from the proof of Theorem 4.4 that the selfstarting overimplicit
almost optimal method constructed gives in the case of linear differential equation
with constant coefficients the Padé approximation of the corresponding exponential
function with the numerator and denominator of degree k and thus a much more
accurate approximation of this function than it was guaranteed apriori by the cor-
responding method. On the other hand, the selfstarting methods of Adams type are
of order k + 1 and therefore they are optimal in the class of selfstarting overimplicit
methods from the point of view of asymptotic accuracy. From this reason it is natural
to be interested in their A-stability, too. We shall study this problem only in the case
s =k

Theorem 4.5, In order that a selfstarting method of Adams type with s = k may
be A-stable, it is necessary and sufficient for all roots of the polynomial Q(z) =
= det (I — zC) where C = {y;;} and v;; are defined by (4.5) to have positive real
parts.

Proof. Let Q(z) = Z 92" (go = 1) and let Py(z) = Zp,z be the polynomials

from (4 11) Then w1th respect to Theorem 4.1 and Lemma 4.2 it is obviously suf-
ficient to prove only that Py(z) = Q(—z), or

(4.45) pp=(~1gq;, j=0,..k

where

(4.46) =}

as it follows from Theorem 4.3. Hence p, = 1 and (4.45) is true for j = 0. From
Theorem 4.2 and Remark 4.1 we can see that C is uniquely determined by the choice

t = 0. The coefficients g4, ..., g, are, consequently, determined uniquely by the
system
ES phtL
4.47 q = = , v=1..,k
(447) z"’(+1)v (k + 1)!

(cf. the proof of Theorem 4.2). Therefore, if we prove that

i1 k41

(4.48) j;o(—l)k‘f Pi—j (j + 1) - (k + 1)

for v =1,..., k where p; are defined by (4.46), the validity of (4.45) will be proved
evenforj = 1, ..., k since the matrix of the system (4.47) is regular. In order to prove
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(4.48) let us investigate the sum

(@89) (=1 ey = 3y I

ES k peri=i FR RS

G+ = (k+1—=)1é=o(j —i)
_ Y kj_l k+1-7 _
LzOq JZI( ) — )'(k + 1 __])1 -

k1+t—kvk+1-1

Y (-

=:qu-— » (j+i——k)!(k+1“’j)!=

i=0

kjvi+1-—j

K i
= Z q’c—iz(—l)ﬂ‘kni e 1 N
i=0 j=0

Jii+ 1 =)

= (=1 12 e G- ,) Z( 1)i*+1- ,(i—; l)kfv”l-i:

_ k-1 L g NI+ D _ pit1l
O T R

It follows from (4.47) that the last term is equal to zero for v = 1, ..., k. From this
statement and with regard to p, = 1 we obtain (4.48), Theorem 4.5 is proved.

Theorem 4.5 enables us to determine whether a particular method of Adams type
is A-stable or not. It has been shown by direct computation that the Adams methods
up to k = 8 are A-stable, for k = 9, 10 they are not A-stable, but we have not yet
the general result for general k.

Finally, we should like to mention that the problems presented above are far from
exhausting all aspects of the overimplicit methods. Many problems remain open, for
example, the properties of the overimplicit methods whose local errors in different
lines are different, the above mentioned general discussion of A-stability of Adams-
type methods etc. It is also clear that the overimplicit methods will prove very useful
in the construction of numerical methods for solving partial differential equations of
parabolic type which are of arbitrarily high order of accuracy with respect to time
mesh-size. As a matter of fact, when solving a parabolic equation by transforming it
to a system of ordinary differential equations (discretizating only the space variables)
the resulting system of ordinary differential equations is the stiffer the finer is the space
mesh (cf. Taufer [1972]).
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Souhrn
SILNE IMPLICITNI MNOHOKROKOVE METODY

MiLAN PRAGER, JIRI TAUFER, EMIL VITASEK

Clanek se zabyva numerickym FeSenim oby&ejnych diferencialnich rovnic pomoci
nové tfidy metod nazvanych siln€ implicitni mnohokrokové metody. Zakladni
mySlenka téchto metod spodiva v tom, Ze ze znamych hodnot feSeni v [ bodech se
podle predpisu (2.3) vypotitava k hodnot novych najednou. Asi polovina prace je
vénovana podrobnému studiu konvergence téchto silné implicitnich metod.

Zbyvajici Cast prace je vénovana studiu A-stability zavedenych metod (viz definice
4.1). V této &asti je ukazano, Ze ve tiidg silng implicitnich mnohokrokovych metod
existuji A-stabilni metody libovolng& vysokého ¥adu. Tim je vlastng ukdzéna vhodnost
pouZiti této nové t¥idy pro feSeni diferencidlnich rovnic se silnym tlumenim a moznost
aplikaci na rovnice parabolického typu.
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