
73

Overlapping communication and computation

with OpenMP and MPI

Timothy H. Kaisera and Scott B. Badenb

aUniversity of California, San Diego, San Diego

Supercomputer Center, MC 0505, 9500 Gilman Drive,

La Jolla, CA 92093-0505, USA

Tel.: +1 858 534 5157; Fax: +1 858 534 5117;

E-mail: tkaiser@sdsc.edu
bComputer Science and Engineering Department,

University of California, San Diego, 9500 Gilman

Drive, Mail Stop 0114, La Jolla, CA 92093-0114, USA

Tel.: +1 858 534 8861; Fax: +1 858 534 7029;

E-mail: baden@cs.ucsd.edu

Machines comprised of a distributed collection of shared

memory or SMP nodes are becoming common for parallel

computing. OpenMP can be combined with MPI on many

such machines. Motivations for combing OpenMP and MPI

are discussed. While OpenMP is typically used for exploit-

ing loop-level parallelism it can also be used to enable coarse

grain parallelism, potentially leading to less overhead. We

show how coarse grain OpenMP parallelism can also be used

to facilitate overlapping MPI communication and computa-

tion for stencil-based grid programs such as a program per-

forming Gauss-Seidel iteration with red-black ordering. Spa-

tial subdivision or domain decomposition is used to assign a

portion of the grid to each thread. One thread is assigned a

null calculation region so it was free to perform communica-

tion.

Example calculations were run on an IBM SP using both

the Kuck & Associates and IBM compilers.

Keywords: MPI, OpenMP, hybrid programming, clusters,

parallel programming

1. Introduction

This paper discusses combining MPI and OpenMP

on collections or clusters of shared memory processor

or SMPs. For this class of machine, individual nodes

are connected together with some type of network while

the processors within a node share memory.

Many new large machines fall into the clusters of

shared memory nodes classification. The machine used

for this study was the IBM SP at the San Diego Su-

percomputer Center know as Blue Horizon. It contains

1,152 processors in 144 nodes. Each one of the nodes

contains 8 processors that share memory. The nodes

are connected with an IBM proprietary network. The

machine supports a hybrid programming model with

the use of OpenMP among processors within a node

and MPI for passing messages between nodes. The SP

is an instance from its class of machines. Other ma-

chines will have different network, processor, operating

system, and compiler characteristics. The specific re-

sults given in this paper comparing run times from var-

ious tests might not apply to other machines. Most of

the motivations and techniques discussed for combing

OpenMP and MPI can be used on other machines.

We are interested in studying using OpenMP to facil-

itate overlapping communication and computation in

hybrid programming for stencil-based grid programs.

Several tests leading to this goal were performed using

a simple 3 dimensional stencil-based program, RB3d.

RB3d does Gauss-Seidel iteration with red-black order-

ing. It uses a combination of C++ and Fortran, with a

Fortran kernel. The grid is distributed across the nodes

of the machine, with MPI used for communication.

Various experiments were performed, changing the

way OpenMP was applied to the program. OpenMP

was first applied at the lower loop-level, within the

Fortran kernel. For the next test, the directives were

moved to a higher level within the program, outside of

the kernel. The OpenMP is moved to a routine that calls

the Fortran kernel. For this case there is a second level

of domain decomposition. The OpenMP threads are

assigned regions of this second level decomposition.

Moving OpenMP to a higher level facilitates over-

lapping communication and computation in hybrid pro-

gramming. One of the OpenMP threads is assigned a

small or null region in the second level of domain de-

composition. This thread is then freed to perform the

MPI communication. For programs with the appropri-

ate computation to communication ratio this improves

performance.

Scientific Programming 9 (2001) 73–81

ISSN 1058-9244 / $8.00  2001, IOS Press. All rights reserved

74 T.H. Kaiser and S.B. Baden / Overlapping communication and computation with OpenMP and MPI

2. Background references

MPI and OpenMP are discussed in many texts.

Pacheco [15] and Gropp [7], Lusk and Skjellum dis-

cuss MPI. Chandra [4], Menon, Dagum, Kohr, May-

dan, and McDonald discuss OpenMP. The standards for

the two systems are available from the OpenMP Archi-

tecture Review Board [13] at http://www.openmp.org

and the Message Passing Interface Forum [14] at

http://www.mpi-forum.org.

One of our motivations for studying hybrid program-

ming is for its potential application to the KeLP (Kernel

Lattice Parallelism) framework. KeLP is a class library,

developed primarily by Scott Baden and Steve Fink at

UCSD [1,2,6], for the implementation of portable ap-

plications in distributed computing. KeLP is based on

the concept of regions. Users who write applications

using KeLP supply subroutines to perform calculations

on regions containing sections of a data grid. KeLP

handles communication for regions on different pro-

cessors. KeLP researchers are looking for ways to ex-

ploit multi tiered machines, and are interested in us-

ing threads for various region calculations. The KeLP

framework may also benefit from overlapping commu-

nication and computation with OpenMP and MPI.

Hirsch [8] discusses Gauss-Seidel iteration with red-

black ordering. Kumar [10] , Grama, Gupta, and

Karypis also discuss a parallel implementation of the

algorithm.

Regular grid stencil-based program are important in

many areas of computational physics such as fluid dy-

namics, heat transfer, and electrodynamics. See LeV-

eque [11] for a discussion of the numerical solution of

conservation laws on regular grids. The solution of Eu-

ler’s hydrodynamics equation is discussed by Toro [16].

Leveque [12] also shows that regular grid routines can

be used as the basis for adaptive grid methods with

his Conservation Law Package, CLAWPACK. Balls [3]

discusses an innovative method of solving Poisson’s

equations in parallel, using KeLP.

3. Additional motivation for combining OpenMP

and MPI

The primary motivations for adopting most new

programming paradigms are increased capability, ef-

ficiency, and ease of programming. Adding MPI to

OpenMP programs allows users to run on larger col-

lections of processors. Pure shared memory machines

are limited in numbers of processors. Adding message

passing can increase the number of processors that are

available for a job. Adding OpenMP to MPI programs

can also increase efficiency, and for some systems in-

crease capability.

There can be multiple reads and writes of data to

memory when data is sent using an MPI library. In the

extreme, data might be copied from the sending array,

to a temporary buffer, to the network, to a buffer on the

other end, and finally to the receiving array. Even if

shared memory is used to pass messages, the data must

be copied from the send buffer to the receive buffer.

With OpenMP, there is no implicit copying of data.

This can lead to greater efficiency.

At the time the tests described in this paper were

performed, there were additional limitations on Blue

Horizon that encouraged the use of OpenMP along with

MPI. While the machine has 8 processors per node the

communications hardware only supported 4 MPI tasks

per node when using the best communications protocol.

To get access to all 8 processors, users were required

to use some type of threads package such as OpenMP

or Pthreads.

The implementation of MPI available on the SP, has

another limitation. The memory required by each MPI

task suffers from P 2 scaling, where P is the total num-

ber of MPI tasks in a job. This can be a problem for

large jobs because MPI can use significant amounts of

memory and there is little left for users. Accessing P
processors using N threads and P/N MPI tasks cuts the

memory required by N 2.

4. Combining OpenMP and MPI

The method for combining OpenMP and MPI is

clearly program specific. This paper concentrates on

an important class of problems, stencil-based or grid

programs.

The grid program model is discussed below, fol-

lowed by a description of the typical way to parallelize

stencil-based grid applications on distributed memory

machines. Then, two methods for creating hybrid pro-

grams by adding OpenMP are presented. The first uses

loop-level OpenMP and the second uses OpenMP at a

higher level to do coarse grain parallelism.

Data for stencil-based applications is stored in a 2

or 3 dimensional array or grid. Each iteration or time

step of the calculation the grid values are updated. The

values for a cell at iteration N+1 are a function of some

set of the surrounding cells. Some example problems

include a Jacobi iteration solution of Stommel’s equa-

T.H. Kaiser and S.B. Baden / Overlapping communication and computation with OpenMP and MPI 75

tion, or the solution of Euler’s hydrodynamics equation

as discussed by Toro [16].
Domain decomposition is often employed to solve

these problems on distributed memory parallel ma-
chines. A portion of the grid is allocated on each pro-
cessor and each processor is responsible for updating

its portion of the grid. Processors do not have access to
values from the entire grid. The information required
to update a particular cell might be on a different pro-

cessor. The required information is sent to/from the
various processors using MPI messages.

Consider a simple two dimensional case with a total
grid of interest of 100 × 100 and using two proces-
sors. Processor one could perform the calculation for

the portion of the grid with indices 100 × (1-50) and
processor two could perform the calculation for 100 ×
(51-100). If the values for a calculation are a function

of the 4 surrounding cells, then processor one requires
information from the cells 1-100 × (51). These val-

ues are sent from processor two. The values are stored
in cells called ghost cells. One simple way to handle
ghost cells is to actually allocate the grid bigger than

the region for which the calculation is being performed.
The extra storage is used for ghost cells. So in this case,

processor one would allocate its grid of size 100 × (1-
51) but only calculate for the region 100 × (1-50) and
the region 100× (51) contains ghost cells. Information

about additional complexities of parallel grid program
can be found in many references including Kaiser [9].

4.1. OpenMP loop level parallelism

Stencil-based grid programs often update values us-

ing one or more nested loops. A simple example is a
Jacobi iteration with a five point stencil and a source
term. Consider the subroutine do jacobi.

subroutine do jacobi(.)
. . .
. . .
do j=j1,j2

do i=i1,i2

new psi(I,j)= a1*psi(i+1,j)
+ a2*psi(i-1,j) + &

a3*psi(i,j+1) + a4*psi(i,j-1) - &

a5*force(i,j)
enddo

enddo

. . .

. . .

Here we have old grid values stored in the array

psi. These psi values are being used to calculate new

grid values placed in new psi. To “OpenMP” the code

section, a parallel do directive is added.

!$OMP PARALLEL

!$OMP DO SCHEDULE (STATIC)

private(i)

firstprivate(a1,a2,a3,a4,a5)

do j=j1,j2

do i=i1,i2

new psi(I,j)= a1*psi(i+1,j)

+ a2*psi(i-1,j) + &

a3*psi(i,j+1) + a4*psi(i,j-1) - &

a5*force(i,j)

enddo

enddo

Pseudo code for a kernel of a Jacobi iteration pro-

gram in MPI and OpenMP would be

do k=1,num iterations

call MPI transfer routine(. . .)

call do jacobi(. . .)

psi=new psi

enddo

MPI transfer routine passes ghost cells between

nodes and do jacobi contains the OpenMP directives

as shown above.

The algorithm given above has two distinct phases.

There is a communication phase followed by a compu-

tation phase. All processors must wait for the commu-

nication to complete before they perform any computa-

tion. This is true even though some of the computation

is not dependent on the communication.

Stencil-based grid programs suffer from a problem:

single stepping through the grid using the straight for-

ward nested loops there is very little data reuse. Data

is used once or twice and then it is flushed from cache.

This leads to slower performance. It is possible to do

cache blocking but doing so often destroys the clean

nature of the code that is exploited by a programmer

using OpenMP directives. When doing cache block-

ing there are additional loop levels and application of

OpenMP directives becomes more problematic.

4.2. Higher level coarse grain OpenMP parallelism

Consider the algorithm discussed above. For some

cells, the data for the stencil calculation is dependent

on communication and for some it is independent of

communication. A natural thought is to break the

grid into communication dependent and independent

regions. With this done, an algorithm can be written to

76 T.H. Kaiser and S.B. Baden / Overlapping communication and computation with OpenMP and MPI

allow overlap of communication and computation. For

this algorithm, you first start communication of data for

the dependent regions. Calculation is done on the inde-

pendent regions while communication continues. Af-

ter communication completes, calculation can proceed

for the dependent regions.

We can further decompose the regions into a collec-

tion of smaller regions. Threads can be assigned to
blocks of data using OpenMP. This concept leads to the

OpenMP directives being placed at a higher level in the

program as shown below.

This is of interest to the KeLP developers because

this concept fits well with the KeLP model, with a

collection of regions assigned to a node and regions are

assigned to threads. It also allows the exploration of

overlapping communication and computation without
rewriting the KeLP framework.

There are other advantages to moving the OpenMP

directives up to a higher level in the program. For some

problems moving the OpenMP directives to a higher

level allows a looser level of synchronization, with a

reduction of loop level synchronization cost. Also,

programmers are freer to do additional optimizations

at loop level, such as cache blocking that are difficult if

OpenMP is applied to loops.
We define an abstract data type “region” that holds

indices for a portion of the grid and an “empty” flag.

For each MPI task we break the calculation grid into

two sets of regions. The number of regions in each of

the sets is equal to the number of threads. If we wish

to overlap computation and communication one of the

regions in the first set is empty. The thread that has an

empty region handles communication. The second set
of regions contains portions of the grid that are affected

by communication. This is illustrated in Fig. 1 for a

case where we have four regions in each set. The forth

region in set one, is empty. Thus, the thread is assigned

to this region performs communication.

After we have broken the grid into regions the algo-

rithm proceeds as follows

for each timestep

In parallel for each region in

set 1

If region is not empty

Perform calculation in kernel

Else if region is empty

Start MPI communication

end parallel

finish MPI communication

in parallel for each region in

set 2

R
eg

io
n
 1

a

R
eg

io
n
 1

c

R
eg

io
n
 1

b

Region 2a

Region 2b

R
eg

io
n
 2

d

R
eg

io
n
 2

c

Fig. 1. Regions within a two dimensional grid. Black area is ghost

cells. Regions 2a–2b are those effected by communication. Re-

gions 1a–1c are independent of communication.

perform calculation in kernel

end parallel

end timestep

We can compare this to the algorithm shown below

when OpenMP is applied in the kernel.

for each timestep

Start MPI communication

finish MPI communication

Perform calculation in OpenMP

enabled kernel

end timestep

This appears simpler, but applying OpenMP in the

kernel might be difficult. Also, this does not allow

overlapping of computation and communication.

When computation and communication are over-

lapped a processor is given up to do the communica-

tion. When is it beneficial to overlap computation and

communication? Consider a single iteration step of a

calculation containing both computation and commu-

nication, but no overlapping. Normalize the run time

for the step to 1, and assume the communication takes

time C. Computation is spread across P processors

and take time 1 − C. The work associated with the

computation is P ∗(1−C). If we use one of the threads

for communication then the work must be spread across

P − 1 processors. The run time sparing one thread for

communication is

T =
P (1 − C)

P − 1

There is speedup when the run time, T , is less than

1. This occurs if C > 1/P . If C > P/(2P − 1) then

communication time is dominant and we get the upper

limit on speedup of T = P/(2P − 1). If P = 8 then

T.H. Kaiser and S.B. Baden / Overlapping communication and computation with OpenMP and MPI 77

there is speedup if C > (1/8) and the speedup will

peak with C = 8/15. That is, there is speedup using

overlap if the communication takes over1/8 of the time

for a single iteration without overlap and the maximum

speedup is S = 15/8 when C = 8/15.

We clearly need asynchronous communication rou-

tines to do the overlap discussed above. MPI contains

many routines to support asynchronous communica-

tion. The typical way to do this is for the sending

process to “post” a send by doing a MPI Isend. This

starts the message going. The receiving process does

a MPI Irecv. After some time, both processes do an

MPI Wait to block until the communication completes.

There are versions of MPI Wait that only test to see that

messages have completed and don’t block. MPI has the

ability to define derived data types. These can be used

to efficiently send noncontiguous blocks of data such

as rows of a matrix. These routines are discussed in

most MPI texts. Two good ones have been given above,

Pacheco [15] and Gropp [7], Lusk and Skjellum.

5. Application for testing hybrid program

methodologies

The test code that was used to validate the concepts

discussed in this paper was an iterative 3d Laplace’s

equation solver that uses the Gauss-Seidel’s method

with red-black ordering. RB3d. The original program

has been used as a research tool in association with

KeLP and is part of the KeLP distribution. The version

that was used does not contain any of the KeLP system.

RB3d is a simple program with a 7 point stencil. It

contains a C++ driver with Fortran kernel. When the

OpenMP was placed outside of the kernel, the Fortran

routines were not modified from their original form.

Minimum modifications were made to the rest of the

program.

This program was primarily used to see if overlap-

ping communication with computation using OpenMP

is effective. IBM’s C++ compiler does not support

OpenMP. There is support available from the IBM C

and Fortran compilers. C or Fortran routines contain-

ing OpenMP can be called from C++. Thus, the C++
routines that contained OpenMP were rewritten in C.

The program was designed with several options that

are invoked based on input. Overlapping of communi-

cation and computation can be turned on or off. Block-

ing for cache in the Fortran kernel can also be toggled.

There is also a version that does loop-level OpenMP.

This version is simply the original program with di-

rectives inserted in the Fortran kernel. The kernel is

shown below. The top part is used if cache blocking
is enabled. Si and sj are the variables that effect cache
blocking. Note the added complexity of this block of
code. Most importantly, the “best” place for the Parallel
Do directive is a function of the blocking parameters.

The variable rb determines if the updated values are
put into the red or black portion of the grid. That is,
on one iteration of the kernel half of the grid is updated

using values from the other half of the grid. This makes
all updates to u(i, j, k) independent of each other.

if(do blocking)then
!$OMP PARALLEL DO

firstprivate(c,c2)

loop a: do jj = wl1, wh1, sj

loop b: do ii = wl0, wh0, si

loop c: do k = wl2, wh2

loop d: do j = jj, min(jj+sj-1,
wh1) is = ii +

mod(j+k+ii+rb,2)
loop e: do i = is, min(ii+si-1,

wh0), 2 u(i,j,k) = c*

(u(i-1,j,k)
+u(i+1,j,k) + &

u(i,j-1,k)
+ u(i,j+1,k) + &

u(i,j,k-1)
+ u(i,j,k+1) - &

c2*b(i,j,k))

end do loop e

end do loop d

end do loop c

end do loop b

end do loop a

else

!$OMP PARALLEL DO

firstprivate(c,c2)
do k=wl2, wh2

do j=wl1, wh1

do i=mod(j+k+rb-1,2)+1,wh0,2
u(i,j,k) = c * (u(i-1,j,k)
+ u(i+1,j,k) + &

u(i,j-1,k) + u(i,j+1,k) + &

u(i,j,k-1) + u(i,j,k+1) - &

c2*b(i,j,k))
enddo

enddo

enddo

endif

The program was run using 4 MPI tasks spread on to
4 nodes. A grid of 120× 120× 240 on each node was

78 T.H. Kaiser and S.B. Baden / Overlapping communication and computation with OpenMP and MPI

Table 1

The normalized communication time is greater than 1/P so improvement is expected if com-

munication and computation are overlapped

Single iteration run times for RB3d with normalized commincation time compared to range

1/P to P/(2P-1)

Communication Total cycle P 1/P C Normalized P/(2P-1)

time (seconds) time (seconds) (threads) Communication Time

0.0678 0.1238 4 0.25 0.55 0.57

0.0691 0.1153 5 0.20 0.60 0.56

0.0714 0.1118 6 0.17 0.64 0.55

0.0874 0.1247 7 0.14 0.70 0.54

0.0847 0.1187 8 0.13 0.71 0.53

used while calculating for 100 iterations. The number

of OpenMP threads was varied from 4 to 8.

The program was first run without overlapping com-

munication and computation for various numbers of

threads. These runs were done to determine if improve-

ments in run time could be expected using overlapping.

As discussed in Section 3.2, improvement is expected

if the normalized communication time is greater than

1/P . Table 1 shows that this program has sufficient

communication to improve performance with overlap.

For example, with four threads and 1/P = 0.25 we

have a normalized communication time of 0.55.

The program was next run with overlapping turned

on. There were actually two cases. In the first case

#pragma omp parallel for schedule

(dynamic,1)

for(ig=0;ig<nthread;ig++) {
. . .
do kernel(region[ig]);

. . .

was used to start the parallel calculation for each of the

regions of the grid. In the second case a parallel section

was entered using a simple parallel directive

#pragma omp parallel

{
ig=omp get thread num();

do kernel(region[ig]);

We are allowing each thread to grab a region to work

on. This second case requires that each thread execute

the parallel region once and only once. This might not

work on some compilers. Also in our test codes, we

found no significant improvement by using a simple

“parallel” directive and allowing each thread to grab a

region to work on, instead of “parallel for”.

The program was run using both the native IBM

compilers and Kuck and Associates compilers. Also,

the programs were run with cache blocking enabled

and disabled. Cache blocking for grid programs is

Table 2

The run times when the OpenMP directives were placed in the For-

tran kernel show poor scaling

Red Black 3d Times 4 MPI tasks Grid 120 × 120 × 240 on

each node OpenMP applied in Fortran kernel

Cache Total Time IBM Time KAI

blocking threads compiler compiler

(seconds) (seconds)

F 4 10.979 18.218

F 5 10.108 18.193

F 6 9.132 18.232

F 7 9.021 18.181

F 8 10.536 18.071

T 4 26.815 40.185

T 5 26.046 40.436

T 6 26.210 40.207
T 7 26.915 40.390

T 8 25.855 40.180

discussed by Douglas [5], Hu, Kowarschik, Rude, and

Weiss.

6. Results

The best result for all tests occurred using the IBM

compiler, the OpenMP applied in the Fortran kernel,

and without using cache blocking. Table 2 shows the

run times when the OpenMP directives were placed in

the Fortran kernel. For the IBM compiler, and cache

blocking turned off, the run time is reduced by 20%

going from 4 to 7 threads and it starts to go back up at

8 threads. For the KAI compiler, run time is flat.

Why did the program perform relatively well when

cache blocking was turned off? The IBM SP has a large

l2 cache and each processor has its own cache. By

using the OpenMP directives to spread the grid across

all processors most of the grid stayed in cache. In

this case, using OpenMP gave us the effect of cache

blocking for free. Note that this would not hold for

larger grids.

When using OpenMP directives with the cache

blocked section of code, the performance is dependent

T.H. Kaiser and S.B. Baden / Overlapping communication and computation with OpenMP and MPI 79

Table 3

Shows the speedup of using a thread to perform MPI communication with coarse

grain OpenMP

Red Black 3d Times 4 MPI tasks Grid 120 × 120 × 240 on each node OpenMP

Applied at higher level outside of the Fortran kernel Cache blocking enabled

Compiler Total Time (seconds) Time (seconds) %

threads Thread NOT used Thread WAS used Speedup

for communicaiton for communicaiton (T1/T2-1)%

IBM 4 20.844 20.181 3.29

IBM 5 19.484 17.145 13.64

IBM 6 17.992 15.318 17.46

IBM 7 17.153 14.321 19.78

IBM 8 16.666 13.879 20.08

KAI 4 19.599 19.022 3.03

KAI 5 17.996 15.618 15.23
KAI 6 16.840 13.784 22.17

KAI 7 15.983 12.484 28.03

KAI 8 15.050 12.500 20.40

on where the directive is placed. The “cache block-

ing enabled” data from Table 2 was obtained with the

OpenMP directive was placed before loop a as shown

in Section 3.1.

Putting the OpenMP directive above loop a with

wl1 = 1, wh1 = 120 and sj = 64 the lines

!$OMP PARALLEL DO

firstprivate(c,c2)

do jj = wl1, wh1, sj

become at run time

!$OMP PARALLEL DO

firstprivate(c,c2)

do jj = 1, 120, 64

So the compiler can only provide work for two

threads, when jj = 1 and jj = 65. This is why the per-

formance was flat for additional threads and why the

using the “cache blocking enabled” section of code did

not work well.

The directive can be placed ahead of one of the other

do loops. This was tried using 7 threads and the same

input parameters. Placing the directive above loop b

and loop d produced the same results. The best results

were obtained with the directive above loop c, the run

time was reduced to a little over 12 seconds, which

is comparable to the non cache blocked code. This

worked well because of the large range of indices for

the loop and unit stride. Placing the directive in front

of loop e was disastrous, the run time jumped to 938.9

seconds.

The optimum placement is a function of the size of

the grid and the cache blocking parameters. Moving

the OpenMP directives to a higher level in the program

removes these concerns.

A primary objective of this work is to move the

OpenMP directives to a higher level and then compare

using all threads for computation to using a thread to

overlap communication and computation. Did reserv-

ing a thread for communication improve performance

over using all threads to do computations? It did, but

the best results from doing this were not quite as good

as the best results discussed above.

When the directives were placed at the higher level

to do coarse grain parallelism, using a thread to over-

lap computation and communication to reduce run

time. Unlike the previous results, with high level

OpenMP, turning cache blocking on improves perfor-

mance. OpenMP was used to enable each thread to

call its own copy of the Fortran kernel and pass it a

region for which to calculate. The OpenMP directive

that distributed the regions was

#pragma omp parallel for schedule

(dynamic,1)

for(ig=0;ig<nthread;ig++) {
. . .
do kernel(region [ig]);

. . .

Table 3 shows run times with and without a thread

reserved for doing communication. Notice that using

a thread for communication improves the run time of

the program even though this reduces the number of

computational threads by 1. The speedup is almost 22%

for the KAI compiler using 6 calculation threads and

1 communication thread, compared to using 7 threads

for computation.

Another important trend in this data is that scaleabil-

ity improves by reserving a thread to do communica-

tion. For the IBM compiler, doubling the number of

80 T.H. Kaiser and S.B. Baden / Overlapping communication and computation with OpenMP and MPI

Table 4

Shows improved scaling by using a thread to perform MPI communication with coarse grain

OpenMP

Red Black 3d Scaling 4 MPI tasks Grid 120 × 120 × 240 on each node OpenMP Applied at

higher level outside of the Fortran kernel

Compiler Total Time (seconds) Scaling Time (seconds) Scaling

Threads Thread NOT used relative to Thread WAS used relative to

for communicaiton 4 threads for communicaiton 4 threads

IBM 4 20.844 1.00 20.181 1.00

IBM 5 19.484 0.86 17.145 0.94

IBM 6 17.992 0.77 15.318 0.88

IBM 7 17.153 0.69 14.321 0.81

IBM 8 16.666 0.63 13.879 0.73

KAI 4 19.599 1.00 19.022 1.00
KAI 5 17.996 0.87 15.618 0.97

KAI 6 16.840 0.78 13.784 0.92

KAI 7 15.983 0.70 12.484 0.87

KAI 8 15.050 0.65 12.500 0.76

Table 5

Program run times are faster with cache blocking enabled. Moving OpenMP to higher levels to do coarse

grain parallelism facilitated cache blocking

Red Black 3d Times 4 MPI tasks Grid 120 × 120 × 240 on each node OpenMP Applied at higher level

outside of the Fortran kernel Cache blocking disabled compared to cache blocking enabled

Compiler Total Time (seconds) Time (seconds) Time (seconds) % Speedup Cache

threads Thread NOT used Thread WAS used Cache blocking blocking enabled

for communicaiton for communicaiton enabled (T2/T3-1)%

IBM 4 27.316 24.824 20.181 23.01

IBM 5 28.340 24.458 17.145 42.65

IBM 6 27.370 25.484 15.318 66.37

IBM 7 27.493 25.940 14.321 81.13

IBM 8 27.754 26.938 13.879 94.09

KAI 4 26.526 24.206 19.022 27.25

KAI 5 26.572 24.211 15.618 55.02
KAI 6 26.419 24.977 13.784 81.20

KAI 7 26.831 25.644 12.484 105.41

KAI 8 27.200 26.964 12.500 115.71

processors and not using a thread for communication

results in a 20% reduction in run time. Doubling the

number of processors and using a thread for communi-

cation gives a 31% reduction in run time. For the KAI

compiler there is a 23% reduction in run time while not

using a thread for communication and a 34% reduction

when a thread is used for communication.

Table 4 expresses this in terms of scalability relative

to 4 threads. When a thread is not used for communica-

tion the scaling drops to about 0.64. Scaling drops less

with a thread used for communication, to about 0.75.

This is important for the Blue Horizon machine with 8

processors per node and can be very important on ma-

chines that have more processors per node, such as the

Livermore ASCII White machine that has 16 processor

per node. The general trend for new hybrid machines is

to add additional shared memory processors per node.

Table 5 contains the run times of the program with

and without using a thread to do communication, but

with the cache blocking in the Fortran kernel disabled.

Notice that the best run times are about twice of those

for which cache blocking was enabled. Moving the

OpenMP directives out of the Fortran kernel to a higher

level enables the cache blocking optimizations to be

used without interference from the OpenMP directives.

7. Conclusion

OpenMP combined with MPI can be used to program

machines containing a distributed collection of shared

memory nodes. Adding MPI to OpenMP programs

allows users to run on larger collections of processors.

Adding OpenMP to MPI programs can also increase

efficiency and capability for some systems.

OpenMP with MPI were combined in a simple 3 di-

mensional stencil-based program using different strate-

gies. Domain decomposition was used to distribute the

T.H. Kaiser and S.B. Baden / Overlapping communication and computation with OpenMP and MPI 81

grid across the nodes of a distributed memory machine

containing 8 processors per node. Loop level OpenMP

was first added to the nested do loop kernel of the pro-

gram. The kernel contained two different options for

performing the calculation. One option used a cache

blocking algorithm and the other used a serial progres-

sion through the points of the grid. OpenMP preformed

well when cache blocking was not used. With cache

blocking, the performance varied widely depending on

the placement of the directives.

OpenMP was moved to a higher level of the pro-

gram. A second level of domain decomposition was

done and each thread was assigned a portion of the grid

to calculate. This can potentially add to the simplicity

of a program because no modifications are needed to

the kernel. Users are free to use optimization strategies,

such as cache blocking, in the kernels without interfer-

ence from OpenMP directives. This strategy also has

the advantage that a thread can be assigned a null calcu-

lation region and be reserved for performing communi-

cation. When doing coarse grain parallelizm, reserving

a thread for communication significantly increased the

performance and scalability of the program.

Acknowledgments

This work was funded by the National Science Foun-

dation’s National Partnership for Advanced Computa-

tional Infrastructure (NPACI) program. More informa-

tion on NPACI is available at http://www.npaci.edu.

References

[1] S.B. Baden, The KeLP Programming System, http://www-
cse.ucsd.edu/groups/hpcl/scg/kelp.

[2] S.B. Baden and S.J. Fink, A Programming Methodology for

Dual-tier Multicomputers, IEEE Transactions on Software En-

gineering 26(3) (2000), 212–226.

[3] G. Balls, A finite Difference Domain Decompostion Method

Using Local Corrections for the Solution of Poisson’s Equa-

tion, Ph.D. Dissertation, University of California at Berkeley,

1999.
[4] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan and

J. McDonald, Parallel Programming in OpenMP, Morgan-

Kaufman, San Francisco, 2000.

[5] C. Douglas, J. Hu, M. Kowarschik, U. Rude and C. Weiss,

Cache Optimization for Structured and Unstructured Grid

Multigrid, Electronic Transaction on Numerical Analysis 10

(2000), 21–40.

[6] S.J. Fink, A Programming Model for Block-Structured Scien-

tific Calculations on SMP Clusters, Ph.D. Dissertation, Uni-

versity of California San Diego, 1998.

[7] W. Gropp, E. Lusk and A. Skjellum, Using MPI: Portable

Parallel Programming with the Message-Passing Interface,

MPI Press, Cambridge, 1994.

[8] C. Hirsch, Numerical Computation of Internal and External

Flows, Wiley and sons, Chichester, 1988.

[9] T.H. Kaiser, Dynamic Load Distributions for Adaptive Compu-

tations on MIMD machines using Hybrid Genetic Algorithms,

Ph.D. Dissertation, University of New Mexico, 1997.

[10] V. Kumar, A. Grama, A. Gupta and G. Karypis, Introduction

to parallel Computing, Design and Analysis of Algorithms,

Benjammin/Cummings, Redwood City, 1994.

[11] R. LeVeque, Numerical Methods for Conservation Laws,

Birkhauser-Verlag, Basel, 1990.

[12] R. LeVeque, Conservaion Law Package, http://www.amath.
washington.edu/˜claw.

[13] Message Passing Interface Forum, Message passing Interface

Standard, http://www.mpi-forum.org.

[14] OpenMP Architecture Review Board, OpenMP Standard,

http://www.openmp.org.

[15] P.S. Pacheco, Parallel Programming with MPI, Morgan-

Kaufman, San Francisco, 1997.
[16] E.F. Toro, Riemann solvers and numerical methods for fluid

dynamics: a practical introduction, (2nd ed.), Springer,

Berlin, 1999.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

