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ABSTRACT

Many practical problems on Mobile networking, such as rout-
ing strategies in MANETS, sensor reprogramming in WSNs
and worm containment in online social networks (OSNs)
share an ubiquitous, yet interesting feature in their organi-
zations: community structure. Knowledge of this structure
provides us not only crucial information about the network
principles, but also key insights into designing more effec-
tive algorithms for practical problems enabled by Mobile
networking. However, understanding this interesting fea-
ture is extremely challenging on dynamic networks where
changes to their topologies are frequently introduced, and es-
pecially when network communities in reality usually over-
lap with each other.

We focus on the following questions (1) Can we effec-
tively detect the overlapping community structure in a dy-
namic network? (2) Can we quickly and adaptively up-
date the network structure only based on its history with-
out recomputing from scratch? (3) How does the detection
of network communities help mobile applications? We pro-
pose AFOC'S, a two-phase framework for not only detect-
ing quickly but also tracing effectively the evolution of over-
lapped network communities in dynamic mobile networks.
With the great advantages of the overlapping community
structure, AFOC'S significantly helps in reducing up to 7
times the infection rates in worm containment on OSNs, and
up to 11 times overhead while maintaining good delivery
time and ratio in forwarding strategies in MANETS.

1. INTRODUCTION

The rapid and exceptional growing of mobile network
has called for a deeper understanding of its organization
principles, in order to develop better techniques for a
wide range of problems enabled by mobile networking.
Many practical problems, such as forwarding and rout-
ing strategies in MANETS [1], sensor reprogramming in
WSNs [2] and worm containment in cellular networks [3,
4] appear to share an ubiquitous and interesting prop-
erty: the property of containing community structure,
i.e. there are groups of devices or people that frequently
communicate more with each other than with the others
in the underlying organizations.

In a general concept, a community is a group of tight-
knit nodes having more internal than external connec-
tions [5, 6]. For instance, a community in MANETS
often comprises of sensors or mobile devices that are
frequently transmitting data to each other than to other
devices. Similarly, since people have a natural tendency
to form groups of communication, a community in a
cellular network usually consists of mobile devices that
often call or text each other. The detection of network
community structure, as a result, provides us a better
knowledge about its characteristics as well as its or-
ganization principles, thereby providing more efficient
solutions for mobile networking problems such as for-
warding in MANETSs or worm containment in OSNS.

Particularly, how does community structure help in
Mobile applications? Indeed, detecting network com-
munities is of considerable advantage in mobile net-
works. Let us consider the worm containment in cellular
networks [3], or in OSNs [4, 7]. Nowadays, many social
applications such as Facebook, Twitter and FourSquare,
are able to run on open-API enabled mobile devices like
PDAs and Iphones. However, if such an application
is infected with malicious software, such as worms or
viruses, this openness will also make it easier for their
propagation. A possible solution to prevent worms from
spreading out wider is to send patches to critical users
and let them redistribute to the others. Intuitively, the
smaller the set of important users for sending patches,
the better. But how can we effectively choose that set
of minimal size? This is where community structure
comes into the picture and helps. In particular, we show
that selecting users in the boundaries of the overlapped
nodes gives a tighter and more efficient set of influen-
tial users, thus significantly lowers the number of sent
patches as well as overhead information, which are es-
sential in cellular networks and OSNs.

Another great advantage of community structure can
be found in the forwarding problem in communication
networks. Due to the high mobility of devices, an ap-
parent challenge for a forwarding method is to quickly
forward the message from the source to the destina-
tion, without introducing too many duplicate messages



or overhead information. Since people tend to form
groups of communication, there are also communities
of tightly connected devices in the underlying network
as a refection. A good forwarding strategy, as soon
as it discovers the network structure, can actively for-
ward messages to devices sharing more common com-
munity labels with the destination, rather than simply
sending messages to those in the same community as
the destination. With the helpful knowledge of network
communities, this strategy will considerably reduce the
number of duplicate messages while maintaining good
delivery ratios, as we shall see in Section 8. This ex-
ample, again, amplifies the importance of an efficient
community detection method in mobile networks.

Mobile networks in reality are highly dynamic and
thus, their communities are not always disjoint from
each other. Indeed, their communities often overlap
with each other since some active devices can partici-
pate in multiple groups at the same time, thereby re-
assemble the concept of overlapping community struc-
ture. Furthermore, most practical models for mobile
network problems evolve frequently over time due to
the high mobility of participating devices. Although
any slight change does not seem to have a significant
effect on the network structure, the evolution of the
mobile network over a long duration might lead to an
unpredictable transformation of its communities, par-
ticularly when they can overlap. This drives a crucial
need of reidentification. However, the rapid changing
network topology makes this an extremely challenging
problem, especially on dynamic mobile networks.

A naive solution to the above problem would try to
repeatedly execute one of the available static methods
[8, 9, 10] to find new communities whenever the network
changes; doing so, nonetheless, suffers from some ma-
jor disadvantages (1) the huge consumption of time and
computing resources on large networks and (2) the al-
most same reactions to some local parts of the network.
Intuitively, a much better approach should adaptively
update the current community structure based on its
history and the network changes only, thus can eventu-
ally avoid the hassle of redetection.

Motivated by this intuition and the applicability of
overlapping community structure, we propose AFOCS
(Adaptive FOCS), an adaptive framework for detect-
ing, updating and tracing the evolution of overlapping
communities in dynamic mobile networks. Our two-
phase framework first identifies basic network commu-
nities with FOCS (Finding Overlapping Community
Structure), and then employs AFOCS to adaptively
update these structures as the network evolves. Since
only AFOC'S will stay up and handle all changes intro-
duced to the network, this adaptive phase is the main
focus of the paper, and hence composes the name of our
framework.

In order to effectively handle the network changes,
AFOCS decomposes them into simpler events in such
a way that each event can be quickly handled. Thanks
to this feature, AFOC'S can eventually obviate the need
of reidentifying the network community structure every
time. Both FOCS and AFOCS require 3, the over-
lapping threshold, as the only input for their entire op-
erations. This requirement is essential since network
communities can overlap at different scales and hence,
we do need a control parameter in order to certify how
much the overlap means to them.

The contributions of this paper are:

e We propose AFOC'S, a two-phase adaptive frame-
work for not only detecting and updating the over-
lapping network communities but also tracing their
evolution over time. Theoretical analyses show
AFOCS partially achieves more than 0.83% in-
ternal density of the optimal solution.

o We evaluate AFOC'S on both synthesized and real-
world networks in comparison to both the state-
of-the art and the most popular static community
detection methods COPRA [10] and C Finder [8],
as well as to recent adaptive methods FacetNet
[11] and ¢LCD [12]. Experimental results show
that AFOC'S achieves both competitively results
and high quality community structures in a timely
manner.

e With AFOC'S, we propose a new community based
forwarding strategy for communication networks
that reduces up to 11x overhead information while
maintaining competitively delivery time and ra-
tio. We also propose a new social-aware patching
scheme for containing worms in OSNs, which helps
reducing up to 7x the infection rates on Facebook
network dataset.

Organization: In section 2, we discuss the related
work and then state the basic notations and problem
formulation in section 3. Sections 4, 5 give a complete
description of our algorithms and their analyses. Sec-
tion 6 shows experimental results of AFOCS on syn-
thesis and real-world traces. Sections 7, 8 present two
practical applications of our methods in MANETSs and
OSNs. Finally, we conclude our work in section 9.

2. RELATED WORK

Community detection in complex networks has at-
tracted huge attention since its introduction. In gen-
eral, one can classify detection methods in two main
categories including non-overlapping versus overlapping
communities, and on static networks versus on dynamic
networks. Many efficient methods have been proposed
for detecting both non-overlapping and overlapping com-
munities on static networks, among which CFinder [8]
and COPRA [10] have remarked themselves as the most



popular and most effective methods once fed with cor-
rect parameters [13]. A recent work [14] detailed a sur-
vey and benchmark on those algorithms.

Detecting communities on dynamic networks, both
on overlapping and disjoint structures, has so far been
an untrodden area. [4] proposed QCA, an adaptive
method that can update and trace the network struc-
ture through a series of changes. This method is quick
and effective, however, is not able to detect overlapped
communities. [11] proposed FacetNet, a framework for
analyzing communities in dynamic networks based on
the optimization of snapshot costs. FaceNet is guaran-
teed to converge to a local optimal solution; however,
its convergence speed is slow and its input asks for the
number of network communities which are usually un-
known in practice. [15] proposed Stream — Group, an
incremental method to solve the community mining and
detect the change points in weighted dynamic graphs.
This method is modularity-based thus may inherit the
resolution limit while discovering network communities.
In another attempt, [16] suggested a particle-and-density
based clustering method for dynamic networks, based
on the extended modularity and the concepts of nano-
community and [-quasi-clique-by-clique. Apart from
that, [12] proposed iLCD to find the overlapping net-
work communities by adding edges and then merging
similar ones. However, this model might not be suffi-
cient in consideration with the dynamic behaviors of the
network when new nodes are introduced or removed, or
when existing edges are removed from the network.

3. PROBLEM FORMULATION
3.1 Basic notations

Let G = (V,E) be an undirected unweighted graph
representing a network where V is the set of IV nodes
and F is the set of M connections. Denote by C =
{C1,C4, ..., Ci} the network community structure, i.e.
a collection of subsets of V' where each C; € C and
its induced subgraph form a community of G. In con-
trast with the disjoint community structure, we do not
restrict the intersection of any two communities to be
empty, i.e. we allow C; N C; # 0, so that network com-
munities can overlap with each other.

For a node u € V, let d,, N(u) and Com(u) denote
its degree, its neighbors and its set of community la-
bels, respectively. For any C C V, let C*™ and C°%
denote the set of links having both endpoints in C' and
the set of links having exactly one endpoint in C, re-
spectively. Finally, the terms node-verter as well as
edge-link-connection are used interchangeably.

3.2 Dynamic network model

Let Gy = (Vo, Ep) be the original input network and
Gy = (W4, E;) be a time dependent network snapshot
recorded at time t. Denote by AV; and AFE; the sets

Figure 1: Overlapped v.s. non-overlapped com-
munity structure.

of nodes and edges to be added to or removed from the
network at time ¢. Furthermore, let AG; = (AV;, AE})
describe this change in terms of the whole network. The
network snapshot at next time step ¢ 4+ 1 is expressed
as a combination of the previous one together with the
change, i.e. Gip1 = Gy U AGy. Finally, a dynamic
network G is defined as a sequence of network snapshots
changing over time: G = (Go, G1, G2, ...).

3.3 Density function

In order to quantify the goodness of an identified com-
munity, we use the popular density function ¥ [17] de-

fined as: ¥(C) = |(c‘*707)| where C C V. The more C
2

approaches a clique of its size, the higher its density

value U(C). In order to set up a threshold on the inter-

nal density that suffices for C' to be a local community,

we propose a function 7(C) defined as follows:

1
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Here o(C) is the threshold on the number of inner con-
nections that suffices for C' to be a local community.
Particularly, a subgraph induced by C' is a local com-
munity iff ¥(C) > 7(C) or equivalently |C"| > o(C).
Several functions with the same purpose have been
introduced in the literature, for instance, in the work
of [9, 18] and it is worth noting down the main differ-
ences between them and ours. First and foremost, our
functions 7(C') and o(C) locally process on the candi-
date community C' only and neither require any prede-
fined thresholds or user-input parameters. Secondly, by
Proposition 1, o(C) and 7(C) are increasing functions
and closely approach C’s full connections as well as its
maximal density. That makes o(C') and 7(C) relaxation
versions of the traditional density function, yet useful
ones as we shall see in the experiments.

Proposition 1. The function f(n) = n'~% is strictly

increasing for n > 4 and lim, ., f(n) = n.

3.4 Objective function

Our objective is to find a community assignment for
the set of nodes V' which maximizes the overall internal
density function ¥(C) = > e ¥(C) since the higher
the internal density of a community is, the clearer its
structure would be. Unlike the case of disjoint com-
munity structure, in which the number of connections



crossing communities should be less than those inside
them, our objective does not take into account the num-
ber of out-going links from each community.

To understand the reason, let’s consider a simple ex-
ample pictured in Figure 1. In the overlapping commu-
nity structure point of view, it is clear that every clique
should form a community on its own and each commu-
nity shares with the central clique exactly one node.
However, in the disjoint community structure point of
view, any vertex at the central clique has n internal and
2n external connections, which violates the concept of a
community in the strong sense. Furthermore, the inter-
nal connectivity of the central clique is also dominated
by its external density, which implies the concept of a
community in weak sense is also violated. (A commu-
nity C is in weak sense if |C*™| > |C°*!|, and in strong
sense if any node in C' has more links inward than out-
ward C [19]).

3.5 Problem Definition

Given a dynamic network G = (Go, G1, G2, ...) where
Gy is the input network and Gyp,Go,... are network
snapshots obtained through a collection of network topol-
ogy changes AG1, AGsy, ... over time. The problem asks
for an adaptive framework to efficiently detect and up-
date the network overlapping community structure C;
at any time point ¢ by only utilizing the information
from the previous snapshot C;_1, as well as tracing the
evolution of the network communities.

In the next section, we present our main contribu-
tion: an adaptive framework for (1) identifying basic
overlapped community structure in a network snapshot
and (2) updating as well as tracing the evolution of
the network communities in a dynamic network model.
First, we describe FOC'S, a procedure to identify the
basic communities in a static network, and then discuss
in great detail how AFOCS adaptively updates these
basic communities to cater with the evolution of the
dynamic network.

4. BASIC COMMUNITY STRUCTURE

We describe FOCS, the first phase of our frame-
work that quickly discovers the basic overlapping net-
work community structure. In general, FOCS works
toward the classification of network nodes into different
groups by first locating all possible densely connected
parts of the network, and then combining those who
highly overlap with each other, i.e. those share a signif-
icant substructure. In FOCSS, 8 (the input overlapping
threshold) defines how much substructure two commu-
nities can share. Note that FOCS fundamentally dif-
fers from [20] in the way it allows |C; N C;| > 2 for any
subsets C;,C; of V, and consequently allows network
communities to overlap not only at a single vertex but
also at a part of the whole community

4.1 Locating local communities

Local communities are connected parts of the net-
work whose internal densities are greater than a certain
level. In FOC'S, this level is automatically determined
based on the function 7(-) and the size of each corre-
sponding part. Particularly, a local community is de-
fined based on a connection (u,v) when the number
of internal connections within the subgraph induced by
C = {u,v} U (N(u) N N(v)) exceeds o(C), or in other
words, when U(C) > 7(C) (Figure 2(a)).

However, there is a problem that might eventually
arise during this procedure: the containment of sub
communities in an actual bigger one. Intuitively, one
would like to detect a bigger community unified by
smaller ones if the bigger community is itself densely
connected. In order to filter this undesired case, we
impose ¥ (UJ;_; C;) < 7(U;_, Ci) Vs = 1..[C| (note
that some of these unifications do not contain all the
nodes). In addition, we allow this locating procedure
to skip over tiny communities of size less than 4. This
condition is carried out from Proposition 1. This makes
sense in terms of mobile or social networks where a
group of mobile devices or a social community usually
has size larger than 3, and intuitively agrees with the
finding of [21, 22]. Those tiny communities will then be
identified later. Alg. 1 describes this procedure.

Algorithm 1 Locating local communities
Input: G = (V,E)
Output: A collection of raw communities C,.
1: for (u,v) € E do
2: if Com(u) N Com(v) = 0 then
: Let C = {u,v} U N(u) N N(v);

3
4 if |C'™| > o(C) and |C| > 4 then

5: Define C a local community;

6: /*Include C into the raw community structure®/
7 Cr=CrU{C}h

8 end if

9 end if

10: end for

LEMMA 1. The time complexity of Alg. 1 is O(dM)
where d = max,cy d,, (Note: All proofs are excluded
due to space constraint).

LEMMA 2. Alllocal communities C'’s detected by Alg.
1 satisfy |C| > 4 and ¥(C) > 7(4) ~ 0.83. Further-
more, other communities satisfying these conditions will
also be detected by Alg. 1.

THEOREM 1. The local community structure C, de-
tected by Alg. 1 satisfies U(C,) > 0.83 x U(OPT) where
OPT is the optimal community assignment that maxi-
mizes the overall internal density function.

4.2 Combining overlapping communities

After Alg. 1 finishes, the raw network community
structure is pictured as a collection of (possibly over-
lapped) dense parts of the network together with out-
liers. As some of those dense parts can possibly share



significant substructures, we need to merge them if they
are highly overlapped. To this end, we introduce the
overlapping score of two communities defined as follow

1 ir
min{|C;, |C;|} ~ min{|C}"[,|Ci"[}

where I;; = C; N C;. Basically, OS(C;, C;) values how
important the common nodes and links shared between
C; and Cj mean to the smaller community. In compari-
son with the distance metric suggested in [23], our over-
lapping score not only takes into account the fraction of
common nodes but also values the fraction of common
connections, which is crucial in order to combine net-
work communities. Furthermore, OS(-,-) is symmetric
and scales well with the size of any community, and
the higher the overlapping score, the more those com-
munities in consideration should be merged. In this
merging process, we combine communities C; and Cj if

05(C;,C;) > B (Figure 2(b)).

0S5(C;,Cj) =

Figure 2: (a) A local community C defined by
a link (u,v). Here ¥(C) = 0.9 > 7(C) = 0.725 (b)
Merging two local communities sharing a signif-
icant substructure (OS score = 1.027 > 8 = 0.8)

Algorithm 2 Combining local communities

Input: Raw community structure C,
Output: A refined community structure Cy.
1: Cy + Cr;
2: for C;, C; € Cr and !Done do
if 0S(C;,Cj) > B then
C < Combine C; and Cj;
/*Update the current structure*/
Cr=(Cr\{CiUC;}UC;
Done < False;
end if
end for

The time complexity of Alg. 2 is O(NZ) where Ny is
the number of local communities. Clearly, Ny < M and
thus, it can be O(M?). However, when the intersection
of two communities is upper bounded, by Lemma 3 we
know that the number of local communities is also upper
bounded by O(N), and thus, the time complexity of
Alg. 2 is O(N?). In our experiments, we observe that
the running time of this procedure is, indeed, much less
than O(N?).

LEMMA 3. The number of raw communities detected
in Alg. 1 is O(N) when the number of nodes in the
intersection of any two communities is upper bounded
by a constant o.

S. DETECTING EVOLVING NETWORK
COMMUNITIES

We describe AFOC'S, the second phase and also the
main focus of our detection framework. In particular,
we use AFOCS to adaptively update and trace the
net- work communities, which were previously initial-
ized by FOCS, as the dynamic network evolves over
time. Note that FOCS is executed only once on Gy,
after that AFOC'S will take over and handle all changes
introduced to the network.

Let us first discuss the various behaviors of the com-
munity structure when the network topology evolves
over time. Suppose G = (V, E) and C = {C4,Cy, ..,Cy }
is the current network and its corresponding overlap-
ping community structure, respectively. We use the
term intra links to denote edges whose two endpoints
belong to the same community, inter links to denote
those with endpoints connecting different disjoint com-
munities and the term hybrid links to stand for the oth-
ers. For each community C of G, the number of con-
nections joining C' with the others are lesser than the
number of connections within C' itself by definition

Intuitively, the addition of intra links or removal of
inter links between communities of G will strengthen
them and consequently, will make the structure of G
more clear. Similarly, removing intra links from or in-
troducing inter links to a community of G will decrease
its internal density and as a result, loosen its inter-
nal structure. However, when two communities have
less distraction to each other, adding or removing links
makes them more attractive to each other and therefore,
leaves a possibility that they can overlap with each other
or can be combined to form a new community. The
updating process, as a result, is very complicated and
challenging since any insignificant change in the net-
work topology could possibly lead to an unpredictable
transformation of the network community structure.

In order to reflect these changes to a complex net-
work, its underlying graph model is frequently updated
by either inserting or removing a node or a set of nodes,
or an edge or a set of edges. Scrutiny into these events
reveals that the introduction or removal of a set of nodes
(or edges) can furthermore be decomposed as a collec-
tion of node (or edge) insertions (or removals), in which
only a node (or only an edge) is inserted (or removed)
at a time. Therefore, changes to the network at each
time step can be viewed as a collection of simpler events
whose details are as follow:

e newNode (V 4+ u): A new node u and its adjacent
edge(s) are introduced

e removeNode (V —w): A node u and its adjacent
edge(s) are removed from the network.

e newFEdge (E + ¢): A new edge e connecting two
existing nodes is introduced.



o removeEdge (E — e): An edge e in the network is
removed.

As we mentioned earlier, our adaptive framework ini-
tially requires a basic community structure Cy. To ob-
tain this basic structure, we apply FOCS algorithm at
the first network snapshot and then let AFOC'S adap-
tively handle this structure as the network evolves.

5.1 Handling a new node

Let us discuss the first case when a new node u and
its associated links are introduced to the network. Pos-
sibilities are (1) u may come with no adjacent edge or
(2) with many of them connecting one or more possi-
bly overlapped communities. If v has no adjacent edge,
we simply join u in the set of outliers and preserve the
current community structure.

The interesting case happens, and it usually does,
when u comes with multiple links connecting one ore
more existing communities. Since network communi-
ties can overlap each other, we need to determine which
ones u should join in in order to maximize the gained
internal density. But how can we quickly and effectively
do so? By Lemma 4, we give a necessary condition for
a new node in order to join in an existing community,
i.e. our algorithm will join node u in C' if the num-
ber of connections w has to C suffices: d,; > ?}JCI:'
However, failing to satisfy this condition does not nec-
essarily imply that u should not belong to C, since it
can potentially gather some substructure of C' to form
a new community (Figure 3). Thus, we also need to
handle this possibility. Alg. 3 presents the algorithm.

Figure 3: When a new node u is introduced, u
could gather some nodes from an existing com-
munity (red) to form a new community (yellow)

LEMMA 4. Suppose u is a newly introduced node with

dy; connections to each adjacent community C;. u will

im ; 2|C;"|
join in C; if dy; > AR E

The analysis of Alg. 3 is shown by Lemma 5. In
particular, we show that this procedure achieves at least
0.83% internal density of the optimal assignment for u,
given the prior community structure.

LEMMA 5. Alg. 8 produces an assignment that, prior
to the community combination, achieves W(Cy) > T(4) X
U(OPT(u)) where OPT (u); is the optimal community
assignment for u at time t, given the prior community
structure Cy_q.

Algorithm 3 Handling a new node u

Input: The current community structure C¢_1
Output: An updated structure C;.

1: C1,Co,...,Cr + Adjacent communities of u;
2: fori= 1d0tof§n

3 i dyy > féc‘fi then

4: C; + C; U{u};

5 else

6: C + N(u)NCy;

7 if ¥(C) > 7(C) and |C| > 4 then
8: C; + C; U{u};

9: end if

10: end if

11: end for

12: /*Checking new community from outliers*/
13: for v € Cp and Com(v) N Com(u) = @ do
14: C = N(u) N N(v);

15: if ¥(C) > 7(C) and |C| > 4 then

16: Define C' a new community;
17: end if
18: end for

19: Merging overlapping communities on Ci, Ca, ..., Cy and Cp;
20: Update Cy;

5.2 Handling a new edge

In case where a new edge e = (u,v) connecting two
existing vertices v and v is introduced, we divide it fur-
ther into two four smaller cases: (1) e is solely inside a
single community C' (2) e is within the intersection of
two (or more) communities (3) e is joining two separated
communities and (4) e is crossing overlapped communi-
ties. If e is totally inside a community C, its presence
will strengthen C’s internal density and by Lemma 6,
we know that adding e should not split the current com-
munity C' into smaller substructures. The same reaction
applies in the second subcase when e is within the in-
tersection of two communities since their inner densities
are both increased. Thus, in these first two cases, we
leave the current network structure intact.

Handling the last two subcases is complicated since
any of them can either have no effect on the current
network structure or unpredictably form a new network
community, and furthermore can overlap or merge with
the others (Figure 4). By Lemma 7, we know that when
a new edge (u,v) crossing between two disjoint commu-
nities is introduced, its two endpoints should not be
moved. However, there is still a possibility that the
introduction of this new link, together with some sub-
structure of C,, or C,, suffices to form a new community
that can overlap with not only C, and C,, but also with
some of the others. The other subcases can be handled
similarly. Alg. 4 describe this procedure.

LEMMA 6. If an new edge (u,v) is introduced solely
inside a community C, it should not split C into smaller
substructures.

LEMMA 7. When a new edge (u,v) is introduced be-
tween two disjoint communities C,, and C,, neither u
nor v should be moved to C, or C,.

5.3 Removing an existing node



(a) (b)

Figure 4: (a) The network with 4 disjoint com-
munities (b) When the central edge is added, the
central nodes form a new community (yellow)

Algorithm 4 Handling a new edge (u,v)

Input: The current community structure C¢_q.

Output: An updated community structure C.

1: if ((u,v) € a single community OR (u,v) € C,, N C,) then
Ct + Ci1;

3: else if Com(u) N Com(v) = 0 then

4 C + N(u) N N(v);

5 if ¥(C) > 7(C) then

6: Define C' a new community;

7 Check for combining on Com(u), Com(v) and C;
8 else

9: for D € Com(u) (or D’ € Com(v)) do

10: if U(DU{v}) > 7(D) (or ¥(D'U{u}) > 7(D’)) then
11: D + DU {v} (or D' + D" U{u})

12: end if

13: end for

14: Merging overlapping communities on D’s (or D’);
15: end if

16: Update Cy;

17: end if

When an existing node u is about to be removed from
the network, all of its adjacent edges will also be re-
moved as a consequence. If u is an outlier, we can sim-
ply exclude u and its corresponding links from the cur-
rent structure and safely keep the network communities
unchanged.

In unfortunate situations where u is not an outlier,
the problem becomes very challenging in the sense that
the resulting community is complicated: it can either
be unchanged, or broken into smaller communities, or
could probably be merged with the other communities.
To give a sense of this effect, let’s consider two examples
illustrated in Figure 5. In the first example, when C' is
almost a full clique, the removal of any node will not
break it apart. However, if we a remove node that tends
to connect the others within a community, the leftover
module is broken into a smaller one together with a node
that will later be merged to one of its nearby communi-
ties. Therefore, identifying the leftover structure of C
is a crucial task once a vertex u in C' is removed.

To quickly handle this task, we first examine the
internal density of C' excluding the removed node u.
If the number of internal connections still suffices, we
can safely keep the current network communities intact.
Otherwise, we apply Alg. 1 on the subgraph induced by
C\{u} to quickly identify the leftover modules in C, and
then let these modules hire a set of unassigned nodes

U(C) that help them increasing their inner densities.
Finally, we locally check for community combination, if
any, by using an algorithm similar to Alg. 2.

(a) (b)

Figure 5: (a) Two overlapped communities (b)
When the central node is removed, the new
structure comnsists of two disjoint communities

Algorithm 5 Removing a node u

Input: The current community structure Cy_1.

Output: An updated structure Cy.

1: for C € Com(u) and ¥(C\{u}) < 7(C\{u}) do
: LC <+ Local communities by Alg 1 on C\{u};

2
3 for C; € LC and |C;| > 4 do
4: S; < Nodes such that ¥(C; U S;) > 7(C; U S;);
5: C; + C; US;;
6 end for

7 Merging overlapping communities on LC}

8: end for

9: Update Cy;

5.4 Removing an edge

In the last situation when an edge e = (u,v) is about
to be removed, we divide it further into four subcases
similar to those of a new edge (1) e is between two dis-
joint communities (2) e is inside a sole community (3) e
is within the intersection of two (or more) communities
and finally (4) e is crossing overlapping communities.

In the first subcase, when e is crossing two disjoint
communities, its removal will make the network struc-
ture more clear (since we now have less connections
between groups), and thus, the current communities
should be keep unchanged. When e is totally within a
sole community C, handling its removal is complicated
since this can lead to an unpredictable transformation
of the host module: C' could either be unchanged or
broken into smaller modules if it contains substructures
which are less attractive to each other, as depicted in
Figure 6. Therefore, the problem of identify the struc-
ture of the remaining module becomes the central part
for not only this case but also for the others.

To quickly handle these tasks, we first verify the inner
density of the remaining module and, again utilize the
local community location method (Alg. 1) to locally
identify the leftover substructures. Next, we check for
community combination since these structures can pos-

(@) ()

Figure 6: (a) The original community (b) When
the dotted edge is removed, the community is
broken into two overlapped communities



sibly overlap with existing network communities. The
detailed procedure is described in Alg. 6.

Algorithm 6 Removing an edge (u,v)
Input: The current structure C;_.

Output: An updated community structure C;.
1: if (u,v) is an isolated edge then

2: Ce = (Co—1\{u,v}) U {u} U {v}

3: else if d, =1 (or d, = 1) then

4: Ci = (C—1\C(u)) U{u} U C(v);

5: else if C = C(u) N C(v) = 0 then

6: Ct =Ci—1;

7: else if ¥(C\(u,v)) < 7(C\(u,v)) then /*Here C # (0*/
8: LC <+ Local communities by Alg 1 on C\(u,v);
9: Define each L € LC a local community of Cy_1;
10: Merging overlapping community on L’s;

11: end if

12: Update Cy;

5.5 Remarks

Note that the ultimate goal of our framework is to
adaptively detect and update the community structure
as the network evolves, i.e. to mainly deal with the
dynamics of a mobile network. As a result, we mainly
put our focus on AFOCS. Although FOCS, the first
detection phase, appears to be a centralized algorithm,
it is executed only once at the very first network snap-
shot whereas AFOCS stays up and locally handles all
changes as the network evolves over time. That said,
we do not execute FFOC'S again. Furthermore, AFOCS
can be run independently with FOCS, i.e. one can
use any localized detection algorithm to identify a basic
community structure at the first phase. Thus, AFOCS
can be easily apply to mobile network problems, as pre-
sented in sections 7 and 8.

6. EXPERIMENTAL RESULTS

We first compare the performance of AFOCS to two
static detection methods: C'Finder - the most popular
method [8] and COPRA - the most effective method
[10]. Both of them can detect overlapping communities
in static networks and hence, are excellent resources for
comparison purposes; however, they are not designed to
work on dynamic mobile networks.

Data Sets: We use networks generated by the well-
known LFR overlapping benchmark [14], the ‘de facto’
standard for evaluating overlapping community detec-
tion algorithms. Generated networks follow power-law
degree distributions and contain embedded overlapping
communities of varying sizes that capture the internal
characteristics of real-world networks.

Metrics: We evaluate following metrics.

(1) The generalized Normalized Mutual Information
(NMI) [9] specially built for overlapping communities.
N M1 is an standardized measure since NMI(U,V) =1
if structures U and V are identical and 0 if they are
totally separated.

(2) The number of communities, ignoring singleton
communities and unassigned nodes. A good commu-
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Figure 7: Comparison among AFOCS, FacetNet
and iLCD (a) NMI scores (b) Running time

nity detection method should produce roughly the same
number of communities with the known ground truth.

Set up: To fairly compare with COPRA and to
avoid being biased, we keep the parameters close to [10]:
the minimum - maximum community size is ¢, = 10
and ¢pq, = 50, each vertex belongs to at most two
communities, 0, = 2. N = 1000 or N = 5000 and the
mixing rate is ¢ = 0.1 and u = 0.3. The overlapping
fraction, which determines the fraction of overlapped
nodes of the generated network, is from 0 to 0.5. Since
the output of COPRA is nondeterministic, we run it 10
times on each instance and select the best result. We
put no time constraint on CFinder.

6.1 Choosing the Overlapping Threshold

The overlapping threshold S is the unique input pa-
rameter required by our framework and thus, determin-
ing its appropriate value plays an important role in as-
sessing AFOC'S’s performance on both synthesized and
real-world datasets. To best determine this threshold,
we run AFOCS on all generated networks with dif-
ferent values of 8 and record the similarities between
embedded and detected communities via NM I scores
in Figure 8(a). Of course, the higher NM1T scores im-
ply the better 8 values. As depicted in this figure, the
best values for 8 are ranging from 0.67 to 0.80, among
which 8 = 0.70 yields the best community similarity
in all of the generated networks. Therefore, we fix the
overlapping threshold in AFOCS to be 0.70 hereafter.

6.2 Overlapping Communities Quality

We show our results in groups of four. For each case
we vary the overlapping fraction v from 0 to 0.5 and
analyze the results found by AFOCS, CFinder, and
COPRA. We only present results when corresponding
parameters give top performance for C'Finder (clique
size k = 4,5) and COPRA (max. communities per
vertex v = 3,6).

Number of communities: Figure 8(b) shows the num-
ber of communities found by AFOCS, COPRA and
CFinder and the ground truth. It reveals from this fig-
ure that the numbers of communities found by AFOC'S,
marked with squares, are the closest and almost iden-
tical to the ground truth as the overlapping fraction
gets higher. There is an exception when N = 1000 and
= 0.3 which we will discuss later.
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Normalized Mutual Information: As one can infer
from Figure 8(c), AFOCS achieves the highest perfor-
mance among all methods with much more stable. A
common trend in this test is the performances of all
methods degrade (1) when the mixing rate u increases,
i.e. when the community structure becomes more am-
biguous or (2) when the size of network decreases while
the mixing rate p stays the same. Even though AFOCS
is not very competitive only when both negative fac-
tors happen in the bottom-right char as N = 1000 and
u = 0.3, it is in general the best performer.

The significant gap is observed when the mixing rate
gets higher (1 = 0.3) and the network size gets smaller
(N = 1000). AFOCS provides less numbers of com-
munities than those of the ground truth but with much
higher overlapping rates. The reason is with a larger
mixing rate u, a node will have more edges connecting
vertices in other communities, thus increases the chance
that AFOCS will merge highly overlapped communi-
ties. Hence, AFOCS creates less but with larger size
communities. We note that this ‘weakness’ of AFOCS
is controversial as when the mixing rate increases, the
ground truth does not necessarily coincide with the struc-
ture implied by the network’s topology.

Extensive experiments show the ability of AFOCS
in identifing high quality overlapping communities. In
addition, we found AFOC'S runs substantially faster
than the other competitors: on the network containing
63K nodes, AFOC'S is 150x faster than COPRA while
CFinder is unable to finish.

6.3 Reference to other dynamic methods

We next observe the performance of AFOC'S in refer-
ence to two dynamic methods FacetNet [11] and iLCD
[12]. Since the ground-truth communities are known
on synthesized datasets, fair comparisons among three
methods can be obtained via their NMI scores and run-
ning times. Of course, the higher its NMI scores with
less time consuming, the better the method seems to
be. Each synthesized dynamic network is simulated via
5 snapshots, in which the basic communities are formed

by using 90% of the network data with approximately
200 edges added to each growing snapshot at a time.

The NMI and time results are presented in Figure
7(a) and 7(b). It reveals from these figures that the
NMI scores of AFOC'S are very competitive to those
of FacetNet and are far better than those of iLC'D. In
particular, the NMI scores of AFOC'S are about just 5-
7% lag behind that of FacetNet while the running times
are significantly lower: AFOCS requires barely a sec-
ond to finish updating each network snapshot whereas
FacetNet asks for more than 5 seconds (5x more time
consuming). iLCD performs fast in these generated
datasets; however, the similarity of the detected com-
munities and the ground-truth is surprisingly poor, as
revealed from the results. Thus, we strongly believe
that AFOCS achieves competitive community detec-
tion results in a timely manner.

7. COMMUNITY-BASED FORWARDING
IN COMMUNICATION NETWORKS

We present a practical application where the detec-
tion of overlapping network communities plays a vi-
tal role in forwarding strategies in communication net-
works. With the helpful knowledge of the network com-
munity structure, we propose a new community-based
forwarding algorithm that significantly reduces the num-
ber of duplicate messages while maintaining competi-
tive delivery times and ratios, which are essential fac-
tors of a forwarding strategy.

Many routing methods based on the discovery of net-
work community structure have been proposed in the
literature [24, 25, 26]. However, the community detec-
tion cores in those strategies encounter (1) the lack of
knowledge about overlapping communities and (2) the
repeated identification of communities as the network
evolves. The second issue is computationally costly and
time consuming, thus may dramatically reduce the per-
formance of those forwarding strategies.

Let us first discuss how our new forwarding algorithm
works in practice and then how AFOCS helps it to
overcome the above limitations. We use AFOCS to



detect overlapping communities and keep it up-to-date
as the network changes. Each node in a community
is assigned the same label and each overlapped node u
has a set of corresponding labels Com(u). During the
network operation, if a devices u carrying the message
meets another device v who indeed shares more com-
mon community labels with the destination than wu, i.e.
|Com(v) N Com(dest)| > |Com(u) N Com(dest)|, then
u will forward the message to v. The same actions then
apply to v as well as to devices that v meets.

The intuition behinds this strategy is that if v shares
more communities with the destination nodes, it is likely
that v will have more chances to deliver the message to
the destination. By doing this, we not only have higher
chances to correctly forward the messages but also gen-
erate much less duplicate messages. Due to its adaptive
nature and the ability of identifying overlapping com-
munities, AFOC'S helps our algorithm to overcome the
above shortcomings naturally. This explains why our
forwarding algorithm can significantly reduce the num-
ber of duplicate messages while maintaining very com-
petitive delivery times and ratios.

We compare six forwarding strategies (1) MIEN:
A recently proposed social-aware routing strategy on
MANETSs [1] (2) LABEL: A node will forward the
messages to another node if it is in the same commu-
nity as the destination [27] (3) W AIT: The source node
waits and keeps forwarding the message until it meets
the destination (4) MCP: A node keeps forwarding
the messages until they reach the maximum number of
hops (5) QCA: A LABEL version utilizing QCA [4]
as the adaptive disjoint community detection method
and lastly (6) AFOCS: Our newly proposed forward-
ing algorithm equipped with AFOC'S as an community
detection and update core.

Results of WAIT and MCP algorithms provide us
the lower and upper bounds of important factors: mes-
sage delivery ratio, time redundancy and message re-
dundancy. Our experiments are performed on the Re-
ality Mining dataset provided by the MIT Media Lab
[28]. This dataset contains communication, proximity,
location, and activity information from 100 students at
MIT over the course of the 2004-2005 academic year.
In particular, we take into account the Bluetooth in-
formation to construct the underlying communication
network and evaluate the performance of the above six
routing strategies.

In each experiment, 500 message sending requests are
randomly generated and distributed in different time
points. To control the forwarding process, we use hop-
limit, time-to-live, and mazx-copies parameters. A mes-
sage cannot be forwarded more than hop-limit hops in
the network or exist in the process longer than time-to-
live, otherwise it will be automatically discarded. More-
over, the maximum number of same messages a device
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can forward to the others is restricted by maz-copies.
Experiments results are repeated and results are aver-
aged for consistency.

Our results are presented in Figures 9(a), 9(b), 9(c).
The first observation reveals that our proposed forward-
ing algorithm achieves the lowest number of duplicate
messages as depicted in Figure 9(a), and even far better
than the second best method QC'A. On average, only
46.5 duplicate messages are generated by AFOC'S dur-
ing evaluation process in contrast with 212.2 of QCA,
274.2 of MIEN, 496.4 of LABEL and the huge 1071.0
overhead messages of MCP. Thus, on the number
of duplicate messages, AFOCS strikingly achieves im-
provement factors of 4.5x, bx, 11x and 23x over these
mentioned strategies, respectively. These extremely low
overhead strongly imply the efficiency of AFOCS in
communication networks.

Figures 9(b) and 9(c) present our results on the other
two important factors, the message delivery ratios and
delivery times. These figures supportively indicate that
AFOCS achieves competitive results on both of these
vital factors. In general, AFOCS is the second best
strategy with almost no noticeable different between
itself and the leader method LABFEL. On average,
AFOCS gets 33% of the total messages delivered in
3569.2s and only a little bit lags over MCP (34% in
3465.3s) and LABEL (slightly over 33% in 3462.7s),
and is far better than MIEN (32% in 3537.6s) and
QCA (32% in 3572.2s). This can be explained by the
advantages of knowing the overlapping community struc-
ture: the disjoint network communities in QC A and
MIEN can possibly have messages forwarded to the
wrong communities when the destination changes its
membership. With the ability of quickly updating the
network structure, AFOCS can efficiently cope with
this change and thus, can still provide the most updated
forwarding information.

In summary, AFOCS helps our forwarding strategy
to reduce up to 11x the number of duplicate messages
while keeping good average delivery ratio and time.
These experimental results are highly competitive and
supportively confirm the effectiveness of AFOCS and
our new routing algorithm on communication networks.

8. CONTAINING WORMS USING
OVERLAPPING COMMUNITIES

We show another application of AFOCS in worm
containment problem on OSNs. OSNs are good places
for people to socialize online or to stay in touch with
friends and colleagues. However, when some of the users
are infected with malicious softwares, such as viruses,
worms or false information, OSNs are also fertile grounds
for their rapid propagations. Since mobile devices are
able to access online social applications nowadays, worms
and viruses now can target computers [4] and probably



MIEN MIEN P 5500 FTVIEN
1400 1{ ABEL 045 | ABEL g ABEL

WAIT WAIT o 5000 [ WAIT
1200 || MCP MCP < Eﬂ"‘ff MCP - e

QcA . 04l QCA e e QCA -+

FOCS ---g-- sow FOCS =B o e 4500 FAFOCS =B

cotsane o SOGE
1000 '.,,nﬁ..o” s
a0 035 e 4000 I'HE’
- g
SRR 3500 T s
b i3
600 03 A o7
e 3000
0 vl 8"
025 e 2500 &8~
..... Terieaiee LesEa -
200 - Eﬂ'pi -
02 2000 %"
0
5 10 15 20 25 30 35 4 45 5 10 15 20 25 3 3 4 45 5 10 15 20 25 3 3 4 45
Time-to-live Time-to-live Time-to-live

(a) Average Duplicate Message

(b) Delivery Ratio

(¢) Average Delivery Time

Figure 9: Experimental results on the Reality Mining data set

mobile devices [3].

Recently, community structure-based methods have
been proven to be effective solutions to prevent worms
from spreading out wider on not only social networks
[4, 7] but also cellular networks [3]. Due to the high and
low frequencies of interactions inside and between com-
munities, worms spread out quicker within a community
than between communities. Therefore, an appropriate
reaction should first contain worms into only infected
communities, and then prevent them from getting out-
side. This strategy can be accomplished by patching
the most influential members who are well-connected
not only to members of their community but also to
people in other communities.

In our experiments, we use Facebook network dataset
collected in [29]. This data set contains friendship in-
formation and wall posts among New Orleans regional
network, spanning from Sep 2006 to Jan 2009. The
data set contains more than 63.7K nodes (users) con-
nected by more than 1.5 million friendship links with
an average node degree of 23.5. We keep other parame-
ters as well as the “Koobface” worm propagation model
the same as [7] for comparison convenience. With the
advantages of knowledge overlapping communities, we
are able to develop a better and more efficient patching
scheme. In particular, we enhance the patching scheme
in [7] to take the advantage of the overlaps: nodes in the
boundary of overlapped regions are selected for patch-
ing (Figure 11(a)). Alg 7 details the adjusted scheme.

Algorithm 7 OverCom Patching Scheme

Input: G = (V, E) and C = {C1,Ca, ..., Cy} detected by AFOCS
Output: A set of patched nodes IS.
1: 15 = 0;
2: for C;,C; € C do
if C; NC; # 0 then
IS =15U N(u)
end if
end for
for u € IS do
Send patches to u;
Let u redistribute patches to w € IS\ N (u);
. end for

Yu € C; N Cy;

SOXNRTREW

We compare the OverCom patching scheme and over-
lapping communities found by AFOCS to those using
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disjoint communities proposed by Blondel et al [30],
QC A by Nguyen et al [4] and Clustering based method
suggested by Zhu et al [3]. The number of patched
nodes is shown in Figure 11(b). Both the number of
patched nodes and the infection rates decline remark-
ably. In particular, the number of nodes to send patch
in AFOCS is substantially smaller by half of those re-
quired by Blondel, QC A as well as Zhu's methods:
only 1725 nodes over 63K nodes in the networks are
needed to be patched by OverCom patching scheme,
while the other schemes require nearly twice (>3,300
nodes). The reason behind this improvement is due to
the nature of our AFOC'S framework, the neighbors of
the overlapped nodes should not be to far away from
the center of each community, thus they can easily re-
distribute the patches once received.

We next present the achieved infection rates with
alarming thresholds (the fraction of infected nodes over
all nodes) a = 2%, 10% and 20%, respectively. This
threshold alarms the distribution process as soon as
the infected rate goes beyond «. The results are re-
ported in Figures 10(a), 10(b), 10(c), respectively. In
general, the higher « (i.e. the longer we wait), the more
nodes we have to send patches and the higher infection
rate. OverCom with AFOCS achieves the lowest infec-
tion rates in almost all the experiments and just a little
bit lag behind when o« = 10%. In particular, when
a = 2%, AFOCS helps OverCom to remarkably re-
duce from 1.6x up to 4.3x the infection rates of QCA,
from 2.6x up to 4x the infection rates of Blondel and
3.2x to 7x those of Zhu's method. When o = 10%,
AFOCS + OverCom achieves average improved rates
of 9% over QC A, 5% over Blondel and 43% over Zhu's
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methods. As a = 20%, the average improvements are
12%, 23% and 53%, respectively. Due to the nature
of the event handling processes, the neighbors of over-
lapped nodes are not located far away from the rest
of their communities. As a result, they can help to dis-
tribute patches to more users in the communities, hence
the lower infection rates of AFOCS. These improve-
ment factors, again, confirm the strength and applica-
bility of our adaptive community detection framework
to mobile networks.

9. CONCLUSION

In this paper, we presented AFOCS, a two-phase
framework for detecting network overlapping communi-
ties as well as tracing their evolution in dynamic mo-
bile networks. Analyses show that AFOCS partially
achieves no less than 83% internal density of the opti-
mal community assignment. Experiments on synthesis
and real-world data traces show good results. We show
two mobile applications, namely forwarding and rout-
ing in MANETSs and worm containment on OSNs, in
which AFOC'S significantly helps to increase the per-
formances up to 11x and 7x, respectively. These results
confirm the effectiveness of AFOC'S as well as its ap-
plicability in mobile applications.
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