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Community structure is an important feature of complex networks. Detecting overlapping communities in complex networks is a
hot research topic in data mining and graph theory, aiming at the shortcomings of community detection algorithm based on seed
expansion, such as the instability of community detection results caused by randomly selecting seeds, the similarity of selected
seeds leading to similar communities after different seed expansion, and the increase of calculation caused by deleting nodes in
the process of seed expansion. This paper proposes an overlapping community detection algorithm based on high-quality
subgraph extension in local core regions of the network (OLCRE). First, a novel seed community selection method is designed.
By analyzing the sum of node degrees of the subgraph formed by a node and its neighbor nodes in the local core region of the
network and the tightness of the internal and external connections of the subgraph, a seed community selection function is
proposed. According to this function, high-quality subgraphs are selected from all the local core regions of the network as seed
communities. Then, taking the definition of community as the guideline, a new community expansion strategy is proposed.
Considering the influence of the neighbor node on the inner and outer connection tightness of the seed community
comprehensively, it is determined whether the neighbor node can join the seed community. Finally, after the completion of all
seed community expansion, overlapping nodes and possible missing nodes should be simplified and redetected to further
improve the quality of community detection. The proposed algorithm is tested on the artificial and real-world networks and
compared with several overlapping community detection algorithms. The experimental results verify the effectiveness and
feasibility of the proposed algorithm.

1. Introduction

Many complex systems in the real world can be shown in the
form of complex networks through their connection modes.
Components in the system can be regarded as nodes in the
network, and the connection relations between different
components can be regarded as edges in the network, for
example, the social network [1] that is interconnected
among people and the metabolic network [2] that is con-
nected through chemical reactions. With the further study
of complex networks, it is found that community structure
is the basic statistical characteristic among them. A commu-
nity in a complex network can be understood as a collection
of nodes with similar characteristics, which is usually repre-

sented by close connections between nodes within the same
community, while sparse connections between nodes in dif-
ferent communities. The purpose of community detection
studied in this paper is to reveal the real community struc-
ture in complex networks, which has important theoretical
significance and practical value for the topological structure
analysis and functional analysis of complex networks [3]. At
present, the research achievements of community detection
have been widely applied in the public opinion analysis
and control [4], search engines [5], personalized interest rec-
ommendation [6], and other fields. In addition, in view of
the actual needs of epidemic transmission prevention and
control [7], the community structure, which is between the
macro- and micronetwork characteristics, is taken as the
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entry point, and community detection of social networks is
combined with the epidemic transmission, so as to provide
important information about the transmission risk class of
persons involved in the epidemic for epidemic transmission
prevention and control.

Up to now, many classical complex network community
detection algorithms have been proposed, which can be divided
into two categories according to their community detection
results: nonoverlapping community detection algorithms and
overlapping community detection algorithms. The nonoverlap-
ping community detection algorithm divides the complex net-
work into multiple disjoint communities. However, in real-
world networks, there exist overlapping communities; that is,
a node can belong to multiple communities at the same time.
In a social network, for example, a person may belong to mul-
tiple social circles (family circle, friend circle, and colleague cir-
cle). Therefore, the detection of overlapping communities in
complex networks has more practical value. According to the
different research perspectives, the overlapping community
detection algorithms are mainly divided into algorithms based
on label propagation, algorithms based on cliques, algorithms
based on local extension, algorithms based on edge, algorithms
based on nonnegative matrix factorization, and algorithms
based on spectral clustering.

Algorithms based on label propagation, for example, the
SLPA algorithm [8], firstly initialize labels for nodes in the
network and then carry out label propagation. The storage
space of each node will save all labels received in the process
of label propagation. In order to prevent too many overlap-
ping nodes, the label control threshold is set to determine
which labels will be saved in the storage space of nodes. After
label propagation stops, nodes with the same label are
divided into the same community, and nodes with multiple
labels are considered overlapping nodes. OMKLP algorithm
[9] proposed a new core node evaluation model by analyzing
the node degree and local coverage density of the subgraph
formed by this node and its neighbor nodes and assigned
the same label to the core node and its neighbor nodes to
achieve fast convergence of the algorithm. In the process of
label propagation, each node adopts an asynchronous
update to receive the community label corresponding to
the maximum belonging coefficient of its neighbor nodes.
After label propagation stops, nodes with the same label
are divided into the same community, while nodes with mul-
tiple community labels are overlapping nodes.

Algorithms based on cliques, for example, the CPM
algorithm [10], start from the complete subgraph and detect
the community through the penetration of the complete
subgraph. The nodes belonging to multiple disconnected cli-
ques are overlapping nodes. LOC algorithm [11] firstly finds
out all the cliques in the network and selects the local max-
imum density node as the initial community. Then, the cli-
que participated by the node whose fitness function value
is positive among the neighbor nodes of the initial commu-
nity is added to the community. If the node does not partic-
ipate in the formation of the clique, only the node is added
to the community. Because a node can belong to multiple
cliques and be added into different communities, overlap-
ping community structures can be detected.

Algorithms based on local extension, for example, the
LFM algorithm [12], start from different seed nodes and
expand the community by constantly optimizing the fitness
function value of the community. The nodes that are
extended into multiple communities are overlapping nodes.
The ECES algorithm [13] weights the network graph accord-
ing to the similarity between nodes and then selects the node
with the highest centrality value as the core node and
expands it. This process is repeated in the remaining set of
nodes until there are no nodes left.

Algorithms based on edge, for example, the LC algorithm
[14], use the Jaccard function to calculate edge similarity, con-
struct a hierarchical tree of edge community combined with
the clustering method, and then truncate the hierarchical tree
to obtain edge community by using partition density function.
Since a node can connect multiple edges, overlapping nodes
appear naturally when the community to which the edge
belongs is determined. Finally, the edge community is trans-
formed into a node community to obtain the structure of the
overlapping community. LCDEL algorithm [15] firstly trans-
forms the node graph into the line graph, constructs the adja-
cency matrix of the line graph, calculates the node distance
matrix of the line graph using the NDML metric, and obtains
the featurematrix of the node distancematrix by principal com-
ponent analysis. Finally, clustering on the feature matrix by k
-means clustering algorithm combined with ensemble learning
is performed to obtain the overlapping community structure.

Algorithms based on nonnegative matrix factorization,
for example, the DNMF algorithm [16], directly find the dis-
crete community membership matrix, which can assign
explicit community memberships to nodes without postpro-
cessing. In addition, the pseudosupervision module is added
to DNMF to utilize the identification information in an
unsupervised way, which further enhances its robustness.
The AGNMF-AN algorithm [17] uses an augment attributed
graph to combine both the topological structure and attrib-
uted nodes of the network and introduces an effective frame-
work to update the affinity matrix, in which the weight of the
affinity matrix in each iteration is modified adaptively
instead of using a fixed affinity matrix. In addition, the l2,1
-norm is also used to reduce the impact of random noise
and outliers on the community quality, which greatly
improves the effectiveness of this algorithm.

Algorithms based on spectral clustering, for example, the
SPOC algorithm [18], can extract prior information such as
the likelihood of each node belonging to multiple communi-
ties from available metadata and node centrality measure,
and a hierarchical algorithm is introduced to automatically
detect communities. The ASC algorithm [19] constructs a
new affinity matrix based on both the network structure
and attribute information and does not need to define con-
trol parameters to combine structure and attribute. In addi-
tion, extra nodes and edges are not added to the original
network which makes the algorithm suitable for application
to large-scale networks.

In recent years, local community detection algorithms
based on seed extension can detect communities without
the complete structural information of complex networks
and have high efficiency [20–22] and validity [23–25], so it
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is widely used in the field of community detection. However,
in terms of overlapping community detection, there are still
shortcomings in the quality and stability of community
detection, which are manifested as the instability of commu-
nity detection results caused by randomly selecting seeds,
the similarity of selected seeds leading to similar communi-
ties after different seed expansion, and the increase of calcu-
lation caused by deleting nodes in the process of seed
expansion. In view of the above shortcomings, this paper
proposes an overlapping community detection algorithm
based on high-quality subgraph extension in local core
regions of the network (OLCRE). The major contributions
of this paper are as follows:

(1) A new method of seed community selection is pro-
posed; that is, the subgraphs with tight internal con-
nections and sparse external connections in the local
core regions of the network are selected as seed com-
munities, which conforms to the definition of com-
munity and ensures the high quality of selected
seed communities. Moreover, the selected seed com-
munities by this method are determined, which can
avoid the wobble of the community detection results

(2) A new seed community expansion strategy is pro-
posed, which takes the definition of community as
the guideline. Considering the influence of the neigh-
bor node on the tightness of the internal and external
connections of the seed community comprehensively,
it is to decide whether the neighbor node can join the
seed community, so that the seed community would
expand towards the direction of tight internal connec-
tions and sparse external connections and finally
obtain high-quality community structure

(3) The OLCRE algorithm proposed in this paper does
not need to set any parameters. It can be applied to
networks of different scales and types and has uni-
versal applicability. The experimental results show

that the OLCRE algorithm is effective and feasible,
which is tested on artificial networks and real-
world networks and compared with several overlap-
ping community detection algorithms

2. Basic Concepts and Definitions

A complex network can be modeled as an undirected and
unweighted graph G = ðV , EÞ, where V = ðv1, v2,⋯, vnÞ is a
nonempty finite set of nodes and E = ðe1, e2,⋯, emÞ is a non-
empty finite set of edges. Table 1 lists the notations used in
this paper and gives a brief explanation. The basic concepts
and definitions used in this paper are described below.

Definition 1 (Seed community selection function). The seed
community selection function, denoted by SCSðiÞ, is defined
as follows:

SCS ið Þ = 〠
v∈SG

kv ⋅
∑v1,v2∈SG ev1,v2

�� ��
∑v∈SG,u∉SG ev,u

�� �� , ð1Þ

where SG represents the subgraph formed by node i and
its neighbor nodes and kv represents the degree of node
v. ∣ev1,v2 ∣ = 1 if there is an edge connection between nodes
v1 and v2. Otherwise, ∣ev1,v2 ∣ = 0. Likewise, ∣ev,u ∣ = 1 if
there is an edge connection between nodes v and u. Other-
wise, ∣ev,u ∣ = 0.

The larger the value of SCSðiÞ corresponding to the sub-
graph SG formed by node i and its neighbor nodes, the more
located the subgraph is in the local core region, and the more
tightly connected the subgraph is internally and sparsely
connected to the external region.

Definition 2 (Common neighbor edge). The common neigh-
bor edge of edge ei,j, denoted by CNEðei,jÞ, is defined as
follows:

CNE ei,j
� �

= ei,u, ej,u ∈ E u ∈ adj ið Þ ∩ adj jð Þj� �
, ð2Þ

Table 1: The notations used in this paper.

Notations Meaning

G An undirected and unweighted graph G

V V = v1, v2,⋯, vnð Þ is a nonempty finite set of nodes

E E = e1, e2,⋯, emð Þ is a nonempty finite set of edges

kv The degree of node v

∣ev1,v2 ∣ ∣ev1,v2 ∣ = 1 if there is an edge connection between nodes v1 and v2. Otherwise, ∣ev1,v2 ∣ = 0

SG A subgraph formed by a node and its neighbor nodes

adj ið Þ The set of neighbor nodes of node i

CNE ei,j
� �

The common neighbor edge of ei,j

CT ei,j
� �

The cluster triangle in which edge ei,j participates

n The number of nodes in community C

bv The boundary nodes of community C

∣Cbv ∣ The number of boundary nodes of community C
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where adjðiÞ is the set of neighbor nodes of node i and
adjðjÞ is the set of neighbor nodes of node j.

Definition 3 (Cluster triangle). The cluster triangle in which
edge ei,j participates, denoted by CTðei,jÞ, is defined as
follows:

CT ei,j
� �

= ei,j
� �

∪ CNE ei,j
� �

, ð3Þ

where CTðei,jÞ represents the set of cluster triangles in
which edge ei,j participates.

The more cluster triangles an edge participates in, the
tighter the edge is connected to its neighbor edges. The more
cluster triangles exist in the community, the tighter the con-
nection within the community.

Definition 4 (Node to the community interior influence
function). The node to the community interior influence
function, denoted by I, is defined as follows:

I =
∑ei, j∈Ec′ CT ei,j

� ��� ��
3 nc + 1ð Þ −

∑ei, j∈Ec
CT ei,j

� ��� ��
3nc

, ð4Þ

where Ec is the edge set of community C and, likewise, Ec’ is
the edge set of community C’ formed when a neighbor node
joins community C. ∣CTðei,jÞ ∣ represents the number of
cluster triangles in which edge ei,j participates, and nc repre-
sents the number of nodes in community C.

If the corresponding I value is greater than 0 after a node
joins community C, it indicates that the node joining com-
munity C can improve its internal connection tightness.

Definition 5 (Community boundary nodes). The boundary
nodes of community C, denoted by bv, are defined as
follows:

bv = bv ∈ Vc, u ∉ Vc ∃ebv,u ∈ E
��� �

, ð5Þ

where Vc is the node set of the community C.

Definition 6 (Node to the community exterior influence
function). The node to the community exterior influence
function, denoted by E, is defined as follows:

E =
∑bv∈Vc′ ,u∉Vc′

ebv,u
�� ��

Cbv′
�� �� −

∑bv∈Vc ,u∉Vc
ebv,u
�� ��

Cbvj j , ð6Þ

where Vc is the node set of the community C and, likewise,
Vc’ is the node set of the community C’ formed when a
neighbor node joins community C. ∣C’

bv ∣ represents the
number of boundary nodes of community C’, and ∣Cbv ∣
represents the number of boundary nodes of community
C. ∣ebv,u ∣ = 1 if there is an edge connection between
boundary node bv and node u. Otherwise, ∣ebv,u ∣ = 0.

If the corresponding E value is less than 0 after a node
joins community C, it indicates that the node joins commu-
nity C to make its connections with the outside more sparse.

Definition 7 (Community quality optimization function).
The community quality optimization function, denoted by
M, is defined as follows:

M =
∑v1∈Vc′ ,v2∈Vc′

ev1,v2
�� ��

∑bv∈Vc′ ,u∉Vc′
ebv,u
�� �� −

∑v1∈Vc ,v2∈Vc
ev1,v2
�� ��

∑bv∈Vc ,u∉Vc
ebv,u
�� �� : ð7Þ

The community quality optimization function is used to
simplify overlapping nodes and redetect possible missing
nodes so as to further improve the quality of community
detection results.

3. The OLCRE Algorithm

3.1. General Description of the OLCRE Algorithm. As shown
in Algorithm 1, the OLCRE algorithm firstly traverses the
global network and, according to the seed community selec-
tion function SCS, selects the subgraphs with close internal
connections and sparse external connections from the local
core regions of the network as seed communities. In the seed
community expansion stage, the influence of the neighbor
node on the inner and outer connection tightness of the seed
community is comprehensively considered to determine
whether the neighbor node could join the seed community.
When the corresponding I value and E value of a neighbor
node of the seed community meet the requirements of I >
0 and E < 0, the neighbor node can join the seed community.
Otherwise, it cannot join the seed community. When all
neighbor nodes of a seed community do not meet the expan-
sion strategy, the seed community stops expanding and con-
tinues to expand the rest of the seed communities until all
the seed communities complete expansion. After the expan-
sion of all seed communities is completed, overlapping
nodes and possible missing nodes are simplified and rede-
tected according to the proposed community quality optimi-
zation function, so as to further improve the quality of
community detection. Finally, the output is the overlapping
community structure C. Through the above steps, the over-
lapping community detection of complex networks is
completed.

3.2. Seed Community Selection. Seed selection is a key step of
overlapping community detection algorithm based on seed
expansion, which has an important impact on the results
of community detection. In this paper, a novel seed commu-
nity selection method is proposed. According to the seed
community selection function SCS, subgraphs with close
internal connections and sparse external connections are
selected from local core areas of the network as seed com-
munities, see Algorithm 2 for the specific process.

The seed community selection algorithm first starts from
any node i in the network and calculates the respective SCS
values of node i and its neighbor nodes, respectively. If the
SCS value of node i is not the largest, the search will continue
along the direction of the maximum SCS value. After the
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node with the maximum SCS value is found in a region, the
subgraph formed by this node and its neighbor nodes is
regarded as a seed community. If the node with the maxi-
mum SCS value is not unique, a node is randomly selected.
Then, the search for seed communities continues in unvis-
ited areas of the network until all nodes in the network have
been traversed. Finally, the subgraphs with tight internal
connections and sparse external connections in all local core
regions of the network have been searched and used as seed
communities.

3.3. Seed Community Expansion. In the stage of seed com-
munity expansion, a novel seed community expansion strat-
egy is designed according to the proposed node to the
community interior influence function I and node to the

community exterior influence function E, see Algorithm 3
for the specific process.

The new seed community expansion strategy is as fol-
lows: select any neighbor node i of the seed community
and calculate the corresponding I value and E value of the
node. If IðiÞ > 0 and EðiÞ < 0 are satisfied, the node will be
added to the seed community; otherwise, it cannot be added
to the seed community. When all neighbor nodes of the seed
community do not meet the expansion strategy, the seed
community stops expanding and then continues to expand
the rest of the seed communities until all the seed communi-
ties have completed the expansion.

3.4. Dealing with Overlapping Nodes and Missing Nodes.
After the expansion of all seed communities is completed,

Input : Graph G = (V, E)
Output : Overlapping community structure C
1: C = ∅;
2: According to seed community selection algorithm (Algorithm 2), seed community

set, denoted by Seeds, are selected from network G;
3: Select any seed community, denoted by s, and go to Step 4 if Seeds ≠ ∅. Otherwise,

go to Step 5;
4: Remove s from Seeds, and then expand it into a community structure Cs according to

the seed community extension algorithm (Algorithm 3), and add Cs to C, returning to
Step 3;

5: Simplify and re-detect overlapping nodes and possible missing nodes;
6: Output overlapping community structure C;

Algorithm 1: The OLCRE algorithm.

Input : Graph G = (V, E)
Output : Seed community set Seeds
1: Seeds = ∅;
2: for each i ∈ V do
3: if node i has been accessed then
4: continue;
5: else
6: mark node i as visited;
7: end if
8: max ← the SCS value of node i is calculated;
9: while true do
10: value ← SCS values of all neighbor nodes of node i are calculated, and all

neighbor nodes are marked as visited. The node with the maximum SCS value is
selected. If the node with the maximum SCS value is not unique, a node j with the
maximum SCS value is randomly selected;

11: if max >= value then
12: Seeds ← the subgraph formed by node i and its neighbor nodes serves as a seed

community;
13: break;
14: else
15: max = value;
16: i = j;
17: end if
18: end while
19: end for

Algorithm 2: Seed community selection algorithm.
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if any node is not added to the community, the missing node
will be added to the community with its corresponding max-
imum M value according to the community quality optimi-
zation function M. In addition, in order to prevent the
excessive overlapping phenomenon from affecting the qual-
ity of community detection, it is necessary to simplify the
detected overlapping nodes. The M value of the overlapping
node corresponding to the community where it is located is
calculated, respectively. If the M value is positive, the over-
lapping node is kept in the community where it is located;
if the M value is negative, the overlapping node is removed
from the community where it is located. When the M values
of the overlapping node corresponding to the communities
where it is located are all negative, it will be added to the
community with the corresponding largest M value.

3.5. Time Complexity Analysis. Assume that the number of
nodes in network G is n and the average degree of nodes is
k. The number of seed communities, the number of overlap-
ping nodes, and the number of missing nodes detected by
the OLCRE algorithm are r, o, and l, respectively. Firstly,
high-quality subgraphs are selected from local core areas of
the network as seed communities, whose time complexity
is Oðk2nÞ. After that, the time complexity for all seed com-
munities to complete the extension is Oðk2r + k2nÞ. Finally,
the time complexity of simplifying and redetecting overlap-
ping nodes and missing nodes is Oðkor + klrÞ. To sum up,
the time complexity of the OLCRE algorithm is Oð2k2n +
k2r + kor + klrÞ. Since r, k, l, and o are far less than n, the
time complexity of the OLCRE algorithm is about Oðjk2nÞ,
where j is a constant.

4. Experimental Results and Analysis

4.1. Experimental Data Sets

4.1.1. Artificial Networks. Since the LFR benchmark network
[26] is very similar to the real-world complex network in the
statistical characteristics of node degree and community size
distribution, this paper uses this benchmark network as the

test data set for the proposed algorithm and other compari-
son algorithms. The parameters of the LFR benchmark net-
work are shown in Table 2.

In order to objectively reflect the performance of each
algorithm, four groups of different types of artificial net-
works (see Table 3) are generated by changing the mixing
parameter μ, the number of overlapping nodes On, the num-
ber of memberships of the overlapping nodes Om, and the
number of nodes in the network n by using the LFR toolkit.
They, respectively, are artificial network group N1 with a
gradually fuzzy community structure, artificial network
group N2 with a gradually increasing number of overlapping
nodes, artificial network group N3 with a gradually increas-
ing number of communities to which overlapping nodes
belong, and artificial network group N4 with a gradually
increasing number of nodes.

4.1.2. Real-World Networks. In order to compare the perfor-
mance of each algorithm in detecting network community
structure, seven real-world network data sets of different
sizes and types are used in this paper. They, respectively,
are the Zachary karate club network (Karate for short)
[27], bottlenose dolphin network (Dolphins for short) [27],
books about US politics network (Polbooks for short) [28],

Input : Graph G = (V, E), Seed community set Seeds
Output : Overlapping community set C
1: C = ∅;
2: for each s ∈ Seeds do
3: Cs = s;
4: While true do
5: select any neighbor node i of the seed community Cs;
6: if I(i) > 0 and E(i) < 0 then
7: Cs = Cs ∪ i;
8: end if
9: if all neighbor nodes of seed community Cs do not satisfy I > 0 and E < 0 then
10: break;
11: end if
12: end while
13: C = C ∪ Cs;
14: end for

Algorithm 3: Seed community expansion algorithm.

Table 2: Parameters of LFR benchmark network.

Parameters Meaning

n The number of nodes in the network

k The average degree of nodes

kmax The maximum degree of nodes

μ The mixing parameter

Cmin The number of nodes in the smallest community

Cmax The number of nodes in the biggest community

On The number of overlapping nodes

Om
The number of memberships of the

overlapping nodes
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US election blog network (Polblogs for short) [27], author
collaboration network (Netscience for short) [27], trust net-
work (PGP for short) [29], and friendship network (HR for
short) [30]. The details of the seven real-world networks
are listed in Table 4.

4.2. Evaluation Metrics and Experimental Settings

4.2.1. Evaluation Metrics. Since the community structure of
the artificial network is known, normalized mutual informa-
tion (NMI for short) [12] is used as the evaluation metric of
artificial network community detection results. NMI is used
to measure the similarity between the community structure
detected by the algorithm and the real community structure,
and its value range is [0,1]. The more accurate the commu-
nity structure detected by the algorithm, the larger the corre-
sponding NMI value. The NMI is defined as follows:

NMI =
−2∑CN

x=1∑
CD
y=1Mxy log Mxy ×M

� �
/ Mx⋅ ×M⋅y
� �� �

∑CN
x=1Mx⋅ log Mi⋅/Mð Þ +∑CD

y=1M⋅y log M⋅j/M
� � ,

ð8Þ

where CN is the number of real communities in the artificial
network and CD is the number of communities detected by
the algorithm on the artificial network. The rows of matrix
M correspond to the real community results of the artificial
network, and the columns of matrix M correspond to the
community results detected by the algorithm on the artificial
network. Mxy is the number of overlapping nodes between
the real community x and the community y detected by
the algorithm. Mx· is the sum of elements of M in row x
and M·y is the sum of elements of M in column y.

Since the community structure of the real-world network
is unknown, the extend modularity (EQ for short) [31] is
adopted as the evaluation metric of the community detection
results of the real-world network. EQ is used to measure the
tightness of community connection, and its value range is
[0,1]. A higher EQ value means that the community qual-
ity detected by the algorithm is better. The EQ is defined
as follows:

EQ =
1
2m

〠
c

z=1
〠
i,j∈Cz

1
OiOj

Aij −
kikj
2m

� �
, ð9Þ

where m is the number of edges in the network. c is the
number of communities detected by the algorithm in the
real-world network. Oi is the number of communities to
which node i belongs, and ki is the degree of node i. Aij

is an adjacency matrix element of the network. Aij = 1 if
there is an edge connection between nodes i and j. Other-
wise, Aij = 0.

4.2.2. Experimental Settings. The OLCRE algorithm is tested
on artificial network data sets and real-world network data
sets and compared with overlapping community detection
algorithms DNMF [16], CoEuS [32], MULTICOM [33],
and APAL [34] to verify the effectiveness and feasibility of
the OLCRE algorithm. The experimental running environ-
ment is a computer equipped with an Intel Core i9-11900K
3.50GHz processor, 32GB memory, and Windows 10 oper-
ating system. The algorithm proposed in this paper is pro-
grammed by MATLAB R2021a, and the source code has
been publicly shared and is available at https://github.com/
GitZhaoY/OLCRE.git.

Table 5 lists the year, programming language, and time
complexity of each comparison algorithm, where m repre-
sents the number of edges in the network, n represents the
number of nodes in the network, s represents the number
of seeds, h represents the number of nodes within the seed
community, c represents the number of communities, and
t represents the number of iterations. From the data listed
in Table 5, it can be seen that both the CoEuS algorithm
and the MULTICOM algorithm have linear time complex-
ity, which is on the same order of magnitude as the time
complexity of the OLCRE algorithm proposed in this paper.
The time complexity of the DNMF algorithm is Oðn2Þ order
of magnitude, which is significantly higher than that of the
OLCRE algorithm. The time complexity of the APAL algo-
rithm is Oðm3/n2Þ, which indicates that it has good operat-
ing efficiency on sparse networks and is not suitable for
dense networks.

4.3. Experimental Results on Artificial Networks. Figures 1–3
and Table 6, respectively, show the comparison results of the
evaluation metric NMI obtained by each algorithm running

Table 3: Parameter settings of the LFR benchmark networks.

Network n k kmax Cmin Cmax On Om μ

N1 2000 20 40 20 100 200 2 0.1~0.4
N2 2000 20 40 20 100 400~1000 2 0.1

N3 2000 20 40 20 100 50 3~6 0.1

N4 500~100000 20 40 20 100 n/10 2 0.1

Table 4: The information of the seven real-world networks.

Network Number of nodes Number of edges Average degree

Karate 34 78 4.59

Dolphins 62 159 5.13

Polbooks 105 441 8.4

Polblogs 1490 19022 25.53

Netscience 1588 2742 3.45

PGP 10680 24316 4.55

HR 54573 498202 18.26
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on four groups of different types of artificial networks. In the
network group N1, with the increase of μ value, that is, the
network community structure is gradually blurred, the com-
munity detection accuracy of each algorithm decreases, but
the community detection accuracy of the OLCRE algorithm
is better than that of each comparison algorithm under dif-
ferent μ values. In the network group N2 with a gradually
increasing number of overlapping nodes and the network
group N3 with a gradually increasing number of communi-
ties to which overlapping nodes belong, the community
detection accuracy of the OLCRE algorithm is better than
that of each comparison algorithm. From the experimental
data listed in Table 6 (“\\” means that the algorithm failed
to detect communities in this experimental running environ-
ment), it can be seen that the community detection accuracy
of the OLCRE algorithm is relatively stable and better than
that of each comparison algorithm in the network group
N4 with gradually increasing number of nodes.

According to the above experimental results, it is shown
that the seed community selection method and community
expansion strategy of the OLCRE algorithm proposed in this
paper are effective and can be applied to networks of differ-
ent scales and types.

4.4. Experimental Results on Real-World Networks. Table 7
lists the results of EQ values obtained by the OLCRE algo-
rithm and other four overlapping community detection
algorithms running on seven real-world network data sets

(“\\” means that the algorithm failed to detect communities
in this experimental running environment). As can be seen
from the experimental results listed in Table 7, the EQ values
obtained by the OLCRE algorithm on the Dolphins network,
Polbooks network, Polblogs network, Netscience network,
PGP network, and HR network are all higher than those
obtained by each comparison algorithm. The EQ value
obtained by the OLCRE algorithm only on the Karate net-
work is slightly lower than that obtained by the DNMF
algorithm.

The reason why the OLCRE algorithm does not obtain
the maximum EQ value on the Karate network is analyzed
below. Figures 4 and 5, respectively, show the community
detection results of the OLCRE algorithm and the DNMF
algorithm on the Karate network. It can be seen from the
comparative analysis of Figures 4 and 5 that the DNMF
algorithm does not detect overlapping nodes in the Karate

Table 5: The introduction of the comparison algorithms.

Algorithm Year Language Time complexity

CoEuS 2017 Java O shmð Þ
MULTICOM 2018 Python O cnð Þ
DNMF 2019 MATLAB O tcn2 + tc2n

� �
APAL 2021 Python O m3/n2

� �

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

N
M
I

APAL
MULTICOM
DNMF

CoEuS
OLCRE

𝜇

Figure 1: The comparison results of NMI values obtained by each
algorithm on the network group N1 with a gradually fuzzy
community structure.
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Figure 2: The comparison results of NMI values obtained by each
algorithm on the artificial network group N2 with a gradually
increasing number of overlapping nodes.
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Figure 3: The comparison results of NMI values obtained by each
algorithm on the artificial network group N3 with a gradually
increasing number of communities to which overlapping nodes belong.
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network, while the OLCRE algorithm detects node 3 as the
overlapping node, which loses some connection tightness.
Therefore, the EQ value obtained by the OLCRE algorithm
is slightly lower than that obtained by the DNMF algorithm.

5. Conclusions

The OLCRE algorithm proposed in this paper firstly selects
high-quality subgraphs from all local core regions of the net-
work as seed communities according to the proposed seed
community selection function. Then, the seed communities
are expanded in turn according to the proposed expansion
strategy. Finally, after the completion of all seed community

expansion, overlapping nodes and possible missing nodes
should be simplified and redetected to further improve the
quality of community detection. In this paper, four groups
of artificial networks with different types and scales are
designed and compared with several overlapping commu-
nity algorithms. The community detection accuracy of the
OLCRE algorithm on these four groups of artificial networks
is better than that of each comparison algorithm. In the
experiments on seven real-world networks, the OLCRE algo-
rithm only fails to obtain the maximum value of EQ on the
Karate network, and the results on the other six real-world
networks are all higher than those of the comparison algo-
rithms. In conclusion, the experimental results verify that

Table 6: The comparison results of NMI values obtained by each algorithm on the artificial network group N4 with a gradually increasing
number of nodes.

NMI n = 500 n = 5000 n = 50000 n = 100000
OLCRE 0.8234 0.8142 0.8238 0.8266

CoEuS 0.6672 0.7487 0.7147 0.0080

MULTICOM 0.5618 0.4384 0.4278 0.4680

DNMF 0.7376 0.7700 \\ \\

APAL 0.5871 0.7126 0.6535 0.6524

Table 7: The comparison results of EQ values obtained by each algorithm on the real-world networks.

EQ OLCRE CoEuS MULTICOM DNMF APAL

Karate 0.3678 0.2275 0.1038 0.3715 0.2698

Dolphins 0.4905 0.3249 0.3252 0.4804 0.2938

Polbooks 0.4569 0.3686 0.4304 0.4451 0.3395

Polblogs 0.4206 0.0707 0.0795 0.3438 0.0050

Netscience 0.9177 0.1506 0.1480 0.8092 0.7905

PGP 0.6466 0.5077 0.1432 0.5664 0.3307

HR 0.4078 0.0020 0.0060 \\ 0.0340
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Figure 4: The community detection result of the OLCRE algorithm on the Karate network.

13

5 2211

114 6

12

2723

10
3126

30

24
34

173

188

7

4

20

2

16

32

921
29

15
28

25

19 33

Figure 5: The community detection result of the DNMF algorithm on the Karate network.
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the OLCRE algorithm is effective and feasible. In addition,
the OLCRE algorithm does not need to set any parameters
and only needs to master the basic network information
(nodes and edges) to complete the detection of overlapping
communities. It can be applied to networks of different
scales and types and has universal application.

Data Availability
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