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Abstract— Finding decompositions of a graph into a family
of clusters is crucial to understanding its underlying struc-
ture. While most existing approaches focus on partitioning the
nodes, real-world datasets suggest the presence of overlapping
communities. We present OCA, a novel algorithm to detect
overlapped communities in large data graphs. It outperforms
previous proposals in terms of execution time, and efficiently
handles large graphs containing more than 10

8 nodes and edges.

I. INTRODUCTION AND PRIOR WORK

As the importance and use of social networks increases at

an ever faster pace, the need to understand and analyze their

structure becomes more and more pressing. Given their mod-

elization as huge graphs that can contain billions of entities,

studying the structure of these graphs is key to understanding

the properties of the networks. In particular, many applications

need to comprehend the underlying community structure of

the graph to infer its topology and the relation between its

elements, cf. [3], [4], [6], [14].

The presence of nodes belonging to several communities

arises naturally from real data [5], [12]: a person probably

belongs to the communities representing his group of friends,

job partners, family, etc. However, most of the proposals

from the graph clustering literature do not admit overlapping

communities [2], [6], [7], [11], [13], [14], [15].

The first attempts to unveil the overlapping community

structure of a graph appear in [8], [12]. The algorithm CFinder

is presented in [12]. It is based on retrieving all cliques of the

graph; however, this operation turns out to be prohibitive for

large graphs. A more efficient algorithm is [8], which finds

communities by maximizing a certain fitness function. We

refer to it using the initials of the authors, LFK.

In this short paper we present a novel algorithm to find

the overlapping communities in graphs, OCA. It is based

on the optimization of a new fitness function for evaluating

the quality of a community. The theoretical background used

to deduce the function can be found in Section II, and

the function itself is described in Section III. Section IV

outlines our algorithm OCA. Section V contains the results of

executing OCA on several different large graphs containing up

to 108 nodes and edges (graph extracted from the Wikipedia),

as well as a comparison in terms of quality and execution

time to the most relevant algorithms presented in the literature.

Finally, Section VI sketches some future directions.

II. THE VECTORIAL SEARCH SPACE

The search space of communities considered by our algo-

rithm consists of all subsets of nodes of a simple undirected

graph G = (V,E) on n nodes. We envisage all these subgraphs

as elements in a high-dimensional vector space R
d, because

this helps us to intuitively deduce a natural function ϕ to find

communities. More precisely, we map each node v of G to a

vector v ∈ R
d (using the same letter to denote both), and a

subset of nodes to the sum of its corresponding vectors. We

must emphasize that we never explicitly construct neither these

vectors nor their sums: the prohibitive amount of memory this

would consume would prevent us from managing large graphs.

Lovász [10] in 1979 suggested the following way to repre-

sent graphs in a vector space.

Definition 1: A collection V = {v1, . . . , vn} of unit vectors

in some real vector space is a virtual vector representation

of G if there exists 0 ≤ c < 1, such that 〈vi, vj〉 = c whenever

{i, j} ∈ E, and 〈vi, vj〉 = 0 whenever {i, j} /∈ E.

Definition 2: The search space Γ associated to V is the

graph with one vertex for each nonempty subset S ⊆ V
(identified with the corresponding sum vector

∑

i∈S vi), and

edges between subsets that differ in only one element.

Because Γ is so large (2n − 1 nodes), it would not be

reasonable to generate it explicitly. Instead, we use it as a

tool to formalize the process of maximizing a fitness function

to find communities.

Example 1: Figure 1 shows the virtual vector representation

of a graph. Since y and z are connected, but x and t are not,

the angle ∠(y, z) between y and z is smaller than ∠(x, t) = π
2

,

so y + z is longer (further away from 0) than x + t. ⋄
This example suggests the squared Euclidean length,

ϕ(S) =
∥

∥

∑

i∈S vi

∥

∥

2
,
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Fig. 1. A graph and its virtual vector representation, together with the search
space Γ formed by all sum vectors.

as a first candidate for a fitness function for the maximization.

The following example reinforces this idea.

Example 2: If V is a virtual vector representation of G and

S an independent subset of size k (meaning that two nodes

in S are never connected by any edge), then ϕ(S) = k. On

the other hand, the sum vector corresponding to a complete

subgraph Kk can be seen to have squared length

ck2 + (1 − c)k = Θ(k2).

This different behavior becomes more striking as c grows. ⋄
This leads us to expect that the best-connected subsets will

be maxima of this function. But that is not true, because ϕ
always grows when the subset increases. So there exists only

one maximum, the entire graph G (just as Figure 1 suggests).

On the other hand, Example 2 shows us that larger values

of c make it easier to distinguish communities. Therefore, we

are interested in the largest possible value of c compatible

with G. It can be shown that this largest admissible value

is c = −1/λmin, with λmin the most negative eigenvalue of

the adjacency matrix A of G. This value can be efficiently

calculated using the well-known power method.

III. THE DIRECTED LAPLACIAN

We turn Γ into Γ↑ by orienting each edge in Γ toward the

node representing the largest subset. For example, in Figure 1

all edges point from left to right.

Our definitive fitness function is based on the variation of

the previous function ϕ over the graph Γ. To measure this,

we introduce a notion of derivative in a graph through a new

operator, the directed Laplacian.

This operator is based on the classical Laplacian from graph

theory, see for example [1]. While the classical Laplacian is

strongly related to a second order derivative, our new approach

uses first order derivatives to model the increment of ϕ.

Definition 3: The value at v of the directed Laplacian of a

function f on the directed graph Γ↑ is

LΓ↑,f (v) = f(v) −
∑

u:u→v

f(u)
√

indeg(v) indeg(u)
.

It evaluates the differences between the value of f on a node

and its incoming neighbors. Setting f = ‖ · ‖2 and s = |S|,
the directed Laplacian L := LΓ↑,ϕ(S) evaluates to

L = s −
√

s(s − 1) + 2cEin(S)

(

1 −
s − 2

√

s(s − 1)

)

,

where Ein(S) counts the edges in G with both ends in S.

IV. THE ALGORITHM

The Overlapping Community Search, OCA, is the algorithm

we propose to retrieve the communities of the graph, i.e. the

local optima of the fitness function.

OCA has been devised to find each community indepen-

dently, so it repeatedly uses the same procedure to obtain

different communities from different randomly distributed

initial seeds.

In particular, it starts with a random neighborhood of the

seed. Then it greedily adds (removes) the node whose addition

(removal) to the set implies the greatest increment of the

fitness function L. When we cannot add nor remove any node

without worsening its fitness, we have found a local maximum,

and thus a community.

This procedure is then repeated until a halting criterion is

met. The fact that we accept community structures where not

all nodes belong to a community (so just the most relevant

nodes are included in a community) makes it important to

design a non-trivial halting criterion. However, the discussion

of the halting criterion is outside the scope of this paper, as

well as the selection of the initial set.

An issue we have encountered when applying OCA is the

frequent apparition of communities that are “too similar”,

i.e. that differ in very few nodes. To avoid this situation we

postprocess the results by merging these communities.

Apart from that, in some cases we may need to include all

nodes into at least one community. In these situations, we just

assign each “orphan node” to the community to which most

of its neighbors belong.

V. RESULTS

In this section, we present the results of several experiments

that we have run to test two different aspects of our proposal:

quality of results and execution time. Moreover, we compare

our results with the most efficient proposals for overlapping

community search [8], [12]. Table I shows the tested datasets.

TABLE I

DATASETS ANALYZED BY OCA

Name # nodes # edges

LFR-benchmark 10
4–10

6
∼ 10

5–10
7

Daisy 10
5

∼ 4 · 10
5

Wikipedia 16 986 429 176 454 501

◮ LFR-benchmark: The authors of [9] present a new bench-

mark for community detection without overlapping. We

use it since we know which communities are to be

found, something that is not clear in real networks. The

generation of these graphs depends on various parameters

which we set to default values. For example, the mixing

parameter µ determines how many edges each node

shares with nodes from other communities, and thus the

overall sharpness of the community structure.

993

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on June 21,2010 at 16:57:05 UTC from IEEE Xplore.  Restrictions apply. 



◮ Daisy trees: We propose these overlapped graphs because,

to our knowledge, there exists no benchmark allowing

overlapping in the literature. These graphs are composed

of several daisy flowers (called in this way due to their

shape, Figure 4), joined by their petals to form a tree.

A daisy defined by parameters p, q, n ∈ N and α, β ∈
[0, 1] has vertices indexed by {0, . . . , n − 1}, distributed

into p − 1 petals and a core. The vertices of the i-th
petal, for 1 ≤ i ≤ p − 1, are those whose indices are

congruent to i mod p, while the set of vertices in the core

is {v : v = 0 mod p} ∪ {v : v = 0 mod q}. Notice that

each vertex whose index v satisfies both v 6= 0 mod p
and v = 0 mod q lies in both a petal and the core. To

create the daisy graph, add each edge in the petals or the

core with probability α, respectively β. Finally, a daisy

tree with parameters k ∈ N and γ ∈ [0, 1] is grown

from an initial daisy by executing the following procedure

k times: Generate a new daisy, and attach it to a random

daisy already in the tree by randomly selecting two petals,

and adding edges between them with probability γ.

◮ Wikipedia: We test our algorithm on a real dataset.

Wikipedia articles (nodes) have links (edges) to their

translation or other related articles.

The experiments are performed on a single processor at 2.83

GHz. The operating system is Linux (kernel version 2.6.26).

Graphs are managed with C++ structures created ad hoc for

this problem. Of all the experiments we ran, the most memory-

consuming ones were those using the Wikipedia graph, requir-

ing around 2.5 Gb of RAM. Therefore, all the experiments

presented can be run on a regular personal computer.

A. Quality Analysis

To test the quality of the communities found by OCA,

we use the generated graphs whose communities we know

beforehand: the LFR-benchmarks and Daisy Trees. To test the

difference between the real and found community structures,

we define the similarity ρ between communities C and D as

ρ(C, D) = 1 −
|C \ D| + |D \ C|

|C ∪ D|
. (V.1)

Using ρ, we can compare two community structures F =
{F1, . . . , Fℓ} and O = {O1, . . . , Om} as follows. Denote

by Vi = {Oj | argmaxk ρ(Fk, Oj) = i} the subset of

communities of O that fit better with Fi than with the other Fk.

The suitability of the observed community structure O with

respect to the real structure F is

Θ(F,O) =
1

ℓ

ℓ
∑

i=1

1

|Vi|

∑

Oj∈Vi

ρ(Fi, Oj). (V.2)

The function Θ takes values between 0 and 1, where 1
implies exactly the same community structure, and 0 indicates

a totally different one. Note that this function is defined even

for overlapping structures.

In the following example we analyze the behavior of Θ
against the mixing parameter µ with different algorithms to

search for overlapping communities. The LFR-benchmarks set

the value of µ between 0 and 0.5 if a community structure is

wanted. Above 0.5, there are no clear communities, and µ ≥ 1
yields a completely random graph.

We test the algorithms OCA, LFK and CFinder [8], [12].

We used the standard parameter α = 1 in LFK. In CFinder the

value of the parameter k that yielded the best results is k = 3,

and it is the one we used. As our postprocessing techniques,

presented in Section IV, also improve the quality of the other

algorithms, we applied them to all the results.
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 mixing parameterμ
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)
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Fig. 2. Evolution of Θ against µ.

Figure 2 shows that OCA finds almost exactly the com-

munity structure for µ ≤ 0.5, and is reliable for µ ≤ 0.7.

With LFK we obtain similar measures, while with CFinder the

community retrieval does not reach the same level of accuracy.

As the previous benchmarks do not produce overlapping

communities, we will now test the algorithms against the

Daisy Tree benchmarks with different graph sizes. In Figure 3

we can see the values of Θ(D,O), cf. (V.2), where D is

the daisy community structure. We can observe that both

LFK and CFinder perform worse than OCA for overlapping

communities.
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1
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CFinder
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Daisy Tree size

(D
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θ

Fig. 3. Θ of daisy community structure with different sizes

To understand these results, in Figure 4 we show the

common communities each of the algorithms finds (we say

common because their creation involves certain randomness,

so the communities are not always the same).

B. Execution Time Analysis

A second aspect we want to study is the performance

of the different algorithms. First, we test the scalability of

the algorithms against LFR-datasets created with the same

parameters and different sizes.

Figure 5 shows a comparison of the running times of the

three algorithms using the LFR-benchmark. For the algorithms

we use the standard parameters, and we do not run any

post-processing. We have chosen the parameters specified in

the caption in order to generate graphs with cliques of a

994

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on June 21,2010 at 16:57:05 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. Typical communities found in the daisy graph. Left: OCA and
CFinder, Right: LFK
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Fig. 5. Execution time of a graph generated with LFR-benchmark with
av.deg.=50, max.deg.=150, min.com.size=500 and max.com.size=700

moderate size, since CFinder needs to find cliques to start

its community search, and does not support giant cliques.

Nevertheless, CFinder is prohibitively slow even taking into

account these observations, so we discard it for experiments

on larger graphs.

Another advantage of OCA as compared to other proposals

is its support of big communities. To prove this claim, we

performed the following experiment. We created a series of

LFR-benchmark graphs whose communities had sizes in the

intervals [k, k+50] for different values of k. Figure 6 shows the

results for OCA and LFK. CFinder was not able to perform

these experiments in a reasonable time.
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Fig. 6. Execution times of OCA and LFK on graphs generated
with LFR-benchmark with av.deg.=50, max.deg.=150, min.com.size=k and
max.com.size=k + 50

Finally, we ran OCA on the Wikipedia dataset, and found

all relevant communities in less than 3.25 hours.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a novel way of finding communities

that it is not only efficient for handling large graphs, but also

takes into account the fact that nodes in a graph might belong

to several communities at the same time. For this, we have

introduced a mapping from graphs to vector spaces, which is a

pioneering technique for community search. Our results show

that OCA is better able to find the overlapping community

structure of graphs. We also show that OCA substantially

improves the execution time of existing proposals, making it

suitable for large networks.

Future work will involve performing the complexity analysis

on OCA to rigorously predict the time each execution will

take. Moreover, now that the communities are identified,

we will explore the hierarchies and relations among them.

Finally, this work enables us to pioneer neighboring areas,

such as graph summarization for graphs containing overlapped

communities.
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