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Abstract—This paper explores the computation and commu-
nication overlap capabilities enabled by the new CORE-Direct
hardware capabilities introduced in the InfiniBand (IB) Host
Channel Adapter (HCA) ConnectX-2. These capabilities enable
the progression and completion of data-dependent communi-
cations sequences to progress and complete at the network
level without any Central Processing Unit (CPU) involvement.
We use the latency dominated nonblocking barrier algorithm
in this study, and find that at 64 process count, a contiguous
time slot of about 80 percent of the nonblocking barrier time
is available for computation. This time slot increases as the
number of processes participating increases. In contrast, CPU
based implementations provide a time slot of up to 30 percent of
the nonblocking barrier time. This bodes well for the scalability
of simulations employing offloaded collective operations. These
capabilities can be used to reduce the effects of system noise,
and when using nonblocking collective operations have the
potential to hide the effects of application load imbalance.

Keywords-InfiniBand; CORE-Direct; Offload; Barrier;

I. INTRODUCTION

CPU clock speeds have remained essentially constant over

the last several years. To keep up with the performance

boosts expected as a result of the realization of Moore’s

law, the number of CPU cores used in high-end systems

is rapidly increasing. System size on the Top500 list [1]

has changed rapidly, and in November 2009 the top ten

systems averaged 134,893 cores, with five systems larger

than 100, 000 cores. This rapid increase in core count, and

the associated increase in the number of compute threads

used in a single job increases the urgency of dealing with

system characteristics that impede application scalability.

Scientific simulation codes frequently use collective com-

munications such as broadcasts, and data reductions. The

ordered communication patterns used by high performance

implementation of collective algorithms present an appli-

cation scalability challenge. This impediment is further

magnified by application load imbalance and system activity,

or system noise [2], [3], delaying the collective operations.

CORE-Direct functionality, recently added to the Infini-

Band ConnectX-2 HCAs by Mellanox Technologies [4],

provides hardware support for offloading a sequence of

data-dependent communications to the network. Once this

sequence of operations is provided to the HCA it is pro-

gressed and completed with no CPU involvement, making

the CPU available for computation. This functionality is

well suited for supporting asynchronous Message Passing

Interface (MPI) [5] collective operations. It provides hard-

ware support for overlapping collective communications

with application computation, which can be used to improve

application scalability.

This paper briefly describes the InfiniBand CORE-Direct

capabilities, and it is the first to demonstrate how these may

be used for overlapping communication with computation.

This paper demonstrates how to use the general purpose

support for HCA based communication scheduling to im-

plement scalable blocking and nonblocking asynchronous

Barrier operations. These are fully progressed at the network

level without any CPU involvement. The potential for over-

lapping nonblocking barrier algorithms with computation is

examined.

II. RELATED WORK

Work to delegate communication management, both

point-to-point and collective, to processing units other than

the main CPU has already been done. A number of studies

explored the benefits of HCA-based collective operations,

including those described in references [6], [7], [8], [9], [10],

[11]. Several analyses of HCA-based broadcast algorithms

are available in references [6], [7], [9]. Generally, these

all tend to use HCA-based packet forwarding as a means

of improving performance of the broadcast operation. Some



of the benefits of offloading barrier, reduce and broadcast

operations to the HCA are described in References [8], [12],

[10], and [9]. These show that barrier and reduce operations

can benefit from reduced host involvement, efficient com-

munication processing, and better tolerance to process skew.

Keeping the data transfer paths relatively short in multi-stage

communication patterns is appealing, as it offers a favorable

payback for moving this work to the network. Even though

much research has been done in this area, many problems

are still to be solved. As such, these techniques have not

gained wide acceptance.

Others studies have shown that the CPU may be used in

support of asynchronous collective operation progress. San-

cho et. al [13] have dedicated several CPU’s to processing

collective communications to improve their performance and

scalability. Hoefler et. al [14], [15] have implemented non-

blocking collectives, and investigated ways to minimize CPU

overhead for progressing these collectives. Our approach

for supporting both blocking and non-blocking collective

operations is aimed at avoiding CPU involvement altogether

in progressing these operations.

Amongst all the previous HCA-based collective imple-

mentations, only the efforts from Quadrics [16] for Elan 3/4

and IBM [17] for blue gene/P have been widely used. In this

work, we study the benefits of collective offload in another

popular interconnect technology, InfiniBand.

III. AN OVERVIEW OF INFINIBAND

A detailed description of the CORE-Direct support and

how this is used to implement support for MPI collective

operations in Open MPI [18] is described elsewhere [19].

In this section we provide a brief description of these, as

well as very recent enhancements to the MPI support.

The InfiniBand Architecture (IBA) [20] defines a commu-

nication architecture from the switch-based network fabric to

transport layer communication interface for inter-processor

communication. Processing nodes are connected as end-

nodes to the fabric by Host Channel Adapters (HCAs). Fig. 1

illustrates the IBA specification of the IB support for the

Reliable Connection (RC) transport type. With RC, reliable

data transfer is implemented by the HCA hardware. Two

processes communicate through a pair of IB queues that

are created on the HCAs. This pair of send/receive queues

is also referred to as a Queue Pair (QP). A communication

operation is initiated by posting send, receive, read, write, or

atomic Work Queue Elements (WQE) to the QP. Completion

of a WQE results in a Completion Queue Event (CQE) being

posted to a completion queue. The consumer obtains this

event by polling the completion queue. Multiple QP’s may

share a Completion Queue (CQ). Remote Direct Memory

Access (RDMA) write operations generate remote CQEs

only if used with Immediate Data.

The general purpose CORE-Direct functionality intro-

duced in ConnectX-2 aims to improve application scalability

Figure 1. Standard InfiniBand Communication Stack.
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Send Recv

QP

Send Recv
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Send CQ
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Mangement Queue
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Figure 2. Queue structure, for a group with three communicating
processes, used to implement the MPI Collectives on a per communicator
basis.

by moving the management of chained network operations

to the network card, with CPU involvement in collective

operations limited to initiation and completion phases. HCA

management of these operations allows for the possibility of

overlapping computation and communication, thus reducing

job execution time. This may also reduce the performance

degradation of process skew when using nonblocking collec-

tive operations and the impact of system noise on collective

operations, which tends to increase parallel applications job

time when using such operations. To accomplish this new

proc 0 proc 1 proc 2 proc 3

Exchange Exchange Exchange Exchange
with 1 with 0 with 3 with 2

Exchange Exchange Exchange Exchange
with 2 with 3 with 0 with 1

Table I
COMMUNICATION PATTERN FOR A FOUR PROCESS RECURSIVE

DOUBLING BARRIER



hardware support for wait network tasks, Multiple Work

Requests (MWR), and Management Queues (MQ’s) are

introduced. The following sub-section will describe this new

support, and how it is used to implement MPI collective

operations.

A. New Hardware Capabilities

The IBA defines several communication tasks, these in-

clude send, receive, read, write, and atomic tasks. CORE-

Direct adds hardware support for cross QP synchronization

operations - wait, send enable, and receive enable. Wait

takes as argument a completion queue and the number of

completion tasks to wait for, and can be used to order com-

munications taking place using different QP’s. Information

about completed tasks consumed by a wait task may not

be obtained from a completion queue, and must be inferred

from QP completion ordering. For receive completion, this

implies that the (MPI) library must keep track of the pre-

posted receives, and use a counter to track completions to

map a given completion to the appropriate pre-posted receive

buffer. For example, if the HCA polls the CQ linked to

the receive QP associated with rank X for n wait task

completions, on completion, the next n buffers pre-posted

to the receive queue will contain the data received by each

receive. IB’s ordered delivery guarantee makes it possible

to identify the arriving data correctly. If a single completion

queue was used for more than a single receive queue, there

would be no way to correctly identify the source of the

arriving data, and would not be able to correctly identify

this data.

The Multiple Work Request is a list of InfiniBand com-

munication tasks which the driver posts, in order, to the

queues specified by the individual work requests. These tasks

include the send, receive, 0-byte RDMA write and wait

tasks. An MWR completion entry is posted after the task

that is marked with the flag MQE WR FLAG SIGNAL

is processed by the HCA. In our implementation of MPI

collective algorithms we mark the last task with the

MQE WR FLAG SIGNAL flag. The MWR may be used

to chain a series of network tasks, and, once posted, the

HCAs progress the communication, without using the CPU.

The Management Queue is a queue that is set up to handle

Multiple Work Requests. The MQ has both a software

handle which the driver uses for processing the MWR, and a

hardware management queue (HW-MQ). This HW-MQ is no

different than other queues, but serves a coordination role in

the context of the MQ construct. When an MQ is created,

a completion queue is also created, forcing a one-to-one

mapping of MQ to MQ Completion queue, with the current

implementation not allowing a single MQ completion queue

to service multiple MQs. To help understand what happens

when an MWR is posted to an MQ, refer to Figure 2, which

shows the queue structure we have used to implement the

MPI collective operations. When an MWR is posted to the

MQ, the driver posts the individual work requests in-order to

the specified QP’s with no interleaving of individual tasks

from different MWR’s. Specifically, wait tasks are posted

either to the QP specified in the task, or if a NULL queue

is specified, the wait task is posted to the HW-MQ (labeled

Management Queue in Figure 2). The send/receive tasks are

posted to the specified QP. The driver will also generate

additional tasks, based on the structure of the user’s MWR.

When a send/receive task in the MWR follows a wait task

that is posted to the HW-MQ the send/receive task is posted

to the specified QP, but is not enabled for send/receive, and

it cannot be processed by the HCA until it is enabled. In

addition, a send/receive-enable task is posted to the HW-

MQ after the wait task, which will cause the corresponding

send/receive task to be enabled after the wait task completes.

IV. MPI COLLECTIVE DESIGN

The new Management-Queue, Multiple Work Request,

and the wait tasks are used with the pre-existing IB function-

ality to implement offloaded, asynchronous collective oper-

ations. The queue structure used is displayed in Figure 2.

While the current design is aimed at an MPI implementation,

a virtually identical design can be used to implement collec-

tive operations supported by other communication systems.

Collective communications are managed on a per-

communicator basis, to ensure independent progress. Each

rank in the communicator uses a single MQ and a RC-QP

for each other rank with which it communicates. Receive

completion is handled by the wait task, with no user-level

access to the receive CQ. The library tracks the receive

buffers posted to each QP to retrieve the data for subsequent

send tasks. Shared receive queues are not used so that the

data source can be identified, without the benefit of CQE.

Send tasks are completed asynchronously, out of the critical

path using a single send completion queue.

Allocating a set of queues, QPs and MQs per communi-

cator is necessary to provide independent progress between

communicators and to properly identify arriving data. The

need for per communicator resources in conjunction with the

limited on-die resources and caches impacts performance

when the number of communicators using the HCA be-

comes large. However, the ability to offload the progression

of collective operations becomes more important as the

number of processes participating increases, thus rendering

this potential performance degradation relative to the same

collective algorithm managed by a CPU less of a problem.

The added benefits of being able to overlap computation with

communication, allowing the application to make progress

on both fronts at the same time seems beneficial in many

circumstances, including the many communicator scenario.

As suggested in the previous paragraph, keeping the QP

footprint as small as possible is important for maintaining

high-performance as the scale of the collective operations

increases. We keep the number of queue pairs down by



communicating only with a log2 number of ranks in the

barrier algorithm. We have also demonstrated [21] that

we can use the same set of connections for the rooted

MPI Broadcast() algorithm with a log2 scaling algorithm,

for any root in the communicator.

MPI collective operations are implemented using an in-

terdependent sequence of network operations executed by

each process in the communicator. Each process partici-

pating in a given collective operation executes a different

sequence of network operations, with reduction operations

also manipulating the data being transferred. These local

communication patterns determine the MWR task list used

by each process in the communicator. MWR completion is

used to determine MPI-level completion. To avoid Receiver-

Not-Ready Negative Acknowledgements (RNR-NACK) and

the associated retransmission delays we pre-post receive

WQE’s, and keep track of the receive buffers associated

with the WQE, for use by subsequent send tasks. When

the MPI application can reuse its send buffer immediately

upon return from the call initiating the collective operation,

we do not include send completion wait tasks in the MWR

tasks list. We do this to avoid the additional network half

round trip latency. This is the case for barrier operations that

do not include any user data, or when the library keeps an

internal copy of the data. However, we always track send

completion for proper resource management, keeping this

out of the performance critical path, when possible.

The number of tasks posted to the HCA queues using

offloaded MWRs is similar to that posted with equivalent

main memory based implementations of the same algorithm.

The offload based methods use the wait and send/receive-

enable tasks in lieu of using main memory CPU cycles

to achieve the same effects. The constraint of using the

MWR approach is that the full set of communications to be

progressed needs to be defined up-front, and therefore IB

queue resource limits are more likely to limit the scalability

of offloaded based implementations than the main-memory

based implementations. However, the limit on the size of an

MWR is the same as the limit on the size of a send queue,

which is on the order of sixteen thousand entries in the

current version of Mellanox’s IB stack. For logarithmically

scaling algorithms this is not expected to be a problem in

the foreseeable future, but for algorithms that require the use

of more than a single MWR to describe a given collective

operation, synchronization between MWRs may need to be

added.

Pre-registered memory is used for task buffers, and large

data collective operations are segmented to manage memory

usage and allow for pipelining collective operations. Blocks

of receive buffers are pre-posted to each QP, to avoid the

performance degradation associated with RNR-NACKs.

The blocking and nonblocking barrier operations used to

employ a recursive doubling algorithm are described in [22].

The algorithm for N=2L number of ranks has L steps. At

proc 0 proc 1 proc 2 proc 3

send to 1 send to 0 send to 3 send to 2

recv wait recv wait recv wait recv wait
from 1 from 0 from 3 from 2

send to 2 send to 3 send to 0 send to 1

recv wait recv wait recv wait recv wait
from 2 from 3 from 0 from 1

Table II
MWR TASK LIST FOR EACH RANK PARTICIPATING IN A FOUR PROCESS

RECURSIVE DOUBLING BARRIER.

proc 0 proc 1 proc 2 proc 3

send to 1 send to 0 send to 3 send to 2
send enabled send enabled send enabled send enabled

send to 2 send to 3 send to 0 send to 1
send not send not send not send not
enabled enabled enabled enabled

Table III
QUEUE PAIR TASK LIST FOR EACH RANK PARTICIPATING IN A FOUR

PROCESS RECURSIVE DOUBLING BARRIER. A DIFFERENT QP IS USED

FOR EACH UNIQUE COMMUNICATION PAIR. SEND TASKS MAY BE

POSTED TO THE HCA BUT WILL NOT BE PROCESSED UNTIL THEY ARE

MARKED AS ENABLED.

each step l = 0, 1, ..., L − 1, each rank signals a rank 2l

ranks away, and waits on a signal from the same rank before

proceeding to the next step in the algorithm. If the number of

process M is not a power of two, and N is the largest power

of two smaller than M , each rank r = N,N +1, ...,M − 1,

called an extra rank, is paired with the rank r − N . The

barrier algorithm for M ranks has an initiation phase where

each rank r = N,N + 1, ...,M − 1 signals its partner

r − N . After the recursive doubling algorithm is executed

with the N ranks, each rank paired with an extra rank

signals their partner. Implementation details for the blocking

and nonblocking operations are similar, with dissimilarities

due to the different completion semantics. As an example,

the communication pattern for the MPI Barrier collective

operations, is given in Table I.

The communication pattern corresponding to the four

process recursive doubling algorithm is shown in Table I.

The MWR setup by each rank is shown in Table II. This

proc 0 proc 1 proc 2 proc 3

send enable send enable send enable send enable
1 0 3 2

MQ recv wait MQ recv wait MQ recv wait MQ recv wait
from 1 from 0 from 3 from 2

send enable send enable send enable send enable
2 3 0 1

MQ recv wait MQ recv wait MQ recv wait MQ recv wait
from 2 from 3 from 0 from 1

Table IV
MANAGEMENT QUEUE TASK LIST FOR EACH RANK PARTICIPATING IN A

FOUR PROCESS RECURSIVE DOUBLING BARRIER. COMPLETION OF THE

LAST WAIT OPERATION ON THE MQ SIGNALS MWR COMPLETION.



particular instance of the algorithm uses the send/receive

channel semantics for communications. The driver processes

the MWR posting tasks to the MQ, and to each of the QP’s

that will be used to send and receive the data. Table III

shows the tasks posted to the QP’s for each rank participating

in the barrier, and Table IV describes the tasks posted

to the MQ, for each of the four ranks participating in

the barrier collective operation. The tasks in each queue

progress in order, as they become eligible for execution.

Sends are executed when enabled, receives are completed

as data arrives, and wait events are completed when as

tasks complete in the queue specified in the wait task.

While each queue is progressed independently, the ordering

dependencies brought about by the send-enable task, the wait

task, and the arrival of data at the receive queue are what

make it possible to build globally ordered communication

patterns.

When handling a received send request, the network

adapter will fetch the appropriate receive WQE. As we

are mainly interested in the CQE written to the CQ to

progress the collective operation, we can use alternatives

to the send operation. One alternative is to use RDMA

write with immediate flag set. This operation does not use

receive WQE as the remote data address is defined in the

RDMA write request. Still, it generate a CQE. We utilize

this optimization in the barrier algorithms.

V. BENCHMARK RESULTS

In this section we focus primarily on studying the po-

tential for overlapping computation with collective com-

munications. We study the performance of the nonblock-

ing MPIX Ibarrier() recently voted into the MPI-3 draft

standard, and, for comparison, also present the most recent

benchmark results for MPI Barrier(). Since no user data is

involved in barrier operations, the performance of a given

algorithm is determined by network latency, and the latency

of the (MPI) software stack. As such, compared to other

collective algorithms which also send user data over the

network, the opportunities for overlap are relatively modest.

However the simplicity of the algorithm makes it a good first

candidate for studying some of the newly developed CORE-

Direct capabilities. We compare the performance character-

istics of barrier operations using the HCA to manage these

operations to implementations in which the CPU is used to

manage the barrier algorithms.

A. Experimental Setup

The performance measurements were all taken on an eight

node, dual socket quad-core, 3.00 Gigahertz Intel Xeon

Quad-core X5472 with 32 gigabytes of memory. The system

runs Red Hat Enterprise Linux Server 5.1, kernel version

2.6.18-53.el5, a dual port quad data rate ConnectX-2 HCA,

and a switch running Mellanox firmware version 2.6.8000.

This is pre-release version of the firmware, and provides the
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Figure 3. Eight node offloaded MPI Barrier performance data in units
of micro-seconds per call. MQ-RDMA indicates the use of RDMA send
with Immediate Data, MQ-Send indicates the use of send with channel
semantics, Dense indicates that each rank in the communicator has an RC
connection to each other rank, and Sparse indicates RC connections only
to the log2 ranks with which communication takes place.

first working implementation of the new Management Queue

capability.

The prototype offloaded IB collectives are implemented

within version 1.5 of the Open MPI code base, as a new col-

lective module. To measure raw barrier time we measure the

completion time of a tight loop over barrier calls, and report

the average time for the MPI rank 0 rank. Similarly, for the

nonblocking collectives we loop over nonblocking barrier

initiation and barrier completion. To measure the overlap

characteristics of these collective operations, we modify the

ideas introduced in the COMB [23] benchmark, adapting

them for collective operations. Communication-computation

overlap is measured in two ways; (1) Initiating the collective

operation and then looping over (work loop, MPI Test() )

until the operation completes, making sure the busy loop

does not increase overall operation completion beyond that

of the raw operation; (2) Initiating the collective operation,

work loop, and then wait for operation completion, with the

work loop starting at about 10 percent of the raw completion

time, and incrementing this work loop by 10 percent up to

about 100 percent of raw completion time. The work loop

is created by looping over the ”nop” asm instruction.

B. Discussion

MPI Barrier() latency as a function of process count is

presented in Figure 4. In this figure and all subsequent

figures MQ is used to label results obtained using HCA

offloading approaches, and PTP is used to label results

obtained with point-to-point based collective algorithms

progressed by the CPU in main memory. While results for

the barrier algorithm have been presented previously [19],

the current results are significantly improved at the larger
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process counts. This isa result of the reduce number of

queue pairs used in the algorithm, decreasing the number of

network context resources the HCA needs to manage. This

gives the HCA more opportunities to cache such context data

and increase performance. In addition, we use immediate

data with RDMA write as a means of signaling data arrival,

not actually fetching the receive work entry, as a further

optimization. Adding these changes reduces the latency of

barrier at 64 process from 54 micro-seconds down to 32.

Figure 3 displays the results of these experiments. These

changes are also used to implement the nonblocking barrier

algorithm.

As the results show, over the range of communicator sizes

used, the performance of the offloaded barrier is very good

compared to the other three approaches used. However, at 64

processes, the CPU based RDMA method out performs the

HW-MQ RDMA based approach by polling for completion

in main memory, thus reducing the pressure put on the HCA

network context cache. It is expected that as the number of

ranks participating in the barrier increases, the CPU based

approach will also be affected by the HCA caching effects.

The raw performance of the the nonblocking barrier

algorithm is shown in Figure 5. The performance of the

offloaded based implementation (labeled MQ) is similar to

that of the blocking barrier. This is not surprising, as the

algorithms are essentially identical. However, the CPU based

nonblocking barrier implementations do not perform as

well as their blocking counterparts. Since the main-memory

based algorithms are used to give a baseline performance

expectation for the offloaded collective implementations, and

are not a primary focus of this study, we did not thoroughly
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semantics.

investigate the observed performance anomalies.

Two measures of overlap are used to study the ability

to overlap collective communications with computation.

Measuring the overlap by alternating between small work

quanta and testing for collective completion, provides an

opportunity for both offload based collectives as well as

CPU based collective operations to maximize the amount

of compute work that can be done. Figure 6 presents the

overlap capabilities the nonblocking barrier implementation

provides during the recursive doubling algorithm, as a func-

tion of process count. Both HCA and CPU based algorithms

provide some degree of overlap opportunity, ranging from

approximately 30-45% CPU availability at eight processes,

and up to around 90% at 64 process count. While we

measured up to 20% difference in CPU availability between

collective algorithms, all show an opportunity for overlap,

with the offloaded based methods having a smoother profile

as a function of process count. Since the HCA offloaded

methods do not use the CPU to progress the nonblocking

barrier operations, it is not surprising that these show a

smoother CPU availability profile. In contrast, the CPU

based algorithms rely on calls to the MPI library to progress

the collective communications, thus being more sensitive to

the rate at which calls into the MPI library take place. While

high process availability is desirable, a combination of high

availability and short collective operation duration is more

desirable, thus requiring less compute time to overcome the

barrier latency. Such a measure could be CPU availability

divided by collective operation duration. The MQ based

algorithms perform better using this measure.

From an application perspective, it is far more desirable
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to have a single compute time slice per collective operation,

rather than many small time slices, making it easier to

do useful computation while hiding communication latency.

Therefore, we measure how much work can be done after

the collective operation is performed and before waiting

to complete the operation without impacting its overall

completion time. The results are presented in Figure 7.

As this figure shows, delegating the progression of the

collective operations to the HCA makes the CPU available

for relatively long periods of time. The MQ-RDMA based

approach provides about 80% CPU availability before start-

ing to impact the nonblocking barrier completion time. This

tends to increase as the number of processes involved in the

collective increases. On the other hand, the algorithms that

rely on the CPU for progression provide at most 30% CPU

availability at 64 processes before impacting the collective

operation time. This result is not at all surprising, as the

CORE-Direct functionality is designed with the goal of

providing hardware support for overlapping computation and

communications.

VI. CONCLUSIONS

In this paper we have evaluated the performance charac-

teristics of the latency sensitive blocking and nonblocking

barrier algorithms, when using the CORE-Direct function-

ality provided by ConnectX-2. We have shown that this

functionality provides support for well performing barrier

operations, similar to that of highly optimized CPU based

barrier operations. It also provides the necessary support for

effectively overlapping computation and communications.

The latter characteristic is an effective strategy for mitigating
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application effects of system noise, and when using non-

blocking collective operations, application load imbalance.

As such, this capability is a key ingredient to improved

scaling for applications using collective operations. Future

studies will examine the overlap characteristics of collective

operations involving user data, and reduction operations.
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