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Abstract—We introduce a new approach to the problem of
overlapping clustering. The main idea is to formulate overlapping
clustering as an optimization problem in which each data point
is mapped to a small set of labels, representing membership to
different clusters. The objective is to find a mapping so that the
distances between data points agree as much as possible with
distances taken over their label sets. To define distances between
label sets, we consider two measures: a set-intersection indicator
function and the Jaccard coefficient.

To solve the main optimization problem we propose a local-
search algorithm. The iterative step of our algorithm requires
solving non-trivial optimization subproblems, which, for the
measures of set-intersection and Jaccard, we solve using a greedy
method and non-negative least squares, respectively.

Since our frameworks uses pairwise similarities of objects
as the input, it lends itself naturally to the task of clustering
structured objects for which feature vectors can be difficult to
obtain. As a proof of concept we show how easily our framework
can be applied in two different complex application domains.
Firstly, we develop overlapping clustering of animal trajectories,
obtaining zoologically meaningful results. Secondly, we apply
our framework for overlapping clustering of proteins based on
pairwise similarities of aminoacid sequences, outperforming the
of state-of-the-art method in matching a ground truth taxonomy.

I. INTRODUCTION

In many real-world applications it is desirable to allow

overlapping clusters as data points may intrinsically belong

to more than one cluster. For example, in social networks

users belong to numerous communities. In biology, a large

fraction of proteins belong to several protein complexes si-

multaneously, and genes have multiple coding functions and

participate in different metabolic pathways. In information

retrieval and text mining, documents, news articles, and web

pages can belong to different categories.

In this paper we formulate overlapping clustering as the

problem of mapping each data point to a small set of labels

that represent cluster membership. The number of labels does

not have to be the same for all data points. The objective is to

find a mapping so that the similarity between any pair of points

in the dataset agrees as much as possible with the similarity

of their corresponding sets of labels.

While this idea is general and could be instantiated in

different clustering frameworks, in this paper we apply it to

the setting of correlation clustering [1], a clustering paradigm

defined as follows: given a complete graph with positive and

negative edges, the objective is to partition the graph so as

to minimize the number of positive edges cut by the partition

plus the number of negative edges not cut.

In our formulation, we still require a complete graph as

input, but every edge is associated with a weight, which is

a number in [0, 1]. Weights represent similarity between data

points and the extent to which data points should be assigned

to the same cluster. For defining distances between sets of

labels, we consider two measures: a set-intersection indicator

function and the Jaccard coefficient. We also constrain the

maximum number of cluster labels allowed, either globally or

per data point. These alternatives, together with the possibility

of having fractional or binary edge weights, produces a whole

family of problems.

In details, we make the following contributions:

• We define OVERLAPPING-CORRELATION-CLUSTERING,

an optimization problem that extends the framework of

correlation clustering to allow overlaps (Section II). We

show that the problem we define is NP-hard. We also

discuss interesting connections of our problem with graph

coloring and dimensionality reduction (Section III).

• We propose to solve the OVERLAPPING-CORRELATION-

CLUSTERING problem using a simple local-search algo-

rithm. The iterative step of the local-search algorithm

optimizes the labels of one object, given the labels of

all other objects. Applying this local optimization we

iteratively improve the cost of the solution, until no further

improvement can be made. We apply this general frame-

work both variants of the problem, Jaccard-coefficient and

set-intersection (Section IV).

• In the case of Jaccard coefficient, the iterative step of

the local-search algorithm corresponds to a new problem,

which we call JACCARD-TRIANGULATION. We prove that

JACCARD-TRIANGULATION is NP-hard, and we devise a

method based on non-negative least squares, followed by

post-processing of the fractional solution (Section IV-B).

In the case of set-intersection, the sub-problem is named

HIT-N-MISS. This is a set-cover type of problem, which

we solve using a greedy algorithm (Section IV-C).

• We evaluate our algorithms on synthetic and real datasets.

The real datasets are taken from the domains of spatio-

temporal trajectory analysis and bioinformatics. Our eval-

uation shows that our algorithms produce overlapping

clusters that resemble the ground truth, and outperform

state-of-the-art methods. We also experiment with the idea

of speeding up the algorithms by randomly eliminating

pairs of data points from consideration. Our results show

that significant amount of pruning can be achieved without

degrading the quality of the solution (Section V).



The presentation of the paper is completed by surveying the

related literature in Section VII and discussing future work in

Section VIII.

II. PROBLEM DEFINITION

We consider a set of n objects V = {v1, . . . , vn}, over

which we define a pairwise similarity function s(u, v). For

example, if V represents a set of documents, then s(u, v) may

be defined as the cosine between the vector representation of

documents u and v; if V represents the tuples of a database

table, then s(u, v) may be defined as the fraction of attributes

that the tuples u and v agree; etc. Hereinafter, we simply

consider the values s(u, v) as input to our problem and we

do not make any assumption on how to obtain those values.

We consider that the similarity function s takes values in the

interval [0, 1]. We also study special cases of our problems

in which the similarity function takes only values in the

set {0, 1}.

Non-overlapping clustering. In non-overlapping clustering,

we have in our disposal k cluster labels, denoted by L =
{1, . . . , k}, and the task is to assign cluster labels for each

object in V . In order words, the clustering is defined by a

labeling function ℓ : V → L. The objective is to assign

labels to objects so that, to the largest possible extent, similar

objects get assigned the same label. The correlation-clustering

problem provides a precise formulation for such an objective.

Problem 1 (CORRELATION-CLUSTERING): Given a set of

n objects V = {v1, . . . , vn} and a similarity function s over

V ×V , find a labeling function ℓ : V → L that minimizes the

cost

Ccc(V, l) =
∑

(u,v)∈V×V

ℓ(u)=ℓ(v)

(1− s(u, v)) +
∑

(u,v)∈V×V

ℓ(u) 6=ℓ(v)

s(u, v). (1)

The intuition underlying the above problem definition is that

if two objects u and v are assigned to the same cluster we

should pay the amount of their dissimilarity 1−s(u, v), while

if they are assigned to different clusters we should pay the

amount of their similarity s(u, v). In the binary case, which is

the most widely studied setting for CORRELATION-CLUSTER-

ING, Equation (1) expresses the cost function as the number

of object pairs that have similarity 0 and are clustered together

plus the number of object pairs that have similarity 1 and are

clustered in different clusters.

In the traditional setting, no constraint on the maximum

number of clusters is given, i.e., |L| = Θ(n). This is indeed

one of the advantages of CORRELATION-CLUSTERING: the

number of clusters is not required in the input, but “discov-

ered” by the method.

Allowing overlaps. We now discuss how we extend the

definition of CORRELATION-CLUSTERING in order to take into

account overlapping of clusters. The main idea is to redefine

the mapping function ℓ. Instead of mapping each object in a

single cluster label c ∈ L, we relax the function ℓ so that it can

map objects to any subset of cluster labels. So if L+ = 2L\{∅}
denotes the collection of all subsets of L except the empty set,

we now define the multi-labeling function ℓ to be ℓ : V → L+.

If an object v is mapped under ℓ to a set of cluster labels

ℓ(v) = {c1, . . . , cs} ∈ L+, then we say that v participates in

all the clusters c1, . . . , cs.

In a high-quality clustering, similar objects should be

mapped to similar cluster labels. Thus, to evaluate a solution

to overlapping clustering, we also need to select a similarity

function H between sets of cluster labels, i.e., H : L+×L+ →
[0, 1]. We now have the necessary ingredients to define the

problem of overlapping clustering.

Problem 2 (OVERLAPPING-CORRELATION-CLUSTERING):

Given a set of n objects V = {v1, . . . , vn}, a similarity

function s over V × V , and a similarity function H between

sets, find a multi-labeling function ℓ : V → L+ that minimizes

the cost

Cocc(V, ℓ) =
∑

(u,v)∈V×V

|H(ℓ(u), ℓ(v))− s(u, v)|. (2)

Our definition of clustering aims at finding a multi-labeling

that “preserves” the similarities between objects. Note that

considering the error term |H − s| is meaningful since both

functions H and s are similarity functions that take values in

the range [0, 1].
To make our problem concrete, we need to define the

similarity function H between sets of cluster labels. In this

paper, we consider two such functions: the Jaccard coeffi-

cient J(E,F ) = |E∩F |
|E∪F | , and the set-intersection indicator

function I:

I(E,F ) =

{
1 if E ∩ F 6= ∅
0 otherwise.

The Jaccard coefficient is a natural set-similarity function

and it has been used in a wide range of applications. On the

other hand, in certain applications, two objects sharing a single

cluster label makes it sufficient to assert membership in the

same cluster. In those latter cases, we use the set-intersection

indicator function.

Constraints. So far we have assumed a finite alphabet of

labels and hence a maximum number of clusters |L| = k.

This can be seen as the typical constraint in which one needs

to specify an upper bound in the total number of clusters.

However, for many applications, while we may have in our

disposal a large number of clusters we may not want to assign

an object to all those clusters. For example, when clustering

the users of a social network, we may want to use hundreds or

even thousands of clusters, however, we may want to assign

each user to a handful of clusters.

Thus, we consider a second type of constraint in which we

require that each object v should be mapped to at most p

clusters, that is, |ℓ(v)| ≤ p for all v ∈ V .

III. PROBLEM CHARACTERIZATION

In this section we discuss the different variants of our

problem, we establish its computational complexity, and we

investigate connections with other problems.



First note that, based on our discussion from the previous

section, the definition of Problem 2 is pertained by the

following choices:

• the similarity function s may take values in the range [0, 1]
or it may take binary values in {0, 1};

• the similarity function H may be the Jaccard coefficient J

or the intersection indicator I; and

• we may impose the local constraint of having at most p

cluster labels for each object or we may not.

Any combination of the above choices gives rise to a valid

problem formulation. We systematically refer to any of these

problems using the notation (r,H, p), where: r ∈ {f,b} refers

to the range of the function s: f for fractional values and b

binary; H ∈ {J, I} refers to the similarity function H: J for

Jaccard coefficient and I for set-intersection; and p refers to

the value of p of the local constraint, so p = k means that

there is no local constraint.

As an example of our notation, by (b, H, k) we refer to

two different problems, where s takes binary values, H can

be either J or I , and there is no local constraint.

Hardness results. Our first observation is that all instances

specified by (r,H, 1) correspond to the CORRELATION-

CLUSTERING problem defined in Problem 1. The reason is

that when |ℓ(v)| = 1 for all v in V , then both the Jaccard coef-

ficient and the intersection indicator take just 0 or 1 values. In

particular, |H(ℓ(u), ℓ(v))−s(u, v)| becomes 1−s(u, v) when

ℓ(u) = ℓ(v) and s(u, v) when ℓ(u) 6= ℓ(v). Thus we easily

establish that our problem is a generalization of the standard

CORRELATION-CLUSTERING problem. Since CORRELATION-

CLUSTERING is NP-hard, and since p = 1 is a special case

of any (r,H, p) problem, the previous observation implies

that the general OVERLAPPING-CORRELATION-CLUSTERING

problem is also NP-hard. However, in order to show that

the complexity of our problems does not derive exclusively

from the hardness of the special case p = 1, we provide NP-

hardness results that do not rely on such special case.

Theorem 1: The problem instances (r, I, p), with p > 1,

are NP-hard.

Proof: We show that the (b, I, p) problem is NP-hard,

which also gives the NP-hardness for the (f, I, p) problem.

We obtain the reduction from the problem of COVERING-

BY-CLIQUES [2, GT17], which is the following: given an

undirected graph G = (V,E) and an integer C ≤ |E|, decide

whether G can be represented as the union of c ≤ C cliques.

We can show that a zero-cost solution to the (b, I, C) problem

identifies graphs having a covering by at most C cliques, and

solutions with a cost larger than zero identify graphs that do

not admit a covering by at most C cliques. Given an undirected

graph G = (V,E) we construct an instance of the (b, I, C)
problem by simply setting the set of objects to be the set of

nodes V . For each edge (u, v) ∈ E we set s(u, v) = 1, while if

(u, v) 6∈ E we set s(u, v) = 0. We also set the total number of

cluster labels k = C. It is easy to verify our claim: a zero-cost

solution of (b, I, C) on input (V, s) corresponds to a covering

of G by at most C cliques.

In addition, due to the inapproximability of the COVERING-

BY-CLIQUES problem, we can deduce that the problem in-

stances (r, I, p) do not admit polynomial-time constant factor

approximation algorithms unless P = NP.

We now turn our attention in the problems (r, I, k), that

is, using set-intersection and no local constraint. Moreover we

consider the case in which we are allowed to use a very large

number of cluster labels, in particular k = Θ(n2).
Proposition 1: For the problem instances (r, I,Θ(n2)), the

optimal solution can be found in polynomial time.

Proof: We start by giving each object a unique clus-

ter label. Then we process each pair of objects for which

s(u, v) ≥ 1
2 . For any such pair of objects we make a new

label, which we assign to both objects, and never use again.

Thus, for pairs with s(u, v) ≥ 1
2 , the intersection of ℓ(u) and

ℓ(v) is not empty, and thus we pay |1− s(u, v)| ≤ 1
2 . On the

other hand, for the pairs with s(u, v) ≤ 1
2 , the intersection of

ℓ(u) and ℓ(v) is empty, and thus we pay |s(u, v)| ≤ 1
2 . Since

I takes only 0/1 values, no other solution can cost less, and

thus the previous process gives an optimal solution.

When we have binary similarities, the above process

straightforwardly provides a zero-cost solution.

Corollary 1: The problem (b, I,Θ(n2)) admits a zero-cost

solution that can be found in polynomial time.

Connection with graph coloring. Given that the problem

(b, I, k) admits a solution of zero cost if we allow enough

cluster labels, we next ask which is the minimum number of

cluster labels k needed for a zero-cost solution. We character-

ize such number by pointing out a connection with GRAPH-

COLORING problem, whose formualtion we recall next. A

proper coloring of a graph G = (V,E) is a function c : V →
{1, . . . , k} so that for all (u, v) ∈ E we have c(u) 6= c(v). The

GRAPH-COLORING problem asks to find the smallest number

k, known as the chromatic number χ(G) of G, for which a

proper coloring of G exists.

Going back to the binary (b, I, k) OVERLAPPING-COR-

RELATION-CLUSTERING problem, given the set of objects V

and similarity function s, we consider similar pairs P+ =
{(u, v) ∈ V × V | s(u, v) = 1} and dissimilar pairs

P− = {(u, v) ∈ V × V | s(u, v) = 0}. Using these we define

the graph Ĝ = (P+, Ê), with similar pairs as nodes, and the

set of edges Ê given by the dissimilar pairs as follows:

{((u, v), (x, y)) ∈ P+ × P+|
{(u, x), (u, y), (v, x), (v, y)} ∩ P− 6= ∅}.

We have:

Proposition 2: The chromatic number χ(Ĝ) of Ĝ is equal

to the minimum number of cluster labels required by a zero-

cost solution to the (b, I, k) problem with input (V, s).
Proof: We observe that a color in Ĝ corresponds to a

cluster in our problem. The colors are assigned to pairs of

objects in V , which ensures that the positive pairs P+ are

satisfied. On the other hand, the constraint of having a proper

coloring, ensures that the negative pairs P− are also satisfied.

Thus, a proper coloring on Ĝ corresponds to a zero-cost

solution on our problem.



Although the previous result is theoretically interesting,

it has limited practical relevance, as we are interested in

minimizing the error given a specific number of clusters.

To make the connection practically useful, we would need

to relax the GRAPH-COLORING problem, so that it allows for

a less strict definition of coloring. Namely, we would like

to allow for colorings that for certain cost may allow the

following relaxations: (i) (u, v) ∈ E not necessarily implies

c(u) 6= c(v) – corresponding to violations on P−; and (ii)

nodes may be left uncolored – corresponding to violations

on P+. We believe that this is an interesting path that may

lead to novel algorithms for OVERLAPPING-CORRELATION-

CLUSTERING. We plan to investigate this research direction in

our future work.

Connection with dimensionality reduction. We finally

note the similarity of our problem formulation with the

dimensionality-reduction problem, in particular multidimen-

sional scaling. Dimensionality reduction is a problem that has

been studied, among other areas, in theory, data mining, and

machine learning, and has many applications, for example,

in proximity search, feature selection, component analysis,

visualization, and more. At a high level, one is given a set

of points in a high-dimensional space. The goal is to map

each point x in a point h(x) in a much lower-dimensional

space in such a way that for any pair of points x and y, their

distance d(x, y) in the high-dimensional space is preserved

as well as possible in the lower-dimensional space by the

distance d(h(x), h(y)). The connection of the above statement

with Equation (2), which defined our OVERLAPPING-COR-

RELATION-CLUSTERING problem is apparent. However, the

difference is that dimensionality-reduction methods typically

are defined for geometric spaces. Alternatively, they operate

by hashing high-dimensional or complex objects in a way

that similar objects have high collision probability [3], [4].

However, to the best of our knowledge, the case that the

projected space is a set-system and similarities are measured

by a set distance function has not been considered before.

IV. ALGORITHMS

We propose a local-search algorithm that optimizes the

labels of one object in the dataset, when the labels of all

other objects are fixed. We apply this framework both for

the Jaccard coefficient and the intersection-function variants

of the problem, proposing novel algorithms for these two local

optimization problems in Sections IV-B and IV-C, respectively.

A. The local-search framework

A typical approach for multivariate optimization problems

is to iteratively find the optimal value for one variable given

values for the remaining variables. The global solution is

found by repeatedly optimizing each of the variables in turn

until the objective function value no longer improves. In most

cases such a method will converge to a local optimum. The

algorithm we propose falls into this framework. At the core

of our algorithm is an efficient method for finding a good

labeling of a single object given a fixed labeling of the other

objects. We can guarantee that the value of Equation 2 is non-

increasing with respect to such optimization steps. First, we

observe that the cost of Equation (2) can be rewritten as

Cocc(V, ℓ) =
1

2

∑

v∈V

∑

u∈V \{v}

|H(ℓ(v), ℓ(u))− s(v, u)|

=
1

2

∑

v∈V

Cv,p(ℓ(v) | ℓ),

where

Cv,p(ℓ(v) | ℓ) =
∑

u∈V \{v}

|H(ℓ(v), ℓ(u))− s(v, u)| (3)

expresses the error incurred by vertex v when it has the labels

ℓ(v), and the remaining nodes are labeled according to ℓ. The

subscript p in Cv,p serves to remind us that the set ℓ(v) should

have at most p labels. Our general local-search strategy is

summarized in Algorithm 1.

Algorithm 1 LocalSearch

1: initialize ℓ to a valid labeling;

2: while Cocc(V, ℓ) decreases do

3: for each v ∈ V do

4: find the label set L that minimizes Cv,p(L | ℓ);
5: update ℓ so that ℓ(v) = L;

6: return ℓ

Line 4 is the step in which LocalSearch seeks to find an

optimal set of labels for an object v by solving Equation (3).

This is also the place that our framework differentiates be-

tween the measures of Jaccard coefficient and set-intersection.

B. Local step for Jaccard coefficient

Problem 3 (JACCARD-TRIANGULATION): Consider the set

{〈Sj , zj〉}j=1...n, where Sj are subsets of a ground set U =
{1, . . . , k}, and zj are fractional numbers in the interval [0, 1].
The task is to find a set X ⊆ U that minimizes the distance

d(X, {〈Sj , zj〉}j=1...n) =

n∑

j=1

|J(X,Sj)− zj |. (4)

The intuition behind Equation (4) is that we are given sets Sj

and “target similarities” zj and we want to find a set whose

Jaccard coefficient with each set Sj is as close as possible

to the target similarity zj . A moment’s thought can convince

us that Equation (4) corresponds exactly to the error term

Cv,p(ℓ(v) | ℓ) defined by Equation (3), and thus, in the local-

improvement step of the LocalSearch algorithm.

To our knowledge, JACCARD-TRIANGULATION is a new

and interesting problem, which has not been studied before,

in particular in the context of overlapping clustering. The

most-related problem that we are aware of is the problem

of finding the Jaccard median, which was recently studied by

Chierichetti et al. [5]. The Jaccard-median problem is a special

case of the JACCARD-TRIANGULATION problem, where all

similarities zj are equal to 1. Chierichetti et al. provide a PTAS



for the Jaccard-median problem. However, their techniques

seem mostly of theoretical interest, and do not extend beyond

the special case where all zj = 1.

However, since JACCARD-TRIANGULATION is a general-

ization of the Jaccard-median problem that has been proven

NP-hard [5], the following is immediate.

Theorem 2: JACCARD-TRIANGULATION is NP-hard.

We next proceed to discuss our proposed algorithm for the

JACCARD-TRIANGULATION problem. The idea is to introduce

a variable xi for every element i ∈ U . The variable xi indicates

if element i belongs in the solution set X . In particular, xi = 1
if i ∈ X and xi = 0 otherwise. We then assume that the size

of set X is t, that is, ∑

i∈U

xi − t = 0. (5)

Now, given a set Sj with target similarity zj we want to obtain

J(X,Sj) = zj , for all j = 1, . . . n, or

J(X,Sj) =

∑
i∈Sj

xi

|Sj |+ t−∑
i∈Sj

xi

= zj ,

which is equivalent to

zjt− (1 + zj)
∑

i∈Sj

xi = zj |Sj |, (6)

and we have one Equation of type (6) for each pair 〈Sj , zj〉.
We observe that Equations (5) and (6) are linear with respect

to the unknowns xi and t. On the other hands, the variables

xi and t take integral values, which implies that the system of

Equations (5) and (6) cannot be solved efficiently. Instead we

propose to relax the integrality constraints to non-negativity

constraints xi, t ≥ 0 and solve the above system in the least-

squares sense. Thus, we apply a non-negative least-squares

optimization method (NNLS) and we obtain estimates for the

variables xi and t.

The solution we obtain from the NNLS solver has two

drawbacks: (i) it does not incorporate the constraint of having

at most p labels, and (ii) most importantly, it does not have

a clear interpretation as a set X , since the variables xi may

take any non-negative value, not only 0–1. We address both of

these problems with a greedy post-processing of the fractional

solution: We first sort the variables xi in decreasing order,

breaking ties arbitrarily. We then obtain a set Xq by setting

the first q variables xi to 1 and the rest to 0. We vary q from 1

to p. Out of the p different sets Xq that we obtain this way, we

select the one that minimizes the cost d(Xq, {〈Sj , zj〉}), and

return this as the solution to the JACCARD-TRIANGULATION

problem.

An alternative approach could be to optimize the sum of

squares of differences of Equation (6), for all j, subject to the

constraint of Equation (5), the constraint
∑

i∈U xi ≤ p, and the

constraints 0 ≤ xi ≤ 1. This formulation leads to a quadratic

program, which can be also solved by standard solvers, albeit

in way less efficient than non-negative least squares. Since this

computation is performed for each object in the inner loop of

Algorithm 1, in this paper, for efficiency reason we adopt the

non-negative least squares formulation.

C. Local step for set-intersection function

Following the approach of the previous section, we for-

mulate the problem that we need to solve for the local-

improvement step of the LocalSearch algorithm (line 4

of Algorithm 1) in the case of the set-intersection function I .

Problem 4 (HIT-N-MISS): Let C be a collection of n tuples

of the from 〈Sj , hj ,mj〉, with j = 1 . . . n, where Sj are

subsets of a ground set U = {1, . . . , k}, while hj and mj

are non-negative numbers. A set X ⊆ U partition C in

CX = {Sj | I(X,Sj) = 1} and CX̄ = {Sj | I(X,Sj) = 0}.

The task is a find a set X in order to minimize the distance

d(X, {〈Sj , hj ,mj〉}) =
∑

j|Sj∈CX

hj +
∑

j|Sj∈CX̄

mj . (7)

Once again, we should be able to verify that the Equation (7)

corresponds to the cost Cv,p(ℓ(v) | ℓ) defined by Equation (3)

in the case that the cluster-label similarity function H is the

set-intersection function I . In fact, for the problems defined by

Equation (3) we always have hj+mj = 1. However, since we

do not know how to take advantage of the additional structure

hj +mj = 1 we just formulate Problem 4 in its generality.

The HIT-N-MISS problem is related to set-cover type of

problems. As in set cover, we are given a collection C of

sets Sj . Each set is accompanied with two penalty scores, a

hit penalty pj and a miss penalty nj . Our task is to find a new

set X in order to either hit or miss the sets Sj , as dictated

by their penalty scores hj and mj . In particular, for each set

Sj that X hits we have to pay its hit penalty hj , while for

each set Sj that X misses we have to pay its miss penalty

mj . The HIT-N-MISS problem is isomorphic to the positive-

negative partial set-cover problem, studied by Miettinen [6],

who showed that the problem is not approximable within a

constant factor, but it admits an O(
√
n log n) approximation.

In our setting we solve the HIT-N-MISS problem with a

simple greedy strategy: Starting from X0 = ∅, let Xt the

current solution and let A = U \ Xt be the set of currently

available items (cluster labels). Then for the next step of the

greedy we pick the item i from the set of available items

A that yields the lowest distance cost, evaluated as d(Xt ∪
{i}, {〈Sj , hj ,mj〉}). We terminate when there is no further

decrease in the cost or when we reach the maximum number

of cluster labels allowed, i.e., t = p.

D. Initialization

The local search algorithm described above requires an

initial labeling of the nodes. This can be done in several ways.

In the experiments that follow we always use a random ini-

tialization. However, in our future work we plan to investigate

an initialization based on solving a standard graph coloring

problem on the graph Ĝ of Proposition 2.

V. EXPERIMENTAL EVALUATION

We next report our experimentation aimed at assessing

under what conditions our algorithms, dubbed OCC-JACC

(Jaccard) and OCC-ISECT (set-intersection indicator), can

reconstruct a ground truth clustering.



We consider two publicly available datasets (EMOTION

and YEAST), originally used in the context of multi-label

classifiers. In these data each example is associated with

multiple labels (as opposed to only one class)1. Such a labeling

can be interpreted as a ground truth overlapping clustering

g, where each label induces a cluster. In this experiment the

input to our algorithms are the Jaccard coefficients between

the labels of every object pair. For OCC-ISECT we convert

the weights to positive and negative edges by labeling the edge

as positive unless the Jaccard coefficient is equal to zero.

Performance is evaluated by comparing the labeling ℓ pro-

duced by the algorithms, with the ground truth clustering g,

using precision and recall, defined as in [7]:

precg(ℓ) =
|P (ℓ) ∩ P (g)|

|P (ℓ)| recg(ℓ) =
|P (ℓ) ∩ P (g)|

|P (g)| ,

where P (x) = {(u, v) : x(u)∩x(v) 6= ∅} is the set of pairs of

objects with at least one common label in labeling x. We also

report the average cost per edge, i.e., the cost of the solution

Cocc(V, ℓ) as in Eq. (2), divided by the number of edges in

the input.

We considered both the case where the algorithm is given

only the total number of clusters k, as well as a variant where

also the vertex-specific bound on the number of labels, denoted

p, is given. In the former case p was not specified, while in the

latter case k was fixed to the true number of distinct labels.

Medians of the metrics over 30 trials together with 90%

confidence intervals are shown in Figure 1 and Figure 2 for the

OCC-JACC and OCC-ISECT algorithms, respectively. With

the EMOTION data OCC-JACC performs better than OCC-

ISECT, with YEAST the situation is reversed. Observe that in

the case where p is varied, precision is high already for low

values, as p increases also recall increases, which makes sense

as the number of pairs that belong to the same cluster tends

to increase when overlaps are allowed.

In the basic form the input to our algorithms contains all

|V | × |V | pairwise similarities. However, it turns out that

there can be a lot of redundancy in this input. Often we can

prune most of the pairwise comparisons with negligible loss

in quality. This is an important characteristic, as it allows us

to apply the algorithm also for larger data sets. Selecting the

best set of edges to prune is an interesting problem in its own

right. In this experiment we took the simple approach, and

prune edges at random: an edge is taken in consideration with

probability q (denoted the pruning threshold) independently of

the other edges. In Figure 3 we show edge-specific cost as well

as precision and recall as a function of q for the OCC-JACC

algorithm (the curves are again medians over 30 trials). Clearly

with these example data sets the pruning threshold can be set

very low. Also, there is a noticeable “threshold effect” in the

cost/edge that may serve as an indicator to find the pruning

threshold in a setting where a ground truth is not available.

This suggests that in practice it is not necessary to use all

1EMOTION has 593 objects and 6 labels. YEAST has 2417 objects and
14 labels. More information at: http://mulan.sourceforge.net/datasets.html
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Fig. 1. Cost per edge, precision and recall of OCC-JACC as a function of
k, the total number of distinct labels (top row), and as a function of p, the
maximum number of labels per vertex (bottom row).
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Fig. 2. Same as in Figure 1, but using OCC-ISECT.
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Fig. 3. Pruning experiment using OCC-JACC. Cost/edge and precision and
recall as a function of the pruning threshold q.

pairwise comparisons, a sample of the graph may be enough.

In fact, the results for YEAST shown in figures 1 and 2 were

computed with q = 0.05. In terms of computational speedup

pruning has a very positive effect. Using the full YEAST

data (without pruning) our Python implementation takes 400

seconds to finish on a 1.8GHz CPU, with pruning (q = 0.05)

this can be reduced to 70.



Fig. 4. Plots in space and time of all the trajectories in the five clusters obtained in the STARKEY’93 dataset. Time axis is ×108 and it counts elapsed
seconds since 12/31/87, which represents a starting point of the Starkey Ungulate Research project.

VI. APPLICATIONS

Since our method uses pairwise similarities of objects as

the input, it lends itself naturally to the task of clustering

structured objects for which feature vectors can be difficult

to obtain. In this section we discuss clusterings for two of

such data: movement trajectories, and protein sequences.

A. Overlapping Clustering of Trajectories

Spatio-temporal data mining is an active research area

with a huge variety of application domains, e.g., mobility

management, video surveillance, mobile social networks, at-

mosphere analysis, biology and zoology just to mention a

few. The basic entities in analysis are usually trajectories of

moving objects, i.e., sequences 〈(x0, y0, t0), . . . , (xn, yn, tn)〉
of observations in space and time. Trajectories are structured

complex objects, and mining them is often an involved task.

They might have different lengths (i.e., different number of

observations), and therefore viewing them simply as vectors

and using standard distance functions (e.g., Euclidean) is not

feasible. Moreover, the different nature of space and time

implies different granularity and resolution issues. While there

has been quite some research on clustering trajectories [8],

[9], to the best of our knowledge the problem of overlapping

clustering of trajectories has not been studied.

To motivate the application of overlapping clustering for

trajectories, consider, for instance, a well-shaped cluster C1

of trajectories of GPS-equipped cars going from a south-west

suburb to the city center between 8 and 9am, and another

cluster C2 moving inside the city center along a specific path,

from 3 to 4pm. Now consider a trajectory that moves from

the south-west suburb to the city center in the morning, and

within the city center in the afternoon: it is quite natural to

assign this trajectory to both clusters C1 and C2.

To apply our framework to trajectories we need to compute

a distance among trajectory pairs. We choose the EDR dis-

tance [10], which is time-tolerant, that is, it is defined even

among trajectories of different length.2

2We normalize the EDR distance to stay in the range [0, 1] making it suitable
for our method after conversion to similarity: sim(u, v) = 1− edr(u, v).

TABLE I
Result of clustering on STARKEY’93 dataset. On the diagonal, we report

the population of each cluster, using C,D, and E to distinguish between

number of cattle, deer and elks respectively. In the non-diagonal cells of the

matrix, we report the population of the overlap among two clusters.

C1 C2 C3 C4 C5 clusters
16E 6D 3E 2D 3E 5E 3E 2D C1

4E 2D 38C ∅ 1E 30C C2

13E 6D 9E ∅ C3

21E 2D ∅ C4

3E 2D 33C C5

We use animal movement data generated by the Starkey

project.3 The dataset contains the radio-telemetry locations of

elks, deer, and cattle from 1993 to 1996. We select to work on

all the three species together and only for 1993. The dataset

contains only 88 trajectories (corresponding to 33 elks, 14

deer, and 41 cattle), but each trajectory is very long. The whole

dataset has 79,987 (x, y, t) observations, an average of 909

observations per trajectory.4

Studying overlapping trajectory clusters in this context

might be of zoological interest, as discussed by Coe et al. [11].

These three species have important social, ecolog-

ical, and economic values. Understanding their in-

terspecific interactions may clarify two recurring is-

sues in their management: competition for food and

competition for space, both of which may result in

decreased animal fitness. [. . . ] Accurate predictions

of ungulate distributions over time and space may

help managers regulate densities and understand

effects of specific ungulates on ecosystem processes.

[. . . ] Overlapping distributions could be evidence

for competition or dependence. Non-overlap could

be an expression of active avoidance or ecological

separation, which occurs when two species evolved

together.

3http://www.fs.fed.us/pnw/starkey/
4We computed EDR using the following space and time tolerance param-

eters: ∆.x = ∆.y = 2.5k,∆.t = 500k.



We report the results of a clustering obtained with our

framework with k = 5 and p = 2. Interestingly in this context

both definitions of similarity between sets of elements—

Jaccard and set-intersection—yield very consistent clusterings,

with just few elements assigned to a different cluster. In Table I

we report the results obtained with the Jaccard similarity

measure. We can observe that two clusters C2 and C5 contain

mostly cattle, and few individuals of the other species, while

the other 3 clusters do not contain any cattle. In particular

cluster C4 contains mainly elks. This is in line with the

zoological domain knowledge. Cattle are introduced in late

spring or early summer for the grazing season. During summer

elks and deer avoid cattle, but in late summer and fall the three

species overlap in some areas, due to exploitive competition

for forage resources that have become depleted [11].

It is interesting to observe that cluster C5, containing 33

cattle, 3 elks and 2 deer, is almost perfectly covered by C1

and C2, with the 3 elks and 2 deer falling in the former, and the

cattle in the latter. In Figure 4 the trajectories in each cluster

are plotted in space and time. We can see that clusters C3

and C4, containing only elks and deer, cover most of the area

available with C3 moving in higher X than C4, while clusters

C1, C2, and C5 contain individuals that almost never enter in

the area Y < 5014k. Cluster C2 contains almost all cattle that

enter the area only in late spring (Time > 1.724), plus few

elks and deer (belonging to cluster C1, too) that move closer

to the cattle than what the others in clusters C3 and C4.

B. Overlapping Clustering of Protein Sequences

An important problem in genomics is the study of evolution-

ary relatedness of proteins. We use our algorithms to cluster

proteins to homologous groups given pairwise similarities of

their amino-acid sequences. Such similarities are computed

by the sequence alignment tool BLAST [12]. We follow the

approach of Paccanaro et al. [13] and Nepusz et al. [14], and

compare the computed clustering against a ground truth given

by SCOP, a manually crafted taxonomy of proteins [15]. The

SCOP taxonomy is a tree with proteins at the leaf nodes. The

ground truth clusters used in the experiments are subsets of the

leafs, that is, proteins, rooted at different SCOP superfamilies.

These are nodes on the 3rd level below the root.

We compare our algorithm with the SCPS algorithm [13],

[14], a spectral method for clustering biological sequence data.

The experiment is run using datasets 1–4 from Nepusz et al.,5

which contain pre-computed sequence similarities together

with the ground-truth clusterings. Dataset D1 contains 669

sequences and 5 ground-truth clusters, dataset D2 contains 587

sequences and 6 clusters, dataset D3 contains 567 sequences

and 5 clusters, and dataset D4 contains 654 sequences and 8

ground-truth clusters.

To compare with the SCPS algorithm we first computed

non-overlapping clusterings of all four datasets. All algorithms

were given the correct number of clusters as a parameter.

5The dataset and the SCPS application are available at http://www.
paccanarolab.org/software/scps/.

TABLE II
Precision, recall, and their harmonic mean F-score, for non-overlapping

clusterings of protein sequence datasets computed using SCPS [14] and the

OCC algorithms. BL is the precision of a baseline that assigns all

sequences to the same cluster.

BL SCPS OCC-ISECT OCC-JACC

dataset prec prec/recall/F-score prec/recall/F-score prec/recall/F-score

D1 0.21 0.56 / 0.82 / 0.664 0.70 / 0.67 / 0.683 0.57 / 0.55 / 0.561

D2 0.17 0.59 / 0.89 / 0.708 0.86 / 0.83 / 0.844 0.64 / 0.63 / 0.637

D3 0.38 0.93 / 0.88 / 0.904 0.81 / 0.43 / 0.558 0.73 / 0.39 / 0.505

D4 0.14 0.30 / 0.64 / 0.408 0.64 / 0.56 / 0.598 0.44 / 0.39 / 0.412

Results are shown in Table II. SCPS has a higher recall in

every case, but with datasets 1, 2, and 4, the OCC-ISECT

algorithm achieves a substantially higher precision. In practice

this means that if OCC-ISECT assigns two sequences to the

same cluster, they belong to the same cluster also in the ground

truth with higher probability than when using SCPS.6

We also conduct a more fine-grained analysis of the results

using the SCOP taxonomy. Intuitively the cost of a clustering

errors should take distances induced by the taxonomy into

account. If two proteins are placed in the same cluster, they

should contribute more (less) to the clustering cost if their

distance in the taxonomy is higher (lower). Consequently, we

define the SCOP similarity between two proteins as follows:

sim(u, v) =
d(lca(u, v))

max(d(u), d(v))− 1
, (8)

where d(u) is the depth of a node in the tree (the root is at

depth 0), and lca(u, v) denotes the lowest common ancestor of

the nodes u and v. We then define the cost of a clustering to be

1 − sim(u, v) for two proteins that are assigned to the same

cluster, and sim(u, v) for two proteins assigned to different

clusters.

TABLE III
Comparing clusterings cost based on distance on the SCOP taxonomy, for

different values of p, the maximum number of labels per protein.

SCPS OCC-ISECT-p1 OCC-ISECT-p2 OCC-ISECT-p3

D1 0.231 0.196 0.194 0.193
D2 0.188 0.112 0.107 0.106
D3 0.215 0.214 0.214 0.231
D4 0.289 0.139 0.133 0.139

SCPS OCC-JACC-p1 OCC-JACC-p2 OCC-JACC-p3

D1 0.231 0.208 0.202 0.205
D2 0.188 0.137 0.130 0.127
D3 0.215 0.243 0.242 0.221
D4 0.289 0.158 0.141 0.152

The results of Table III suggest that the OVERLAPPING-

CORRELATION-CLUSTERING algorithms, find a clustering that

is better in agreement with the SCOP taxonomy than are the

clusterings found by SCPS. However, while allowing overlaps

is beneficial, we do not observe a significant improvement

as the node-specific constraint p is increased. Moreover, we

observe that only a small number of proteins are assigned

to multiple clusters. We conjecture that this is due to the

6Note that these numbers are not directly comparable with the ones in [14]
as they define precision and recall in a slightly different way.



similarities produced by BLAST, which imply very well

defined clusters in most of the cases. Nevertheless, it is worth

noting that our methods, regardless of the parameters used, do

not find unnecessarily large overlaps, when this is not dictated

by the data.

VII. RELATED WORK

Correlation Clustering. The problem of CORRELATION-

CLUSTERING was first defined by Bansal et al. [1]. In their

definition, the input is a complete graph with positive and

negative edges. The objective is to partition the nodes of the

graph so as to minimize the number of positive edges that

are cut and the number of negative edges that are not cut;

corresponding to our problems (b, H, 1). This is an APX-

hard optimization problem which has received a great deal

of attention in the field of theoretical computer science [16],

[17], [18], [19].

Ailon et al. [16] considered a variety of correlation clus-

tering problems. They proposed an algorithm that achieves

expected approximation ratio 5 if the weights obey the prob-

ability condition. If the weights Xij obey also the triangle

inequality, then the algorithm achieves expected approximation

ratio 2. Swamy [19] has applied semi-definite programming

to obtain a 0.76-approximation algorithm for the correspond-

ing maximization problem: maximize agreements, rather than

minimize disagreements. Giotis and Guruswami [18] consider

correlation clustering when the number of clusters is given,

while Ailon and Liberty [17] study a variant of correlation

clustering where the goal is to minimize the number of

disagreements between the produced clustering and a given

ground truth clustering.

To the best of our knowledge, no previous work has consider

the possibility of overlaps in correlation clustering, i.e., the

problem (r,H, p), with p > 1.

Overlapping clustering. In 1979 Shepard and Arabie in-

troduced the ADCLUS algorithm [20] for additive cluster-

ing, which perhaps can be considered the first overlapping-

clustering method. The method, which has been later applied

in the marketing domain [21], subsumes hierarchical clustering

as a special case and can be regarded as a discrete analog of

principal components analysis.

Regardless this ancient roots, in the last decades overlap-

ping clustering has not attracted as much attention as non-

overlapping clustering. One close sibling is fuzzy cluster-

ing [22], where each data point has a membership value in all

the clusters. In this context cluster membership is “soft”, as

apposed to our paper that we are interested in “hard” cluster

assignments. Obviously a hard (and overlapping) cluster as-

signment can be obtained by thresholding membership values.

The prototypical fuzzy-clustering method is fuzzy c-means,

which is essentially a soft version of k-means.

Recently mixture-models have been generalized to allow

overlapping clusters. Banerjee et al. [7] generalize the work

of Segal et al. [23] to work with any regular exponential

family distribution, and corresponding Bregman divergence.

The work of Banerjee et al. [7] has later been extended to co-

clustering by Shafiei and Milios [24]. Multiplicative mixture

models have been proposed as a framework for overlapping

clustering by Fu and Banerjee [25].

Our work distinguishes from this body of research as it

develops within the correlation clustering framework, and thus

it has a different input and different objectives. One of the main

differences is that the above discussed methods are not easily

applicable when features vectors are not available, as in our

application on trajectories and proteins.

Multiple clustering solutions. A large body of work studies

the problem of discovering multiple clustering solutions [26],

[27], [28], [29], [30]. The objective in these papers is to

discover multiple clusterings for a given dataset. Each of the

clusterings needs to be of high quality and the clusterings

are required to be different with each other in order to

cover different aspects of the dataset. Each of the discovered

clusterings is non-overlapping, so this clustering paradigm is

not directly comparable with our clustering result.

Constrained clustering. The binary version of correlation

clustering (b, H, 1) with positive and negative links, can be

seen as a “soft” instance of clustering with Must-Link (ML)

and Cannot-Link (CL) constraints. For the latter problem

there exists an extensive literature [31], [32], [33], [34], [35].

However, constraint clustering and correlation clustering are

qualitatively different problems. In constrained clustering there

distances and additional ML and CL constraints, while in

correlation clustering distances and constraints coincide.

Although presented in the context of ML and CL con-

straints, the work by Scripps and Tan [36] essentially deals

with a binary version of correlation clustering, and it adopts

“cloning” to fix the problem of bridge nodes (or “bad triplets”

in the jargon of Ailon et al. [16]). Cloning essentially means

allowing overlaps. In the notation we introduce in this paper,

their problem is exactly (b, I, k) with no predefined number

of clusters. As we prove in Corollary 1, such a problem

always admits a straightforward zero-cost solution. Scripps

and Tan [36] are interested only in zero-cost solutions, while

trying to minimize the number of clones (i.e., overlaps).

Instead we consider the problem of finding minimum cost

solutions with a prefixed number of clusters, or with constraint

on the maximum number of clusters per object.

Applications. Developments in overlapping clustering has

mainly been driven by the concrete needs of applications. For

instance, driven by the need to cluster microarray gene expres-

sion data, various methods for overlapping clustering [37], [23]

and overlapping bi-clustering [38], [39] have been proposed.

Even though detecting communities in social networks is

a problem that has been studied extensively, only few re-

searchers have addressed the problem of detecting overlapping

communities; for a survey, see Fortunato [40, Section 11].

The best known approach to detect overlapping communities

is the CFinder algorithm based on clique percolation [41].

According to the CFinder method, communities are discovered

by finding k-cliques and merging them when they share k−1



nodes. As a node can belong to multiple cliques, the method

generates overlapping communities.

Tang and Liu [42] cluster edges instead of nodes, which

results in overlapping communities of nodes. Following up the

latter work, Wang et al. [43] study the problem of discovering

overlapping groups in social media, and they propose a co-

clustering framework based on users and tags.

VIII. FUTURE WORK

We present a novel formulation for overlapping clustering.

In a nutshell, to each data point is assigned a set of labels

representing membership to different (overlapping) clusters.

Defining a similarity function H(ℓ(u), ℓ(v)) between cluster

labels, allow us to define our objective function over the “resid-

ual error” |H(ℓ(u), ℓ(v))− s(u, v)|, where s(u, v) is the input

similarity function between pairs of data points. In this paper

we consider summing the error terms |H(ℓ(u), ℓ(v))−s(u, v)|
over all pairs of data points. An interesting future direction is

to apply our idea to other clustering paradigms, different than

correlation clustering. For example, one can consider only the

error terms among data points and k “prototypical” data points.

With respect to the concrete optimization problems defined

in this paper, it would be interesting to investigate different

approaches, for example, using non local-search algorithms

such as the idea based on relaxed graph-coloring, mentioned

in Section III. Other interesting directions are to apply graph

coloring solutions for the initialization step, as discussed in

Section IV-D, and to design an approximation algorithm for

the JACCARD-TRIANGULATION problem. Finally, it will be

very interesting to apply the approach to different application

domains.
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