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Resequencing genomic DNA from pools of individuals is an effective strategy to detect new variants in targeted regions
and compare them between cases and controls. There are numerous ways to assign individuals to the pools on which they
are to be sequenced. The naı̈ve, disjoint pooling scheme (many individuals to one pool) in predominant use today offers
insight into allele frequencies, but does not offer the identity of an allele carrier. We present a framework for overlapping
pool design, where each individual sample is resequenced in several pools (many individuals to many pools). Upon
discovering a variant, the set of pools where this variant is observed reveals the identity of its carrier. We formalize the
mathematical framework for such pool designs and list the requirements from such designs. We specifically address three
practical concerns for pooled resequencing designs: (1) false-positives due to errors introduced during amplification and
sequencing; (2) false-negatives due to undersampling particular alleles aggravated by nonuniform coverage; and conse-
quently, (3) ambiguous identification of individual carriers in the presence of errors. We build on theory of error-
correcting codes to design pools that overcome these pitfalls. We show that in practical parameters of resequencing
studies, our designs guarantee high probability of unambiguous singleton carrier identification while maintaining the
features of naı̈ve pools in terms of sensitivity, specificity, and the ability to estimate allele frequencies. We demonstrate the
ability of our designs in extracting rare variations using short read data from the 1000 Genomes Pilot 3 project.

[Supplemental material is available online at www.genome.org.]

DNA sequencing is being revolutionized by new technologies,

replacing the methods of the past decade. ‘‘Second Generation’’

sequencing currently offers several orders of magnitude better

throughput at the same cost by massively parallel reading of short

ends of genomic fragments (Mardis 2008). This enables addressing

new questions in genomics, but poses novel technical challenges.

Specifically, it is now feasible to obtain reliable genomic sequence

along a considerable fraction of the human genome, from multi-

ple individual samples. Such high-throughput resequencing

experiments hold the promise of shifting the paradigm of human

variation analysis and are the focus of this study.

Connections between genetic and phenotypic variation have

traditionally been studied by determining the genotype of pre-

scribed markers. This cost-effective strategy for large-scale analysis

has recently led to multiple successes in detecting trait-associated

alleles in humans (Wang et al. 1998; Risch 2000). However, ge-

notyping technologies have two fundamental drawbacks: First,

they are limited to a subset of segregating variants that are pre-

determined and prioritized for typing; second, this subset requires

the variant to have been previously discovered in the small

number of individuals sequenced to date. Both of these limitations

are biased toward typing of common alleles, present in at least

5% of the population. Such alleles have been well characterized by

the Human Haplotype Map (The International HapMap Project

2003) and have been associated with multiple phenotypes. On the

other hand, rare alleles are both underprioritized for association

studies, and a large fraction of them remain undiscovered (Reich

et al. 2003; Brenner 2007; Levy et al. 2007).

Resequencing can fill in the last pieces of the puzzle by

allowing us to discover these rare variants and type them. Partic-

ularly, regions around loci that have previously been established

or suspected for involvement in disease can be resequenced across

a large population to seek variation. However, finding rare varia-

tion requires the resequencing of hundreds of individuals: some-

thing considered infeasible until now. With the arrival of low-cost,

high-fidelity, and high-throughput resequencing technology, how-

ever, this search is feasible, albeit expensive. Illumina’s Genome

Analyzer (Gunderson et al. 2004), ABI’s SOLiD sequencer (Fu et al.

2008), 454 Life Sciences’ (Roche) Genome Sequencer FLX (Margulies

et al. 2005), to name a few, are the current primary technology pro-

viders offering throughputs on the order of giga base pairs in a single

run (Mardis 2008).

Resequencing is typically done on targeted regions rather

than the whole genome, making throughput requirements to se-

quence an individual much less than what is provided by a single

run. A costly option is to utilize one run per individual, but in

a study population of hundreds or thousands, such an approach is

prohibitively expensive. In such cases, ‘‘pooled’’ sequence runs

may be used.

The central idea of pooling is to assay DNA from several indi-

viduals together on a single sequence run. Pooled Genotyping has

been used to quantify previously identified variations and study al-

lele frequency distributions (Shaw et al. 1998; Ito et al. 2003; Zeng

and Lin 2005) in populations. Given an observed number of alleles

and an estimate of the number of times an allelic region was sampled

in the pool, it is possible to infer the frequency of the allele in the

pooled individuals being studied. Pooled resequencing can be used

to reach similar ends, with the added advantage of being able to

identify new alleles. At least one recent work has analyzed the effi-

cacy of pooled resequencing for complete sequence reconstruction

(Hajirasouliha et al. 2008). The investigators of that work studied the

problem of reconstructing multiple disjoint regions of a single ge-

nome while minimizing overlap between regions. Our work

addresses the problem of identifying rare variations contained

within a single region across multiple individuals.

1Corresponding authors.
E-mail snehitp@columbia.edu; fax (212) 666-0140.
E-mail itsik@cs.columbia.edu; fax (212) 666-0140.
Article published online before print. Article and publication date are at
http://www.genome.org/cgi/doi/10.1101/gr.088559.108.

1254 Genome Research
www.genome.org

19:1254–1261 � 2009 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/09; www.genome.org



Historically, the primary trade-off of a pooled approach has

been the inability to pinpoint the variant carrier from among the

individuals sequenced in a pool. Retracing an observed variant

back to its carrier required additional sequencing (or genotyping)

of all of these individuals, one at a time. Barcoding is an upcoming

experimental method that involves ligating a ‘‘signature’’ nucle-

otide string (;5 bp) to the start of all reads belonging to an in-

dividual. These nucleotides serve as the barcode that identifies

which individual a given sequenced read came from. If/when

established, barcoding technology may essentially offer a more

complex assay for a wetlab solution to the same problem we ad-

dress through computational means.

The central idea behind our overlapping pool design is that

while sequencing DNA from several individuals on a single pool,

we also sequence DNA from a single individual on several pools.

Individuals are assigned to pools in a manner so as to create a code:

a unique set of pools for each individual. This set of pools on

which an individual is sequenced defines a code word, or pool

signature. If a variation is observed on the signature pools of one

individual and on no other, then we identify the carrier of the

variation. For example, consider a study where a single proband X

is part of a cohort of one hundred individuals being resequenced

for the same genomic region. Out of 15 pools used by the study,

assume that Xs DNA is sequenced on pools 1, 3, and 7, such

that no other individual in the cohort has been sequenced on the

same three pools. A variation uniquely recorded on these three

pools is likely to be carried by X, and only by X. Code-based

pool assays like this have been studied before. In particular, we

extend and apply principles developed in other contexts of

pooling, such as genotyping (Pe’er and Beckmann 2003; Beckman

et al. 2006) and de-novo sequencing (Cai et al. 2001; Csuros et al.

2003).

The balance of this work is organized as follows: In the

Methods section, we first introduce a generic mathematical model

that can be used to represent the pooled resequencing process. We

develop figures of merit to evaluate a pool design’s robustness to

error, and coverage under given budgetary constraints. We then

propose two algorithms for pool design: logarithmic signature

designs and error-correcting designs. In the Results section we

compare the efficacies of our designs against each other and against

current practices using synthetic data as well as real short-read data

from the 1000 Genomes Pilot 3 project (www.1000genomes.org),

where we quantify the abilities and trade-offs of the designs. A

significant part of our analysis deals with the errors and noise in-

troduced at various stages in the pooled resequencing process. We

summarize our contributions in the Discussion section.

Methods

Terminology

A resequencing experiment is characterized by the target region

and a cohort. We consider a cohort I = {i1,. . .,iN} of N diploid

individuals. These individuals are to be sequenced for a target re-

gion of L base pairs using R pools (or sequence runs) labeled P =

{P1,. . . ,PR}. Each pool offers a sequencing throughput of T base

pairs mapped to the reference sequence. A key factor in such an

experiment is the mean expected coverage of diploid individuals

in the cohort. This is the number of reads Ĉ in which each haploid

nucleotide of that individual is expected to be observed, summed

over all pools, and averaged over all individuals and sites. Mean

expected coverage is given by:

Ĉ [
total sequencing capacity

total region to be sequenced
=

RT

2NL
ð1Þ

We introduce notation for a pool design as an R 3 N binary

matrix, D

Dp;i =
1 if individual i is sequenced on pool p
0 otherwise

�
ð2Þ

We further define notation for column and row sums of

the design matrix: For each pool p we denote the number

nðpÞ[+iDp;i of individuals in that pool; for each individual i we

denote the number kðiÞ[+pDp;i of pools with that individual.

Whenever n(p) and k(i) are constant, as will be evident from con-

text, we shall omit the parameters p and i, respectively.

This setup facilitates a discussion of expected coverages of

sites across several parameters. The actual coverage, or number of

reads that observe a particular nucleotide x on a single haplotype

of individual i in a pool p, is a random variable Cp,i
x with mean Ĉp;i

across all sites x 2 L. The distribution of this random variable

around its mean may be technology specific. We demonstrated

elsewhere (Sarin et al. 2008) that Cp,i
x for Illumina’s short read

alignments mirror the Gamma distribution (see Fig. 5, below).

The mean expected coverage of each haplotype of the dip-

loid individual i in a particular pool p is

Ĉp;i =
Dp;i 3 T

2L 3 nðpÞ ð3Þ

Using Equation 3, we normalize the binary entries of D

(presence or absence of a site on pool p) to formulate D9 (expected

coverage of a site on pool p):

Dp;i
0 = Ĉp;i if individual is sequenced on pool p

0 otherwise

�
ð4Þ

Summing over a column of D9, we get the expected coverage

of a site from an individual accumulated over all pools as

Ĉi=+pĈp;i: Likewise, summing across a row gives the expected

coverage of a site across all individuals on the pool Ĉi=+pĈp;i:

Finally, the expected cumulative coverage of a site across the

whole populations in the pooled arrangement, Ĉ satisfies

Ĉ = +
i

Ĉi = +
p

Ĉp: ð5Þ

Next, we model the sequence of alleles carried by individ-

uals in I as an N 3 L matrix M. Each element Mi,x can take on

the values {0, 1, 2} to register how many copies of the minor allele

are present in the diploid genome of i at site x. M is the ground

reality: It is not known to us a priori, but rather is what we wish to

ascertain. Reconstructing as much of M as possible is the objective

of this work.

Lastly, our expected sequencing results are captured by an

R 3 L matrix E of nonnegative integers. The pool design, ground

truth, and expected results are linked by the equation

D0 3 M = E ð6Þ

Each entry Ep,x is a tally of the expected number of minor

alleles at site x across all individuals in pool p.
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Design properties

As a first step toward successfully designing overlapping pools, we

focus on engineering D, such that it satisfies the following prop-

erties of a good design as best as possible.

Property 1: D retains carrier identity

This property states that D must have unique column vectors.

Since unique columns serve as unique pool signatures of each

individual in the cohort, matching the occurrence pattern of

a variant in E to a column vector in D suggests that the variant is

carried by the individual associated with that column. Therefore,

the design matrix D needs to have at least N unique columns.

Pool signatures for all individuals in the cohort may be de-

fined through a function D : I!PðPÞmapping individuals to sets

of pools. Here,PðPÞ denotes the power set (set of all subsets) of P,

while the pool signature of individual i is denoted D(i). Formally,

the pool signature is defined as the set: D(i) = {p | Dp,i = 1}.

Property 2: D achieves an equitable allocation of sequencing throughput

All else being equal, there is an equal probability of observing

a rare variant carried by any individual in the cohort. It can

therefore be shown that any unequal allocation of throughput

(coverage) to certain individuals increases the overall probability

of missing a variant in the population (see Appendix). While there

may often be biological motivation to focus on certain sites (for

example, where variation is known or expected to be functional),

current technological limitations restrict selective allocation of

coverage within the region of interest.

Additionally, the goal of resequencing includes discovery of

rare variants, rather than investigating sites that are already

known to be polymorphic. We therefore assume no such de-

liberate preferential coverage, and our aim is to cover all 2L sites in

each of N diploid individuals as equally as possible using the P

pools at our disposal.

One direct way to achieve equitability would be for the

throughput of each pool to be divided equally by the individuals

sequenced on it, and the number of pools assigned per individual

is constant. In other words, 8i; kðiÞ=k and 8p;nðpÞ=n: Summing

coverage assigned to an individual over all of the pools it is se-

quenced in, we then get

8i; Ĉi = k 3 T=2n

Property 3: D is error tolerant

Modeling the empirical errors introduced into pooled resequenc-

ing requires review of the different experimental stages and their

associated sources of error. The first step in targeted resequencing

experiments is typically pulldown of the target genomic region by

standard direct PCR with primers for each amplicon, or by tiling

oligonucleotide probes and universal amplification. For pooled

resequencing, we assume that the entire pool is amplified in

a single reaction. The region of interest is then randomly sheared

into short library fragments, which are then single-molecule am-

plified and end-sequenced. Such sequencing protocols provide

millions of single or paired-end reads, which are computationally

mapped against the reference genomic sequence. Errors occur

during several stages, depending on the sequencing technology. A

good pool design should account for errors introduced at each

stage and use the redundancy of information in high-throughput

sequencing for robustness against such errors.

Modeling error

We now quantify errors that occur in the sequencing process

within the framework of our model. Equation 6 represents an ideal

pooling arrangement, where each value Ep,x is an expectation of

the number of rare alleles we should observe. In reality, the ob-

served number of alleles at Ep,x is a random variable whose mean

is the corresponding expectation. The reason for this randomness

is a variety of errors that can cause differences between the ex-

pectation and observation. We address three primary sources of

error: read error, error due to undersampling, and error during

amplification (PCR).

Read error

Sequence read errors that cause consensus mismatches occur

anywhere in the range of one per 50–2000 bases (Smith et al.

2008). These are more likely to occur at nonvariant sites, and

therefore show up as false-positives, than occur at variant sites,

and be observed as false-negatives. Traditionally, sequence as-

sembly methods (Li et al. 2008) have used base-call quality of reads

to assess veracity of base calls across multiple reads. However, in

the absence of long-established support of the base-call quality

used by current technologies, likelihood may still be evaluated by

requiring a minimum threshold t of reads that report a variant in

order to call it a variant. We assume that this read error occurs at

the technology dependent rate of errread per base pair and is

uniform across all pools.

Undersampling error

An individual i is said to be undersampled at base x if Ci
x is

too small to confidently call x. Undersampling is intrinsic to all

shotgun sequencing, whether pooled or single sample (Lander and

Waterman 1988). However, pooled experiments are generally

carried out due to cost/throughput constraints with coverage

distributions more prone to undersampling than traditional se-

quencing (Smith et al. 2008). We define a site to be undersampled

if it is read less than t times. The distribution of Ci
x is therefore key

for quantifying undersampling. We propose the density of the

Gamma distribution (Sarin et al. 2008) at integer values of cover-

age as an approximation of the distribution of practical coverage

(see Fig. 5, below). The shape parameters for this distribution that

we use in our analysis are elaborated in the Appendix.

Cx
i ; Gða;bÞ ð7Þ

ProbðCx
i = rÞ=

Z r + 1

c = r

ca�1:
expð�Ĉi=bÞ

bcGðaÞ dc ð8Þ

The number of undersampled sites is therefore:

errus =

Z t

c = 0

ca�1:
expð�Ci=bÞ

bcGðaÞ dc ð9Þ

Equation 9 applies to pools just as well as to single-sample

sequencing: The parameters that determine undersampling re-

main unchanged. Furthermore, it applies to overlapping pools,

with the mean coverage across pools Ĉi still determining under-

sampling probability, even if the individual coverage per pool is

smaller than naı̈ve pooling.

These principles are best demonstrated by an example.

Consider a naı̈ve pool design that offers Ĉ = 123 coverage to each

pooled individual and recommends an undersampling threshold
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of t = 33. In other words, if we observe a variant less than three

times, we do not make a confident call. The probability of

undersampling a site in this case is relatively small: (Pr[Ci < 3] =

0.3%). However, to accommodate an overlapping pool design

within the same resources as a naı̈ve pool design, we would have to

distribute total available throughput Ci over the k pools that an

individual i occurs in. If our design leads us to sequence each in-

dividual of our experiment in k = 3 pools, then our per-pool cov-

erage would be Ĉp;i = 12=3 = 43: The chance of undersampling

at the given threshold in a specific pool is now high: Pr[Cp,i < 3] »
29%, yet, base calling that is aware of the pool design can dis-

tribute the t observations required for calling a new variant across

all k pools to formulate a new threshold t 0= t
k

� �
, justifying the same

probability of undersampling.

Note that if a variant fails to be observed at all in a particular

pool, the signature of its carrier will not be observed accurately,

although the presence of the variant will be detected.

Amplification error

These errors occur when PCR chemistries erroneously introduce

variants like base substitutions in the replicated DNA (Freeman

et al. 1999; Raeymaekers 2000; Huggett et al. 2005). Depending on

the enzymes and protocols used, these errors range in frequency

from traditional specifications of errpcr = 10�4 errors per base pair

to negligible magnitude for high-fidelity chemistries (of the order

of errpcr = 10�6 errors per base pair). In pooled resequencing, PCR

is most economically pooled as well, and PCR errors may affect

multiple reads in that pool. In principle, overlapping pools, each

involving separate amplification, are more robust to PCR error, as

the error would be introduced to only a small fraction of the in-

dependent pools in which a particular individual participates.

Empirically, we observe that practical PCR error rates are negligible

enough to be ignored compared with other sources of errors.

Pool designs

We now propose a few pool designs in the context of the proposed

framework. We demonstrate how our designs quantifiably appease

the outlined properties to a greater extent than a naı̈ve pooling

strategy.

Logarithmic signatures

The binary representation of numbers {1,. . .,N} uses bitwords of

size log2N. One potential design is to use an encoding function

D1 : I ! PðPÞ, where each signature �s is one of N unique bit-

words. For example, a small study cohort of 16 individuals would

require log216 = 4 pools to generate unique signatures as shown by

the first four rows of Figure 1B. The encoding clearly maintains

carrier identity: A variant noticed only in pools {1, 3} points to

individual 11, whereas a variant observed on {1, 3, 4} is carried by

individual 12, and so on. However, not every individual is se-

quenced on the same number of pools through this scheme (in-

dividual 1 is not on any of the first three pools for that matter).

We revised the design to satisfy the equitability property by

appending the 1’s complement of each word to itself, represented

by the last three rows of Figure 1B. The resulting signatures require

2 3 log2N pools. Observe that each individual in this example is

now pooled on exactly four out of eight pools. The ratio of the

number of individuals sequenced to the number of pools utilized

is given by the code efficiency:

Code Efficiency =
N

2log2N
ð10Þ

which grows with N. This schema is extendible to u-ary encodings

as follows. Each of the N individuals is uniquely indexed base-u by

loguN numerals in the range {0, 1, . . . , u � 1}. A base u numeral is

then mapped to its unique binary signature given by its corre-

sponding vector from the standard basis of order u. In other words,

first numeral 0 to first u-bit basis vector 0. . .0.001, numeral 1 to

vector 0. . .010, numeral 2 to vector 0. . .100, and so on. A total of

uloguN pools are required to construct the design. For the general

case:

Code Efficiency =
N

u logu N
ð11Þ

The continuous version of this expression maximizes at u = e,

and for natural u = 3 (ternary encoding). We call this family of

encodings ‘‘logarithmic signature designs,’’ because the design

uses the order of a logarithmic number of pools in the size of the

study cohort.2

Regardless of undersampling, determining allele frequency is

no more difficult than with a naı̈ve pool design. The total number

of copies of a site x sequenced across all pools is Ĉ (Equation 5).

If m minor alleles are observed cummulatively, then assuming

equitable coverage (Property 2), we deduce the maximum likeli-

hood estimate of the allele frequency f as f̂ = m=2Ĉ:

Figure 1. Resequencing with naı̈ve and log pool designs. (A) A total of
16 individuals are divided into groups of two and pooled; (B) 16 distinct
pool signatures are created using just eight pools. In both cases, the
pools on which the variant appears and the variant carrier are marked in
crimson.

2 We note that as a very broad generalization, R pools could potentially assign
unique signatures to N= R

u

� �
individuals, where each individual is sequenced

on u pools. Choosing one set of signatures over another is often a case
specific analysis of the trade-offs involved.

Designing pools for resequencing experiments
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More often than not, N may not be a perfect power of any

integral value u. In such a case, we may not use the entire spectrum

of u-ary signatures (e.g., in a study of only 14 out of 16 individuals

in Fig. 1B). The result is that some pools may sequence fewer

individuals than others (i.e., n(p) is not constant), violating the

equitable coverage dictum. However, by the nature of the design,

this variation of n(p) across pools is restricted to 1. In such a case,

allele frequency calculations are normalized as f = +R
P=0mp=

+R
P=0nðpÞĈp;i; where +pmp = m:

Error-correcting signatures

While economical, logarithmic signatures fail to satisfy Property 3.

They are prone to ambiguous carrier identity in the presence of

false-negative variant calls. For example,

in the design illustrated in Figure 1B, in-

dividual 1 is sequenced in pools {5, 6,

7, 8}. Suppose the variant call is a false-

negative in pool 8 due to undersampling,

but is observed on all others. The result-

ing ‘‘incomplete’’ signature {5, 6, 7} is not

sufficient to unambiguously identify the

carrier as individual 1. In fact, it is equally

likely that individual 2 undersampled in

pool 4 elicited such an observation. In

the general case, a false-negative call in

a u-ary signature ambiguates precisely u

individuals as potential carriers.

We now develop error-correcting

designs that are able to unambiguously

identify the variant carrier, even in the

presence of false-negatives. Borrowing

from results in coding theory (Sloane

and MacWilliams 1977), we formulate

a one-to-one mapping D2 : I ! PðPÞ that

retains identity in the face of false-

positives. Consider an individual I with a

pool signature �si: Intuitively, undersam-

pling error can be identified and cor-

rected if the incomplete signatures re-

sulting from the loss of ‘‘1’’ bits in �si:all continue to point to the

same individual i. Rather than associating an individual with

a single signature, such a design reserves an entire set of signatures

within an ‘‘error-space’’ of �si to individual i. This error space is the

set of all the signatures f�s9g generatable by converting up to some

2 < k(i) number of ‘‘1’’s to ‘‘0’’s in �si: The larger the 2, the more

signatures reserved per individual, and consequently, the fewer

individuals we can multiplex into the pool design. This is the

trade-off between efficiency and error correction. With a fixed

number of pools at its disposal, an error-correcting design has to

maximize the number individuals it can identify while main-

taining a disjoint error space.

An estimate of the expected coverage of each site Cx
p,i also

allows us to calculate the expected number of pools on which

a site x of i may be undersampled: e = k 3 Pr½Cx
p;i < t 0�:We may then

choose an error-correcting scheme that can handle up to e false-

negatives by setting the parameter 2$e. By definition then,

a variant observed in as few as q = k�2 out of k pools is sufficient

to identify the carrier individual.

A fixed-length block code assigns each individual in a set I =

{i1,. . .,iN} to code words such that each code word is of the same

length (but not necessarily the same Hamming weight). Loga-

rithmic signatures are a type of fixed-length block code without

error-correction ability. There is an extensive theory regarding

such codes that do offer error correction. Extended binary Golay

codes (EBGC) are such a type of error-correcting block code. For-

mally, the EBGC consists of a 12-dimensional subspace of the

space M = F
24
2 over the binary field F2 = {0,1}, such that any two

elements in M differ in at least eight co-ordinates. The code words

of M have Hamming weight 0, 8, 12, 16, or 24. To satisfy Property

2, we only use those code words of Hamming weight 8 (i.e., every

pool signature assigns its individual to exactly eight pools). These

code words of weight 8 are elements of the S(5, 8, 24) Steiner sys-

tem. The error space of these Hamming weight 8 code words is a

hypersphere of radius e=3. In other words, all signatures generated

by up to three false-negatives of �si are reserved for the individual i.

Figure 3. Distribution of performance at 123. Color coding indicates red for no pooling, blue for
logarithmic designs, green for error-correcting designs, and black for barcoding strategy. Since we are
only able to sequence 24 individuals on 24 pools in the absence of a pooling strategy, only »5%
singleton variants are observed (and consequently recovered). Logarithmic pooling recovers ;94%
singletons, while error-correcting code recovers ;96% singletons. Barcoding outperforms both
pooling strategies, recovering ;100% singletons in all cases.

Figure 2. Identification of carriers. For log pools, 345 out of a total of
539 single carrier identifications were correct across all coverage profiles,
311 out of 421 were correct ($153 coverage), 266 out of 302 were
correct ($153 coverage), and 206 out of 223 were correct ($203 cov-
erage). For ECC pools, 783 out of a total of 1597 single carrier identi-
fications were correct across all coverage profiles, 637 out of 1109 were
correct ($103 coverage), 441 out of 633 were correct ($153 coverage),
and 321 out of 405 were correct ($203 coverage).
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EBGC has 759 code words of Hamming weight 8. We there-

fore repeat this coding separately for ØN=759
�

subsets of the

individuals. We note that similar to logarithmic signatures, equi-

table coverage (Property 2) holds for specific values of N, which in

this case its values are divisible by 759. For other values, coverage is

only approximately equitable, as different pools may accommo-

date different numbers of individuals.

Results
We assessed the performance of our designs by simulating pools of

short read data. We downloaded short read sequences from the

1000 Genomes Pilot 3 project (www.1000genomes.org) that were

available on the Short Read Archive (SRA) in January, 2009. The

1000 Genomes Pilot 3 project states that it is a targeted sequencing

of the coding region of ;1000 genes, while the SRA annotates it as

sequence from 1000 to 2000 gene regions and conserved elements

(5 KB average length), giving an expected total of 5 Mbp sequence.

Illumina runs from 12 individuals, sequenced using single-end,

51-bp read-length libraries, were selected. We created a 123.4-Mbp

region of interest from the Human Genome, as outlined in the

Supplemental material. The individuals show between 4.2 and

5.3 Mb of mapped sequence with $33 coverage, with the notable

exception of one individual. From the coverage profile, we verified

that the exception was due to poor fidelity/low scoring reads for

that run, possibly due to experimental error. Merging the coverage

of all individuals, we identified 6.41 million unique sites of high

significant coverage.

We constructed two simulated pool designs of 12 individuals

on eight sequencing lanes by mixing reads from multiple indi-

viduals as detailed in the Supplemental material. Reads for indi-

viduals and pools were then independently aligned against the

same 123.4-Mbp reference using MAQ (Li et al. 2008), and SNPs

were called on the alignment. Since

available algorithms call alleles under the

assumption that they are looking at reads

from a single individual (allele frequency

0, 1, or 2), we built our own SNP-calling

algorithm for pooled data (refer Supple-

mental Methods and Analysis). A com-

bined total of 13,022 single nucleotide

variants were detected across the 123.4-

Mbp region in the identity design (i.e.,

combining independent calls made on

each of 12 data sets), of which 10,668

were detected by log pools and 10,868 by

ECC Pools. Both designs demonstrate

a high-fidelity allele frequency prediction,

as evidenced by data outlined in the

Supplemental material.

Based on the pool signature of each

detected variant, we associated a distri-

bution over possible carrier individuals.

Out of a total of 8618 singletons and

doubletons, log pools detected 6270 of

these variants, while ECC pools detected

6478 of these variants (refer to the table

in Supplement on Allele Detection). In

truth, we ascertained (using the 12 data

sets) that 5332 of the variants detected by

log pooling had a single carrier (either

homozygous causing singleton or het-

erozygous causing doubleton), while 5539 of the variants detected

by ECC pools had a single carrier individual.

At each of these sites, our algorithm uses the variants pool

signature to output a set of equally likely candidate individuals

(uniform distribution) to be the variant carriers. Log pools asso-

ciated 4798 variants with a candidate carrier distribution, while

being unable to assign the rest. Likewise, ECC pools assigned 5060

variants with a distribution. In some cases, the call is ambiguous

(multiple individuals are given a uniform probability of being

Figure 4. Performance across coverage. Color coding indicates red for no pooling, blue for loga-
rithmic designs, green for error-correcting designs, and black for barcoding strategy. In the absence of
a pooling strategy, since we only observe 24 out of 500 individuals, most variations are missed. The
base-8 logarithm signatures perform well throughout since total coverage is only distributed among
three pools, giving a high mean-per-pool coverage. Golay error-correcting code performs better than
logarithmic code at high coverage despite the coverage being divided among eight pools, with error
correction offering better response. However, they suffer declining performance toward the lower end
of the spectrum when per-pool coverage becomes unsustainable. Barcoding outperforms the designs
under most conditions.

Figure 5. Observed distribution of coverage of Illumina’s Genome
Analyzer-2 with a mean coverage Ĉp;i = 283 over a 4-Mbp region of C.
elegans. The distribution best fits a Gamma distribution G(a,b) with shape
parameters a = 6.3 and b=Ĉp;i =a=28=6:3: A Poisson distribution is also
shown in the figure to compare fits. These results have also been reported
by the authors in Sarin et al. (2008).
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potential carriers), while in other cases, the design identifies

a single variant carrier.

Of these calls, 3130 distributions in log design captured the

correct individual as one of the prospective carriers, while 2907

distributions in ECC design captured the same. Some variants

strongly identified single individuals as their carriers instead of

offering a distribution over multiple prospective individuals. The

degree of correctness of these calls show a strong correlation to

what coverage the site enjoyed on the carrier individual’s data set

(and, consequently, on the pools in which the individual was se-

quenced). Figure 2 shows the relative abilities of ECC and log pools

to identify carrier individuals. The results confirm our hypothesis

that error-correcting designs enjoy a considerable advantage in

terms of numbers of correct calls.

In the absence of a suitable paired-end data set, we were

unable to assess the ability of our designs to characterize structural

variants like indels, copy-number changes, and transposons.

We also assessed the performance of our pool designs on

synthetic data. In particular, the logarithmic and error-correcting

pool designs were compared against a no-pooling strategy

(one individual per pool), and the barcoding strategy. Naı̈ve

pooling does not claim to establish carrier identity in the

first place, and therefore is irrelevant as a benchmark for these

results.

We ran our simulations to identify rare mutations on 500

human individuals, each harboring a targeted region of interest

whose size we varied from 300 KB to 3 MB. We pooled these

individuals over 24 sequence runs, mirroring eight lanes on

three Illumina GA-2 machines. Each sequence run was given a

throughput of 0.5-Gbp mapped sequence, resulting in a total

throughput offering of 12 Gbp. This translated to a realistic

expected per-haplotype coverage range of 403 to 43 per in-

dividual for the corresponding RoI sizes.

Recent literature (Levy et al. 2007) suggests that »518 K high-

confidence variations were found in a newly sequenced genome,

which were undocumented in dbSNP, giving a genome-wide ap-

proximate new variation incidence rate of 1 in 6.5 Kbp. Assuming

most of these variants occur at a 1% allele frequency in the general

populace, we approximate the likelihood of a singleton in a 500

individual (1000 chromosome) cohort to be one in 65 Kb. We

randomly inserted mutations at this rate to the data set, and fur-

ther subjected it to PCR and read error. From the resulting noisy

observations Eobs, we predicted a reality matrix Mpredict, which we

then compared against the ground truth.

The no-pooling scheme was used to sequence 24 individuals

chosen at random from the 500 individual cohorts. The EBGC

scheme uses 24 pools to generate up to 759 code words as dis-

cussed earlier. We used the first 500 of these in lexicographic order.

We used a value of u = 8 for logarithmic designs; consequently, also

giving us a total of 8[log8 500] = 24 pools. Barcoding also used

24 pools, albeit, effectively simulating 500 distinct pools from

their cumulative throughput. Each individual was offered a pool of

T/N = 1 Mbp. Figures 3 and 4 show a summary of the recovery

statistics.

Discussion
In this study we tackle the design of resequencing pools, a very

current challenge for large-scale analysis of genetic variation. To

the best of our knowledge, this is the first attempt to develop

a framework for the design of such pools. We were able to repre-

sent real experimental error (as observed on Illumina Genome

Analyzer-2 runs) within this framework. We introduced a few

properties that represent quantitative figures of merit by which

any pooling scheme may be judged. Finally, we presented two

original design schemes: logarithmic design and error-correcting

design. Each scheme demonstrated a unique set of advantages

and disadvantages, but both held much promise compared with

a naı̈ve pooling strategy. A comparison between our two designs

themselves reveals that they are both valid approaches, each

suited for a varying set of requirements. Table 1 summarizes the

characteristics of the different designs currently available to the

experimentalist.

In fact, logarithmic signatures are appropriate when under-

sampling is a negligible consideration. If there is a relatively high-

per-pool throughput available vis-à-vis the amount of DNA to be

sequenced, a scenario that marginalizes considerations of false-

negatives, logarithmic designs offer the most promise to find rare

variation. Error-correcting designs are best suited for more trying

experimental conditions, when large population studies must be

done within minimal resources. These designs can effectively

identify variant carriers in spite of noisy signals, but concomi-

tantly run the risk of assigning lesser sequencing throughput to

other carrier individuals in the cohort.

Our results indicated that both error-correcting designs and

logarthmic designs detect most of the variation in the cohort, with

fidelity and ability both dropping as a function of coverage. Our

algorithms currently do not attempt to determine carrier identity

of more common variations that might have higher incidence

(doubletons, tripletons, and polytons), and will be the subject of

future work.

In conclusion, our proposed framework motivates both an-

alytical and experimental downstream studies. Analytically, this

study focused at identification of rare mutation carriers. Information

content in the pooled sequences may facilitate such recovery,

particularly if samples are known to be related and carry variants

identical by descent at the resequenced locus, as demonstrated

for genotype pools (Beckman et al. 2006). Our computational

contribution is particularly useful for characterizing human vari-

ation by enabling pooled resequencing studies to be conducted

with overlapping pools.

Table 1. Summary of design characteristics

Design

Property Identity Naı̈ve Logarithmic Error-correcting Barcoding

Retains carrier identity Yes No Yes Yes Yes
Equitable Yes Approximately Sometimes Rarely Yes
Error-correcting Yes No No Yes Yes
Cost Prohibitive Feasible Feasible Feasible Feasible
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Appendix

Equitable distribution

Equitable distribution mandates an equal coverage to all pooled
individuals in order to maximize the probability of observing
a rare variant and identifying its carrier. This may be seen as fol-
lows: Consider a pooling of two individuals a and b, given unequal
overall coverages Ĉa > Ĉb: By Equation 9, we get a total number of
FNs for a site as

errusðCx
a + Cx

b ; errus:

Z t

0

ca
a�1 :

expð�Ĉa=baÞ
bc

aGðaaÞ
dc + errus:

Z t

0

ca
b�1 :

expð�Cb=bbÞ
bc

bGðabÞ
dc

where aa = a = 6.3, while ba < bb by Equation 8. Under equitable
allocation Ĉ = ðĈa + ĈbÞ=2; it may be shown that 2. errus:C

x<

errus:ðCx
a + Cx

bÞ. That is,

2:

Z t

0

ca�1:
expð�Ĉ=bÞ

bcGðaÞ dc <

Z t

0

caa�1 :
expð�Ĉa=baÞ

bc
aGðaaÞ

dc

+

Z t

0

cab�1 :
expð�Ĉb=bbÞ

bc
bGðabÞ

dc

For example, if individual a has an overall coverage 83, while
individual b has overall coverage 43, their independent under-
sampling rates at threshold 2 are 0.3% and 7.7%, respectively.
However, at a mean coverage of 63 across both, the probability of
a FN is 1.4%.
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