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Abstract. We construct and analyze an overlapping Schwarz preconditioner for elliptic problems
discretized with isogeometric analysis. The preconditioner is based on partitioning the domain of the
problem into overlapping subdomains, solving local isogeometric problems on these subdomains, and
solving an additional coarse isogeometric problem associated with the subdomain mesh. We develop
an h-analysis of the preconditioner, showing in particular that the resulting algorithm is scalable
and its convergence rate depends linearly on the ratio between subdomain and “overlap sizes” for
fixed polynomial degree p and regularity k of the basis functions. Numerical results in two- and
three-dimensional tests show the good convergence properties of the preconditioner with respect to
the isogeometric discretization parameters h, p, k, number of subdomains N , overlap size, and also
jumps in the coefficients of the elliptic operator.
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1. Introduction. Isogeometric analysis (IGA) based on NURBS (nonuniform
rational B-splines) was introduced by Hughes, Cottrell, and Bazilevs in [27] as an
innovative numerical methodology for the analysis of PDE problems, allowing for an
exact description of CAD-type geometries. NURBS are a standard in the computer-
aided design (CAD) community mainly because such spline functions allow excellent
representations of free-form surfaces, and there are very efficient algorithms for their
evaluation, refinement, and derefinement. In the isogeometric framework, the NURBS
basis functions representing the CAD geometry are also used as the basis for the
discrete solution space of PDEs, following an isoparametric paradigm. In addition to
exact representation of CAD geometries, another advantage of using NURBS basis
functions is the higher control on the regularity of the discrete space. For instance,
spaces of global Ck regularity are easily built, thus allowing for fewer degrees of
freedom, better performance in case of vibrations, easier approximation of higher order
problems, and other advantages. IGA methodologies have been summarized in the
recent book [18] and studied in, e.g., [2, 4, 9, 10, 19, 23, 28, 29, 11, 5, 8]. IGA methods
are having a growing impact on fields as diverse as fluid dynamics [6, 7, 40, 15, 26],
structural mechanics [3, 1, 12, 20, 30, 39], and electromagnetics [17, 16].

The discrete systems produced by isogeometric methods are better conditioned
than the systems produced by standard finite elements or finite differences, but their
conditioning can still degenerates rapidly for decreasing mesh size h, increasing poly-
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OVERLAPPING SCHWARZ METHODS FOR IGA 1395

nomial degrees p, and increasing coefficient jumps in the elliptic operator. Therefore
the design and analysis of efficient iterative solvers for IGA is a challenging research
topic, particularly for three-dimensional problems with discontinuous coefficients.

In the present paper we consider the following model elliptic problem:

(1.1) −∇ · (ρ∇u) = f in Ω, u = 0 on ∂Ω,

where the scalar field 0 < ρmin ≤ ρ(x) ≤ ρmax for all x ∈ Ω and Ω ⊂ R
d is a bounded

and connected CAD domain.
We construct and study overlapping Schwarz preconditioners for model elliptic

problems (1.1), discretized by NURBS-based IGA. In our h-analysis, we prove that
the resulting solvers are scalable (independent of the number of subdomains N) and
have an optimal convergence rate depending linearly on the ratio H/γ between the
subdomain and overlap sizes. Since the underlying NURBS basis functions are not
interpolatory, one cannot follow the standard proof used in finite elements, but must
build ad-hoc spline operators that are stable and with local image. The results of ex-
tensive two-dimensional (2D) and three-dimensional (3D) numerical tests confirm our
convergence rate bounds and additionally explore the condition number dependence
on p and k, showing that, as for standard spectral element Schwarz preconditioners,
we have optimality in p for generous overlap, for both minimal and maximal regular-
ity k, while the growth in p becomes stronger for minimal overlap and in particular
for maximal regularity k = p− 1. These tests show that the above good convergence
properties also hold for heterogeneous problems with discontinuous coefficients across
subdomain boundaries. Therefore, our isogeometric Schwarz preconditioners retain
the good convergence properties of overlapping Schwarz solvers for standard Galerkin
discretizations, for both h-finite elements (see, e.g., the books [37, 38]) and hp or
spectral elements (see, e.g., [32, 33, 25]). Our 2-level additive algorithm and analysis
for IGA can be easily extended to 2-level multiplicative and hybrid versions, as in the
finite and spectral element cases. We expect that the proposed 2-level overlapping
Schwarz theory can also be extended toward elliptic systems such as compressible
elasticity, while the extension to multilevel methods will need further research.

The paper is organized as follows. In section 2, we give a brief review of B-splines,
NURBS, and IGA. In section 3, we present the overlapping Schwarz preconditioner
and a bound of its condition number. The main part of the proof is then developed
in section 4, where we show the stable splitting property of the local discrete spaces.
Finally, several numerical 2D and 3D tests are shown in section 5, confirming the
theoretical convergence rate bounds.

2. NURBS-based isogeometric analysis. Nonuniform rational B-splines are
a standard tool for describing and modeling curves and surfaces in CAD and computer
graphics (see Piegl and Tiller [34] and Rogers [35] for an extensive description of
these functions and their properties). In this work, we use NURBS as an analysis
tool, as proposed by Hughes, Cottrell, and Bazilevs [27]. In this section, we present
a short description of B-splines, NURBS, the basics of IGA, and an introduction to
the proposed discretization method.

In the rest of the paper, we will adopt the following compact notation. Given two
real numbers a, b we write a � b when a ≤ Cb for a generic constant C independent
of the knot vectors (defined below), and we write a ≈ b when a � b and b � a.

2.1. B-splines. B-splines in the plane are piecewise polynomial curves composed
of linear combinations of B-spline basis functions. A knot vector is a set of non-
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1396 BEIRÃO DA VEIGA, CHO, PAVARINO, AND SCACCHI

decreasing real numbers representing coordinates in the parametric space of the curve

(2.1) {ξ1 = 0, . . . , ξn+p+1 = 1},

where p is the polynomial degree of the B-spline and n is the number of basis functions
(and control points) necessary to describe it. The interval (ξ1, ξn+p+1) is called a patch.
A knot vector is said to be uniform if its knots are uniformly spaced and nonuniform
otherwise. The maximum allowed knot multiplicity is p + 1; a knot vector is said
to be open if its first and last knots have multiplicity p + 1. In what follows, we
always employ open knot vectors. Basis functions formed from open knot vectors are
interpolatory at the ends of the parametric interval Ω̂ := (0, 1) but are not, in general,
interpolatory at interior knots.

Given a knot vector, univariate B-spline basis functions are defined recursively
starting with p = 0 (piecewise constants):

(2.2) N0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1,

0 otherwise.

For p > 1,

(2.3) Np
i (ξ) =

⎧⎪⎨⎪⎩
ξ − ξi

ξi+p − ξi
Np−1

i (ξ) +
ξi+p+1 − ξ

ξi+p+1 − ξi+1
Np−1

i+1 (ξ) if ξi ≤ ξ < ξi+p+1,

0 otherwise,

where, in (2.3), we adopt the convention 0/0 = 0. Thus, the general basis function
Np

i has support

Θi := supp(Np
i ) = (ξi, ξi+p+1), i = 1, 2, . . . , n.

The functions Np
i are a partition of unity, as shown in [36]. In Figure 3.1 we present an

example consisting of n = 9 cubic basis functions generated from the open knot vector
ξ = {0, 0, 0, 0, 1/6, 1/3, 1/2, 2/3, 5/6, 1, 1, 1, 1}. If internal knots are not repeated, B-
spline basis functions are Cp−1-continuous. If a knot has multiplicity α, the basis
is Ck-continuous, with k = p− α, at that knot. In particular, when a knot has
multiplicity α = p, the basis is C0 and interpolates the control point at that location.
In the following, we will assume that the maximum knot multiplicity is p so that all
considered functions will be (at least) globally continuous. We define the spline space

(2.4) Ŝh = span{Np
i (ξ), i = 1, . . . , n}.

Following [36, Theorem 4.41], we define suitable functionals λpj = λ[ξj , . . . , ξj+p+1],
for 1 ≤ j ≤ n, which are dual to the B-splines basis functions. Let

yi = cos

(
p+ 1− i

p+ 1

)
π, i = 0, 1, . . . , p+ 1,

and let

B∗
p+1(x) = (p+ 1)(−1)p+1[y0, y1, . . . , yp+1](max{x− y, 0})p,

where [y0, y1, . . . , yp+1]f denotes the classical divided difference. We introduce a tran-
sition function g defined as follows:

g(x) =

⎧⎪⎨⎪⎩
0, x < −1,∫ x

−1B
∗
p+1(t) dt, −1 ≤ x < 1,

1, 1 ≤ x
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(see [36, Theorem 4.37] for details). Let Gp
j (x) = g(

2x−ξj−ξj+p+1

ξj+p+1−ξj
) and φpj (x) =

(x−ξj+1)···(x−ξj+p)
p! ; then for j = 1, . . . , n, we set

(2.5) λpj (f) =

∫ ξj+p+1

ξj

f(x)Dp+1ψp
j (x) dx ∀f ∈ L2(0, 1),

where ψp
j (x) = Gp

j (x)φ
p
j (x). The functionals λpj are constructed to verify

(2.6) λpj (N
p
i ) = δij , 1 ≤ i, j ≤ n,

where δij is the Kronecker delta. The following estimate of the functional λpj defined
in (2.5) will be useful in what follows.

Lemma 2.1. If f ∈ Lq(ξj , ξj+p+1), with 1 ≤ q ≤ +∞, then

|λpj (f)| � |ξj+p+1 − ξj |−1/q‖f‖Lq(ξj ,ξj+p+1).

The proof can be found in [36, Theorem 4.41]. Let 
i = ξi+p − ξi for 1 ≤
i ≤ n. We recall the formula for the derivative of univariate B-splines (see [36,
Theorem 4.16]):

(2.7)
d

dξ
Np

i = p

(
Np−1

i


i
−
Np−1

i+1


i+1

)
.

By means of tensor products, a multidimensional B-spline region can be con-
structed. We discuss here the case of a 2D region, the higher-dimensional case being
analogous. Let Ω̂ := (0, 1) × (0, 1) be the 2D parametric space. Consider the knot
vectors {ξ1 = 0, . . . , ξn+p+1 = 1} and {η1 = 0, . . . , ηm+q+1 = 1}, and an n × m
net of control points Ci,j . One-dimensional (1D) basis functions Np

i and M q
j (with

i = 1, . . . , n and j = 1, . . . ,m) of degree p and q, respectively, are defined from the

knot vectors. The bivariate spline basis on Ω̂ is then defined by the tensor product
construction

Bp,q
i,j (ξ, η) = Np

i (ξ)M
q
j (η).

Observe that the two knot vectors {ξ1 = 0, . . . , ξn+p+1 = 1} and {η1 = 0, . . . , ηm+q+1

= 1} generate a mesh of rectangular elements in the parametric space in a natural
way. Analogous to (2.4), we define

(2.8) Ŝh = span{Bp,q
i,j (ξ, η), i = 1, . . . , n, j = 1, . . . ,m}

2.2. NURBS maps and spaces. In general, a rational B-spline in R
d is the

projection onto d-dimensional physical space of a polynomial B-spline defined in
(d+1)-dimensional homogeneous coordinate space. For a complete discussion, see
the book by Farin [24] and the references therein. In this way, a great variety of ge-
ometrical entities can be constructed and, in particular, all conic sections in physical
space can be obtained exactly. To obtain a NURBS curve in R

2, we start introducing
the NURBS basis functions of degree p,

(2.9) Rp
i (ξ) =

Np
i (ξ)ωi∑n

î=1N
p

î
(ξ)ωî

=
Np

i (ξ)ωi

w(ξ, η)
,

where the denominator w(ξ) =
∑n

î=1N
p

î
(ξ)ωî ∈ Ŝh is called the weight function.
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1398 BEIRÃO DA VEIGA, CHO, PAVARINO, AND SCACCHI

The NURBS curve is then defined by

(2.10) C(ξ) =

n∑
i=1

Rp
i (ξ)Ci,

where Ci ∈ R
2 are control points.

Analogously to B-splines, NURBS basis functions on the 2D parametric space
Ω̂ = (0, 1)× (0, 1) are defined as

(2.11) Rp,q
i,j (ξ, η) =

Bp,q
i,j (ξ, η)ωi,j∑n

î=1

∑m
ĵ=1B

p,q

î,ĵ
(ξ, η)ωî,ĵ

=
Bp,q

i,j (ξ, η)ωi,j

w(ξ, η)
,

where ωi,j = (Cω
i,j)3 and the denominator is the weight function denoted also by

w(ξ, η). Observe that the continuity and support of NURBS basis functions are the
same as for B-splines. NURBS spaces are the span of the basis functions (2.11).

NURBS regions are defined in terms of the basis functions (2.11). In particular
a single-patch domain Ω is a NURBS region associated with the n×m net of control
points Ci,j , and we introduce the geometrical map F : Ω̂ → Ω given by

(2.12) F(ξ, η) =

n∑
i=1

m∑
j=1

Rp,q
i,j (ξ, η)Ci,j .

Following the isoparametric approach, the space of NURBS scalar fields on the
domain Ω is defined, component by component, as the span of the push-forward of
the basis functions (2.11),

(2.13) Nh := span{Rp,q
i,j ◦ F−1, with i = 1, . . . , n; j = 1, . . . ,m}.

The image of the elements in the parametric space are elements in the physical
space. The physical mesh on Ω is therefore

(2.14) Th = {F((ξi, ξi+1)× (ηj , ηj+1)), with i = 1, . . . , n+ p, j = 1, . . . ,m+ q} ,

where the empty elements are not considered.
We are now able to present the isogeometric approximation of our model problem

(1.1). As observed, for instance, in [4], in order to obtain spaces with homogeneous
Dirichlet boundary conditions it is sufficient to eliminate the first and last functions
in each coordinate. We therefore introduce the spline space (for instance, in two
dimensions) living in parameter space,

V̂ = Ŝh ∩H1
0 (Ω̂) = span{Bp,q

i,j (ξ, η), i = 2, . . . , n− 1, j = 2, . . . ,m− 1},

and the NURBS space living in physical space,

V = Nh ∩H1
0 (Ω) = span{Rp,q

i,j ◦ F−1, with i = 2, . . . , n− 1; j = 2, . . . ,m− 1}.

We are now able to write the discrete formulation of the model problem (1.1): Find
u ∈ V such that

(2.15) a(u, v) =

∫
Ω

fvdx ∀v ∈ V,

with bilinear form a(u, v) =
∫
Ω ρ∇u∇v dx and 0 < ρmin ≤ ρ(x) ≤ ρmax for all x ∈ Ω.
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The interested reader may find more details on IGA as well as many interesting
applications in a number of recently published papers mentioned in the introduction.
The 3D case is analogous and not discussed.

Remark 2.1. Throughout the paper we consider Dirichlet homogeneous boundary
conditions only for simplicity. Different kinds of boundary conditions can be clearly
treated in the same fashion.

3. The overlapping Schwarz preconditioner. In this section, we construct
the isogeometric overlapping Schwarz preconditioner and present a theoretical bound
on the condition number of the preconditioned operator. We refer the reader to, e.g.,
[37, 38, 22] for a general introduction to Overlapping Schwarz methods.

3.1. Subdomains and subspaces. We describe first the subdomain and sub-
space decompositions in one dimension and then extend them by tensor products to
two and three dimensions. The decomposition is first built for the underlying space of
spline functions in parameter space, and then easily extended to the NURBS space in
the physical domain. We select from the full set of knots {ξ1 = 0, . . . , ξn+p+1 = 1} a
subset {ξik , k = 1, . . . , N+1} of (nonrepeated) interface knots with ξi1 = 0, ξiN+1 = 1.
This subset of interface knots defines a decomposition of the closure of the reference
interval (

Î
)
= [0, 1] =

( ⋃
k=1,...,N

Îk

)
, with Îk = (ξik , ξik+1

),

which we assume to have a similar characteristic diameter H ≈ Hk = diam(Îk). The
interface knots are thus given by ξik for k = 2, . . . , N . For each of the interface
knots ξik we choose an index 2 ≤ sk ≤ n − 1 (strictly increasing in k) that satisfies
sk < ik < sk + p + 1, so that the support of the basis function Np

sk intersects both

Îk−1 and Îk. Note that at least one such sk exists; if it is not unique, any choice can
be taken.

We then define an overlapping decomposition of Î in the following way. Let
r ∈ N be an integer (called the overlap index) counting the basis functions shared by
adjacent subdomains, defined as

(3.1) V̂k = span{Np
j (ξ), sk − r ≤ j ≤ sk+1 + r}, k = 1, 2, . . . , N,

with the exception that 2 ≤ j ≤ s2 + r for the space V̂1 and sN − r ≤ j ≤ n − 1
for the space V̂N (an example is shown in Figure 3.1). These subspaces form an

overlapping decomposition of the spline space V̂ . For r = 0 we have the minimal
overlap consisting of just one common basis function between subspaces. We also
define the overlap parameter

(3.2) γ = h(2r + 2).

Note that the overlap parameter γ is related to the width δ of the overlapping region
by the bounds

(3.3) γ = h(2r + 2) ≤ δ ≤ h(2r + p+ 1) ≤ p+ 1

2
γ,

and also that 2r + 1 represents the number of basis functions in common (in the
univariate case) among “adjacent” local subspaces. We now define the extended
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(a) r = 0 (b) r = 1

Fig. 3.1. Cubic basis functions formed from ξ = {0, 0, 0, 0, 1/6, 1/3, 1/2, 2/3, 5/6, 1, 1, 1, 1}. For

various r, ̂V1 is the span of basis functions drawn with dash-dot and solid lines and ̂V2 is the span of
basis functions drawn with solid and dashed lines, in two subdomains ̂I1 = (0, 1/2) and ̂I2 = (1/2, 1)

of ̂I. In particular, the basis functions in common are those drawn with a solid line.

subdomains Î ′k by

(3.4) Î ′k =
⋃

Np
j ∈̂Vk

supp(Np
j ) = (ξsk−r, ξsk+1+r+p+1),

with the analogous exception for Î ′1, Î ′N , and the further extended subdomains Î ′′k

(3.5) Î ′′k =
⋃

supp(Np
j )∩̂I′

k �=∅
supp(Np

j ).

Let us then introduce an (open) coarse knot vector ξ0 = {ξ01 = 0, . . . , ξ0Nc+p+1 = 1}
corresponding to a coarse mesh determined by the subdomains Îk, i.e.,

ξ0 = {ξ1, ξ2, . . . , ξp, ξi1 , ξi2 , ξi3 , . . . , ξiN−1 , ξiN , ξiN+1, ξiN+2 . . . , ξiN+p+1},

such that the distance between adjacent distinct knots is of order H , ξ1 = · · · = ξp =
ξi1 = 0, and ξiN+1 = ξiN+2 = · · · = ξiN+p+1 = 1, and the associated coarse spline
space

V̂0 := ŜH = span{N0,p
i (ξ), i = 1, . . . , Nc}

has the same degree p of Ŝh and is thus a subspace of Ŝh. Note that, in order to have
a smaller coarse space V̂0, in the definition above we repeat only once all the internal
knots. Nevertheless, less regular coarse spaces can be considered by including more
repetitions of the interior knots.

In more than one dimension, we just proceed by tensor product. For example, in
two dimensions we define subdomains, overlapping subdomains, and extended sup-
ports by

Îk = (ξik , ξik+1
), Îl = (ηjl , ηjl+1

), Ω̂kl = Îk × Îl,

Ω̂′
kl = Î ′k × Î ′l , Ω̂′′

kl = Î ′′k × Î ′′l , 1 ≤ k ≤ N, 1 ≤ l ≤M.
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Moreover, we take the indexes {sk}Nk=2 associated to the {ξik}Nk=2 and the analogous
indexes {sl}Ml=2 associated to the {ηjl}Ml=2. The local and coarse subspaces are then
defined by

V̂kl = span{Bp,q
i,j (ξ, η), sk − r ≤ i ≤ sk+1 + r, sl − r ≤ j ≤ sl+1 + r },

V̂0 = span{
◦
B

p,q

i,j :
◦
B

p,q

i,j (ξ, η) := N0,p
i (ξ)M0,q

j (η), i = 1, . . . , Nc, j = 1, . . . ,Mc},

with the usual modification for boundary subdomains and where
◦
B

p,q

i,j are the coarse
basis functions.

The decomposition for the NURBS space V in the physical domain is the trivial
extension of the one above. Therefore the local subspaces and the coarse space are,
up to the usual modification for the boundary subdomains,

Vkl = span{Rp,q
i,j ◦ F−1, sk − r ≤ i ≤ sk+1 + r, sl − r ≤ j ≤ sl+1 + r },

V0 = span{
◦
R

p,q

i,j ◦ F−1 := (
◦
B

p,q

i,j /w) ◦ F−1, i = 1, . . . , Nc, j = 1, . . . ,Mc},

where we recall that w is the weight function; see (2.11). The subdomains in physical
space are defined as the image of the subdomains in parameter space with respect to
the mapping F,

Ωkl = F(Ω̂kl), Ω′
kl = F(Ω̂′

kl), Ω′′
kl = F(Ω̂′′

kl).

We are now able to present the preconditioner Schwarz operator. Given the embedding
operators Ikl : Vkl → V , k = 1, . . . , N , l = 1, . . . ,M I0 : V0 → V , we define the
projections T̃kl : V → Vkl, T̃0 : V → V0 by

a(T̃klu, v) = a(u, Iklv) ∀v ∈ Vkl, a(T̃0u, v) = a(u, I0v) ∀v ∈ V0,

and Tkl = IklT̃kl, T0 = I0T̃0. Our 2-level overlapping additive Schwarz (OAS)
operator is then

(3.6) TOAS := T0 +

N∑
k=1

M∑
l=1

Tkl.

The matrix form of this operator is

TOAS = BOASA,

where A is the stiffness matrix and BOAS is the additive Schwarz preconditioner:

(3.7) BOAS = RT
0 A

−1
0 R0 +

N∑
k=1

M∑
l=1

RT
kl A

−1
kl Rkl.

Here, Rkl are restriction matrices with 0, 1 entries returning the coefficients of the basis
functions belonging to the local spaces Vkl, and Akl are the local stiffness matrices
restricted to the subspace Vkl. R0 is the fine-to-coarse restriction matrix, and A0 is
the coarse stiffness matrix associated with the coarse space V0. The number of rows of
R0 is the dimension of the fine space, while the number of columns is the dimension of
the coarse space. Each column of R0 contains the coefficients of a coarse space basis
function expressed as linear combination of the fine space basis functions.

More general multiplicative and hybrid versions as well as projection-like opera-
tors T̃kl associated with inexact local solvers could also be used (see [37, 38]) but will
not be considered here. The use of the BOAS preconditioner (3.7) for the iterative
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1402 BEIRÃO DA VEIGA, CHO, PAVARINO, AND SCACCHI

solution of the discrete system Au = f can also be regarded as replacing it with the
preconditioned system

TOASu = g,

where g = BOASf , which can be accelerated by a Krylov subspace method. In the
next sections, we will prove a convergence rate bound for the condition number of
TOAS . The 3D case is handled analogously.

Apart from the preprocessing stage of assembling the isogeometric discrete prob-
lem, the computational costs of our preconditioned iterative solver, analogously to the
finite and spectral element cases, are dominated by solving the local problems on the
overlapping subdomains and solving the coarse problem. The remaining restriction,
interpolation, and vector operations have lower costs. A complexity analysis of this
preconditioner for scalar elliptic problems and finite elements can be found in the
book [37], for both serial (Chapter 3.6.1) and parallel computers (Chapter 3.6.3). A
more detailed analysis of the parallel complexity of the 2-level overlapping Schwarz
algorithm can be found in the book [31], where in sections 5.2.3 and 5.2.4 the total
parallel time and parallel efficiency of the overlapping Schwarz preconditioner are ex-
plicitly estimated. Extending these complexity estimates to the isogeometric case is
beyond the scope of this paper.

3.2. Condition number bounds. We make the following two assumptions on
the mesh and subdivision. The first one is a standard assumption also in the finite
element literature (see [38]), while the second one allows us to focus on the case of
main interest in applications, i.e., when the overlap region is not excessive with respect
to the mesh size:

(a) the parametric mesh in each extended subdomain Ω̂′′
kl is uniform, i.e., there

exists a real number h = h(Ω̂′′
kl) such that all elements E in Ω̂′′

kl have a diameter
which is equivalent to h up to a constant that is fixed and which is the same for all
subdomains;

(b) the overlap index r is bounded from above by a fixed constant.
The following theorem is the main theoretical result of this contribution.
Theorem 3.1. The condition number of the 2-level additive Schwarz precondi-

tioned isogeometric operator TOAS defined in (3.6) is bounded by

κ2(TOAS) ≤ C

(
1 +

H

γ

)
,

where γ = h(2r + 2) is the overlap parameter defined in (3.2) and C is a constant
independent of h,H,N, γ (but not of p, k).

Proof. The proof follows the general abstract Schwarz theory (see, e.g., [38,
Chapter 2]), based on verifying three assumptions known as stable decomposition [38,
Assumption 2.2], strengthened Cauchy–Schwarz inequality [38, Assumption 2.3] and
local stability [38, Assumption 2.4], which provide an upper and lower bound on the
extreme eigenvalues of TOAS ; see [38, Theorem 2.7].

(i) Since we use exact local solvers, the local stability assumption holds true with
a unit constant.

(ii) By using a standard coloring argument (see [38, Chapter 2.5.1]), we obtain
that the strengthened Cauchy–Schwarz inequality holds with a constant bounded
from above by the number of colors. In the simple case where the nonoverlapping
subdomains Ωij form a structured Cartesian decomposition of the original domain and
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OVERLAPPING SCHWARZ METHODS FOR IGA 1403

the associated overlapping subdomains have not too large an overlap, this constant is
4 in two dimensions and 8 in three dimensions.

(iii) We are then left with proving a stable decomposition for our subspace de-
composition. Such a task will be done in the following section.

Remark 3.1. In the following, we will assume that the elliptic coefficient ρ ap-
pearing in the bilinear form of (2.15) is equal to 1 everywhere in Ω. The theory for the
general case follows analogously, but with the addition of a factor ρmax/ρmin in front
of the condition number bound. Nevertheless, the numerical tests of section 5 will
show that in practice the condition number of the preconditioned system is essentially
independent of the coefficient ρ.

4. Stable decomposition. In this section, we prove the stable decomposition
result needed in the proof of Theorem 3.1. We start with some preliminary results
for the univariate case which will be fundamental for the following analysis.

4.1. Initial results in one dimension. We define interpolation operators Π̂k :
V̂ → V̂k needed in our stable splitting. Any z ∈ V̂ can be represented as a linear
combination of {Np

i }n−1
i=2 ; i.e., there exist constants cj , 2 ≤ j ≤ n− 1 such that

(4.1) z =

n−1∑
j=2

cjN
p
j .

We first focus our attention on the case with only two subdomains, since this
case already contains all the difficulties involved in our analysis and the extension to
the general case will be straightforward. Following the notation and construction of
section 3.1, we have Î1 = (0, ξi2), Î2 = (ξi2 , 1) and that the closure of Î is given by

[0, 1], the union of the closures of Î1 and Î2. Moreover, the local spaces are

(4.2) V̂1 = span{Np
i (ξ), 2 ≤ i ≤ s2 + r}, V̂2 = span{Np

i (ξ), s2 − r ≤ i ≤ n− 1},

with r ≥ 0 and s2 < i2 < s2 + p + 1. Using this classification, we can write z as
in (4.1) and introduce two interpolation operators Π̂k : V̂ → V̂k, k = 1, 2, defined as
follows:

(4.3) z =

n−1∑
j=2

cjN
p
j = Π̂1z + Π̂2z ∈ V̂1 + V̂2,

such that

Π̂1z =

s2−r−1∑
j=2

cjN
p
j +

s2+r∑
j=s2−r

(s2 + r + 1)− j

2r + 2
cjN

p
j ∈ V̂1,

Π̂2z =

s2+r∑
j=s2−r

(r − s2 + 1) + j

2r + 2
cjN

p
j +

n−1∑
j=s2+r+1

cjN
p
j ∈ V̂2.

For brevity, we rewrite Π̂1z =
∑s2+r

j=2 c̄jN
p
j , with coefficients

(4.4) c̄j = cjdj , where dj =

{
1 if 2 ≤ j ≤ s2 − r − 1,

(s2+r+1)−j
2r+2 if s2 − r ≤ j ≤ s2 + r.

It is immediate to check from the definition that the identity z = Π̂1z + Π̂2z holds.
Moreover, we have the following result.
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1404 BEIRÃO DA VEIGA, CHO, PAVARINO, AND SCACCHI

Lemma 4.1. The operators Π̂k, k = 1, 2, satisfy the following bounds for all
z ∈ V̂ : ∥∥∥∥ ddξ (Π̂kz)

∥∥∥∥2
L2(̂I′

k)

�
(
1 +

H

γ

)∥∥∥∥ ddξ z
∥∥∥∥2
L2(̂I′′

k )

+
1

Hγ
||z||2

L2(̂I′′
k )
,(4.5)

‖Π̂kz‖L2(̂I′
k)

� ‖z‖L2(̂I′′
k ),(4.6)

where Î ′k and Î ′′k have been defined in (3.4) and (3.5), respectively.

Proof. It is sufficient to prove the result only for Π̂1, since the result for Π̂2 follows
from the same argument. We first show (4.5). By definition and the derivative formula
(2.7), it is immediate to check that

d

dξ
(Π̂1z) =

s2+r∑
j=2

c̄j
d

dξ
Np

j = p

s2+r+1∑
j=2

(c̄j − c̄j−1)
Np−1

j


j
,

where we adopted the convention that c̄1 = c̄s2+r+1 = 0. Given c̄j as in (4.4), an easy

computation shows that for all ξ in Î

d
dξ (Π̂

1z)(ξ) = p

s2+r+1∑
j=2

[cj(dj − dj−1)]
Np−1

j (ξ)


j
+ p

s2+r+1∑
j=2

[dj−1(cj − cj−1)]
Np−1

j (ξ)


j

:= T1(ξ) + T2(ξ).

We will estimate the terms T1 and T2 separately. Note that

dj − dj−1 =

{
0 if 2 ≤ j ≤ s2 − r − 1,

−θ if j ≥ s2 − r,

with θ = 1
2r+2 . Due to assumption (a) at the beginning of section 3.2, we have
j ≥ h;

hence for all ξ ∈ Î ′1 it holds that

(4.7) |T1(ξ)| �
1

h

s2+r+1∑
s2−r

θ|cj |Np−1
j .

Due to property (2.6) of the dual basis and the definition of z =
∑n−1

j=2 cjN
p
j , it

holds that cj = λpj (z). Therefore, using Lemma 2.1 with q = +∞ yields for all
s2 − r ≤ j ≤ s2 + r + 1

|cj | = |λpj (z)| � ||z||L∞(supp(T1)).

This bound, together with (4.7) and the partition of unity property of the spline basis
functions, gives

(4.8) |T1(ξ)| �
θ

h
max

s2−r≤j≤s2+r+1
|cj | �

θ

h
‖z‖L∞(supp(T1)).

We now note that the support of T1 satisfies supp(T1) :=
⋃s2+r+1

j=s2−r supp(N
p−1
j ) =

(ξs2−r, ξs2+r+p+1). Thus, squaring both sides in (4.8) and integrating over Î ′1, one
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gets ∫
̂I′
1

|T1(ξ)|2dξ =
∫
supp(T1)

|T1(ξ)|2dξ � |ξs2+r+p+1 − ξs2−r| ‖T1‖2L∞(supp(T1))

� θ2

h2
|ξs2+r+p+1 − ξs2−r| ‖z‖2L∞(supp(T1))

.

By (3.2) the overlap parameter is γ = h
θ = h(2r+2) and by (3.3), we have |ξs2+r+p+1−

ξs2−r| � (2r + p+ 1)h � γ, and thus we obtain∫
̂I′
1

|T1(ξ)|2dξ � γ−1‖z‖2L∞(supp(T1))
� γ−1‖z‖2

L∞(̂I′′
1 )
.

We now combine a standard scaling argument with the H1 ⊂ L∞ 1D Sobolev embed-
ding; such a bound, applied to the above inequality, gives

(4.9)

∫
̂I′
1

|T1(ξ)|2dξ �
H

γ

∥∥∥∥ ddξ z
∥∥∥∥2
L2(̂I′′

1 )

+
1

Hγ
||z||2

L2(̂I′′
1 )
.

We now bound the second term T2. For any general ϕ =
∑n

j=2 βjN
p−1
j , Lemma 2.1

with the choice q = 2 gives

(4.10) |βj | = |λp−1
j (ϕ)| � h−1/2‖ϕ‖L2(ξj ,ξj+p).

Since z =
∑n−1

j=2 cjN
p
j , the derivative formula (2.7) yields

(4.11)
d

dξ
z = p

n∑
j=2

cj − cj−1


j
Np−1

j ,

which combined with (4.10) gives

(4.12) p

∣∣∣∣cj − cj−1


j

∣∣∣∣ � h−1/2

∥∥∥∥ ddξ z
∥∥∥∥
L2(ξj ,ξj+p)

,

where we adopted the convention that c1 = cn = 0. By the definition of dj , T2 can
be rewritten as

T2 = p

s2−r∑
j=2

(cj − cj−1)
Np−1

j


j
+ p

s2+r+1∑
j=s2−r+1

[dj−1(cj − cj−1)]
Np−1

j


j
.

This splitting implies that the restriction of T2 to (0, ξs2−r+1) coincides with
d
dξ z, as

can be noted by comparing with (4.11). Therefore∫
̂I′
1

|T2(ξ)|2dξ =
∫
(0,ξs2−r+1)

|T2(ξ)|2dξ +
∫
(ξs2−r+1,ξs2+r+p+1)

|T2(ξ)|2dξ

=

∫
(0,ξs2−r+1)

∣∣∣∣ ddξ z
∣∣∣∣2 dξ + ∫

(ξs2−r+1,ξs2+r+p+1)

|T2(ξ)|2dξ.(4.13)

Moreover, from the definition of T2, the partition of unity property and bound (4.12),
it follows for all ξ ∈ supp(T2) that

(4.14) |T2(ξ)| � max
2≤j≤s2+r+1

p

∣∣∣∣cj − cj−1


j

∣∣∣∣ � h−1/2

∥∥∥∥ ddξ z
∥∥∥∥
L2(̂I′′

1 )

.
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1406 BEIRÃO DA VEIGA, CHO, PAVARINO, AND SCACCHI

First using Hölder’s inequality followed by (4.14), then recalling the assumptions at
the start of section 3.2, from (4.13) we have∫

̂I′
1

|T2(ξ)|2dξ �
∥∥∥∥ ddξ z

∥∥∥∥2
L2(̂I1)

+ |ξs2+r+p+1 − ξs2−r+1| ‖T2‖2L∞(ξs2−r+1,ξs2+r+p+1)

�
∥∥∥∥ ddξ z

∥∥∥∥2
L2(̂I1)

+ h−1|ξs2+r+p+1 − ξs2−r+1|
∥∥∥∥ ddξ z

∥∥∥∥2
L2(0,ξs2+r+p+1)

� (2r + p+ 1)

∥∥∥∥ ddξ z
∥∥∥∥2
L2(̂I′′

1 )

�
∥∥∥∥ ddξ z

∥∥∥∥2
L2(̂I′′

1 )

.

Combining the above inequality with (4.9), the first bound (4.5) follows.

It remains to show (4.6). Let e = (ξm, ξm+1) ⊂ Î ′1 be any element of the mesh.
Then by Lemma 2.1 with q = 2, for all ξ ∈ e, we get

Π̂1z(ξ) =
m∑

j=m−p

c̄jN
p
j (ξ) ≤ max

m−p≤j≤m
|cj | � h−1/2‖z‖L2(ξm−p,ξm+p+1),

where we also used the obvious property that |c̄j | ≤ |cj | for all values of j. Thus,∫
e

|Π̂1z|2 � h−1h‖z‖2L2(ξm−p,ξm+p+1)
= ‖z‖2L2(ξm−p,ξm+p+1)

.

Summing over all elements in the mesh yields ‖Π̂1z‖L2(̂I′
1)

� ‖z‖L2(̂I′′
1 ), completing

the proof.
The general case with N subdomains is straightforward. If z =

∑n−1
j=2 cjN

p
j , then

(4.15) z =

N∑
k=1

Π̂kz,

where the operators Π̂k : V̂ → V̂k are defined by

Π̂kz =

sk+r∑
j=sk−r

(r − sk + 1) + j

2r + 2
cjN

p
j +

sk+1−r−1∑
j=sk+r+1

cjN
p
j +

sk+1+r∑
j=sk+1−r

(sk+1 + r + 1)− j

2r + 2
cjN

p
j ,

with the obvious modification for the two boundary subdomains. Note that above
we are ruling out for simplicity the uninteresting case where the overlap index r is so
big that it induces an overlap of the indexes of nonadjacent subdomains (i.e., we are
assuming sk + r + 1 ≤ sk+1 − r − 1).

Clearly, the stability bounds are also derived by a trivial extension of the argu-
ments shown in the two-subdomain case. We thus have the following result.

Theorem 4.1. The operators Π̂k, k = 1, 2, . . . , N , satisfy the following bounds
for all z ∈ V̂ :∥∥∥∥ ddξ (Π̂kz)

∥∥∥∥2
L2(̂I′

k)

�
(
1 +

H

γ

)∥∥∥∥ ddξ z
∥∥∥∥2
L2(̂I′′

k )

+
1

Hγ
||z||2

L2(̂I′′
k )
,(4.16)

‖Π̂kz‖L2(̂I′
k)

� ‖z‖L2(̂I′′
k ).(4.17)
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4.2. Stable splitting for splines in parameter domain. In this section, we
present the stable splitting result for the case of splines in the parametric domain.
For simplicity, we present the result in the 2D case, as the 3D case is analogous.

Given any function v in the bivariate spline space V̂ , we define its restrictions
vξ : (0, 1) → R and vη : (0, 1) → R:

vξ(η) = v(ξ, η) and vη(ξ) = v(ξ, η) ∀(ξ, η) ∈ Ω̂.

The functions above are clearly in the univariate spline space of degree p generated
by the knot vectors ξ and η, respectively. We build the needed operators by a tensor
product construction. For all k = 1, 2, . . . , N and l = 1, 2, . . . ,M we introduce the
linear operators Π̂k

ξ and Π̂l
η, from V̂ to V̂ , defined by

(4.18)

(Π̂k
ξv)(ξ, η) = (Π̂kvη)(ξ) and (Π̂l

ηv)(ξ, η) = (Π̂lvξ)(η) ∀(ξ, η) ∈ Ω̂, ∀v ∈ V̂ ,

where the Π̂k (and Π̂l) are the 1D operators introduced in the previous section. It is

easy to check that, due to the tensor product nature of the space V̂ and its basis, the
above operators commute, i.e., Π̂k

ξ ◦ Π̂l
η = Π̂l

η ◦ Π̂k
ξ . For the same reason, the operators

commute also with the derivative in the other direction, i.e.,

(4.19)
∂

∂ξ
(Π̂l

ηv) = Π̂l
η

(
∂

∂ξ
v

)
and

∂

∂η
(Π̂k

ξv) = Π̂k
ξ

(
∂

∂η
v

)
∀v ∈ V

and for all k, l in the above ranges. We are now able to define the linear operators

(4.20)
Π̂kl : V̂ −→ V̂kl,

Π̂klv = Π̂k
ξ ◦ Π̂l

η (v) = Π̂l
η ◦ Π̂k

ξ (v) ∀v ∈ V̂ .

Let Π̂0 be the standard spline quasi-interpolant into the space V̂0, which is built using
the dual basis functions as detailed in [36, Theorem 12.6]. Given any û ∈ V̂ , define

(4.21) ẑ = û− û0 ∈ V̂ , û0 = Π̂0û ∈ V̂0.

Due to well-known stability and approximation properties of the quasi-interpolant in
[36, Theorem 12.7], the following bound holds:

(4.22) ||ẑ||2
L2(̂Ω)

+H2||∇û0||2L2(̂Ω)
� H2||∇û||2

L2(̂Ω)
.

Using the linearity of the operators in (4.18) and the splitting property (4.15) of
the 1D operators, we obtain

(4.23)

N∑
k=1

M∑
l=1

Π̂klẑ =

N∑
k=1

Π̂k
ξ

(
M∑
l=1

Π̂l
η ẑ

)
=

N∑
k=1

Π̂k
ξ ẑ = ẑ.

Therefore, denoting ûkl = Π̂kl ẑ, we have the splitting

(4.24) û = û0 +
N∑

k=1

M∑
l=1

ûkl , û0 ∈ V̂0, ûkl ∈ V̂kl.

We are left to show that the splitting is stable, which we formalize in the next result.
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1408 BEIRÃO DA VEIGA, CHO, PAVARINO, AND SCACCHI

Proposition 4.1. For all û ∈ V̂ it holds that

(4.25) ||∇û0||2L2(̂Ω)
+

N∑
k=1

M∑
l=1

||∇ûkl||2L2(̂Ω)
�
(
1 +

H

γ

)
||∇û||2

L2(̂Ω)
.

Proof. The result for the û0 follows immediately from (4.22). Regarding the
second term, we treat only the derivative in x, the derivative in y clearly following
with the same arguments. Let any 1 ≤ k ≤ N and 1 ≤ l ≤ M . Since by definition
supp(ûkl) = Ω̂′

kl, using definition (4.20) and property (4.19) yields

(4.26)

∥∥∥∥ ∂∂ξ ûkl
∥∥∥∥2
L2(̂Ω)

=

∥∥∥∥ ∂∂ξ Π̂l
η ◦ Π̂k

ξ ẑ

∥∥∥∥2
L2(̂Ω′

kl)

=

∥∥∥∥Π̂l
η

∂

∂ξ
(Π̂k

ξ ẑ)

∥∥∥∥2
L2(̂Ω′

kl)

.

Now let v be any function in V̂ . Then, first by definition of Ω̂′
kl and (4.18), and then

using standard calculus and the 1D bound (4.17), we get

(4.27)

||Π̂l
ηv ||2L2(̂Ω′

kl)
=

∫
̂I′
k

∫
̂I′
l

∣∣(Π̂l
ηv)(ξ, η)

∣∣2dηdξ = ∫
̂I′
k

∫
̂I′
l

∣∣(Π̂lvξ)(η)
∣∣2dηdξ

�
∫
̂I′
k

∫
̂I′′
l

∣∣vξ(η)∣∣2dηdξ = ∫
̂I′
k

∫
̂I′′
l

∣∣v(ξ, η)∣∣2dηdξ.
We now apply bound (4.27) to the identity (4.26). By standard calculus, definition
(4.18), and using the 1D bound (4.16), we get

(4.28)

∥∥∥∥ ∂∂ξ ûkl
∥∥∥∥2
L2(̂Ω)

�
∫
̂I′
k

∫
̂I′′
l

∣∣∣ ∂
∂ξ

(Π̂k
ξ ẑ)(ξ, η)

∣∣∣2dηdξ = ∫
̂I′′
l

∫
̂I′
k

∣∣∣ ∂
∂ξ

(Π̂kẑη)(ξ)
∣∣∣2dξdη

�
(
1 +

H

γ

)∫
̂I′′
l

∫
̂I′′
k

∣∣∣ ∂
∂ξ
ẑη(ξ)

∣∣∣2dξdη + 1

Hγ

∫
̂I′′
l

∫
̂I′′
k

∣∣ẑη(ξ)∣∣2dξdη
=

(
1 +

H

γ

)∥∥∥∥ ∂∂ξ ẑ
∥∥∥∥2
L2(̂Ω′′

kl)

+
1

Hγ
||ẑ||2

L2(̂Ω′′
kl)
.

Since the above bound holds for all (k, l) and the number of overlaps of the extended

subdomains Ω̂′′
kl is uniformly bounded, by a standard coloring argument inequality

(4.28) gives

(4.29)

N∑
k=1

M∑
l=1

∥∥∥∥ ∂∂ξ ûkl
∥∥∥∥2
L2(̂Ω)

�
(
1 +

H

γ

)∥∥∥∥ ∂∂ξ ẑ
∥∥∥∥2
L2(̂Ω)

+
1

Hγ
||ẑ||2

L2(̂Ω)
.

Recalling the definition of Ω̂ and using property (4.22), some simple algebra gives
from (4.29)

(4.30)

N∑
k=1

M∑
l=1

∥∥∥∥ ∂∂ξ ûkl
∥∥∥∥2
L2(̂Ω)

�
(
1 +

H

γ

)
||∇û||2

L2(̂Ω)
.

The proof follows applying the same argument for the ∂
∂η derivative.

The proof of Theorem 3.1 for the case of the spline space in the parameter domain
finally follows by combining Proposition 4.1 with the steps mentioned in section 3.2.
The full isogeometric case, including map and weight, is considered in the next section.
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Remark 4.1. Note that the proof above is based on a tensor product argument,
which allows us to use the 1D results of the previous section, considering one coor-
dinate derivative at a time. Therefore, nothing changes in the case of the three (or
actually arbitrary) dimensions, where the same proof applies. The more cumbersome
notation required is the reason why we decided to focus the presentation on the 2D
case.

4.3. Stable splitting for NURBS in physical domain. We now present
the stable splitting results in the full isogeometric case, again for simplicity in two
dimensions, as the 3D case is analogous. Let u be any function in the mapped NURBS
space V . By definition of the space V , it is immediate to check that

V =

{
v̂

w
◦ F−1 : v̂ ∈ V̂

}
,

where we recall that w represents the weight function. As a consequence, there exists
û ∈ V̂ such that u = (û/w) ◦ F−1 and, conversely, û = w(u ◦ F). Using the results
in the previous section, we have the existence of a stable splitting for û. Therefore,
introducing the functions

ukl =
ûkl
w

◦ F−1 ∈ Vkl , u0 =
û0
w

◦ F−1 ∈ V0,

we clearly have from (4.24) the splitting u = u0 +
∑N

k=1

∑M
l=1 ukl. We are left to

prove that the above splitting in physical space is stable.
Proposition 4.2. For all u ∈ V it holds that

(4.31) ||∇u0||2L2(Ω) +

N∑
k=1

M∑
l=1

||∇ukl||2L2(Ω) �
(
1 +

H

γ

)
||∇u||2L2(Ω).

Proof. The functions w,F are continuous, piecewise regular, and fixed once and for
all at the coarsest level of discretization. We make, moreover, the standard assumption
(see [4]) that the inverse mapping F−1 is well defined and with bounded derivatives.
As a consequence, we have that w,F,F−1 are (componentwise) in the W 1,∞ Sobolev
space. Therefore, first a standard change of variables (see, for instance, [4]) from Ω

to Ω̂, then a Poincaré inequality on Ω̂ give

(4.32)

||∇u0||2L2(Ω) +

N∑
k=1

M∑
l=1

||∇ukl||2L2(Ω) � ||û0||2H1(̂Ω)
+

N∑
k=1

M∑
l=1

||ûkl||2H1(̂Ω)

� ||∇û0||2L2(̂Ω)
+

N∑
k=1

M∑
l=1

||∇ûkl||2L2(̂Ω)
.

We now apply Proposition 4.1 in (4.32), map back into Ω, and finally apply again a
Poincaré inequality to obtain the thesis

||∇u0||2L2(Ω) +
N∑

k=1

M∑
l=1

||∇ukl||2L2(Ω)

�
(
1 +

H

γ

)
||∇û||2

L2(̂Ω)

�
(
1 +

H

γ

)
||u||2H1(Ω) �

(
1 +

H

γ

)
||∇u||2L2(Ω).
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The proof of Theorem 3.1 finally follows by combining Proposition 4.2 with the
steps already mentioned. We underline again the full generality of the result with
respect to the problem dimension.

Note finally that in the above argument the coarse space V̂0 is not required to
respect the isoparametric paradigm. Therefore, the coarse mesh defining the coarse
space does not need to be a refinement of the coarse mesh which is used to define the
geometry (i.e., F and w).

Remark 4.2. The arguments shown here always refer to the case of a single-patch
geometry, but the extension to the multipatch case is straightforward. Indeed, the
different patches can be used as an initial subdivision into subdomains (and possibly
divided again). Since the standard multipatch structure involves a C0 gluing of the
discrete functions across different patches, this interfaces can be dealt with as in
standard finite element overlapping Schwarz methods. The more difficult case is
instead the one already treated in this contribution, i.e., the case when a higher Ck

regularity is present across the subdomain interfaces.

5. Numerical results. We now test the convergence properties of the iso-
geometric overlapping Schwarz preconditioner (3.7) for two-dimensions and three-
dimensions model elliptic problems (2.15) on both parametric (reference square or
cube) and physical domains (see Figure 5.3), with zero right-hand side, Dirichlet
boundary conditions ex sin(y) in two dimensions or mixed boundary conditions in
three dimensions. The problem is discretized with isogeometric NURBS spaces with
associated mesh size h, polynomial degree p, regularity k, using the MATLAB iso-
geometric library GeoPDEs [21]. The domain is decomposed into N overlapping
subdomains of characteristic size H and overlap index r, as described in section 3.1.
The discrete problems are solved by the preconditioned conjugate gradient (PCG)
method with isogeometric Schwarz preconditioner (3.7), with zero initial guess and as
stopping criterion a 10−6 reduction of the relative PCG residual.

In the following tests, we study how the convergence rate of the overlapping
additive Schwarz (OAS) preconditioner depends on h,N, p, k and on the jumps of the
elliptic coefficients.

5.1. 2D tests: OAS scalability in N and optimality in H/h. The condi-
tion number κ2(TOAS) and iteration counts of the OAS preconditioner are reported
in Table 5.1 for the reference square and in Table 5.2 for a ring-shaped physical do-
main, as a function of the number of subdomains N and mesh size 1/h, for fixed
p = 3, k = 2, r = 0. Additional results for different regularity k = 0, 1, 2 are plotted
in Figures 5.1 and 5.2. The results show that the proposed preconditioner is scalable,

Table 5.1

OAS preconditioner in 2D parametric domain: condition number κ2(TOAS) and iteration
counts (it.) as a function of the number of subdomains N and mesh size 1/h.

2-level OAS prec. with r = 0, p = 3, k = 2 B-splines, square domain
1/h = 8 1/h = 16 1/h = 32 1/h = 64 1/h = 128 1/h = 256

N κ2 it. κ2 it. κ2 it. κ2 it. κ2 it. κ2 it.
2× 2 6.64 13 6.30 12 6.57 12 10.13 15 17.86 18 33.45 23
4× 4 7.17 16 6.23 14 8.84 15 15.45 18 28.91 24
8× 8 7.52 17 6.14 14 9.54 16 17.08 19

16× 16 7.53 17 6.13 14 9.70 16
32× 32 7.03 16 6.13 14
64× 64 7.05 16
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Table 5.2

OAS preconditioner in 2D physical domain: condition number κ2(TOAS) and iteration counts
(it.) as a function of the number of subdomains N and mesh size 1/h for 1-level (upper table) and
2-level (lower table) OAS preconditioner.

OAS prec. with r = 0, p = 3, k = 2 NURBS, ring domain
1/h = 8 1/h = 16 1/h = 32 1/h = 64 1/h = 128

N κ2 it. κ2 it. κ2 it. κ2 it. κ2 it.

1
-l
ev
el

O
A
S 2× 2 7.69 14 13.07 17 25.10 21 49.49 30 98.47 41

4× 4 18.54 22 39.42 29 81.28 41 165.02 58
8× 8 65.75 38 146.45 54 307.67 78

16× 16 255.98 73 5.75e2 106
32× 32 1.02e3 146

2
-l
ev
el

O
A
S 2× 2 7.30 14 6.98 14 11.44 17 20.58 22 38.97 30

4× 4 8.12 18 10.62 20 19.60 23 37.72 32
8× 8 8.41 19 13.92 21 29.88 27

16× 16 8.32 19 15.50 22
32× 32 8.34 19
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Fig. 5.1. Plot of κ2(TOAS) as a function of N (left) and H/h (right) for 2D parametric domain.
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Fig. 5.2. Plot of κ2(TOAS) as a function of N (left) and H/h (right) for 2D ring domain.

since moving along the diagonal of the tables the condition number is bounded above
by a constant independent of N . As expected, the coarse problem is essential for
scalability, since the results of the first part of Table 5.2 show that the 1-level pre-
conditioner (without coarse problem) has condition numbers growing with N along
the diagonals. The results of both tables and figures also confirm the main bound of
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Table 5.3

2-level OAS preconditioner in parametric domain: condition number κ2(TOAS) and iteration
counts (it.) as a function of the spline polynomial degree p and the regularity k. Fixed 1/h = 64,
N = 4× 4, H/h = 16, symmetric minimal overlap (r = 0).

Square domain, h = 1/64, N = 4× 4, (H/h = 16), r = 0
p = 2 p = 3 p = 4 p = 5

k κ2 it. κ2 it. κ2 it. κ2 it.

N
o
p
re
c. 0 2.22e3 187 4.30e3 252 7.04e3 307 1.09e4 375

1 311.56 71 1.01e3 126 2.18e3 182 3.30e3 222
2 327.21 72 842.40 116 1.46e3 148
3 381.73 76 734.29 106
4 445.91 82

2
-l
ev
el

O
A
S 0 8.91 18 8.52 17 8.52 17 8.68 17

1 9.69 16 8.53 15 7.01 14 6.13 13
2 8.90 15 9.44 19 23.05 23
3 6.19 12 9.52 18
4 15.75 18

Theorem 3.1: moving along each table row, the condition numbers grow linearly with
the increasing ratio H/h (here for fixed overlap index r = 0 we have H/γ = O(H/h));
moving along each table column, the condition number decreases about linearly for
decreasing ratio H/h (i.e., increasing N for fixed h), except the last value of each col-
umn where κ2 increases because the subdomains become so small that their excessive
overlap causes a sudden jump of the maximum eigenvalue of TOAS (not reported).

5.2. 2D tests: OAS dependence on p and k. The aim of this test is to
compare the behavior of unpreconditioned conjugate gradient (CG) and 2-level OAS
PCG with respect to the polynomial degree p and spline regularity k. We recall
that our theory does not cover the dependence of the 2-level OAS preconditioner
on p and k. The domain considered is the unit square discretized by a mesh of
size h = 1/64, subdivided into N = 4 × 4 subdomains with symmetric minimal
overlap r = 0. Indeed if k is odd, we take two common functions instead of one
between adjacent univariate subspaces in order to preserve symmetry in terms of basis
functions. Thus, the number of common basis functions between adjacent univariate
subspaces is 2r + 1 + mod(k, 2) = 1 + mod(k, 2). Table 5.3 reports the condition
numbers κ2 and iteration counts it. varying p from 2 to 5 and k from 0 to 4. The
unpreconditioned CG condition numbers and iteration counts increase when p grows,
while they clearly improve when the regularity k increases. The condition number of
the 2-level OAS preconditioner seems to have a good behavior with respect to k for
fixed p, while the dependence on p is less clear, since for k = 0 and k = 1 the condition
number remains bounded when increasing p, but for k = 2 and k = 3 it grows. For
the case k = 1, p = 3, we remark that earlier works by Bialecki et al. [13, 14] have
studied Schwarz algorithms for orthogonal spline collocation with Hermite bicubics.

In order to investigate further the 2-level OAS preconditioner for higher values of
p, we consider in Table 5.4 a discrete problem of smaller dimensions with h = 1/32
and N = 2 × 2 subdomains. Now p varies from 2 to 10, and the regularity is either
maximal (k = p − 1) or minimal (k = 0), while we increase the overlap r from sym-
metric minimal (r = 0) to symmetric generous (r = p). Thus, the number of common
basis functions between adjacent univariate subspaces is again 2r+1+mod(k, 2). The
condition numbers reported in Table 5.4 show that unpreconditioned CG is strongly
ill-conditioned for increasing p, while 2-level OAS performs much better. When the
overlap is generous (r = p) the 2-level OAS preconditioner becomes optimal with
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Table 5.4

2-level OAS preconditioner in parametric domain: condition number κ2(TOAS) as a function of
the spline polynomial degree p for maximal regularity k = p− 1 (left) and minimal regularity k = 0
(right), with different levels of overlap from symmetric minimal (r = 0) to symmetric generous
(r = p). Fixed 1/h = 32, N = 2× 2, H/h = 16.

k = p− 1 k = 0
No prec. 2-level OAS No prec. 2-level OAS

p r = 0 r = 2 r = 4 r = p r = 0 r = p
2 78.12 7.08 4.63 4.11 4.63 554.89 8.98 4.87
3 82.10 6.71 4.24 4.32 4.18 1.07e+3 8.46 4.88
4 206.71 6.02 4.10 4.29 4.29 1.76e+3 8.47 4.92
5 1.57e+3 15.52 4.67 4.61 4.76 1.26e+4 8.65 4.97
6 1.29e+4 12.64 4.88 4.66 4.79 1.53e+5 8.80 4.98
7 1.02e+5 55.09 6.84 5.21 4.99 1.98e+6 9.13 4.99
8 2.99e+5 37.43 7.61 5.35 4.98 1.86e+6 10.55 4.98
9 1.07e+6 289.61 13.12 6.62 4.99 2.96e+6 12.23 4.99

10 1.24e+6 156.85 13.44 6.20 4.99 6.34e+6 13.48 4.99

Table 5.5

2-level OAS preconditioner in a 3D cubic domain: condition number κ2(TOAS), extreme eigen-
values (λMAX , λmin), and iteration counts (it.) as a function of the number of subdomains N .
Fixed H/h = 4, p = 3, k = 2.

2-level OAS, 3D cubic domain
r = 0 r = 1

N κ2 = λMAX/λmin it. κ2 = λMAX/λmin it.
2× 2× 2 18.60 = 8.20/0.44 21 10.05 = 8.78/0.87 19
3× 3× 3 18.80 = 8.26/0.44 24 11.92 = 9.63/0.81 21
4× 4× 4 19.66 = 8.29/0.42 25 12.74 = 9.84/0.77 22
5× 5× 5 19.46 = 8.30/0.43 25 13.23 = 9.92/0.75 23
6× 6× 6 19.52 = 8.31/0.43 25 13.40 = 9.99/0.75 23

respect to p, as for standard spectral element discretizations, with condition number
bounded by 5. When the overlap is minimal (r = 0) or slightly larger (r = 2 and
r = 4), the 2-level OAS preconditioner seems to be independent of p up to p = 4 or
p = 5, but the condition number starts to increase for higher values of p; for minimal
regularity (k = 0), the growth is less than the standard p2 growth for spectral ele-
ments, but for maximal regularity (k = p−1) seems to be worse. We also remark that
these results show that the performance of the 2-level OAS preconditioner improves
when increasing the overlap size, in agreement with the bound of Theorem 3.1 and
with the analogous results for finite and spectral elements.

5.3. 3D tests: OAS scalability in N . The condition number, extreme eigen-
values, and iteration counts of 2-level OAS PCG are reported in Table 5.5 for the
reference cubic domain, as a function of the number of subdomains N for fixed sub-
domain size H/h = 4 (i.e., both h and H are decreasing proportionally as in a scaled
speedup test), p = 3, k = 2, and overlap r = 0 and r = 1. These 3D results confirm
that 2-level OAS is scalable, since the condition number is bounded from above by a
constant independent of N . Moreover, the performance of the method improves when
increasing the overlap size, since the minimal eigenvalue increases while the maximum
eigenvalue remains bounded.

5.4. 2D and 3D tests: OAS robustness with respect to jump discon-
tinuities. Finally, we investigate the robustness of our OAS preconditioners with
respect to jumps discontinuities of the elliptic coefficient ρ. We consider two different
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central jump
1 1 1 1
1 ρ ρ 1
1 ρ ρ 1
1 1 1 1

random mix

10−3 102 10−4 102

101 10−1 100 104

10−2 103 102 10−4

100 104 10−3 101

(a) (b) (c) (d)

Fig. 5.3. (a) Central jump test with 4×4 subdomain decomposition of Ω with ρ = 10−4, . . . , 104

in the 2× 2 interior subdomains while ρ = 1 in the boundary subdomains. (b) Random mix distri-
bution of ρ in the 4× 4 subdomains. (c) 2D ring domain. (d) 3D ring domain.

Table 5.6

OAS robustness with respect to jump discontinuities in the elliptic coefficient ρ. Condition
number κ2, extreme eigenvalues λMAX , λmin, and iteration counts (it.) for central jump and random
mix tests. Top table: 2D ring domain with h = 1/64, N = 4 × 4, H/h = 16, overlap r = 1, p = 3,
k = 2. Bottom table: 3D ring domain with fine mesh 16× 16× 8, N = 4× 4× 2, H/h = 4, overlap
r = 1, p = 3, k = 2.

2D ring domain
No prec. 1-level OAS 2-level OAS

ρ κ2 = λMAX
λmin

it. κ2 = λMAX
λmin

it. κ2 = λMAX
λmin

it.

C
en

tr
a
l
ju
m
p 10−4 4.53e6 = 12.43

2.74e−6
3840 82.89 = 4.00

4.82e−2
46 14.27 = 4.47

3.13e−1
27

10−2 4.61e4 = 12.43
2.70e−4

996 83.19 = 4.00
4.81e−2

45 14.29 = 4.47
3.13e−1

26

1 2.29e3 = 13.60
5.94e−3

221 144.23 = 4.00
2.77e−2

64 19.54 = 4.47
2.29e−1

29

102 1.28e5 = 866.02
6.77e−3

1238 3.00e3 = 4.00
1.33e−3

62 15.16 = 4.48
2.95e−1

27

104 1.27e7 = 8.63e4
6.78e−3

5565 2.80e5 = 4.00
1.43e−5

73 15.15 = 4.45
2.94e−1

31

Random mix 2.90e9 = 8.5e5
2.9e−5

> 104 67 = 4
5.9e−2

20 7.94 = 4.17
0.52

14

3D ring domain
No prec. 1-level OAS 2-level OAS

ρ κ2 = λMAX
λmin

it. κ2 = λMAX
λmin

it. κ2 = λMAX
λmin

it.

C
en

tr
a
l
ju
m
p 10−4 1.42e7 = 6.00e−1

4.24e−8
7258 61.65 = 8.00

1.30e−1
33 11.75 = 8.78

7.49e−1
22

10−2 1.11e5 = 6.00e−1
5.41e−6

873 61.61 = 8.00
1.30e−1

36 12.15 = 8.78
7.23e−1

25

1 543.38 = 7.94e−1
1.46e−3

101 65.82 = 8.00
1.22e−1

41 13.92 = 8.89
6.39e−1

26

102 1.15e5 = 50.30
4.39e−4

1030 682.26 = 8.00
1.17e−2

40 12.03 = 8.93
7.42e−1

23

104 1.48e7 = 5.01e3
3.38e−4

8279 6.09e4 = 8.00
1.31e−4

49 12.11 = 8.93
7.37e−1

22

Random mix 3.26e9 = 6.56e3
2.01e−6

> 104 30.91 = 8.00
2.59e−1

25 10.70 = 8.67
8.10e−1

17

classical tests, which we call “central jump” and “random mix,” in both a 2D quarter
of ring decomposed in 4× 4 subdomains and in a 3D “thick” quarter of ring decom-
posed into 4× 4× 2 subdomains; see Figure 5.3. In the central jump test for the 2D
ring, the elliptic coefficient ρ varies of 8 orders of magnitude (from 10−4 to 104) in
the 2× 2 central subdomains, while it is 1 in the surrounding subdomains.

In the random mix test, ρ has random values varying 8 orders of magnitude among
different subdomains. The 3D ring has the same 2D distributions of ρ in its two layers
of subdomains in the z-direction, except in the random mix test, where the second
layer has the inverse of ρ in the first layer. In the 2D test, we fix h = 1/64, H/h = 16,
p = 3, k = 2, r = 1, while in the 3D test the fine mesh consists of 16 × 16 × 8
elements, H/h = 4, p = 3, k = 2, r = 1. Table 5.6 reports κ2, extreme eigenvalues,
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iteration counts for unpreconditioned CG (left), 1-level OAS (middle), 2-level OAS
(right), for both the 2D ring (top) and 3D ring (bottom). The results show clearly
the robustness of 2-level OAS, with κ2 and iterations independent of the jumps in ρ in
spite of the severe ill-conditioning (up to O(109)) of the unpreconditioned problem. 1-
level OAS performs well only when the jumps in ρ decrease to 0, while its convergence
rate degenerates (λmin decays to zero) when the jumps increase. These results show
that the robustness of overlapping Schwarz preconditioners with respect to elliptic
coefficient discontinuities, known for finite and spectral element discretizations, holds
also for our isogeometric preconditioner.
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