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Abstract—Energy consumption is one of the important param-
eters to be optimized during the design of portable embedded
systems. Thus, most of the contemporary portable devices feature
low-power processors coupled with on-chip memories (e.g., caches,
scratchpads). Scratchpads are better than traditional caches in
terms of power, performance, area, and predictability. However,
unlike caches they depend upon software allocation techniques
for their utilization. In this paper, we present scratchpad overlay
techniques which analyze the application and insert instructions
to dynamically copy both variables and code segments onto the
scratchpad at runtime. We demonstrate that the problem of
overlaying scratchpad is an extension of the Global Register Allo-
cation problem. We present optimal and near-optimal approaches
for solving the scratchpad overlay problem. The near-optimal
scratchpad overlay approach achieves close to the optimal re-
sults and is significantly faster than the optimal approach. Our
approaches improve upon the previously known static allocation
technique for assigning both variables and code segments onto
the scratchpad. The evaluation of the approaches for ARM7
processor reports, average energy, and execution time reductions
of 26% and 14% over the static approach, respectively. Additional
experiments comparing the overlayed scratchpads against unified
caches of the same size, report average energy, and execution
time savings of 20% and 10%, respectively. We also report data
memory energy reductions of 45%–57% due to the insertion of
a 1024-bytes scratchpad memory in the memory hierarchy of a
digital signal processor (DSP).

Index Terms—Code overlay, memory aware code optimization,
scratchpad memory (SPM).

I. INTRODUCTION

C
ONTEMPORARY portable devices demonstrate the inte-

gration of a multitude of conventional devices and feature

enhancements. The best example, is a mobile phone featuring

Bluetooth, GPRS, and a color display. It can perform a host of

functions associated with multimedia devices. For example, it

can take digital pictures, make videos, play MP3 files, and can

also act as a video game console and PDA. It is known, that

the next generation of portable devices will feature faster pro-

cessors and larger memories, both of which require high-oper-

ational power. This is expected to impose severe constraints on

already limited electrical energy available in the battery of the

portable devices. Consequently, reducing power consumption in

portable devices has become a dominant design concern.
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Memory subsystems have been demonstrated to consume

50%–75% power budget of the entire system [1], [2]. As a

consequence, memory hierarchies are being constructed to re-

duce the energy dissipation of the memory subsystem. Caches

and scratchpad memories represent two contrasting memory

architectures. A cache, in addition to the data memory, consists

of tag memory and address comparison logic. This enables

the cache to automatically exploit the spatial and temporal

locality present in the application. However, for embedded

systems, caches are inappropriate as these additional compo-

nents consume a significant amount of energy and on-chip area.

Additionally, worst case execution time (WCET) bounds are

mostly overestimated for a cache-based system [3].

On the other hand, a scratchpad memory (SPM) comprises of

a data memory array and logic for address decoding. The ab-

sence of the tag memory and the address comparison logic from

the SPM makes it both, area and power efficient [4]. However,

a careful assignment of instructions and data is required, by the

programmer or the compiler, for their efficient utilization. This

inturn allows tighter bounds on WCET prediction of the system

as the contents of the SPM are known at all times during the ex-

ecution [3].

In this paper, we present optimal scratchpad overlay (Opt.

SO) and near-optimal scratchpad overlay (Near-Opt. SO) ap-

proaches which overlay both instruction segments and variables

onto the SPM. The approaches generate overlays [5] or memory

objects from an application and solve the scratchpad overlay

problem in a two-step process. In the first step, the approaches

assign memory objects to the SPM such that the SPM size con-

straint is respected at all execution time instances. They also

determine the spill locations for copying the memory objects

on and off the SPM at runtime. A 0–1 integer linear program-

ming (ILP)-based optimal approach is used to determine the

best set of memory objects assigned to the SPM and the op-

timal spill locations. In the second step, the approach computes

the addresses of the memory objects assigned to the SPM, such

that the SPM space is shared by memory objects which are

not required at the same time. The second step is solved opti-

mally through an ILP formulation and near-optimally by using

a first-fit heuristic-based approach.

The rest of the paper is organized as follows. The following

section presents the related work and compares our approach

with the related approaches. Section III presents a motivating

example for the readers. The scratchpad overlay approaches are

presented in Section IV, which is followed by the presentation

of the experimental setup. Section VI presents the evaluation of

the scratchpad overlay approaches for two contrasting processor

architectures. The paper ends with a conclusion and future work.

1063-8210/$20.00 © 2006 IEEE
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II. RELATED WORK

Global register allocation is one of the most researched and

fundamental topics in code optimization and compiler construc-

tion [5]. A compiler initially generates code assuming an infinite

number of symbolic registers which have to be assigned to the

limited number of the processor’s real registers. Global register

allocation attempts to find an assignment of the symbolic reg-

isters to the processor’s real registers such that the maximum

number of symbolic registers is assigned to the real registers.

The allocation problem was proven to be NP-complete [6]. Most

of the register allocators [7], [8] are based on the graph coloring

heuristic [9]. In the recent past, optimal approaches [10], [11] to

solve the register allocation problem, have been proposed. Al-

though global register allocation is NP-complete for arbitrary

graphs, coloring of graphs found in real-life programs [12], has

been demonstrated to be easier. A study by the authors in [11],

empirically demonstrated that it takes to optimally solve

the register allocation problem for real-life benchmarks.

Dynamic storage allocation (DSA) has been a fundamental

part of operating systems for allocating memory to applications

[13]. Applications either make requests for memory or release

some of the already allocated memory. The job of the allo-

cator is to satisfy requests for memory from applications, such

that the total amount of memory required is minimized. The

DSA problem has also been proven to be NP-complete [6]. Sev-

eral heuristic-based allocation approaches (e.g., first-fit, next-fit,

best-fit) have been proposed. The authors of [14] present a good

survey and comparison of the various approaches.

The research on scratchpad utilization for single process

applications can be classified into two broad categories viz.

static- and overlay-based allocation techniques. In the former,

the scratchpad is loaded once at the start and its contents remain

invariant during the entire execution period of the application.

In contrast, overlay-based allocation techniques partition the

application into overlays [5]. These overlays are copied on and

off the scratchpad during the execution to capture the dynamic

behavior of the application.

Static allocation techniques [15]–[19], can be classified into

techniques which allocate only data elements or only instruc-

tions or a combination of both data elements and instructions

onto the SPM. The authors in [16] and [17], proposed techniques

to assign only data elements onto the SPM, while the authors

in [19], utilized the SPM only for instructions. An optimal ap-

proach for assigning both variables and instruction segments is

presented in [18]. In a different approach, authors [15] gener-

ated partitioned SPMs customized according to the application.

Overlay-based allocation techniques [1], [20]–[25] can also

be similarly classified. References [1], [21], and [22] proposed

techniques to dynamically copy overlays of data elements onto

the SPM, whereas, the authors in [20], [23], and [24] proposed

approaches to assign only instructions onto the SPM. A recent

approach [25] assigns both instructions and data onto the SPM.

There are only two approaches [18], [25] known for assigning

both instructions and variables onto the SPM. The approach [18]

formulates ILP problem and determines an optimal static as-

signment. However, the approach [18], is constrained for the

large applications, as they consist of several hotspots and not

all of them can be statically assigned to the SPM. The other

Fig. 1. Workflow of edge detection application.

approach [25], generates overlays from the application, which

are then dynamically copied on and off the SPM at runtime. The

scratchpad overlay approaches (viz. Opt. SO and Near-Opt. SO)

presented in this paper are an extension of the approach [25]

by the same authors. The previous approach [25] analyzes local

control flow graphs, while the presented approaches analyze the

inter-procedural control flow graph of the application. Conse-

quently, the presented approaches are able to determine spill lo-

cations across the function boundaries and result in lower energy

consumption values.

The second step of the Opt. SO approach, solves an ILP formu-

lation to determine addresses to the memory objects assigned to

the SPM. For large benchmarks and large SPM sizes, it requires

long computation time. Consequently, we present the Near-Opt.

SO approach which retains the first step of the Opt. SO approach

but replaces the ILP formulation of the second step by a first-fit

heuristic-based approach. The Near-Opt. SO approach is moti-

vated by the following two empirical observations:

1) optimal solution to the memory assignment problem can

be determined in time [26] for most cases;

2) first-fit-based heuristic achieves close to optimal allocation

for real-life benchmarks [14].

The Near-Opt. SO approach for our set of benchmarks, achieved

close to optimal results and required negligible computation

time. In the following section, the benefit of overlaying the SPM

is presented with help of an example.

III. MOTIVATING EXAMPLE

We start with presenting a motivating example to demonstrate

that real-life applications consist of multiple hotspots. These

hotspots have nonconflicting live ranges and can be overlayed

on the SPM to reduce the energy consumption of the applica-

tion. Fig. 1 presents the workflow of edge detection applica-

tion, which determines edges in a tomographic image. The ap-

plication consists of three sequential steps called ,

, and . Each of these steps pro-

cesses a given input image and writes the resulting image as

output which is then passed to the next stage in the workflow.

The execution profile of the edge detection application is

presented in Fig. 2. We have scaled down the input image to

speedup the profiling of the application. A point in the

figure represents that the th executed instruction in the in-

struction trace of the application was fetched from the address

in the memory. The dark regions in Fig. 2 correspond to

the execution of the stages of the edge detection application.

For example, the largest region in the center of the figure,

correspond to the execution of the stage of

the application. From Fig. 2, we observe that each stage of the

application is a hotspot and that the stages do not interfere with

each other. Hence, the contents of each stage can be overlayed

onto the SPM. However, the contents of each stage needs to be

copied on and off the SPM before entering and after leaving the

stage, respectively.
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Fig. 2. Execution profile of edge detection application.

TABLE I
EXECUTION AND ACCESS COUNTS FOR FUNCTIONS AND ARRAYS OF EDGE

DETECTION APPLICATION

Now, we would like to determine what fragments of the ap-

plication should be considered as memory objects or as candi-

dates for overlay on the scratchpad memory. Should the set of

memory objects consist of only data elements or only instruc-

tions, or a combination of both? In order to obtain the answer to

the above question, we compiled the edge detection application

for ARM7 processor using an energy-optimizing research com-

piler (ENCC) [27]. The profile information, gathered by pro-

filing the generated application binary, is presented in Table I.

The left-hand side and right-hand side of the table present the

profile information for the functions and for the arrays of the ap-

plication, respectively. The execution count for a function is the

sum of the execution counts of every instruction in the function,

whereas the access count for an array is the sum of the access

counts of each array element.

We make the following observations upon studying Table I.

First, the total instruction size is much smaller than the total

data size of the application, while the total execution count for

instructions is an order of magnitude larger than the total ac-

cess count for data arrays. This implies that instructions should

belong to the set of memory objects as they have high execu-

tion counts and consume much less space. Second, the access

count per unit size for array is larger than the execution

count per unit size for function . Similarly, the ac-

cess counts per unit size for arrays and are

comparable to that of and are larger than that of

. This implies that arrays should also be included

Fig. 3. Workflow of the scratchpad overlay approaches.

in the set of memory objects. Moreover, all the access func-

tions of the image arrays in the application are affine functions.

Hence, data transfer and storage exploration (DTSE) techniques

[28] can be utilized to generate small slices for the image arrays

which can be assigned to the small SPMs. We did not consider

generating array slices as DTSE techniques are orthogonal to

our approach. However, they can be implemented as prepass op-

timizations in our setup. Finally, we conclude that the best set

of memory objects should comprise of data elements, as well as

code segments.

IV. SCRATCHPAD OVERLAY APPROACHES

The scratchpad overlay approach copies memory objects

onto the SPM at runtime when they are required and copies

them off when not required. The scratchpad overlay problem

is a weighted version of the global register allocation problem

for complex instruction set computer (CISC) architectures. The

global register allocation problem for CISCs is also NP-com-

plete [26] and, as a result, the scratchpad overlay problem is

also NP-complete. In order to efficiently solve the scratchpad

overlay problem, we break it into two smaller problems. The

first problem assigns memory objects to the SPM or to the

main memory and also determines the optimal locations for

the insertion of the spill code. The second problem computes

the addresses of the memory objects assigned to the SPM. Un-

fortunately, both the problems are known to be NP-complete.

The Opt. SO approach computes optimal solutions for both the

first and the second problems. In contrast, the Near-Opt. SO

approach computes optimal and near-optimal solutions for the

first and the second problems, respectively.

The scratchpad overlay problem is solved using the work-

flow shown in Fig. 3. In the first step, variables and code seg-

ments from the application code are identified as overlays or

memory objects. Liveness analysis is performed in the second

step to determine the live ranges of these memory objects. In the

third step, assignment of memory objects to the SPM and op-

timal spill locations are determined. In the final step, an optimal

approach or a first-fit heuristic-based near-optimal approach is

used to compute the addresses of the memory objects assigned

to the SPM.

A. Memory Objects

We consider the following set of variables and code segments

as candidates for scratchpad overlay:

• global variables including scalar and non-scalar variables;

• code segments including functions and traces.
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We do not consider scalar local variables as candidates for

scratchpad overlay, as we assume that frequently accessed

scalar variables will be assigned to the registers by a good

register allocator. The entire stack [18] or a per-function stack

frame [16], can be used as memory objects for overlay. Stack is

not considered as a memory object in this approach, though, it

is a part of the future work. Global variables are considered as

they occupy space in the data memory. A trace is a frequently

executed straight-line path consisting of basic blocks which are

laid out contiguously in memory [29]. Traces improve the pro-

cessor performance by enhancing the spatial locality present in

the program code. We do not generate traces for small functions

as it is not beneficial to break them into smaller traces. The

above set of candidates is termed overlays or memory objects

(MO). In the following section, we describe the computation of

live range of each memory object.

B. Liveness Analysis

Liveness analysis is performed on the inter-procedural con-

trol flow graph (IPCFG) of the application. The node

set , is the set of basic blocks present in all the functions of

the application, and the edge set represents the flow edges

connecting the basic blocks. The edge set includes the ad-

ditional flow edges between basic blocks of the caller and the

callee functions which represent the call to and the return from

the callee function. The concept of DEF–USE chains [30] is ex-

tended to compute the liveness of memory objects. A reference

to a memory object can be classified as a DEF, a MOD, or a USE.

If a reference assigns a value to all the elements of a memory

object, then it is classified as a DEF. If only some elements but

not all are being assigned, then the reference is assumed to be

a MOD. Any reference reading a value of the element(s) of a

memory object is assumed to be a USE.

The nodes of the IPCFG are attributed with DEF–MOD–USE

information for all memory objects. Both static and profiling-

based methods are utilized to classify references to a memory

object. Profiling information is used to differentiate between

DEF and MOD references while static analysis is used to de-

termine basic blocks containing USE references. If insufficient

profile information is available, then a reference is conserva-

tively classified as a MOD reference. Moreover, if a reference to

a memory object lies in an unexecuted region of the application,

then it is assumed to be a USE reference. This guarantees the

correctness of the overlay approaches for all possible input sets.

Since code segments are always Read only, traces and functions

can only have USE references. Consequently, the live range of

each trace starts from the root node of the IPCFG and ends at

its last USE reference. A fixed-point iterative algorithm is then

used to compute the live range of each memory object. In the

following subsection, we describe the ILP formulation of the

memory assignment problem.

C. Optimal Memory Assignment

The memory assignment problem is formulated such that

the memory objects are assigned to the SPM on the edges

rather than at the nodes of the IPCFG. The edge-based formu-

lation enables the determination of the optimal points for the

spill code insertion. We define the following static attributes

( ) for every memory object on each edge of the

IPCFG:

where a DEF attribute is defined on every edge originating from

a node with a DEF attribute. In contrast, MOD or USE attributes

are defined on all edges entering a node with MOD or USE

attribute, respectively. If a memory object is live on an edge,

then the CONT attribute for the memory object is defined at that

edge. In a scenario, where an edge can be assigned more than

one static attribute for a memory object, the following priority

order is used to determine the appropriate attribute:

In addition to the static attributes, spill attributes ( )

are defined on edges to model appropriate spilling of memory

objects.

The LOAD attribute is defined on edges which have MOD, USE,

or CONT attribute defined, or which originate from a diverge

node. A diverge node is a node whose out-degree is greater than

1. Similarly, the STORE attribute is defined on edges which have

a DEF attribute defined or which enter a merge node. A merge

node is a node whose in-degree is greater than 1. We would like

to state that a spill attribute can be defined only on those edges

where a static attribute is already defined.

Next, we define a binary variable representing the as-

signment of memory object to the SPM on edge

if is present on SPM at edge and

the operation corresponding to attribute

is performed on edge

otherwise.

(1)

where , and

. For example, if the value of binary variable is

equal to 1, then the memory object is present on the SPM

at the edge , and is also used (USE) on the same edge. Sim-

ilarly, if the value of is equal to 1, then the memory

object is spill-loaded onto the SPM at edge . We first de-

scribe the objective function and then, the constraints present in

the proposed ILP formulation. The objective function represents

the energy savings that can be achieved by overlaying the SPM.

The energy savings (objective function) need to be maximized

in order to minimize the energy consumption of the system

(2)

where is the energy savings achieved by

assuming that memory object is present on the SPM at

edge . and are the

energy overheads of spilling memory object to and from

the SPM at edge , respectively. For the sake of brevity, we
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Fig. 4. Flow constraints

refrain from explaining the computation of , ,

and , computed using an accurate energy model [31].

Constraints have to be added to prevent the binary variable

from assuming arbitrary values and in order to obtain a le-

gitimate solution to the memory assignment problem. We first

explain the flow constraints that are added to maintain a legal

flow of liveness of memory objects. The flow constraints are

repeated for all memory objects. The following is a DEF-con-

straint which is added for all edges with DEF attribute:

(3)

In the above constraint, edge [refer to Fig. 4(a)] contains a

DEF attribute, while edge is chosen such that the source node

of edge is same as the target node of edge . Informally, the

DEF-constraint states that if a memory object is defined

(DEF) on the SPM on an edge , then it can continue (CONT)

to remain on the SPM on the following edge or it can be

spill-stored (STORE) to the main memory on the edge . Simi-

larly, MOD-constraints or USE-constraints are added for edges

with MOD or USE attribute defined.

(4)

(5)

In each of theabove constraints, edge [referFig. 4(b)] is chosen

such that the target node of edge is the same as the source node

of edge . Informally, the USE-constraint states that if a memory

object is being used (USE) on the SPM on an edge , then

it was already continuing (CONT) on the SPM on a previous

edge or it was spill loaded (LOAD) on the edge . A similar

explanation exists for the MOD-constraint. The following flow

constraint is added for edges with CONT attribute:

(6)

As shown in Fig. 4(c), edge contains the CONT attribute,

while edge is an edge whose target node is the source node

of edge . The informal explanation states that if a memory

object is continuing (CONT) on the SPM on an edge ,

then it was already continuing (CONT) on a previous edge

or it was spill loaded (LOAD) onto the SPM on the edge . The

following flow constraints (7)–(10) are added to ensure a legal

flow of liveness on merge and diverge nodes, respectively. More

Fig. 5. Flow constraints

importantly, the constraints ensure an optimal spill code place-

ment [11]. The following merge-node constraints are added for

all merge nodes:

(7)

(8)

In the above constraints, edges [cf. Fig. 5(a)] con-

stitute all the edges entering a merge node. The first constraint

(7) ensures that if a memory object is spill loaded (LOAD)

on an edge , then it must be assigned to the SPM on the same

edge. The second constraint (8) ensures that if a memory object

is assigned to the SPM on one of the edges entering the

merge node, then it must be assigned on each of the remaining

edges. For all the diverge nodes, the following constraints (di-

verge-node constraints) are added:

(9)

(10)

As shown in Fig. 5(b), edges denote all the edges

emerging from a diverge node. In order to maintain the legality

of flow, if a memory object is assigned to the SPM on one

of the edges exiting a diverge node, then it must be assigned

to the SPM or spill-stored (STORE) to main memory on each

of the remaining edges. Finally, we append the scratchpad size

constraint which ensures that the aggregate size of all memory

objects assigned to the SPM on an edge should be less than

the size of the SPM. The following constraint is added for all

edges where a memory object is being defined (DEF) or

spill-loaded (LOAD):

(11)

A commercial ILP solver [32] is used to obtain an optimal as-

signment of memory objects to the SPM which maximizes the

energy savings while satisfying the above constraints. For every

edge and for every memory object , we

need a constant number of binary variables. Consequently, the

total number of binary variables in the 0–1 ILP formulation is
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. The maximum and the average runtimes of the

ILP solver for all our experiments were found to be 1333.0 and

9.9 CPU s on a Sun Sparc 1300-MHz compute machine, respec-

tively. We have computed the assignment of the memory ob-

jects onto the SPM. However, the scratchpad overlay problem

is solved only when we have computed the addresses of the

memory objects assigned to the SPM. The ILP formulation to

compute the addresses of the memory objects, is presented in

the following subsection.

D. Optimal Address Assignment

In the previous step, an implicit assumption was made while

formulating the memory assignment problem. The assumption

was that if the aggregate size of the memory objects assigned

to the SPM on each edge was less than the scratchpad size,

then the on-chip addresses can be computed for those memory

objects. This assumption can fail due to a bad address assign-

ment strategy, which causes fragmentation of the SPM address

space. As a result, memory objects cannot be assigned on-chip

addresses, despite the scratchpad size constraint being satisfied.

The problem of on-chip address assignment is trivial if all the

memory objects are of the same size. However, the problem

becomes NP-complete when the memory objects are of dif-

ferent sizes [6]. In this step, we formulate the address assign-

ment problem as an ILP problem to compute a valid solution.

In order to compute the address of a memory object, we

compute the offset of its start address from the base address of

the SPM. The integer variable represents the offset of the

memory object at the edge and it satisfies the following

constraint:

(12)

We start with the description of the constraints present in the

ILP formulation. Satisfying one of the following two constraints

ensures that the offsets of no two memory objects defined at the

same edge overlap with each other:

(13)

(14)

The first constraint (13) of the above set of constraints, im-

plies that on edge the start address ( ) of the memory ob-

ject is greater than the end address ( ) of

memory object . The second constraint (14) implies the re-

versed placement of the memory objects. The XOR operator in

the above set of constraints cannot be modeled using linear pro-

gramming. Hence, we add a binary variable to linearize the

set of constraints

constraint (13) is to be satisfied

constraint (14) is to be satisfied.
(15)

The following is the linearized form of the above set of con-

straints with being a sufficiently large constant:

(16)

(17)

The above set of constraints is repeated for all pairs of memory

objects which are assigned to the SPM on edge . Subsequently,

they are also repeated for all edges with more than one

memory object assigned to the SPM. Next, a constraint is added

to restrict the offset of a memory object to the same value

for all the edges on which it is assigned to the SPM

(18)

In the above constraint, edges and are chosen such that

source node of edge is the target node of edge . Any change

in the offsets of the memory object on edges and is

captured using the following binary variable:

if

otherwise.
(19)

The unit value of the variable would imply an invalid solu-

tion to the address assignment problem. Equation (18) is trans-

formed to the following form after the insertion of the binary

variable :

(20)

The above constraint is repeated for all memory objects assigned

to SPM on both the edges and also for all such valid

pair of edges. A valid solution is characterized by the fact that

the offsets of memory objects on all pair of edges remain in-

variant. The summation of the binary variable for all valid

pairs of edges and for all memory objects is denoted as the ob-

jective function of the ILP formulation

(21)

For a valid solution, the value of the objective function should

be zero which is achieved by minimizing the objective func-

tion. The ILP formulation consists of both binary and integer

variables. The number of integer variables in the above formu-

lation is , while the number of binary variables

is . The problem is solved using the branch and

bound technique of the ILP solver [32], which can take substan-

tial time for certain problem instances having a large number of

variables.

E. Near-Optimal Address Assignment

We propose an algorithm which uses the first-fit heuristic [6]

for assigning addresses to the memory objects. The algorithm

assigns addresses to the memory objects on every edge which

are allocated to the SPM and are not already assigned an address.

The first-fit heuristic is used to determine an available address

region for the memory object. A pseudo-code for the address

assignment algorithm is presented in Fig. 6.

We implemented the variant of the first-fit heuristic which di-

vides the SPM address space into variable sized regions.

In order to reduce unused address space, the start boundary of an

empty region is adjusted to the end address of its previous region
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Fig. 6. First-fit heuristic-based address assignment algorithm.

which is assigned to a memory object. The first-fit heuristic as-

signs a memory object the first empty region which can accom-

modate the memory object. This might lead to the problem of

fragmentation as some SPM space may remain unused. The ad-

dress assignment algorithm calls the first-fit heuristic on an edge

only when a memory object is either defined or loaded onto the

SPM and the memory object does not already have a valid ad-

dress on the same edge. If the first-fit heuristic fails to assign

an address to the memory object, then the memory object is as-

signed to the main memory for its entire lifetime. If a memory

object is used, modified, or continued on an edge and does not

have a valid address, then it is assigned an address from one

of the immediately previous edges. The AddressPreviousEdge

routine also checks if the addresses on all the immediately pre-

vious edges to the current are equal, otherwise the error flag is

set. Our implementation of the first-fit heuristic has the runtime

complexity of . Consequently, the runtime com-

plexity of the address assignment algorithm is .

The algorithm required negligible (less than 1 CPU seconds)

computation time for all our experiments. Next, we describe the

experimental setup used to conduct experiments.

V. EXPERIMENTAL SETUP

The evaluation of the proposed approaches is performed for

two contrasting processors. The first one is a RISC processor

(ARM7TDMI), while the second one is a low-power digital

signal processor (M5 DSP). The processor architectures and their

energy models are briefly presented in the following subsections.

Fig. 7. ATMEL evaluation board.

TABLE II
ENERGY/ACCESS AND ACCESS TIMES FOR MEMORIES

A. ARM7TDMI

ARM7TDMI is based on a simple RISC processor with a

three-stage pipeline and is the most common processor used in

low-power embedded devices. The processor is based upon Von

Neumann architecture as it features a unified memory for storing

both instructions and data. Our experiments are based upon an

ARM7TDMI evaluation board (AT91EB01) [33], featuring an

ARM7TDMI processor along with an on-chip 4-kB SPM. In ad-

dition, the board contains a 512-kB on-board SRAM which acts

as the main memory and a Flash ROM for storing the startup

code. Fig. 7 presents the top-level diagram of the evaluation

board. Detailed energy measurements were performed to deter-

mine an instruction level energy model [31] with an accuracy

of 98%. In this work, we use the processor simulator (ARMu-

lator [34]) and the accurate energy model [31] for computing

the energy consumption of the system. Table II presents the en-

ergy per access and the access times of the SPM and the main

memory. The experiments in Section VI-A, compare the SPM

allocation approaches on an energy consumption metric for dif-

ferent scratchpad sizes. However, the energy model [31] is valid

for ARM7TDMI evaluation board with a 4-kB SPM. Therefore,

we have used a single energy per access value for all SPMs sized

between 64 bytes and 4 kB. This is justified because energy per

access values for small SPMs are comparable. Moreover, in our

setup the energy per access for the SPM (cf. Table II) is signifi-

cantly smaller than those for the main memory.

B. M5 DSP

The M5 DSP was designed using a platform-based hardware/

software codesign methodology introduced in [35]. The plat-

form, depicted in Figs. 8 and 9 consists of a fixed control pro-

cessing part (scalar engine) and a scalable signal processing part
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Fig. 8. M5 DSP.

Fig. 9. Layout M5 DSP.

(vector engine). The functionality of the data paths in the vector

engine can be tailored to suit the application.

The vector engine consists of slices, where each slice com-

prises of a register file and a data path. The interconnectivity unit

(ICU) connects the slices with each other and to the control part

of the processor. All the slices are controlled using the single in-

struction multiple data (SIMD) paradigm and are connected to

a 64-kB data memory featuring a read and a write port for each

slice.

The scalar engine consists of program control unit (PCU), ad-

dress generation unit (AGU) and a program memory. The PCU

performs operations like jumps, branches, and loops. It also

features a zero-overhead loop mechanism supporting two-level

nested loops. The AGU generates addresses for accessing the

data memory.

The processor was synthesized for a standard-cell library

by Virtual Silicon for the 130-nm 8-layer-metal UMC process

using Synopsys Design Compiler. The resulting layout of the

M5 DSP is presented in Fig. 9. The total die size was found to

be 9.7 mm with data memory consuming 73% of the total die

size.

Fig. 10. Experimental workflow.

In this work, we insert a small SPM in between the large data

memory and the register file. The SPM is used to store only data

elements from data arrays used in the application. The energy

consumption of the entire system could not be computed as the

instruction-level energy model for the system is currently un-

available. We used a memory energy model from UMC to com-

pute the energy consumption of the data memory subsystem.

However, due to copyright reasons, we are forbidden from re-

porting exact energy values. Consequently, we will report nor-

malized energy values for the data memory subsystem of the M5

DSP. Moreover, the accesses to the SPM and the data memory

require only one CPU cycle without any wait states.

C. Experimental Workflow

The experiments for the ARM7-based systems were con-

ducted according to the workflow presented in Fig. 10. In

the first step, the benchmark programs are compiled using

an energy optimizing C compiler [27]. Within the compiler

backend, first the I-cache optimization technique called trace

generation [29] is applied. Then, one of the scratchpad allo-

cation approaches (i.e., SA [18], Opt. SO, and Near-Opt. SO)

is used to assign memory objects to the SPM. The C compiler

generates the executable binary which contains instructions

to utilize the SPM. The executable binary is then fed into the

processor simulator (ARMulator [34]) to obtain a sequence

of executed instructions. Finally, the energy consumption of

the system is computed using the instruction sequence and the

energy models [31]. The energy consumption of systems with

cache-based memory hierarchy is computed using the same

workflow.

The experiments for the M5 DSP-based systems were con-

ducted according to the workflow similar to the one presented

in Fig. 10. A research compiler without the trace generation step

is used to generate the executable binary of the application. The

executable binary is fed into the processor simulator to obtain

the application execution statistics. The statistics include the

number and type of accesses to various memories and the total

execution time of the application. Finally, the data memory en-

ergy consumption is computed using the memory energy model

from UMC.
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TABLE III
BENCHMARK PROGRAM FOR ARM7-BASED SYSTEMS

Fig. 11. Edge Detection: Energy comparison of scratchpad allocation ap-
proaches.

Fig. 12. DSP: Energy comparison of scratchpad allocation approaches.

VI. EXPERIMENTAL RESULTS

The proposed techniques for ARM7-based systems were

evaluated for an assorted set of benchmarks from the Media-

bench [36] and the UTDSP [37] benchmark suite. In addition,

large applications were formed by combining several indepen-

dent small routines as we believe that the real-life applications

are also constructed using the small specialized routines.

Table III presents the set of benchmarks used to evaluate the

scratchpad overlay techniques. The table also presents the

code and data sizes of the applications. For M5 DSP, we used

DSP routines from the DSPStone [38] benchmark suite. For

the experiments, all memory objects are by default assigned

to the main memory unless they are assigned to the SPM by

the scratchpad allocation approaches. In that case, the memory

objects are copied from the main memory to the SPM. In

the following subsection, we present the evaluation of the

scratchpad overlay techniques for the ARM7-based system.

A. Experimental Results (ARM7)

A comparison of the scratchpad allocation techniques viz. SA,

Opt. SO, and Near-Opt. SO for edge detection and DSP bench-

marks is presented in Figs. 11 and 12, respectively. The figures

present the total energy consumption of the ARM7-based sys-

Fig. 13. Edge Detection: Comparison of SA approach versus Near-Opt. SO
approach for memory accesses.

tems when the SPM present in the memory hierarchy is allo-

cated using the scratchpad allocation techniques. From Figs. 11

and 12, we make the following observations:

First, from both the figures, we observe that the energy con-

sumption values for SA approach monotonically decreases with

the increase in scratchpad size. The energy consumption values

for Opt. SO and Near-Opt. SO approach decrease faster than

those for SA approach. The energy values, for edge detection

benchmark (cf. Fig. 11), reach a threshold value at 256 bytes

and, thereafter, remain constant. For the SA approach, larger

scratchpad size implies that more memory objects can be stati-

cally allocated onto the SPM and lower will be the energy con-

sumption. This justifies the monotonically decreasing energy

values for the SA approach. Whereas, the scratchpad overlay

approaches share the SPM among memory objects with non-

conflicting life-times and result in lower energy values than for

the SA approach. The energy consumption values become con-

stant when no additional memory objects can be overlayed on

the SPM.

Second, we observe that the energy values for Near-Opt.

SO and Opt. SO approaches (cf. Fig. 11) at 256-bytes SPM

is equal to that for SA approach at 1024 bytes. Similarly, for

DSP benchmark (refer to Fig. 12) the energy consumption

for the scratchpad overlay approaches at 512 bytes of SPM is

equal to that for the SA approach at 1024 bytes of SPM. We

can, therefore, conclude that the scratchpad overlay approaches

efficiently utilize the SPM. Finally, from both the figures we

observe that the energy consumption values for the Near-Opt.

SO are very close to those for the Opt. SO. This implies that

the proposed near-optimal scratchpad overlay approach per-

forms fairly close to the optimal approach. Next, we present a

fine-grained comparison of the SA approach and the Near-Opt.

SO approach.

Next, we compare SA and Near-Opt. SO approach in terms

of memory accesses for the edge detection benchmark. Fig. 13

presents the comparison for the two scratchpad allocation ap-

proaches. The memory accesses for each allocation approach is

classified into four categories, depending upon the access type

and accessed memory. The memory accesses of a particular ac-

cess type are normalized according to the main memory ac-

cesses of the corresponding access type for a system without

an SPM. The series labels presented the legend box of Fig. 13

are generated according to the following regular expression:

Memory Access Type Allocation Approach (22)
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Fig. 14. Edge Detection: Comparison of SA approach versus Near-Opt. SO
approach.

For example, the series label MM: Inst. Acc.(SA) implies that

the series represent normalized instruction accesses to the main

memory when SA approach is used to allocate the SPM present

in the system. The bars in the figure denote the total instruc-

tion or data accesses made during the execution of edge de-

tection benchmark. The stacked bars also present the decom-

position of the accesses into the accesses to the main memory

and to the SPM. From the above figure, we make the following

observations.

First, the stacked bars for instruction and data access, repre-

senting normalized memory accesses, are larger than the unit

value. This is because additional instruction and data accesses

are required for copying the memory objects on and off the

SPM. Second, the SO approach efficiently utilizes the SPM for

caching instruction segments. For example, a 128-byte SPM

allocated using the SO approach is able to cache 98% of all

instruction accesses. Whereas, the same sized SPM allocated

through SA approach is able to cache only 50% of the total in-

struction accesses. Third, the SPM allocated using the SO ap-

proach can also cache a higher percentage of data accesses than

that by the SPM allocated using SA approach. However, the per-

centage of cached data accesses is lower than cached instruc-

tion accesses for both the allocation approaches. This is due

to the fact that instruction segments (i.e., traces and functions)

are smaller and more frequently accessed than data variables.

Therefore, we conclude that the SO approach more efficiently

utilizes the SPM than the SA approach.

Fig. 14 presents the normalized energy consumption values

and performance values of the edge detection benchmark al-

located using the Near-Opt. SO approach. The components of

total energy consumption, process, and memory energy con-

sumption are also presented in the figure. The energy and per-

formance values for the benchmark allocated using the SA ap-

proach are denoted as the unit valued baseline. From Fig. 14,

we observe that both the energy values and the performance

values for the Near-Opt. SO approach are less than the corre-

sponding values for the SA approach. Inspite the fact that the

processor executes additional instructions for copying memory

objects on and off the SPM, the overlay approaches are able

to save both energy and execution time. The accesses to the

SPM are cheaper than the main memory both in terms of ac-

cess time and energy per access. This enables the Near-Opt. SO

approach to over-compensate for the copying overhead and re-

sult in significant savings as compared to the SA approach. The

Near-Opt. SO approach leads to a maximum reduction of 65%

Fig. 15. Edge Detection: Comparison of SO approach versus MHLA approach.

in the memory energy consumption for a 128-bytes SPM. The

total energy consumption, being the sum of the processor energy

and the memory energy, shows an average reduction of 42%.

The application on an average requires 21% less CPU cycles

for execution.

Fig. 15 compares the SO approach against the MHLA ap-

proach [21] for edge detection benchmark. As discussed in

Section II, the MHLA approach overlays array tiles onto the

SPM. Due to the unavailability of a freely available DTSE tool,

the algorithm of the MHLA approach was manually performed

by the authors according to the best of their understanding. The

figures also present the energy values for SO-Array approach

which is the restricted version of SO approach restricted to

overlay only array variables. The readers are requested to refer

to Table I in Section III, as the following two paragraphs use the

values presented in the table for explaining the above figures.

Fig. 15(a) compares data memory energy values of the

overlay approaches. We observe that MHLA approach [cf.

Fig. 15(a)] leads to the least data memory energy consumption

values for all SPM sizes as it overlays tiles of image arrays

present in the benchmark. For 128 bytes, the SO-Array ap-

proach assigns small arrays (viz. , , )

onto the SPM. Thereafter, data memory energy values remain

constant as the remaining arrays (viz. , ,

, , and ) are larger than the

SPM size. At 128-bytes SPM, the data memory energy value for

the SO approach is higher than that for the SO-Array approach,

as the SO approach assigned an instruction segment instead of

a data array onto the SPM.

Fig. 15(b) compares the total memory energy, sum of the in-

struction and data memory energy, of the SO approaches and

MHLA approach. The stacked bars of the figure distinguish be-

tween instruction and data memory energy values. The first ob-

servation that we make is that for zero bytes of SPM the in-

struction memory energy is much larger than the data memory

energy. This is because (cf. Table I) the number of instruction

memory accesses (2939787) are an order of magnitude larger
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Fig. 16. Edge Detection: Comparison of SO approaches versus MHLA ap-
proach for total memory energy (code preassigned to on-chip SRAM).

than data memory accesses (203694). Moreover, in our setup

all memory objects reside in the main memory unless they are

assigned to the SPM. The SO approach, which assigns both

data arrays and instruction segments onto the SPM, therefore,

achieves the least memory energy consumption values. For 512

and 1024 bytes, the total memory energy for MHLA approach is

larger than those for the SO approaches. The reason being that

additional instructions are required for copying array tiles onto

the SPM which decreases the data memory energy but increases

the instruction memory energy.

In the above comparisons, code segments are more beneficial

to overlay onto the SPM due to the fact that ARM7TMDI pro-

cessor in our setup, is a RISC processor with a von Neumann

architecture. However, many ARM processors with separate

instruction and data caches are also available. Moreover, many

older embedded systems also store their application code in

a ROM. Therefore, Fig. 16 presents a comparison for the

scratchpad overlay approaches when all code segments are

present in an on-chip SRAM memory. This is the best case

scenario for data-array optimizations as the instruction memory

energy is reduced to the minimum. From Fig. 16, we observe

that even in this scenario, the total memory energy for the

MHLA approach is not much smaller than that for the SO

approaches. Therefore, we believe that for real-life system

architectures the energy consumption values, due to the SO

approaches, will be a little better than those due to the MHLA

approach.

The operation of a scratchpad memory under the control of

the scratchpad overlay approaches is similar to that of a cache.

Hence, it would be appropriate to present a comparison be-

tween a scratchpad memory and a cache. Figs. 17 and 18 com-

pare caches against scratchpads allocated using the SA and the

Near-Opt. SO approaches. The cache experiments were con-

ducted for a four-way set associative unified cache of varying

sizes. From both the figures, we find that the energy consump-

tion of the system with a 128-bytes cache is much worse than

those with a 128-bytes SPM. This is because a small cache

causes a high number of misses which results in a high number

of expensive main memory accesses. In contrast, the best set of

memory objects is assigned to the SPM, reducing the number of

main memory accesses. Consequently, the small SPMs irrespec-

tive of the allocation approaches, are significantly better than a

small cache. The energy consumption for the cache-based sys-

tems improves significantly for larger sizes. For 1024 bytes, the

energy consumption of the cache-based system is a bit better

Fig. 17. Edge Detection: Comparison of cache versus SA and Near-Opt. SO
approaches.

Fig. 18. DSP: Comparison of cache versus SA and Near-Opt. SO approaches.

than that of the SPM-based systems. Though, we should note

that for the edge detection benchmark, the energy value for a

1024-bytes SPM allocated using Near-Opt. SO approach is the

same as that for a 256-bytes SPM. Hence, we conclude that the

energy values for a small SPM-based system with Near-Opt. SO

approach is comparable to that for a large cache-based system.

Now, we would evaluate the behavior of the SO approaches

for all benchmarks. First, we study the number of instruction and

data accesses (cf. Table IV) serviced by the SPM allocated using

Near-Opt. SO approach. The size of SPM for each benchmark is

different and is chosen to be 20% of aggregate benchmark size,

rounded to the nearest two-exponential value. Table IV clas-

sifies instruction and data accesses according to the accessed

memory for systems with or without a scratchpad memory. It

also presents the percentage of instruction and data accesses

serviced by the SPM compared against those serviced by the

main memory for a system without an SPM. The higher the per-

centage, the better the utilization of the SPM. From the table,

we observe that for all benchmarks the percentage of instruc-

tion accesses are higher than that of data accesses serviced by

the SPM. This is because, in our setup, instruction accesses are

far more beneficial in reducing the energy consumption than

data accesses. The percentage of instruction accesses serviced

by SPM range between 101.9% and 75.6%. Whereas, data ac-

cess percentages range between 0.0% and 76.6%. For the multi-

sort benchmark, the Near-Opt. SO approach did not overlay any

of the data arrays onto the SPM, as instruction traces provided

higher energy reductions. For benchmarks with a high number

of large arrays, viz. dsp, media and mpeg4, the Near-Opt. SO

approach serviced from the SPM a high percentage of 44.5%,

67.0%, and 65.4% data accesses, respectively.

Fig. 19 presents the comparison of the scratchpad overlay

approaches against the static allocation approaches across all
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TABLE IV
OVERALL MEMORY ACCESSES FOR NEAR-OPT. SO APPROACH

Fig. 19. Overall comparison of scratchpad overlay approaches against the static
allocation approach.

benchmarks. The total energy consumption and execution time

values for the overlay approaches are averaged across all the

SPM sizes and are normalized against the corresponding av-

erage energy and execution time values for the SA approach.

Moreover, the average energy consumption and execution time

values across all SPM sizes and across all benchmarks are nor-

malized and are presented as the last set of bars in the figure. The

minimum energy and execution time savings are observed for

the adpcm benchmark. This is justified as the adpcm benchmark

consists of only one encoder and decoder routines and provides

little opportunity for overlay. For the histogram benchmark, the

maximum average energy savings of 44% are reported due to the

the Opt. SO approach. Maximum performance improvements of

22% and 26%, due to the Near-Opt. SO and the Opt. SO ap-

proaches, respectively, are reported for the same benchmark.

The histogram benchmark comprises of several hotspots and

data arrays with nonconflicting life-times. As a consequence,

the overlay approaches achieve the maximum savings for the

benchmark. For the same benchmark, we observe a noticeable

difference between the energy consumption and execution time

values for the Near-Opt. SO and the Opt. SO approach. Other-

wise, the Near-Opt. SO approach achieved very close to the op-

timal results. Finally, the overall average energy consumption

and execution time savings for the Near-Opt. SO approach are

reported to be 25% and 13%, respectively. The overall average

energy and execution time savings for the Opt. SO approach are

merely 1% better than those for the Near-Opt. SO approach.

Fig. 20 presents a similar comparison of the scratchpad

overlay approaches for SPM-based systems against cache-based

systems. The SPM allocated using the scratchpad overlay ap-

proaches clearly outperform the cache for all benchmarks.

However, the total energy and execution time savings due to

Fig. 20. Overall comparison of scratchpad overlay approaches against the
cache.

overlay approaches are lower than those presented in Fig. 19.

The maximum energy savings of 35% each due to the optimal

and near-optimal overlay approaches, are reported for the edge

detection benchmark. The overall average energy savings of

19% and 20% are reported due to the Near-Opt. SO and the

Opt. SO approaches, respectively. Moderate average perfor-

mance improvements of 9% and 10% are reported against a

cache-based approach. In the following subsection, we present

the evaluation of the scratchpad overlay approaches for the M5

DSP.

B. Experimental Results (M5 DSP)

The experiments for the M5 DSP were conducted by as-

suming that the L1 group memory or the scratchpad memory of

varying sizes can be synthesized. In addition, we assumed that

only data elements can be assigned to the scratchpad. Either

the SA or the scratchpad overlay approach can be utilized for

assigning data elements onto the scratchpad memory. We used

the Opt. SO algorithm for the utilization of the scratchpad

memory. The Opt. SO approach required minimal computation

time as the number of memory objects for the DSP routines

were fairly small. We did not consider using the Near-Opt.

SO approach due to the low computation time of the Opt. SO

approach. Array slicing [30] approach was used to create small

slices of the data arrays present in the applications.

A comparison of the SA and the Opt. SO approaches for

FIR2DIM, complex multiply, and FIR routines is presented in

Fig. 21(a)–(c), respectively. Normalized energy values of the

data memory subsystem of the M5 DSP are shown in the figure.

The energy consumption value of the data memory system

without a scratchpad memory is considered as the unit valued

threshold. From the figures, we make a few observations. First,
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Fig. 21. Energy comparison of scratchpad allocation approaches for M5 DSP.

we observe that the energy values for the Opt. SO approach

are always better than or equal to those for the SA approach.

Second, we observe that the insertion of a small scratchpad into

the data memory hierarchy decreases its energy consumption.

Energy reductions in between 40% and 50% can be observed

for a system with a 512-bytes scratchpad memory allocated

using Opt. SO approach. Third, the Opt. SO approach results

in the maximum energy savings of 54%, 44%, and 50% for

FIR2DIM, complex multiply, and FIR benchmarks, respec-

tively. Last, The SA approach results in an average energy

savings of 28%, 18%, and 23% for FIR2DIM, complex mul-

tiply, and FIR benchmarks, respectively. Even higher average

energy savings of 31%, 32%, and 30% for FIR2DIM, complex

multiply, and FIR benchmarks, respectively, are reported for

the Opt. SO approach.

VII. CONCLUSION

In this work, we presented overlay-based techniques for the

utilization of the scratchpad memory. The problem of over-

laying both data and instructions onto the SPM was shown to

be similar to the problem of global register allocation. A couple

of techniques to obtain optimal and near-optimal solutions for

the overlay problem were presented. The techniques solve the

problem in a two-step process. In the first step, the approaches

assign memory objects to the scratchpad memory and also

determine optimal locations to insert spill instructions. In the

second step, the approaches compute addresses for the memory

objects assigned to the scratchpad memory. The optimal ap-

proach uses an ILP formulation to determine optimal solutions,

whereas the near-optimal approach uses first-fit heuristic-based

approach. The proposed approaches result in reduced energy

consumption of the system against a published algorithm and

against a cache-based system. The average energy reductions

of 24% and 20% are reported against the previous approach and

the cache-based system, respectively. Additional experiments

for a low-power DSP report average savings of 31% in the en-

ergy consumption of the data memory hierarchy. In the future,

we would like to improve our handling of arrays. Specifically,

we would like to overlay both array slices and instructions on

to the scratchpad.
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