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Overloaded Array Processing with Spatially Reduced

Search Joint Detection

James Hicks

(ABSTRACT)

An antenna array is overloaded when the number of cochannel signals in its operating

environment exceeds the number of elements. Conventional space-time array processing for

narrow-band signals fails in overloaded environments. Overloaded array processing (OAP) is

most difficult when signals impinging on the array are near equal power, have tight excess

bandwidth, and are of identical signal type. In this thesis, we first demonstrate how OAP is

theoretically possible with the joint maximum likelihood (JML) receiver. However, for even a

modest number of interfering signals, the JML receiver’s computational complexity quickly

exceeds the real-time ability of any computer. This thesis proposes an iterative joint detection

technique, Spatially Reduced Search Joint Detection, (SRSJD), which approximates the JML

receiver while reducing its computational complexity by several orders of magnitude. This

complexity reduction is achieved by first exploiting spatial separation between interfering signals

with a linear pre-processing stage, and second, performing iterative joint detection with a

(possibly) tail-biting and “time”-varying trellis. The algorithm is sub-optimal but is

demonstrated to well approximate the optimum receiver in modest signal to interference ratios.

SRSJD is shown to demodulate over 2M zero excess bandwidth synchronous QPSK signals with

an M element array. Also, this thesis investigates a temporal processing technique similar to

SRSJD, Temporally Reduced Search Joint Detection (TRSJD), that separates co-channel,

asynchronous, partial response signals. The technique is demonstrated to separate two near

equal power QPSK signals with r= .35 root raised-cosine pulse shapes.
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Chapter 1: INTRODUCTION

The steady growth of wireless market has created a huge demand for signal processing expertise.

Increased demand for mobility and the reduced cost of telephone infrastructure has fueled the

steady growth of the wireless market over the past decade. In 1997, more people signed up for

mobile service than wire-line service. By 2003, wireless telephony is expected to reach 40%

market penetration in the US, reaching a level of 110 million subscribers. Meanwhile, in Europe

many countries have already exceeded 50% market penetration [47, 48].

Demand for increased capacity and increased data rates has been a major goal for mobile

communications research. There are many ways of increasing capacity of a cellular system:

more efficient data compression, increased spectrum usage, and the placement of multiple

antennas at the receiver. Increasing system capacity by increasing the number of antennas

requires very sophisticated signal processing, which must account for a variety of channel

impairments: multipath (e.g. echoes), interference, and noise. This technique is commonly

referred to as array processing or space-time adaptive processing (STAP) [39]. STAP for mobile

communications has received a great deal of attention in the past decade, and great advances in

this area have been made.

In any communication system the interference environment at hand determines the best choice of

signal processing and receiver architecture. The signal to interference ratio (SIR) is not a

complete description of an interference environment. A given SIR can involve a large number of

small power interferers, or a small number of higher power users. In the former, the interference

can be accurately modeled as Gaussian noise. In the latter, this assumption is not valid. We

define an overloaded environment as one where the number of co-channel transmitters is greater
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than the number of antenna elements at the receiver, Overloaded Array Processing (OLAP) is

most difficult when the interfering signals are near equal power, and have the tight excess

bandwidth that modern communication protocols specify (e.g. IS-136).

Array processing in overloaded environments requires different considerations than traditional

STAP. Most STAP receivers apply linear filtering techniques that break down in overloaded

environments. A common belief amongst the array processing community is that signal

extraction in an overloaded environment is not possible. However, recent research in this area

suggests that it is. Array processing algorithms can be classified into two categories according to

how they treat interference: interference rejection and multi-user detection. In the former,

interfering signals are treated as noise that must be suppressed. In the latter, interfering signals

are jointly estimated. Recent work suggests that multi-user detection performs better than

interference rejection at a greatly increased cost in receiver complexity.

This thesis develops overloaded array processing algorithms with an emphasis on narrow-band

signals. The question might arise: why focus on signal processing for narrowband signals?

Despite the recent popularity of spread spectrum techniques, narrow-band standards are widely

deployed and are expected to stay in existence beyond the next 10 years. In particular, an

emerging 2.5G cellular standard, EDGE (Enhanced Data-rates for Global Evolution), will

upgrade and unify the current digital standards in the US and Europe. The standard has already

been accepted by both the European Telecom Standards Institute (ETSI) and the universal

wireless communications consortium (UWCC) (a US standards committee). This standard has

been well received by service providers and vendors alike and is expected to be deployed over

the next year as upgrades to existing systems. Meeting the aggressive capacity and data-rate

requirements of EDGE may require some sophisticated array processing. In short, narrowband

communications is still very much alive.

The first part of this thesis provides an extensive survey of array processing techniques

encompassing over 200 papers in the field. Thus far, few algorithms demonstrate a potential for

overloaded array processing, and out of these, none have been applied in the literature for this

purpose. In this expository second chapter, we first argue that overloaded array processing is

indeed possible for known channels. The central contribution of this thesis is an algorithm that

can perform OLAP with achievable complexity. This algorithm is presented in its simplest form
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in chapter 4. Chapter 3 provides sufficient background in trellis based processing: the

Maximum-Likelihood Sequence Estimation (MLSE) for Viterbi Equalization (VEQ), Delayed

Decision Feedback Sequence Estimation (DDFSE) as a method of reduced complexity VEQ, and

finally, Tail-Biting MLSE (TB-MLSE) for Viterbi Equalization of circularly-convolutional

channels. The algorithm presented in chapter 4 is only applicable for environments with symbol-

synchronous signals. In chapter 5, we show how the approach can be extended to the

asynchronous case. Finally, chapter 6 concludes the thesis with simulation results.
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Chapter 2: ARRAY PROCESSING BACKGROUND

Increased capacity has long been a motivating factor behind the use of antenna arrays in

communication systems. A natural question arises: what is the fundamental limit on the number

of equal power users (interferers) that may be separated with an M element array? It is often

thought that an M element array can separate a maximum of M equal power signals. This is

because the majority of signal extraction algorithms found in the literature are based on linear

filtering techniques. However, several interference rejection algorithms for single antenna

receivers can extract a desired signal in the presence of multiple interferers. Moreover, recent

contributions in antenna array research suggest that the number is much greater.

The capacity that any antenna array can achieve is highly dependent on the chosen receiver

architecture. There are two basic approaches to dealing with interference in antenna arrays:

interference rejection and joint detection. In the former, interference is treated as noise and is

suppressed by the receiver. The receiver only extracts the (SOI). In the latter, interference is

treated as a signal to be estimated. In a multi-user system, the benefits of joint detection are

obvious. All interfering co-channel users are SOIs and the optimal receiver will demodulate all

users simultaneously. However, if interference is not of direct interest, recent research suggests

that multi-user detection will still out-perform interference suppression.

In the next section, we will first introduce the concept of the Joint Maximum A posteriori

Probability Detector. In most cases, this receiver is not practical to implement, but it allows us to

answer fundamental questions concerning capacity. Then we will focus on the limitations of

more practical receivers. In our survey, we will first focus on the signal extraction techniques
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that employ a single receiver antenna and then move on to those techniques that employ receiver

structures with multiple antennas.

2.1 THE OPTIMUM MULTI-ELEMENT RECEIVER

Figure 2.1 presents a block diagram of the Maximum A posteriori (MAP) Receiver. A number,

D, of cochannel interferers impinge on the array from different angles of arrival. The array is

matched filtered and sampled at some integer multiple of the baud rate. The sampled array

signals are input to a multi-user detector, which performs a simultaneous MAP estimate of all

users. A receiver of this type has been investigated by a number of researchers [205, 14, 20, 59,

13, 35, 203].

p*(-t)

p*(-t)

p*(-t)

•

•

•

Joint Detection
of all users’

symbols

Channel
Estimator

t = kT

Estimate of the transmitted
data vector of all users, ˆ( )ks

Estimate of the channel
gain matrix

Matched filtering
at symbol rate

x1(t)

x2(t)

xM(t)

•

•

•

Received data sequence
at each antenna output
corrupted with AWGN

Received data samples
corrupted by AWGN
(includes SOI and CCI)

r1(k)

r2(k)

rM(k)

Figure 2.1: Multi-user receiver employing an M antenna array. Transmitted symbols of all users are separated and
demodulated jointly using Joint-MAP (JMAP) algorithm. Channel estimates are obtained through the use of
training sequences or pilot symbols (for CDMA type systems).

For simplicity, consider the case where the signals of all interfering users are synchronized in

carrier frequency and baud. Furthermore, assume there is no ISI introduced by the channel.

Finally, assume the signal is matched filtered and sampled at the symbol rate. Under these

conditions, the received vector, x, can be written as

= +x Hs n (2.1)

where s is a vector of transmitted symbols and H is the array response, and n is a spatially

uncorrelated AWGN vector. For example, for QPSK users, each element of s is drawn

independently and equally likely from the alphabet {1, -1, j, -j}. Also, for a calibrated array, the
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j
th column of H is the steering vector for the j

th user times its amplitude and phase offset.

Although the assumption of synchronous users may seem pathological, it is, in some sense, a

worst case scenario. In the synchronous case, there are fewer distinguishing features between

co-channel users.

The joint-MAP receiver, attempts to choose the most likely set of transmitted signals, s, given

the received vector and channel. That is

| ,
ˆ arg max{ ( | , )}f= s H x

s

s s H x (2.2)

where
| ,

( | , )f
s A x

s A x is the likelihood of the vector s conditioned on the received vector and

knowledge of the channel. In the general case, a MAP receiver is intractable. However, if

signals associated with all users are equally likely and independent, then the MAP receiver is

equivalent to the maximum likelihood (ML) receiver [170]:

| ,
ˆ arg max{ ( | , )}f= x H s

s

s x H s (2.3)

In the case of spatially uncorrelated additive white Gaussian noise, this receiver reduces to the

following processor:

2
ˆ arg min= −

s

s x Hs (2.4)

The channel response, H, should be estimated with a training sequence. In this section we

assume that the channel is perfectly known; however, in subsequent sections this assumption will

be relaxed. If s were a continuous valued vector, the optimal receiver would be a least-squares

estimator. However, since s is drawn from a finite number of possible values, differential

calculus minimization techniques do not apply. Equation (2.4) tells us that the ML receiver picks

the closest signal in array space to the received signal. This is equivalent to drawing decision

boundaries in array space. These decision boundaries are similar to the decision drawn in I/Q

space for MPSK. Before we discuss the optimization of Equation (2.4), let us discuss how to

visualize what the ML receiver does. We will consider two examples. The first example

illustrates joint ML detection for a single antenna. The second example illustrates joint ML

detection for two elements.
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Figure 2.2 illustrates two synchronous BPSK users of different powers impinging on a single

antenna. In this case, the array manifold consists of a scaling and sum of the interfering users’

symbols. We can describe the signals transmitted by all the users in two different spaces: user

signal space and array space. The left set of axes in Figure 2.2 illustrates all possible

combinations of user symbols. These axes should not be confused with I/Q space. The

horizontal axis illustrates the possible values, s1, transmitted by user 1. The vertical axis

illustrates the possible values, s2, transmitted by user 2. There are four possible combinations of

transmitted signals. In contrast, we can visualize all possible received signals, x, if there is no

noise in our channel. The relation x s= H maps all signals on the left set of axes to the array

space on the right set of axes. For instance, if s = [1, 1]T is jointly transmitted, the received

signal without noise will be 1.5. If the receiver knows the powers of both signals, it can draw

decision boundaries that separate the user’s signals. If the symbols in the vector s = [-1, 1]T are

jointly transmitted, the receiver might observe .7 .7x j= − − because of additive noise. So, the

receiver will correctly guess that users transmitted s= [-1, 1]T because it knows this value

corresponds to x= -.5. One can easily see, that if the users are of equal power P = 1, H= [1 1]

and the transmitted vectors s = [-1, 1]T and s = [1, -1]T result in the ambiguous point x = 0. In

this case, the minimum probability of error for any receiver is Pb= .25.

s2(t)

Two BPSK users
synchronized in
baud and phase

p(t)
R(t)

t= nTs

x(n)

s1(t)

Assume Unequal Powers P1= 1, P2= 1/4

AWGN

Figure 2.2: Two baud and phase synchronous BPSK signals s1(t) and s2(t) impinge on a single-element antenna.
The received signals are pulse shaped and matched filtered at the baud rate.
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xi

xr
-1.5

If the receiver
calculates this
point, Then it will pick the

symbol corresponding
to this signal point.

d

Exact Pb for
AWGN channel

is a function of
the Distance
to the Decision
Boundary

s2

s11-1

x = Hs

Mapping

Matrix of user
Amplitudes

H= [1 .5]

Vector of user’s
symbolsReceived

Signal
Sample

-.5 1.5.5

1

-1

Decision Boundaries
given perfect channel
knowledge

Figure 2.3: The signal space is projected on the array manifold. This mapping results in an ambiguous point,
which can not be resolvable by the joint detection

In general, for a larger number of antenna elements, it becomes impossible to visualize the array

space because there are too many dimensions. However, if we restrict ourselves to a simple

example, we can visualize the array space in three dimensions. Now consider the scenario in

Figure 2.3; four synchronous, equal power, BPSK users impinge on a perfectly calibrated, two

element antenna array. This is an overloaded environment. For the sake of simplicity, we will

say the four users are equally spaced in AOA over a range of 180
0. Because there are more users

than dimensions, we cannot visualize the original signal space of s. However, because the array

is perfectly calibrated, only the real part of the first element is of interest. We can visualize the

signal points in array space by plotting the coordinates (1) (2),r rx x , and (2)
ix . This is illustrated in

Figure 2.4. Here we see that all 24 possible combinations of user’s signals generate distinct

points in array space. In this case, decision boundaries are planes separating nearest neighbors.

It is difficult to draw these planes without hiding signal points, but it should be easy to imagine

these decision boundaries.
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Matrix of
Steering
vectors

Vector of user’s
symbols

Received
signal
vector

x corresponding to
s= [1, 1, 1, 1]T x corresponding to

s= [-1, -1, -1, -1]T

Signal Space Mapped

on to Array Manifold

Figure 2.4: Four equal power, baud/phase synchronous BPSK signals impinge on a two-element perfectly
calibrated antenna array. Each possible transmitted vector of received symbols from all users is mapped to a
distinct point in array space. The mapping results in no signal ambiguity.

If noise is sufficiently low, a joint ML receiver can reliably estimate the symbols from all users.

The joint ML receiver’s performance is limited by the distance between signal points in signal

space with respect to the noise power. For many practical applications of interest, the SNR will

be too high to jointly demodulate all users. However, this is fundamentally different than saying

that signal extraction in overloaded environments is impossible.

In the first case, the decision boundaries were very simple and the ML receiver could be

implemented with a simple threshold comparison. However, in general, ML decision boundaries

for an array are difficult to describe in a compact form. A brute force method of minimizing

equation (2.4) is an exhaustive search through all possible transmitted vectors, s. However, in

the case of synchronous QPSK signals, this involves M(D+1)4D computations per symbol

making this receiver prohibitively expensive for large D. This problem is closely related to the

problem of multi-user detection for CDMA in which case no optimum algorithm has been found

to reduce the receiver’s complexity [207]. This has motivated many researchers in the CDMA

community to find sub-optimal interference canceling receivers. For the asynchronous user case,
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the symbol of any given user can interfere with two consecutive symbols of any other user.

Hence, maximum likelihood sequence detection must be performed with the Viterbi Algorithm.

Despite the JMAP receiver’s prohibitive complexity, it yields the best possible performance in

AWGN. It acts as a benchmark against which we can compare any other receiver. Inspired by

the work of Verdu in CDMA multi-user detection [157, 158, 197], Grant and Cavers [13] have

derived a closed form expression for a tight upper bound on error probability for synchronous

users in fading channels. The derivation accounts for the possibility of imperfect channel

estimates. Their results predict that a two-element array, in moderate SNR environments, can

successfully demodulate up to six equal power users, even with an imperfect channel estimate.

This prediction outperforms results achieved with linear space-time processing. Although these

results were found under the synchronous user assumption, it has been found in [35, 203] that

asynchronous users will help improve the JMAP’s performance. No upper bound on error

probability has been found for the asynchronous user case in the presence of multipath.

Despite the JMAP receiver’s prohibitive complexity, its performance motivates research in

efficient interference cancellation techniques for antenna arrays. In a sense, linear STAP can be

considered an interference rejection technique because an M-element beamformer can place M-1

independent nulls in the direction of interfering users. However, just as CDMA non-linear

interference canceling receiver can outperform a single correlator, the research indicates that

interference canceling STAP can outperform linear STAP. The subsequent sections will provide

an overview of signal extraction algorithms that are designed for interference-limited

environment and an assessment of their performance in an overloaded array environment.

2.2 SINGLE-CHANNEL SIGNAL EXTRACTION ALGORITHMS

As mentioned before, single-channel signal extraction algorithms include interference rejection

and joint detection techniques. In all these algorithms, only temporal processing is utilized since

the receiver antenna at the base station contains only one element. Figure 2.5 shows a

breakdown of the algorithms.
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Blind

Interference
Rejection

Joint Detection

[35, 41, 203, 14, 59,
20, 12, 100]

Single-channel Signal
Extraction Algorithms

Non-Blind

Linear

-LTIAF [117]

-LTDAF [11, 15, 56, 141]

Non-linear

[149, 150]

- Constant Modulus [145, 189]
-Cyclostationarity [5, 140, 204]
- HOS [28]
-Continuous phase [6]

Figure 2.5:A breakdown of the single-channel signal extraction algorithms.

2.2.1 INTERFERENCE REJECTION ALGORITHMS

This section describes a variety of interference rejection techniques that employ only temporal

processing. This survey is in no way exhaustive. We limit our discussion to algorithms that can

be easily scaled to overloaded array processing. The reader is referred to [37] for a more detailed

survey. It is interesting to note that many algorithms can separate two equal power cochannel

interferers with only temporal processing. The section is broken into two major approaches:

blind and non-blind algorithms. In the former, training sequences are assumed available in order

to estimate channel and receiver parameters with adaptive processing. In the latter, training

sequences are not available.

2.2.1.1 NON-BLIND TECHNIQUES

There are two aspects to any adaptive processor: the receiver architecture and the adaptation

algorithm. Strictly speaking, all adaptive algorithms are non-linear and time varying. However,

we call an adaptive filter linear time-independent, if the adaptive algorithm is intended to

converge to a linear time invariant (LTI) filter. In contrast, when performing interference

rejection, there are many reasons why one would not want to use a Linear Time-Independent

Adaptive Filter (LTIAF). Linear time-dependent adaptive filtering (LTDAF) has shown to

perform much better when trying to detect modulated signals in noise. Non-blind adaptive

processing can be broken into three main approaches: LTIAF, LTDAF, and non-linear adaptive

processing.
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2.2.1.1.1 Linear time-independent adaptive Filtering (LTIAF)

The most fundamental tool in signal processing is the linear time invariant filter (LTI). Linear

time invariant filters may be used to equalize ISI but, to some degree, LTI filters can also

perform interference cancellation. With the aid of a training sequence the optimum LTI filter

can be estimated with any standard adaptive algorithm. The reader is referred to [174] for a

survey of adaptive equalization algorithms. An example of a linear time-independent adaptive

filter used for equalization and interference cancellation is given in [117]. The equalizer consists

of a tapped-delay line that works in a training mode and decision-directed mode. The output of

the equalizer is decomposed into a Wiener Filter (WF) term and a misadjustment filter (MF)

term. Interference rejection is done by creating a notch in the frequency response of the WF.

MF improves the overall performance by compensating for the ISI produced by WF. Note that a

linear time-independent filter can at best cancel only a narrow-band interferer.

error, ε[n]

w

Adaptation
algorithm + -

+

Output symbols,Input symbols, x[n] [ ]ŝ n

Training sequence, s[n]

Figure 2.6: Linear Time-Independent Adaptive Filter. The error signal is generated from the estimated output
symbols and known training sequence. The adaptive algorithm updates the filter taps in such a way that the mean
square error is minimized.

2.2.1.1.2 Linear Time-Dependent Adaptive Filtering (LTDAF)

As previously mentioned, most digital waveforms and many analog waveforms can be classified

as cyclostationary or conjugate cyclostationary. Interference rejection can be performed by

exploiting the cyclostationary properties of the signal of interest and interfering signals. It is

well known that, for stationary signals in additive white Gaussian noise, the optimal filter in the

mean square sense is a linear, time-invariant filter. However, the optimal filter for

cyclostationary signals is believed to be a polyperiodic filter [141]. This periodically time-

varying filter exploits the spectral coherence of the signal of interest by combining discrete

frequency-shifted and filtered versions of the received signal. The optimal choice of the discrete
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frequency shifts has been shown to be the cyclic frequencies of the signal of interest. The

optimal choice of the filters (one for each cycle frequency) is called the cyclic Wiener filter. The

cyclic Wiener filter is dependent on the properties of the signal of interest and its interferers.

There are many implementations of polyperiodic filters, but perhaps, the simplest is the so-called

FREquency SHift (FRESH) filter. Although, most man-made signals exhibit an infinite number

of cyclic frequencies, near-optimum performance can be obtained by exploiting only a select

few. If training sequences are available, the reduced complexity FRESH filter-bank can be

solved via a host of adaptive algorithms e.g., RLS or LMS. Such an adaptive implementation is

often called a Time-Dependent Adaptive Filter or TDAF. Several implementations of the TDAF

are available such as the Time-Series-Representation TDAF (TSR TDAF), or the Frequency

Domain TDAF (FD TDAF)[11]. All have identical optimal performance but exhibit different

convergence properties [15].

w1

w2××××

wk

RLS or LMS +

+x[n]

××××

××××

1j n
e

α

2j ne α

kj n
e

α

•

•

•

•

•

•

[ ]ŝ n

+
- Training sequence, s[n]error, ε[n]

Figure 2.7: Linear Time-Dependent Adaptive Filter.

The performance of TDAFs is analyzed in [56]. They have been found to be particularly useful

for rejecting interference that exhibits different cyclostationary properties than the SOI. For

example, with an SNR of 30dB, a TDAF was found to be able to separate two equal power, co-

channel, square pulse shaped, PAM signals whose baud-rates differed by 5%. The output SNR is

15dB in contrast to the optimal LTI filter, which yielded an SNR of ~3dB. Similar results are

provided for SQPSK, and MSK signals. However, these results have been found to be highly

dependent on the signal’s excess bandwidth. Zero excess-bandwidth (e.g. r= 0 roll-off factor

QPSK signals) cannot be effectively estimated directly with a TDAF. Nevertheless, in heavy

FRESH filter-
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interference environments, it is often useful to estimate a SNOI and cancel it from the received

signal. This technique may be useful, even when the SOI has near zero excess bandwidth.

Another attractive feature of the TDAF is that it performs full waveform restoration of the SOI.

Hence, a TDAF may be used as a front-end processor for other signal processing algorithms. In

contrast, an MLSE makes hard decisions on output symbols, not on the SOI’s waveform1.

2.2.1.1.3 Non-linear adaptive processing

Despite the rich theoretical background underlying linear processing (e.g. Wiener or Cyclic-

Wiener filtering), there are many reasons for implementing a non-linear processor. First, MMSE

linear equalizers are not very efficient on channels with deep spectral nulls in the passband. This

is because the linear equalizer places high gain near the spectral null in order to compensate for

the distortion and thereby enhances the noise present in those frequencies. Nonlinear methods do

not suffer from this phenomenon. The two most common forms of non-linear adaptive

processors are the Decision Feedback Equalizer (DFE) or the Maximum Likelihood Sequence

Estimator (MLSE).

Feedforward
Filter

Decision
Device

Feedback
Filter

MISO filter equalizes SOI,
suppressing SNOI.

Received
signal

SISO filt ers hard
decisions on SOI
for residual ISI
cancelat ion.

Hard symbol
Est imates for SOI.

Figure 2.8: Application of a DFE to signal extraction.

Decision feedback equalization is a well-known technique that has received much attention in

the literature. The reader is referred to [136, 174, 170] for a detailed discussion. Perhaps, what

is less well known, is that DFE can perform limited interference rejection. DFE consists of a

1 The Soft Output Viterbi Algorithm (SOVA) [213] can provide “soft” log-likelihood
probabilities. However, these have limited application for down-stream processing [214].
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feedforward filter (tapped delay line) and a feedback filter (FBF). The FBF is driven by

decisions on the output of the detector, and its coefficients can be adjusted to cancel ISI on the

current symbol from past detected symbols (Figure 2.8). The weight update can be done using

either the MMSE criterion (e.g. LMS algorithm) or the LS criterion (e.g. RLS algorithm) [136].

Lo et al [149,150] proposes an adaptive, fractionally spaced DFE to cancel interference (both co-

channel and adjacent channel) and suppress ISI in the presence of a single, dominant co-channel

signal and uncorrelated, additive Gaussian noise. The DFE consists of a fractionally-spaced

feedforward filter and a symbol-spaced feedback filter that are both implemented as tapped delay

lines. The authors show that a directly adapted RLS-DFE performs better than a computed DFE,

which employs estimates of the channel impulse response and impairment (CCI + noise)

autocorrelation estimates. However, the performance gain of the directly adapted RLS DFE

degrades drastically as the noise power increases.

Non-linear processing is a powerful technique for separating interfering users. This discussion

briefly reviews the concept of Viterbi Equalization: the application of the Viterbi algorithm to

MLSE in multipath channels. We will expand upon this topic in subsequent sections when we

discuss the application of MLSE for multi-user detection with antenna arrays. Since the reader is

likely to be most familiar with the Viterbi Algorithm for convolutional decoding, we draw a

parallel between Viterbi Equalization. Finally, we discuss a technique called Reduced State

Sequence Estimation (RSSE) which is a sub-optimal but computationally efficient way to

perform Viterbi Equalization.

The Viterbi Algorithm is an efficient MLSE implementation for channels with memory.

Channel memory models the fact that in many wireless channels, a given received sample is a

function of previously transmitted symbols.

In case of a convolutional code, the channel memory is imposed by the convolutional encoder.

The mapping from channel state to code symbol is known apriori by the receiver. In the case of

a multipath, channel memory is imposed by inter-symbol interference. This is illustrated in

Figure 2.9 (a). In this case, the mapping from channel state to the received symbol is unknown

to the receiver, and the channel must be estimated. This is illustrated in Figure 2.9 (b). In both

figures, the channel state σ[k], is the previous two transmitted symbols: σ[k]= (s[k-1], s[k-2]).

Henceforth, we will discuss only the use of MLSE for equalization.
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Figure 2.9: Similarity of a convolutional encoder and an FIR channel model. (a) (left) ½ convolutional encoder:
binary bits ∈{0,1} are shifted in a shift register and encoded into two channels. (b) (right) FIR digital equivalent
channel model: binary BPSK symbols ∈ {-1,1} are shifted into a shift register. The current output is a linear
combination of the current and previous symbols.

A trellis is a way of visualizing all possible state sequences of a certain length. Figure 2.10(a)

illustrates the k
th stage of the trellis for BPSK symbols transmitted across a channel with two

symbols of ISI. This figure illustrates the fact that only certain transitions from one channel state

to the next are possible. The entire trellis is constructed by concatenating the 0
th stage, with the

1
st stage, the 2

nd, stage, and so on. The state at the 0
th stage is assumed known. It should be

obvious that for a channel with length, Lh (e.g. Lh symbols of ISI), and alphabet2, A , the size of

the trellis is | | hLA . In the case of figure 8, Lh=3, and | | 2=A .

In chapter 3, we will show that maximum likelihood sequence estimation is equivalent to

minimizing a path through the trellis. A brute force method of minimizing a path through a

trellis is to enumerate through all possible paths, picking the one with the least cost. However,

the Viterbi algorithm reduces the complexity of the search by culling candidate paths at each

stage of the trellis. After paths are culled at each stage, the remaining candidates are called

survivors.

The Viterbi Algorithm has manageable complexity if | |A , or Lh, is small. However, as we will

see when we apply the Viterbi Algorithm to very long channels and/or higher order modulation

2 For example for QPSK, the alphabet is A ={1, -1, j, -j}, and the alphabet size, | | 4=A .
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schemes, the complexity quickly becomes unmanageable. This has motivated many researchers

to seek sub-optimal methods of sequence estimation [85, 24, 64, 43]. The most popular method

is Delayed Decision Feedback Sequence Estimation (DDFSE). The reduced-state trellis for

BPSK is illustrated in . Here channel memory is not accounted for explicitly in the state trellis.

Instead, channel memory is accounted for in the metric by looking back at the survivors in the

trellis. In this example, the number of states in the trellis is reduced to | |A = 2. DDFSE is no

longer an optimum technique, but has been shown in many cases to approach the performance of

a full-state MLSE. Henceforth, we will call Figure 2.10(a) a full-state trellis, and Figure 2.10 (b)

as a reduced state trellis.
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Figure 2.10: (a) (left) kth stage of full-state MLSE trellis. Number of states is
1| | hL −A , where | |A is the

alphabet size and Lh is the channel length. (b) kth stage of the reduced state trellis with survivors from the (k-1)th

stage. In this case the number of states is reduced to | |A .

In a previous section, we showed that the optimum receiver for an antenna array in AWGN can

be implemented as an exhaustive search for the maximum likelihood solution. Assuming no ISI,

the optimum receiver could perform symbol-by-symbol detection. In the case of ISI, the best

choice of the current symbol must account for previous symbols. This necessitates maximum

likelihood sequence estimation. The application of the MLSE for equalization has received great

attention in the literature and is usually implemented with the Viterbi Algorithm [173].

A distinction should be made between MLSE and Joint MLSE (JMLSE). MLSE usually makes

an implicit assumption that the interference is well modeled as Gaussian. This is true if there are

a large number of interferers with a power much less than the SOI. In contrast, JMLSE jointly

estimates all interfering user’s signals. JMLSE is discussed in more detail in section 2.2.2.

2.2.1.2 BLIND TECHNIQUES

Blind algorithms must extract a signal by exploiting some other property of the modulated

waveform. These properties may include but are not limited to the constant modulus property,

the finite alphabet property, or cyclostationary properties.
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Blind signal extraction gives rise to a major issue: channel identifiability. Is it possible to

identify a channel with only a finite amount of data collection? In general, a channel cannot be

estimated exactly without a training sequence, but often it can be estimated up to a multiplicative

constant (including a possible phase shift) [106, 206]. In this case the channel is said to be

identifiable. This is sufficient for a communication system that employs differential signaling.

This issue has been tackled by many researchers. See [106] for a complete survey. In most

wireless systems of practical interest, a channel can be blindly identified.

In environments with multiple signals of the same type, many blind algorithms suffer from the

signal capture problem. For instance, suppose a receiver attempts to extract a signal by restoring

its modulus. Further, suppose that there are several CM signals in the environment. Then, there

is no guarantee that the algorithm will extract the SOI. Signal Capture occurs when a blind

algorithm extracts the wrong signal. This is illustrated in Figure 2.11.

Constant modulus algorithms perform blind signal extraction by exploiting the constant

modulation property of the SOI. They generally use steepest-descent approach or least squares

based approach to minimize the a CM cost function. The simplest CM cost function is the

following:

( ) 2
1J E y n= −   (2.5)

where ( ) Hy n = w x is the estimate of the desired signal at the output, x is the received data vector

at the antenna array, and w is the beamformer weight vector.

h1(t)

h1(t)

+ Rx Equalizer

CMA

sd(t)

si(t)

si(t)

Figure 2.11: The signal capture problem: CMA captures the interfering signal, si(t) instead of the desired signal,
sd(t).

When coupled with differential signaling techniques, adaptive algorithms that exploit this signal

property have been observed to effectively equalize many practical multipath channels. The

simplicity of constant modulus algorithms and their near optimal performance have made them a

very popular blind family of algorithms. However, it has been observed to suffer from the signal
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capture problem. In [189] Rude and Griffiths developed Linearly Constrained Constant Modulus

Algorithm (LCCM). By itself, the LCCM is limited in performance by its fundamental linear

architecture: the best a linear processor can hope to do is to null out its interferer while also

rejecting a considerable amount of desired signal energy. In [145], the authors apply LCCM as a

blind front end to a conventional decision feedback equalizer.

The original formulation for TDAF requires training sequences. However, blind TDAF

algorithms have also been presented in the literature. Two blind TDAF algorithms were

developed in [204]: a Time dependent CMA and a Spectral Correlation Discriminator. The

former updates the TDAF filters with the standard constant modulus algorithm [174], the latter

computes weight updates with an error signal derived from a spectral input/output cross-

correlation coefficient. In an example, both were able to discriminate between two equal-power

QPSK and BPSK signals, closely spaced in carrier frequency. For each, the BERs did not

exceed 10-3. The receiver achieved its performance by exploiting differences in their data rates

and carrier frequencies. A blind adaptive FRESH filter and its convergence properties are

described in [140]. A similar implementation [5] discussed an application for AMPS cellular

signals which exploits the cyclostationarity induced in an FM modulated voice signal by a

supervisory audio tone (SAT). A two stage TDAF was able to separate two co-channel equal

power interferers with an output voice SNR of 30 dB.

FM signals have continuous phase property that a sequence estimator can exploit. This novel

technique is analyzed by Hamkins [6]. The author developed a blind technique to separate co-

channel FM signals by exploiting the temporal correlation of the modulated speech signal. The

technique quantizes the slope of the message signal for all CCIs. The Viterbi Algorithm then

attempts to find the maximum likelihood estimate of a sequence of slopes. The resulting size of

the trellis is 2
3n where n is the number of co-channels signals. The algorithm has been found to

successfully demodulate two equal power, cochannel interfering signals.

All of the above mentioned techniques exploit second order statistics, i.e. autocorrelation, cross-

correlation and variance, of both the signals and noise. Blind Higher Order Statistics (HOS)

techniques have also been developed in the literature [28] an have demonstrated superior steady

state performance in channels with ISI. However, their slow convergence properties have

prevented their use in wireless communication systems with dynamic channels.
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2.2.2 JOINT DETECTION AND ESTIMATION ALGORITHMS

The interference rejection techniques mentioned in section 2.2.1 attempt to estimate interfering

signals and then strip them from the total signal, leaving only the desired signal components plus

noise. On the other hand, joint detection algorithms recover all the signals, desired and

interfering, from the signal environment and then discard the latter. These algorithms are based

on the Maximum Likelihood (ML) and Maximum a Posteriori (MAP) criteria for the joint

recovery of the cochannel signals. These criteria are used to derive two important sequence

estimation and symbol-by-symbol detection techniques, Maximum Likelihood Sequence

Estimation (MLSE) and Maximum a Posteriori Symbol Detection (MAPSD) [171], respectively.

As previously discussed, the best possible receiver for an overloaded environment with AWGN

is a Joint MAP receiver. We considered a simple example of multiple synchronous users

impinging on an antenna array with no ISI present. The optimum receiver performs an

exhaustive search through all possible combinations of symbols transmitted by all users. In the

case when users are asynchronous or when ISI is present, the optimum choice of any given

symbol is dependent on previous symbols. Therefore, sequence estimation must be implemented

with the Viterbi Algorithm. The channel length, Lh, increases the channel memory so the

number of states/stage is ( 1)| | hD L −A , where | |A is the alphabet size, D is the number of

interfering users. For two 16-QAM users and a channel length of 3, the number of states

becomes ~ 65x103! Such a sequence estimator would be several orders of magnitude greater

than the largest commercially available Viterbi decoder. This has motivated many researchers to

investigate Reduced State Sequence Estimation (RSSE) and Delayed Decision Feedback

Sequence Estimation (DDFSE) [172]. In its simplest form, DDFSE reduces the number of states

required by not accounting for the additional states generated by ISI. Instead DDFSE accounts

for ISI in the error metrics of the Viterbi algorithm. This is a sub-optimal receiver, but can

perform nearly as well as the full-state JMAPSD [43]. Other proposed methods attempt to

reduce the number of states by estimating interferers of different powers in a multi-stage

implementation.

The most computationally complex but straightforward implementation of joint detection is the

so-called Interference Canceling Equalizer (ICE) of [35]. This name is misleading because the

receiver is essentially a multi-user detector. The equalizer accounts for the fact that users may
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experience different dispersive channels before arriving at the receiver, which is consistent with

a realistic mobile radio environment. The ICE uses a reduced state ML sequence estimator by

accounting for ISI in the error metric of the Viterbi Algorithm. The channel is estimated from a

set of training sequences with the RLS algorithm, and tracked with a decision feedback

equalizer. The number of states in the reduced set implementation is | |DA . For a single

antenna, narrowband receiver with two co-channel QPSK users, this processor has realistic

complexity. For two equal power cochannel users, the system performance is limited by the

ambiguous case when the two users completely destructively cancel each other. In this case the

BER can be at best, 0.25. However, for realistic environments, the phases of interfering users

seldom coincide, and adequate performance is achieved. Similar algorithms are presented in [41,

203].

Metric for (i,j)th transition:

( 1, 1)

(-1, 1)

( 1,-1)

(-1,-1)

Channel
Convolution

RLS
Channel

Estimation

Sequence

Estimator

Training

Sequences of SOI
and SNOI

| |2
Received Signal

Tentative

Signal
Estimate

Error

Tentative Symbol

Estimate for all SOI
and SNOI for tracking
mode

Final Symbol

Estimate for all
SOI

Sequence of
RSSE Path
Metrics

Models Multipath Channel
of all users.

1 2

[ ]

( [ 1], [ 1])

k

s k s k

σ =

− − 1 2

[ 1]

( [ ], [ ])

k

s k s k

σ + =

2[ ] |][ [| ˆ ]ijij r k re kk = −Metric for (i,j)th transition:

( 1, 1)

(-1, 1)

( 1,-1)

(-1,-1)

Channel
Convolution

RLS
Channel

Estimation

Sequence

Estimator

Training

Sequences of SOI
and SNOI

| |2
Received Signal

Tentative

Signal
Estimate

Error

Tentative Symbol

Estimate for all SOI
and SNOI for tracking
mode

Final Symbol

Estimate for all
SOI

Sequence of
RSSE Path
Metrics

Models Multipath Channel
of all users.

1 2

[ ]

( [ 1], [ 1])

k

s k s k

σ =

− − 1 2

[ 1]

( [ ], [ ])

k

s k s k

σ + =

2[ ] |][ [| ˆ ]ijij r k re kk = −

Figure 2.12: (a) (left) kth stage of joint detection trellis (b) (right) Block diagram of ICE.

To mitigate the computational complexity of trellised based joint detection, Giridhar et. al [14,

59] extended the classical MLSE and MAPSD to Joint MLSE (JMLSE) and Joint MAPSD

(JMAPSD) algorithms. The authors use each of these algorithm to jointly cancel cochannel

interference with a suboptimal two-stage MAP detector. Both blind [20] and non-blind

algorithms were investigated [14,59]. Simulations show that for low SNRs and known channels,
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the iterative two-stage MAP yields performance close to the MAP detector. The blind version

employs an LMS stochastic gradient update for channel estimates.
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Figure 2.13: Two-Stage JMAPSD Algorithm.

Although trellised based joint detection techniques were originally developed for linear

modulation, its use has been extended to non-linear modulation types such as GMSK, as well. In

[12] Ranta et. Al develops a joint detection technique for symbol synchronous GSM. The

algorithm employs a joint channel estimator with JMLSE in a per-survivor fashion (see [7] for an

overview of per-survivor processing). The algorithm exploits the fact that in 1200 sectored

cellular system, there is usually only one dominant co-channel interferer. In this case, only two

signals need to be jointly detected. The algorithm has been shown to outperform conventional

interference rejection techniques for SINRs > 20dB. Other examples of JMLSE’s application to

non-linear modulation types are given in [100].

In the previous section, we cited several examples in the literature of signal extraction techniques

that can successfully separate co-channel narrow band signals using only a single antenna. Most

techniques exploit some separation in bandwidth or power. It seems tempting to apply many of

these techniques to the overloaded array processing problem. Surprisingly, the application of

many of these techniques to antenna arrays, LTDAF for example, have not been found in the

literature. The simplest and most popular interference rejection techniques for antenna arrays are

the beam-former, and the space-time equalizer. However, non-linear techniques have been

applied as well, although not to the overloaded array problem. Although the focus of this section

is on antenna arrays, we can benefit from the literature in many other multi-channel signal

processing applications such as sonar, and multi-channel wire-line (cross-talk mitigation).
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Figure 2.14: Chart showing the breakdown of the multi-channel signal extraction algorithms.

2.2.3 INTERFERENCE REJECTION TECHNIQUES

2.2.3.1 NON-BLIND TECHNIQUES

Non-blind algorithms require the use of training sequences to estimate the channel. Although the

use of training sequences greatly simplifies the channel estimation problem, exploiting them can

be difficult when interfering users transmit asynchronously. Non-blind interference rejection

techniques are broken into linear, non-linear, and hybrid categories. Although linear interference

rejection is well known to break down in overloaded environments, the development of these

techniques are very mature. In the literature, several complete solutions for contemporary

cellular systems have been reported that account for difficult problems such as synchronization.

Although, non-linear interference rejection algorithms have not been applied to space division

multiple access systems. However, they do provide a means for reducing interference from

adjacent cells.

Linear Techniques

Linear signal extraction techniques in the literature can be classified as space-only processing

techniques and spatio-temporal techniques where the antenna weights are optimized using

MMSE criterion. The goal is to maximize the output signal-to-interference-plus-noise ratio

(SINR). Although linear STAP is often used to demodulate multiple users, they are not really

joint demodulation techniques because the fundamental receiver architecture can be separated
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into several single user beamformer/equalizers. This is not the case for any true multi-user

detector3.

Winters proposed a spatial processing algorithm for signal acquisition in IS-54 digital radio

systems [22]. This algorithm uses an adaptive array to do classical beamforming, which null out

the interferers and maximize the array output SINR. Two different weight adaptation

techniques, LMS and Direct Matrix Inversion (DMI) are compared. DMI algorithm has a much

faster convergence in the expense of higher computational complexity. In addition, DMI

algorithm performs better in signal acquisition and interference suppression. The authors of

[29] study the suppression of ACI, CCI and ISI by using linear zero-forcing

equalizers/combiners, i.e., using antenna arrays with Ts-spaced tapped delay lines where Ts is the

symbol period. The linear equalizer puts Ts-spaced zero crossings in the time-domain to reject

ISI at the sampling instances, and the linear beamformer steers nulls in the direction of the

interfering signals. The MMSE criterion is used for the adaptation of the linear

equalizers/combiners.
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Figure 2.15: U1, U2, U3 are the synchronous users, U4 and U5 are the co-channel interferers. The optimal
beamformer during U1’s training sequence (training sequence 1) is no longer valid after U4’s frame ends.

Separation of cochannel IS-54/136 signals using beamforming and linear equalization is

considered in [8, 74]. Unlike many other algorithms in literature, these papers put emphasis

on asynchronous TDMA frames. The authors show that in a bursty TDMA format, interference

may not overlap the training sequence of the current slot. If this occurs, the optimal beamformer

solution is no longer valid for that particular interferer (Figure 2.15). This is due to the

misalignment of the TDMA frames. The authors propose a frame synchronization procedure

followed by a sequential separation algorithm where the sources are captured and removed

3 Our terminology here differs from [207].
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sequentially via several stages of partial beamforming and signal cancellation. Frame

synchronization is achieved by locating the peaks in the cross correlation of the beamformer

outputs with modified training sequences. The beamformer weights are updated using LS

criterion and ISI equalization is carried out using a fractionally spaced linear equalizer. The

algorithm can effectively separate several users as long as the number of cochannel users does

not exceed the number of antenna elements since a linear beamformer (M element array) can null

out upto M-1 users.

2.2.3.1.1 Nonlinear Techniques

Many signal extraction algorithms concatenate linear array processing with nonlinear temporal

processing such as DFE and MLSE. In general, nonlinear adaptive array processing techniques

perform better than the aforementioned linear techniques, especially in severe multipath fading

environments.

In [9], Lee et. al provide a complete solution to the aforementioned asynchronous frame

problem. Their decision-feedback based solution is similar to the approaches in [8,74]. The

number of separated users is limited by the array size due to the linear beamforming operation.

MLSE based adaptive antenna array processing algorithms attempt to estimate the channel

response for each signal as well as the covariance matrix of the impairment. They then use these

estimates in its branch metric to search for the most likely desired transmitted sequence. In

section 2.2.1.1.3, we made the distinction between the use of MLSE for interference rejection

and JMLSE for joint detection. Several authors have investigated the use of MLSE for

interference rejection [83, 68, 69, 32, 34, 38, 116, 202, 174, 16]. They differ in both their

assumed operating environment and the calculation of the path metric for the Viterbi algorithm.

In all MLSE approaches, interference is treated as additive Gaussian noise. If the MLSE

algorithm works correctly, it will reject interference and demodulate the SOI. The myriad of

approaches in the literature differ by how they account for the following effects:

1. Temporal correlation of interference induced by pulse shaping and multi-path.

2. Spatial correlation effects induced by the fact that interference is impinging on the array

from certain directions of arrival.
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3. Treatment of time-varying channel tracking.

MLSE techniques can be broken into two major approaches: metric combining (MC), and

interference rejection combining (IRC). MC assumes that the interference is spatially

uncorrelated (i.e. the interference comes from a ubiquitous direction). In such an environment,

the branch metric for the Viterbi Algorithm is just the sum of the branch metric for each antenna.

IRC makes no spatial assumption about the interference environment. Hence, the autocorrelation

of the impairment must be estimated along with the SOI’s channel.

Metric combining is treated in [83], [68], and [69]. Metric combining performs well when

different antennas experience different fading processes but there is no interference present.

Interference Rejection Combining, described in [34], [38], and [116], was developed for the

current US Digital standard employing π/4-DQPSK. In [38, 39], only the temporal correlation of

the interference over a symbol interval is accounted for. In [116] temporal correlation of the

interference beyond a symbol interval is accounted for. In both, practical considerations

including symbol, phase, and frequency synchronization are accounted for. An example for the

European digital standard, GSM, is provided [58]. In [202] the authors compare several

equivalent architectures for IRC. The performance of the multi-channel MLSE reception

techniques necessitates for very accurate channel estimation. In [32] Bottomley and Molnar

develop a low-complexity approach to cancel interference prior to channel estimation. This pre-

cancellation approach is obtained through a series of approximations of Kalman filtering

approach [174]. However, the performance of this algorithm is limited to very low Doppler

spreads, e.g. less than 20-Hz Doppler spreads.

Any MLSE technique is susceptible to errors in channel state information. In [201], the authors

show that imperfect CSI can create a floor in symbol error probability. Finally, in [66] Sheen and

Stüber propose and analyze joint MLSE equalization and decoding of trellis-coded modulation

employing a diversity array.

In [39, 116], neither MC nor IRC can reject more users than elements. This further supports the

hypothesis that joint detection separates the SOI from interference better than interference

rejection.
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2.2.3.1.2 Hybrid

We have discussed the problems incurred by considering interference as Gaussian noise in an

MLSE processor. The challenge is to account for the temporal correlation properties of

interfering signals. To avoid this difficulty but still exploit MLSE’s strong equalization abilities,

many authors have proposed a hybrid approach: a linear space-time processor cascaded with a

non-linear MLSE processor. This is illustrated in Figure 2.16.
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Figure 2.16: Linear ST-MMSE beamformer is concatenated with a nonlinear ST-MLSE processor. The linear
beamformer attempts to cancel the interference whereas the following ST-MLSE processor gets rid of the ISI.

A theoretical analysis of these types of space time processors is presented in [26]. Complete

solutions for GSM and EDGE systems are given in [26]. Complete solutions for GSM and

EDGE systems are given in [45, 25, and 24].

2.2.3.2 BLIND TECHNIQUES

Blind algorithms must extract a signal by exploiting properties that are specific to the SOI.

These properties may include constant modulus properties, the finite alphabet properties, or

cyclostationary properties.

In section 2.2.1.2, we have already discussed the issues of identifiability and signal capture. In

Space Division Multiple Access (SDMA) systems, another issue arises. When a blind processor

is trying to extract signals solely on their signal properties, there is no way to distinguish

between signals of the same type. Hence, there is no guarantee that the j
th user will appear on the

output of j
th output port of the signal processor. This is called the port shuffle problem [1, 106].
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For digital systems, the port shuffle problem can often be solved by searching for some user id in

the demodulated data. No easy solution exists for analog modulated systems.

The majority of blind techniques in the literature are based on linear space-time filtering.

Although the filter update algorithm is often highly non-linear. The filtering operation that

estimates the signal, is itself, a linear operation. Regardless of the non-linear nature of the

adaptive algorithm, if the end convergence is a linear time invariant space-time filter, the blind

algorithm cannot perform any better than the optimum linear time invariant solution. Again, it is

well known that a linear STAP breaks down in overloaded environments regardless of the

adaptive algorithm used. Nevertheless, we include a description of a variety of blind techniques

to illustrate how blind signal extraction is possible.

2.2.3.2.1 CM Property

The term Constant modulus algorithms (CMA) describes a class of adaptive algirthms which

blindly extract signals from interference by exploiting their constant modulus peroperties. The

application of CMA to adaptive beam-forming has been widely studied by many researchers.

Many different algorithms have been developed, each varying in its performance and

complexity. The simplest version of CMA attempts to find a linear beamformer which

minimizes the following cost function with a stochatic gradient decent:

Where y[n] is the signal of interest estimated by a linear beamformer. This type of CMA

algorithmhas been extensively analyzed in [104, 175, 176].

If other CM interferers in the environment are not accounted for, CMA based algorithms can

suffer from an inherent signal capture problem. This problem has been addressed by many users.

The lest computationally complex algorithm is a multi-user gradient decent algorithm proposed

in [4]. The algorithm attempts to jointly estimate a bank of beamformers to extract all constant

modulus signals in the environment. The classic CMA cost function above is modified to

include cross correlation terms which de-correlate the outputs of all beamformers. The cost

function was deomonstrated to contain a single local minimum.
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As an alternative to the gradient decent approach, Agee et al develops the least squares CMA

(LS-CMA) in [103]. This technique employs alternating projections in a block-fashion. An

optimal beamfoermer is obtained in the two steps. First, the desired signal is projected onto a

signal set with the desired CM signal property. Secondly, a new beamformer is derived which

minimizes the squared modulus error. The algorithm has been well received in practice as well

as in the literature. The block updates are more computatinoally intensive than a gradient decent

algorithm but is numerically stable and usually exhibits faster convergence.

In [152] the author addresses the issue of signal capture with the LS-CMA approach. The

proposed algorithm called Multi-Target LS-CMA, extracts all constant modulus signals in the

environment by jointly estimating a bank of beamformers. The beamformers are forced to

extract different signals with a Modified Gram-Schmidt Orthogonalization (MGSO) step. This

receiver structure is illustrated in Figure 2.17.
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Figure 2.17: Multi-Target LS-CMA adaptive array. M is the number of antenna elements and it is usually equal to
the number of ports, i.e. M=P. P different beamformer weights are adapted independently by LS-CMA technique.
GSO orthogonalizes the weight vectors so that each port corresponds to a unique weight vector. Sorting
procedure relates the port outputs to each user’s signal. If number of users, D, is larger than the number of
elements (or ports), then one output port may contain the signals of several users.

Another blind beamforming algorithm, Analytic CMA (ACMA), is proposed in [2]. ACMA uses

a subspace approach to solve the signal capture effect and slow convergence of traditional CMA.
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ACMA involves the simultaneous diagonalization of matrices to solve the constant modulus

factorization problem, i.e. factorizing X=AS given that A and S are full rank and the transmitted

signals have constant modulus. Estimation of the number of sources is built in the algorithm.

ACMA attempts to simultaneously demodulate all CM signals impinging on the antenna array.

However, it is very computationally complex, i.e. the most efficient form has complexity given

by O(9D
4
n+36M

2
n), where D is the number of signals of interests, n is the data collect length,

and M is the number of elements. The performance for ACMA on FM signals has not been

analyzed in the literature. Furthermore, ACMA algorithm is derived for high-SNR conditions

and the estimates of the ACMA beamformer are asymptotically biased. Improvements on this

algorithm in the presence of low SNRs are presented in Weighted ACMA (W-ACMA) by Van der

Veen [3].

2.2.3.2.2 FA Property

Another exploitable signal attribute for blind processing is the so called finite alphabet property.

This property is thought to be much more powerful than the constant modulus property, but is

more difficult to exploit. Exploiting the FA property requires casting the blind estimation

problem in a tractable framework. In [106], the author investigates two algorithms, Iterative

Least Squares with Projection (ILSP) and Iterative Least Squares with Enumeration (ILSE).

ILSP and ILSE differ in that ILSP is an adaptive beamforming algorithm. Specifically, ILSP

blindly estimates the signal and channel by iteratively performing a least squares estimate of

channel and signal in two separate steps. The finite alphabet property is exploited at each step by

making a hard decision on the least squares signal estimate. On the other hand ILSE is a true

joint detection algorithm. Section 2.2.4 discusses ISLE in some detail.

This last contribution has motivated many researchers to build upon the ILSP framework. More

computationally efficient but sub-optimal implementations of ILSP are given in [108-110].

Algorithms that account for ISI are presented in [42] and [65]. In both, ISI and cochannel

interference is modeled with a set of linear equations. Blind deconvolution is viewed as a matrix

factorization problem. Implicit in both algorithms is the assumption of a linear beamformer.

Van der Veen and Paulraj [169] combine the CM property with the FA property of the signals

and propose a blind channel identification algorithm using Real ACMA (special case of the

ACMA technique applied to real signals) to initialize the ILSP algorithm. The authors use this
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blind channel algorithm to carry out space-time linear beamforming for the linear approximation

of GMSK signals.

2.2.3.2.3 Cyclostationarity Property

Previously, we discussed how the cyclostationary of digitally modulated signals can be exploited

to perform interference rejection with a TDAF. In this case, TDAF was updated with a training

sequence. However, cyclostationarity is also an exploitable property for blind processing. All

cyclostationary signals have second order statistics that are degraded in the presence of noise and

interference. A class of blind beamforming algorithms called Spectral Self-Coherence Restoral

(SCORE) algorithms [97] update a beamformer by attempting to restore the spectral correlation

at a known cycle frequency. SCORE algorithms are powerful because they applicable to any

cyclostationary signal (not just CM or FA). Also, SCORE makes no assumption about the array

manifold or the interference environment. There are several different SCORE algorithms that

operate with slightly different cost functions and receiver architectures, but the basic operating

principle of each is similar. In particular, the performance of an algorithm called cross-SCORE

has been shown to converge to that of a non-blind optimal SINR beamformer if the number of

interfering signals with the same spectral correlation frequencies (including echoes) in the

environment does not exceed the number of elements. The convergence of the algorithm is

highly sensitive to the spectral correlation coefficient and data collection time. When the

spectral correlation coefficient at a chosen cyclic frequency is near one, cross-SCORE has

convergence performance near that of a non-blind least squares algorithm. However, in most

practical cases, the spectral correlation coefficient will be less. The data collect time should be

chosen to be large enough to discriminate between interfering signals with closely spaced

spectral correlation frequencies but small enough to assure signal coherence.



J. Hicks Chapter 2: Array Processing Background 33

2.2.4 JOINT DETECTION TECHNIQUES
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Figure 2.18: Multi-user detector employing a multiple input multiple output (MIMO) Decision Feedback
Equalizer (DFE). The MIMO feedforward filter acts as a beamformer/ equalizer. Symbol decision device is a
hard limiter whose output (hard limited symbol estimates for the interference) is fed back using a MIMO feedback
filter.

In [21, 98, 99], a comparison of interference rejection and joint detection is analyzed for a multi-

element decision-feedback equalizer/beamformer. Here, an interference rejecting DFE feeds

back a decision for the SOI only. A joint detection DFE feeds back the decision signals. The

number of near equal power interferers is assumed known apriori. In simulation trials of a four

element array, joint detection was found to outperform interference suppression by an order of

magnitude.

The most straightforward implementation of MLSE applied to antenna arrays is the multi-

element extension of ICE (see section 2.2.2). The multi-element version of ICE is identical to

that of the single channel version, except more channels must be estimated. A single element

ICE receiver must estimate the d FIR impulse responses from each transmitter to the receiver. A

multi-element receiver must estimate the M•d FIR impulse response from each transmitter to

each antenna element. Because there are a greater number of channel parameters, longer training

sequences may be required. But from Grant’s work [13], this requirement should be relaxed by

the fact that more elements require less channel accuracy. One interesting attribute of ICE is that

if each user is synchronous and experiences no ISI, the receiver reduces to an exhaustive

maximum likelihood search outlined in the introduction. Also, the authors found that for equal-

power synchronous users, the ambiguity problem present in the single-element receiver is not
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present in the two-element receiver. Results for more users than elements were not reported in

the paper. Finally, the performance of the algorithm was found to be sensitive to Doppler shift:

as the channel changes more quickly, it becomes more difficult to track. The authors did not

comment on the receiver’s tracking performance for minimum-phase or non-minimum phase

channels. A detailed understanding of channel tracking performance and overloaded

performance are open areas of research.

In [106], a blind joint detection technique was proposed that can exploit the finite-alphabet

property. This property is thought to be much more powerful than the constant modulus

property, but is more difficult to exploit. Exploiting the FA property requires casting the blind

estimation problem in a tractable framework. The author investigates the comparative

performance of ILSP and ILSE.

The operating principles of the algorithms are derived by answering two questions:

1. If the channel is known, what are the optimum signal estimates of all users?

2. If the signal estimates are known, what is the optimum channel estimate?

These two questions are fundamentally different from each other because the answer to question

1 involves an optimization over a finite and discrete number of possible transmitted signals. In

contrast, for most practical channels, question number 2 involves an optimization over a

continuous, complex set of variables. Both ILSE and ILSP attempt to blindly estimate the

channel by iteratively answering the questions one and two. Hence, both ILSE and ILSP can be

described with the following algorithm:

1. Estimate the best signal estimates of all the users.

2. Estimate the optimum channel estimate.

3. Repeat 1) until convergence is achieved

ILSE and ILSP differ in the approach to step 1. ILSE finds the true ML estimate of all user’s

signals by enumerating over all possible transmitted signals. This step is similar to the approach

described in the introduction and is very costly. In contrast, ILSP approximates the ML estimate

by first performing a least squares (projection) and then quantizing the least squares solution to a
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finite alphabet. The least-squares projection of ILSP implicitly performs a beamforming

operation because each estimated symbol is made from a linear combination of received signal

samples.

The resulting algorithms suffer from several local minima. However, they converge very

quickly and hence, a global minima can usually be found by trying different initialization points.

Firstly, ILSE and ILSP illustrate the difference between the ML solution and the beamforming

solution. In a sequel paper [107], ILSE was found to out-perform ILSP. Also, when ILSE

converged to a global maxima, it was found to perform near the ML receiver if the channel was

known.

Find
Training
Sequence

Estimate

Channel

Estimate

Channel

Exhaustive Search

for ML signals

Received Block of Array data

O(NMdL d)

O(Md2)O(Md 2)

Estimate of SOI
and CCIs

Channel
Estimate

MxN dxN

Figure 2.19: L ~ Alphabet size, N ~ frame size, M ~ array size, D ~ number of interferers. ILSE iteratively finds
ML estimate of channel and data by brute force optimization over all the users. Overall complexity is
prohibitively high, i.e. O(ML

D
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ILSE and ILSP are not practical for most systems, because it requires all users to be

synchronized in baud and frequency. Also, the algorithms do not account for ISI or a time-

varying channel. However, both algorithms are extremely valuable for the following reasons.

First, they act as a first step in answering many questions of uniqueness and identifiability for

bind channel identification. Second, the fact that ILSE nearly performs as well as a non-blind

algorithm clearly illustrates the power of non-linear array processing. Third, they provide a

framework in which the FA property is easily exploitable.

Talwar’s ILSE is warranted in multi-user environments where there is no spatially correlated

background interference. However, in many environments, the interference is spatially

correlated but temporally unstructured. Two examples include a large number of low power

interferers transmitting from a specific direction, and a large power interferer whose bandwidth



J. Hicks Chapter 2: Array Processing Background 36

is much greater than the SOIs. A receiver for this type of environment is discussed in [10]. Here

a blind maximum likelihood cost function is derived that accounts for the possibility of

temporally unstructured but spatially correlated noise in addition to multiple SOIs. Two cost

functions are presented: one that finds the maximum likelihood signal estimate, and a sub-

optimal receiver based on alternating directions optimization. The sub-optimal receiver was

found to exhibit a performance near the ML receiver’s. Like Talwar’s ILSE, users are assumed

to be baud-synchronous. The algorithm was found to successfully demodulate up to ten

cochannel CPFSK signals with a four element circular array.

2.3 CONCLUSION

Array processing in overloaded environments requires different considerations than underloaded

environments. Overloaded array processing provides two benefits. First, multi-user systems will

benefit from an increase in capacity. Second, overloaded array processing can make receivers

more robust to interference external to the communication system. The former is of great

interest to commercial communication systems. The later benefit is of great interest to military

applications. Although, many well-established STAP algorithms break down in overloaded

environments, one would still expect to be able to extract more signals than elements because

single element interference canceling receivers have been known for a long time. We have

described many examples of interference canceling receivers for single element receivers. The

literature suggests that time varying and non-linear receivers will perform better than non-linear

solutions. In particular, the joint MAP receiver is guaranteed to separate cochannel signals with

a lower probability of symbol error than any other receiver.

The fundamental limit on array capacity is given by the probability of error for the JMAP

receiver. This receiver will have a symbol error probability better than any other receiver.

Upper bounds on the probability of error for the JMAP receiver suggest that the capacity of an

M-element array is much greater than M. However, achieving large capacity with the JMAP

receiver is difficult because its complexity increases exponentially with the number of users.

This motivates a search for sub-optimal receivers that might approach the JMAP’s performance.

In this survey, we have described a host of array processing techniques. It is well known that

linear STAP breaks down in overloaded environments. However, even non-linear interference

suppression tends to break down in homogeneous overloaded environments. The success of
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time-varying interference suppression techniques, such as FRESH filtering for single element

receivers, suggests that this may also be a successful approach for overloaded antenna arrays.

However, for overloaded homogenous environments , joint detection schemes are expected to

yield the best success. Signal extraction algorithms that exploit cyclostationarity (e.g. FRESH)

have been found to yield small SINR gains for tight excess bandwidth signals. ML joint

detection becomes impractical for large number of elements. For arrays of four or more

elements, demodulating a large number of users is the only motivation for joint detection. No

practical implementation of an overloaded array processor for a large number of users has been

found in the literature. However, just as CDMA research has produced many sub-optimal multi-

user detectors that can effectively mitigate multiple-access interference, we expect that sub-

optimal multi-user detectors for antenna arrays can support a much greater capacity than

conventional STAP. A simple example of a sub-optimal multi-user joint detection technique is

the multi-user DFE. Practical multi-user detection is the focus of the rest of this thesis.
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Chapter 3: VITERBI EQUALIZATION

The Viterbi Algorithm is an efficient method of finding the least cost path through a trellis. In its

original application [173] it was found to be a maximum-likelihood decoder for convolutional

codes over binary symmetric channels. Shortly later, it was found to yield the maximum

likelihood estimate of a symbol sequence transmitted over a channel with finite memory [54].

Since then, many variants of Forney’s formulation have been developed for the purpose of

equalization. Many of these applications are sub-optimal, asymptotic approximations to a true

maximum-likelihood receiver. In this chapter we will first define the optimum Viterbi Equalizer

for known channels, the Maximum Likelihood Sequence Estimator (MLSE). The purpose of this

section is to provide a basis upon which other less well-known equalization techniques can be

built. Then we will define a sub-optimal but computationally efficient variant of MLSE called

Delayed Decision Feedback Sequence Estimation (DDFSE). Finally, we discuss two trellis-

based algorithms for equalizing circularly-convolutional channels. All of these approaches fit

under the general aegis of Viterbi Equalization (VEQ).

3.1 MAXIMUM LIKELIHOOD SEQUENCE ESTIMATION

In this section we formally define the application of Viterbi Equalization to MLSE. We more

formally define the notion of a trellis and the relation of a minimum cost path to a maximum

likelihood estimate. Most importantly, we introduce a visualization tool that will help us quickly

build equalization (and later joint detection) trellises. This same visualization tool will help us

build efficient joint detection trellises for overloaded array processing. Admittedly, there are

numerous tutorials on the Viterbi Algorithm in the literature. The purpose of this section is not to
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provide a comprehensive treatment of the Viterbi Algorithm, but to formally define a notation

and intuition upon which other more heuristic trellis-based detection techniques can be based.

The simplest form of Viterbi Equalization is Maximum Likelihood Sequence Estimation

(MLSE). MLSE yields the maximum likelihood estimate of a symbol sequence in (AWGN).

We’ll first introduce the concept of FIR channel model. Then we will show how a maximum

likelihood estimate of a sequence can be obtained. Finally, we will show how the Viterbi

Algorithm yields this estimate. The type of channel under consideration will be the FIR channel

model illustrated in Figure 3.1. We will consider linear modulation only. However, approximate

MLSE receivers have been applied to non-linear modulation types. Here s[n] represents of

sequence of symbols drawn from an Alphabet, A . If the signals, s[n], is a BPSK signal, A =

{1, -1}. If s[n] is a QPSK signal, A = {1, -1, j, -j}. Assume that the channel can be modeled as

an FIR channel with impulse response h[n], of length Lh. The received match-filtered and

sampled signal can by modeled as:

[ ] [ ] [ ]r n y n z n= + (3.1)

where

1
*

0

[ ] [ ] [ ]
hL

l

y n h l s n l
−

=

= −∑ (3.2)

and z[n] is additive complex Gaussian noise with zero mean and variance 2 2| [ ] |z E z nσ  =   . The

channel convolution can be written in matrix form by defining the following vectors. Let h be a

vector of “conjugate and flipped” channel coefficients:

[ ]
1

*[ 1] *[ 2] *[0]
h

h h
L

h h L h L h
×

= − − " (3.3)

Then a vector of received samples can be written as r y z= + , where z is a vector of the noise

process, z[n], and the signal component vector, y , is expressed in terms of a length N frame of

symbols as:
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Note that the length of the channel output vector, 1r y hL L N L= = − + , is not the same as the

input. Before we charge forth into the maximum likelihood sequence estimator, we will first

introduce a visualization tool that will be useful later for constructing more complicated trellises:

we can plot the magnitude of the elements of H in a checkerboard plot. Let us illustrate this with

the following example.

3.1.1 EXAMPLE

Consider the length Lh= 3 channel illustrated Figure 3.1(a). A length N=10 frame of symbols is

transmitted. A checkerboard plot of the H-matrix is illustrated in Figure 3.1(b). Note that the

symbols at the beginning and end of the frame have less energy in y than the other symbols;

this phenomenon will result in less reliable estimates for these symbols. Beginning and ending a

frame with Lh-1 known header and tail symbols can mitigate this effect.
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Figure 3.1: (a) (left) FIR channel impulse response. (b) (right) Checkerboard plot of Toeplitz channel matrix.

3.1.2 DEVELOPMENT OF MLSE

We will now define and develop a MLSE based equalizer. The maximum likelihood estimate of

the symbol sequence, s , maximizes the likelihood of r given s . Let ( | , )f r s h be the

probability density function (pdf) of r given knowledge of s and h . Then the maximum-

likelihood estimate of s , ŝ , is given as

ˆ arg max ( | , )
Ns

s f r s h
∈

=
A

(3.5)

where NA denotes all possible length N sequences of symbols drawn from the alphabet A . If

all possible Ns ∈A are equally likely, the maximum likelihood estimate is equivalent to finding

the most probable symbol sequence for a particular received signal. That is:

ˆ arg max ( | , )
Ns

s p s r h
∈

=
A

(3.6)

which is a more intuitive criterion.

The maximum likelihood estimate requires perfect channel knowledge. Although in practical

applications, the channel impulse response is not usually known, we will initially assume that it

is, and address this issue later. The conditional pdf, ( | , )f r s h , is multi-dimensional Gaussian

with mean y s= H and covariance H

zz E zz =  ΦΦΦΦ .
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{ }
2

2 2

2

1
( | , ) exp || ||

( )
Lr z

z

f r s h r s σ
πσ

= − − H (3.7)

Maximization of equation (3.7) is equivalent to the following estimators

{ }

2

ˆ arg max ( | , )

arg max ln ( | , )

arg max || ||

N

N

N

s

s

s

s f r s h

f r s h

r s

∈

∈

∈

=

=

= − H

A

A

A

(3.8)

If we knew nothing bout the desired signal, that is, if s[n] could be any value in the complex

plane, then the maximum likelihood estimate would be equivalent to a least- squares solution

such as the Penrose pseudo-inverse. However, if we exploit the finite alphabet property of s[n],

then we can achieve a much more accurate estimate [106]. The brute force maximum likelihood

estimate is to exhaustively search through all possible values of Ns ∈A . This would require us

to search over | |NA฀possible combinations of transmitted symbols. For typical wireless voice

frame lengths, N~160 symbols, | | 4=A , in which case 96| | 2 10N ≈ ⋅A iterations is well beyond

the computational ability of any computer. However, this search can be performed much more

efficiently with the Viterbi algorithm that exploits the sparse nature of the matrix, H.

Instead of finding the symbol sequence that yields the least squared error, the Viterbi Algorithm

works with the sequence of states, [ ] ( [ 1], [ 2], , [ 1])hn s n s n s n Lσ = − − + −… illustrated in Figure

3.2. The VA finds the sequence of states that yields the least squared error. Obviously, if we

know the least-cost state sequence, we can pull out the least cost symbol sequence from the state

definition. The two are equivalent.

The operating principle of the Viterbi algorithm works on the principle of a trellis. A trellis is a

way of visualizing all possible sequence of states. An example trellis for a BPSK signal with a

length N frame of information symbols transmitted over a length 3hL = channel is illustrated in

Figure 3.2. Following the observation of example 3.1.1, a header and tail of 1 2hL − = symbols

is assumed. Each circle in the diagram represents a particular sample of [ ]nσ . A black line from

the left-most circle to the right-most circle depicts a unique state sequence. States are connected
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if their values do not conflict. For a particular time index, n, a state, [ ]nσ can be named by its

value in symbols (e.g. [ ] ( 1,1)nσ = − ) or its index (e.g. [ ] 2nσ = ). The particular interpretation

should be evident in context. Figure 3.2 illustrates an example path.

Before we continue to describe the Viterbi Algorithm, let us define some fundamental constructs.

Define a partial path through the trellis, 0 { [0], [1], , [ ]}k kρ σ σ σ= … . Two example partial paths

are illustrated in Figure 3.3. We say that a particular state value, i, at time index n, 0[ ]nσ , is in

path 0
kρ , 0 0[ ] ,kn n kσ ρ∈ ≤ , if the n

th component of 0
kρ , 0[ ] [ ]n nσ σ= . Furthermore, we say that

a particular symbol value at time n, 0[ ]s n is in a path, 0
kρ , 0 0[ ] , 1ks n n kρ∈ ≤ − , if there is a state

0 0[ 1] knσ ρ+ ∈ and 0[ 1] ( [ ], )n s nσ + = … .

We will now relate the partial path concept to the least squares criterion. The least squares

criterion can be broken up into additive terms with the following identity

2 2ˆ|| || | [ ] [ ] |
n

r s r n r n− = −∑H (3.9)

where

*ˆ ˆ[ ] [ ] [ ]
l

r n h l s n l= −∑ (3.10)

Each stage of the Viterbi Algorithm will deal with exactly one of the squared error terms in the

sum of (3.9). To describe the operating principle of the Viterbi Algorithm, let us define the

following quantities.

Let ˆ [ ]ijr k be the candidate signal component of the received signal corresponding to a

[ ] 1]k i k jσ σ= → [ + = transition.

1
*

0

ˆ [ ] [ ] [ ]
hL

ij

l

r k h l s k l
−

=

= −∑ (3.11)

where
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ˆ ˆ ˆ[ ] ( [ 1], [ 2], , [ 1])

ˆ ˆ ˆ[ 1] ( [ ], [ 1], , [ 2])

h

h

k s k s k s k L i

k s k s k s k L j

σ

σ

= − − − + =

+ = − − + =

…
…

Define the ( , )thi j transition cost on the k
th stage, ( , )[ ]i je k , to be the error between the received

signal and the ( , )thi j candidate signal component.

( , ) 2ˆ[ ] | [ ] [ ] |i j

ije k r k r k= − (3.12)

Further, define the cost of a partial path, 0
kρ

( [ ], [ 1])
0 ] [ ].k l l

l k

e lσ σε ρ +

≤

[ =∑ (3.13)

The Viterbi Algorithm reduces the complexity of search by culling candidate paths at each stage.

It is built upon the following obvious axiom: if two paths converge on the same node, then the

difference in their cost can be computed from their partial costs at that node. This principle is

illustrated in Figure 3.3. Two candidate paths converge on the same state at stage k and continue

to share the same route thereafter. At this stage, if the cumulative cost of path two’s partial path

is greater than the cumulative cost of path one’s, then there is no way that path two can catch up.

Then, at the k
th stage the Viterbi Algorithm will cull path two and declare path one as the

survivor.

We will now define the Viterbi Algorithm recursively. Define the accumulative cost metric at

state i, ( )[ ]i kξ , as follows. If the sequence is preceded with a known header (e.g.

( [ 1], , [ 1])hs s L− − +… is known).

( )
0 [0] ( [ 1], , [ 1])

[0] hi
s s L

else

σ
ξ

 = − − + 
=  ∞ 

…
(3.14)

otherwise, ( )[0] 0iξ = , 10,1, ,| | 1hL
i

−∀ = −… A . Now define ( )[ ]i kξ , for k>0,

( ) ( ) ( , )[ 1] min{ [ ] [ ]}
j

i i i j

i
k k e kξ ξ

∈
+ = +

T
. (3.15)
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where jT is the set of all allowed transitions into the j
th state. Define the surviving transition into

the j
th state at the k

th stage as:

( ) ( ) ( , )[ ] arg min{ [ ] [ ]}
j

j i i j

s
i

i k k e kξ
∈

= +
T

(3.16)

Finally, recursively define the surviving partial path at stage k,

0
0

1 ( )
0 0

[ ] { [0] }

[ ] { [ [ ]], [ 1] }k k j

s

i i

j i k k j

ρ σ

ρ ρ σ+

= =

= + =
(3.17)

From the preceding definitions, it follows that ( )
0[ ] [ ]]i kk iξ ε ρ= [ . At any point in the Viterbi

Algorithm, a surviving path can be reconstructed from a list of survivors, ( )[ ]j

si k , as follows:

( )

( [ 1])
1 1

[ ] [ ]

[ ] { [ ], }, 1] , 1, ,0

k j

k s

k n k k

n s n n

j i k

j i n n n kσ

ρ

ρ ρ σ ρ+
+ +

=

= [ + ∈ = − …
(3.18)

This process is better known as tracing back.

At the end of a received frame, we can find the least cost path in two steps: first, find the last

state in the least cost path; then traceback. Terminate the trellis in the following manner. If the

frame contains a known “tail”, [ 1] ( [ 2], , [ ])h h termN L s N L s N jσ + − = + − =… , then the least cost

path through the trellis must end with this state. Otherwise, terminate the trellis by searching for

the minimum path metric ( )[ 1]j

hN Lξ + − . That is, the

( )*

trellis is terminated

arg min [ 1]

term

j

h
j

j
j N L elseξ

  =  + −  
(3.19)

Finally, the least cost path can be reconstructed from a list of survivors, ( )[ ]j

si k by “tracing back”

with equation (3.18) starting with *( )[ 2]j

s hi N L+ − .
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3.1.3 SUMMARY MLSE WITH VITERBI EQUALIZATION (KNOWN CHANNEL)

1. Allocate an 1| | 1hL − ×A array of cumulative partial path metrics4, ( )[ ]i kξ . Initialize ( )[0]iξ

according to equation (3.14).

2. Allocate an 1| | hL

hN L
− × +A array of surviving transitions into the [ 1] thk jσ + = state at

the k
th stage, ( )[ ]j

si k .

3. Start the iterative recursion

For each stage, 0,1, , 1hk N L= + −… ,

For each stage, 10,1, ,| | 1hL
j

−= −… A ,

Find the survivor (3.12), (3.11), (3.16).

Update the list of cumulative partial path metrics, ( )[ ]i kξ , (3.15).

4. Terminate the trellis with equation (3.19).

5. Traceback: after the last stage of the trellis, reconstruct the least cost path with equation

(3.18).

6. Translate a state sequence into a symbol sequence.

4 Even though there is a time index on ( )[ ]i kξ , the algorithm never requires knowledge of prior

path metrics, so you won’t need to store them.
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Figure 3.2:Summary of the Viterbi Algorithm

Path Two

Path One

…. ….[0]

( [ 1], [ 2])s s

σ =

− −

[1]

( [0], [ 1])s s

σ =

−

[ 1]

( [ ], [ 1])

k

s k s k

σ + =

−

[ ]

( [ 1], [ 2])

k

s k s k

σ =

− −

[2]

( [1], [0])s s

σ = [ 2]

( [ 1], [ ])

N

s N s N

σ + =

+

[ 1]

( [ ], [ 1])

N

s N s N

σ + =

−

( 1, 1)

(-1, 1)

( 1,-1)

(-1,-1)

At j= 1 state on kth

stage, the survivor
is path 1.

( [path 2 at ]) ( [path 1 at ]if )n k n kεε > ==

Path Two

Path One

…. ….[0]

( [ 1], [ 2])s s

σ =

− −

[1]

( [0], [ 1])s s

σ =

−

[ 1]

( [ ], [ 1])

k

s k s k

σ + =

−

[ ]

( [ 1], [ 2])

k

s k s k

σ =

− −

[2]

( [1], [0])s s

σ = [ 2]

( [ 1], [ ])

N

s N s N

σ + =

+

[ 1]

( [ ], [ 1])

N

s N s N

σ + =

−

( 1, 1)

(-1, 1)

( 1,-1)

(-1,-1)

At j= 1 state on kth

stage, the survivor
is path 1.

( [path 2 at ]) ( [path 1 at ]if )n k n kεε > ==

Figure 3.3: Operating principle of the Viterbi Algorithm

3.1.4 APPLICATION OF H-MATRIX TO BUILD TRELLIS

As promised, we can build the Viterbi Equalization Trellis from the Toeplitz channel matrix by

inspection. A trellis is completely specified by the sequence of state definitions. If we know the

definition of each state, [ ]kσ , then we can draw a trellis. In the case of a time-invariant linear

FIR channel, the state definition is obvious: let [ ]kσ be the past symbols in the FIR channels tap-
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registers. However, for more complicated channels, the answer may be come less obvious. So it

behooves us to develop a visualization tool with a simple example. Each row of the H-matrix is

associated with one term of the sum

2 2ˆ|| || | [ ] [ ] |
n

r s r n r n− = −∑H

So each row of the H-matrix is associated with one stage of the trellis. To illustrate this fact,

we’ll return to the Toeplitz H matrix from a previous example. The H matrix says that the

second received signal sample, r[1], has symbol components from5 s[-1], s[0], and s[1]. This

suggests that the trellis for this stage should account for all possible combinations of s[-1], s[0],

and s[1]. This is satisfied by defining the state [1] ( [0], [-1])s sσ = , and [2] ( [1], [0])s sσ = . A

similar argument for each trellis stage will lead to a state definition [ ] ( [ -1], [ - 2])k s k s kσ = .
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Figure 3.4: Illustration of how a trellis can be constructed stage by stage from the channel transfer matrix.

5 Here we deviate slightly from the format of equation (3.4) by assuming that header symbols
have been transmitted.
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There are a few other issues to consider when defining states. For one, the states must define a

trellis such that each forward path corresponds to a distinct symbol sequence. We will address

this issue in a later section.

3.1.5 CHANNEL ESTIMATION ISSUES

Until now, we have assumed that our channel is known. In practical VEQ implementations, the

channel must be estimated. Frequently, a channel is estimated with a training sequence before

Equalization [54]. Other methods include a channel estimation procedure in tandem with the VA

[7]. Channel estimation for VEQ is beyond the scope of this thesis but is still an important issue.

In previous examples, we have constructed trellises for the equalization of BPSK signals.

However, the VA can be applied to many different modulation types simply by changing the

trellis. As an example, one stage of the trellis for equalization of a π/4 DQPSK signal across a 1st

Order FIR channel is illustrated below. Here, instead of labeling states in terms of symbols, we

have labeled them in terms of phases of those symbols. The trellis accounts for the fact that

symbols must change by odd multiples of 450 .
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0
)

( 45 0)

( 90 0)

(135 0)

(180 0)

(225
0
)

(270 0)

(315
0
)

φ[k-1] φ[k]

( 0
0
)

( 45 0)

( 90 0)

(135 0)

(180 0)

(225
0
)

(270 0)

(315
0
)
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Figure 3.5: Trellis stage for π/4 DQPSK.
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3.1.6 COMPLEXITY

The complexity of the VA is often measured in terms of the number of states [208]. However,

the number of transitions per stage is a better measure since the number of computations required

is directly proportional to this number. Moreover, two trellises with the same state-size can have

a different number of state transitions, and hence different complexities. Henceforth, we will

refer to the number of state transitions/stage as the trellis size, and the number of states/stage as

the state-size or trellis depth. The trellis size can be calculated by first calculating the number of

states and then the number of incoming transitions per state. For linear modulated signals there is

one distinct state value for each possible combination of symbols in

[ ] ( [ 1], [ 2], , [ 1])hn s n s n s n Lσ = − − − +… . There are thus 1| | hL −A possible values. Likewise, for a

given state, [ ]nσ , there is one incoming transition for each possible value of [ 1]hs n L− + . There

are | |A such values. Hence, the trellis size for linear modulated signals is | | hLA . In contrast,

π/4-DQPSK signals can only transition by odd multiples of π/4. Hence, π/4 DQPSK has a state-

size as large as 8-PSK but its trellis is more sparsely interconnected.

3.2 DELAYED DECISION FEEDBACK SEQUENCE ESTIMATION

MLSE has realizable complexity for small channel lengths and small alphabets; however, for

long channels, and higher-order alphabets, it becomes extremely complex. This complexity

prohibits MLSE’s application to very high data rate applications (where the channel delay spread

is much longer than a symbol period) or to the equalization of IIR channels, such as those that

occur in magnetic recording media. However, the VEQ’s ability to equalize channels with very

deep nulls without noise emphasis motivates a generalization of MLSE that covers non-linear

equalization of very long channels. Many authors have addressed this topic [24]. There are two

major approaches to reducing the trellis size of a Viterbi Sequence Estimator:

• Channel Truncation: ignore a portion of the channel in the error metric calculation.

• Decision Feedback: Account for longer channel length by tracing back through survivors.

Before we formally define DDFSE, we will first illustrate a difference between these two

approaches with an example.
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3.2.1 EXAMPLE

Consider the channel model from the previous example. The last sample h[2]= .2 is much less

than the other samples. Truncation would define a channel state with just one symbol

[ ] ( [ 1])n s nσ = − . Hence, when computing error metrics, only h[0], and h[1] is accounted for

h[2]= .2 is neglected. The neglected symbol of ISI appears as additive noise in the path metric

calculations. In contrast, DDFSE accounts for this extra symbol of ISI by looking back through

the trellis for survivors. This is illustrated in Figure 3.6. In this figure, two stages are illustrated.

The survivors have already been chosen for the (k-1)th stage and the DDFSE algorithm is ready

to compute the error metrics for the k
th stage. The survivors from the (k-1)th stage are clearly

labeled. In this particular case, the transitions exiting the [ ] (1)kσ = state look back to find the

candidate symbol [ 2] 1s k − = − for error metric computation. Similarly, the transitions exiting

the [ ] ( 1)kσ = − state look-back to find the candidate symbol [ 2] 1s k − = .

Metric for (i,j)th transition is
calculated by looking back at
survivors for each possible s[k-1].

1
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Surviving
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[ 1]
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s k
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−

[ ]

( [ 1])

k
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−
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Figure 3.6: Looking back through the trellis for delayed decision feedback.

We will now formally define Delayed Decision Feedback Sequence Estimation (DDFSE) and

describe its application to the equalization of long FIR channels; although, its principle has been

extended to IIR channels as well, we will neglect this application for brevity. DDFSE differs

from MLSE only in the calculation of the state metrics. Here, the state size, µ, is a parameter left

to the algorithm designer to specify in order to meet some cost/complexity tradeoff. Let the

DDFSE state be defined as [ ] ( [ 1], [ 2], , [ ])k s k s k s kσ µ= − − −… . For MLSE, 1hLµ = − but for

DDFSE 1hLµ ≤ − . Then the error metric is calculated as follows:
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( , ) 2ˆ[ ] | [ ] [ ] |i je k r k r k= − (3.20)

where

1
* *

0 1

ˆ ˆ ˆ[ ] [ ] [ ] [ ] [ ]
hL

ij

l l

r k h l s k l h l s k l
µ

µ

−

= = +

= − + −∑ ∑ (3.21)

and

0

ˆ ˆ[ ] ( [ 1], , [ ])

ˆ ˆ[ 1] ( [ ], , [ 1])

ˆ ˆ[ ] ( [ 1], , [ 1]) [ ]k

h

k s k s k i

k s k s k j

v k s k s k L i

σ µ

σ µ

µ ρ

= − − =

+ = − + =

= − − − + ∈

…
…

…

The quantity [ ]v k is called the feedback state. The value of [ ]v k is determined only from the

surviving partial path into the state [ ]k iσ = . The set of indices (0,1, , )e µ=U … is called the

enumeration set and the set of indices ( 1, , 1)fb hLµ= + −U … is called the feedback set.

The performance of DDFSE has been analyzed extensively in [24]. Its performance is sensitive

to the choice of state size parameter, m. In general, if the feedback set is chosen over a region of

h[n] with small energy, then DDFSE can well approximate a full-state MLSE. Its application is

particularly powerful for minimum-phase channels.

3.2.2 SUMMARY OF DDFSE

7. Allocate an | | 1µ ×A array of cumulative partial path metrics6, ( )[ ]i kξ . Initialize ( )[0]iξ

according to equation (3.14).

8. Allocate an | | hN Lµ × +A array of surviving transitions into the [ 1] thk jσ + = state at the

k
th stage, ( )[ ]j

si k .

6 Even though there is a time index on ( )[ ]i kξ , the algorithm never requires knowledge of prior

path metrics, so you won’t need to store them.
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9. Start the iterative recursion:

For each stage, 0,1, , 1hk N L= + −…

For each stage, 0,1, ,| | 1j µ= −A…

Find the survivor (3.20),(3.21),(3.16).

Update the list of cumulative partial path metrics, ( )[ ]i kξ , (3.15).

10. Terminate the trellis with equation (3.19)

11. Traceback: after the last stage of the trellis, reconstruct the least cost path with equation

(3.18).

12. Translate the resulting state sequence into a symbol sequence.

3.3 CIRCULAR CONVOLUTION

The previous sections discussed Viterbi Equalization of time invariant FIR channel models. Let

us now consider a different channel: circular convolutional channels. Circular convolution occurs

when an Discrete Fourier Transform (DFT) is used to calculate a convolution [215]. Usually,

input signals are zero padded so circular convolution yields exactly the same result as the linear

convolution model from the previous section. To the author’s knowledge, to date, circular

convolution has only been applied in the literature toward understanding the properties of the

DFT. Circular convolution should never occur as an impairment in practical communication

systems7, so it is no wonder that it has not been treated in the literature. However, an equalizer

for circular convolutional channels will provide a fundamental processor structure for overloaded

array processing so it is worth our study.

7 A special case, some Orthogonal Frequency Division Multiplexed (OFDM) systems force a
linear convolutional channel to be circular and then exploits the properties of circular
convolution with sophisticated modulation.
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We will now formally define circular convolution and its corresponding matrix representation.

Let [ ], [ ]s d h d ∈^ , be discrete time, complex, sequences of length Du. Then circular convolution

is defined as:

1
*

0

[ ] [ ] [ ] [ ] [( ) mod ], 0 1
uD

u u

l

y d s d h d h l s d l D d D
−

=

= ⊗ − ≤ ≤ −∑� (3.22)

where the symbol, ⊗ , denotes circular convolution and “ mod uD ” denotes modulo-Du indexing.

Let the 1uD × vectors, [ ][0] [1] [ 1]
T

uy y y y D= −… and [ ][0] [1] [ 1]
T

us s s s D= −… .

Then a linear system of equations, y s= H can be developed similar to equation (3.4). In the

case of equation (3.4), the matrix, H, is Toeplitz. In the case of a circ-conv channel, the matrix,

H, is circulant: each row of H is a circular shift of the previous row. We will now consider an

example.

3.3.1 EXAMPLE

Let Du= 6, and let h[d] be given by the sequence in Figure 3.7(a). A checkerboard plot of the

elements of H are given in Figure 3.7(b).
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Figure 3.7: (a) (left) Discrete-time FIR circularly-convolutional channel. (b) (right) Checkerboard plot of the
channel transfer matrix for h[n] in (a).

Now consider a sequence of symbols from some alphabet [ ]s d ∈A transmitted over a circularly-

convolutional channel. The received signal with noise is
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[ ] [ ] [ ], 0 1ur d y d z d d D= + ≤ ≤ − (3.23)

where z[d] is AWGN with variance, 2
zσ . Similar to the linear convolution model, the maximum

likelihood estimate of the transmitted signal for the received vector,

[ ][0] [1] [ 1]
T

ur r r r D= −… is given as follows:

{ }

2

ˆ arg max ( | , )

arg max ln ( | , )

arg max || ||

N

N

N

s

s

s

s f r s h

f r s h

r s

∈

∈

∈

=

=

= − H

A

A

A

(3.24)

Also similar to before, the best estimate of the transmitted signal should constrain ŝ to a finite

alphabet. We can construct a trellis that illustrates the ML search by directly observing the

structure of H. Again, we can define a state sequence that satisfies the following:

• The d
th stage of the trellis enumerates over the non-zero entries on the (d+1)th row8 of H.

• There exists a unique path through the trellis implied by this state sequence that yields the

maximum likelihood sequence estimate.

A state definition for the previous example that satisfies the above two criterion is:

[ ] ( [ 2], [ 1]), 0 1ud s d s d d Dσ = − − ≤ ≤ − (3.25)

where the indexing of the [ ]s d is performed modulo-Du. For instance [0] ( [ 1], [0])us D sσ = − .

Figure 3.8 illustrates the trellis implied by this state definition for a QPSK alphabet. The

circulant structure of H imposes a strange structure to the trellis: it wraps around upon itself.

These so-called tail-biting trellises (TBT) have become a hot topic in the area of error correction

coding [208,209]. In general, an equalization trellis will be tail-biting if the H-matrix has corners.

As we will see in the next chapter, this matrix does not need to be purely circulant.

8 The (d+1) occurs because we have numbered the rows of H with positive integers.
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Figure 3.8: Tail-biting trellis for QPSK symbols transmitted over the channel of Equation (3.23)

Although the area of error–correction coding is beyond the scope of this thesis, it is worthwhile

to mention, briefly, the application of TBTs to error correction coding. Tail-biting structures

have been studied in the coding literature for three reasons: tail-biting convolutional codes are a

bandwidth-efficient way of implementing high constraint length convolutional codes with small

block lengths. This is because tail-biting convolutional codes do not require trellis termination.

Secondly, maximum-likelihood detection of most block codes is equivalent to finding the least

cost path around a tail-biting trellis. Finally, and perhaps most importantly, tail-biting trellis has

been posed as a fundamental stepping-stone to understanding more complicated decoding

algorithms that are not yet fully understood [208]. Iterative decoding of Turbo Codes [216] can

be thought of as a sub-optimal approximation to a maximum a posteriori probability (MAP)

decoding algorithm on a graph with multiple cycles with large diameters.
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3.3.2 TAIL-BITING MLSE (TB-MLSE)

The maximum likelihood estimate of s corresponds to the least cost closed path through the

TBT. When equalizing linear convolutional channels, the equalization trellis is flat. In this case,

observing that paths can be culled at each stage allows us to apply the Viterbi Algorithm.

However, in this case, there is a “chicken before the egg” dilemma; paths cannot strictly be

culled at each stage because the concept of a cumulative path metric is not well defined. The true

least squares path around a TBT can be obtained from a variant of the Viterbi Algorithm [208].

First let P denote all closed paths through the TBT. Then let [0]σ0
P denote all closed path

through a particular node, 0[0]σ at stage zero. We can write Equation (3.24) another way:

{ }
0 [0]0

2 2

( [0], , [ 1])

2

[0] ( [0], , [ 1])

min || || min || ||

min min || ||

Du
u

u

Ds

D

r s r s

r s
σ

σ σ

σ σ σ

− ∈∈

− ∈

− = −

= −

H H

H

PA

P

…

…

(3.26)

This tells us that we can find the least cost path through a trellis in two steps:

• Pick a particular value of and form of a sub-trellis of the TBT consisting of all closed

paths through this node. Find the minimum closed path through this state by

“unwrapping” the sub-trellis and finding the least-cost path with the VA.

• Repeat step one for every possible value of σ[0] and choose the global minimum of all

σ[0].

We will call this algorithm Tail-Biting MLSE (TB-MLSE). For the example TBT of Figure 3.8,

there are 16 possible values of σ[0]. By the above prescription, TB-MLSE will involve 16 calls

of the Viterbi Algorithm. In general, TB-MLSE’s complexity is squared that of MLSE for a flat

trellis with the same state size, µ .

3.3.3 ITERATIVE TAIL-BITING VITERBI ALGORITHM (ITB-VA)

TB-MLSE’s complexity prohibits its use in long channels. However, the VA has been observed

by many researchers [209] to converge to a maximum likelihood path after a handful of stages

even after improper initialization. This property has motivated many coding researchers to apply

the Viterbi-Algorithm iteratively around the TBT with an all-zeros initialization of the
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cumulative partial path metric [209]. We will call this algorithm the Iterative Tail-Biting Viterbi

Algorithm (ITB-VA). Usually, only 2 or three iterations around the TBT is enough to converge

[217]. ITB-VA runs the risk of converging to a sub optimal path around the TBT but has a

complexity several orders of magnitude less than TB-MLSE.

3.4 CONCLUSION

This chapter has introduced several trellised based algorithms. The most straight-forward is

MLSE with the Viterbi Algorithm. However, this solution becomes prohibitively complex for

long channels. The more flexible but sub-optimal DDFSE provides the power of non-linear

signal processing with a greatly reduced complexity. DDFSE equalizes channels effectively and

efficiently when the majority of the channel’s energy is grouped at low delays (e.g. minimum-

phase channels). The last section introduced trellis-based algorithms for equalizing circularly-

convolutional channels. In particular, the ITB-VA can approximate TB-MLSE with an order of

magnitude less complexity. Overloaded array processing will borrow from both DDFSE and

ITB-VA.
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Chapter 4: SPATIALLY REDUCED SEARCH JOINT

DETECTION (SRSJD)

4.1 INTRODUCTION

Overloaded Array Processing is an attractive option to increase the capacity of wireless systems.

In many wireless applications such as “base-station in the sky”, it is prohibitively expensive to

increase the capacity of a geographic area by dividing it up into small cells serviced by multiple

aircraft. Moreover, aerodynamics as well as size-and-weight requirements impose limitations on

the type of antenna used. Hence, it is not possible to increase user capacity with multiple pencil-

beam antennas. The focus of this section will be on narrow band linear modulated signals;

however, it is the author’s belief that this algorithm can be extended to other signal types with

achievable complexity.

Figure 4.1 illustrates the desired capabilities of an overloaded array processing algorithm and our

proposed approach. Overloaded array processing should be able to separate more signals than

elements in the presence of spatially uncorrelated noise and directive noise. Spatially

uncorrelated noise models background noise and interference impinging on the array from a

ubiquitous direction. Directive noise can model a large number of low power, co-channel

interferers impinging on the array from a specific direction. Or it can model a single co-channel

interferer of an unknown type impinging on the array from a specific direction [221]. The

structured signals can have varying inter-AOAs, different powers, and may be asynchronous in

phase, frequency, and baud.
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The innovative approach that we pursue is to perform joint detection with a linear space-time

processor followed by a sub-optimal Viterbi-based joint detector. We chose a joint-detection

architecture because all narrow-band interference rejection based algorithms found in the

literature were reported to have one or both of the following limitations: they fail when co-

channel signals of the same type are nearly the same power; or they provide marginal SNR

improvement when all homogeneous signals have tight excess bandwidth. Contrastingly, in

interference-limited environments, joint detection algorithms can separate near equal power,

near-zero excess bandwidth co-channel signals by exploiting only difference in their received

phase and amplitude. In overloaded array processing, it is necessary to separate signals in

homogeneous environments9 with exactly the same power and nearly the same AOA. Moreover,

in most practical wireless communication systems, excess bandwidth is minimized for maximum

spectral efficiency [16]. For these reasons, we have chosen a joint detection approach.10

The contributions of this thesis are two fold:

• Reduced Span Linear Filtering: linear space-time processors that lead to efficient sub-

optimal joint detection algorithms. This entails separating signals into several

overlapping groups with linear processing to facilitate efficient non-linear post-

processing.

• A sub-optimal iterative joint detection algorithm that takes full advantage of the above

linear pre-processing.

The goal of this thesis is not to find the best Overloaded Array processor, but to demonstrate the

potential of this approach. Toward this end, we will investigate the properties of select

combinations of cascaded linear/non-linear processors. For simplicity, we will begin by focusing

on the problem of separating symbol synchronous co-channel signals. Then, in a following

chapter, we will demonstrate the applicability of a similar approach to separate asynchronous co-

channel signals with one antenna.

9 That is, environments with signals all of the same type.
10 This does not mean that interference rejection techniques are not useful for Overloaded Array
processing. We anticipate their application to separating heterogeneous environments. But we
do not anticipate their use to signal separation in homogeneous environments.
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Figure 4.1: Overloaded array processing can separate more structured signals than elements in highly complex
signal environments.

In chapter 3, we discussed the joint maximum likelihood detector for synchronous signals

impinging on an antenna array. We will see in a following chapter that this receiver has a

theoretical performance that facilitates overloaded array processing; however, its complexity is

prohibitively expensive. This leads to a natural question: is it necessary to enumerate over all

possible signal combinations at once? Intuitively, we know that signals impinging on a calibrated

array from widely separated AOAs do not significantly interfere with each other. It then seems

possible that we can demodulate a select few signals by only jointly estimating a subset at a time.

This section outlines a sub optimal algorithm, which approximates the joint ML receiver with a

greatly reduced complexity. The algorithm exploits a wide separation in AOA between angles of

arrival by factoring quadratic terms of the maximum-likelihood criterion into trellis-oriented

form. For simplicity, in our examples, we consider QPSK signals of known AOAs impinging on

a calibrated array. However, we believe that the algorithm is not limited to this case. Several

examples are considered including environments with spatially uncorrelated noise.

4.2 A SUBOPTIMAL APPROXIMATION TO THE JOINT MAXIMUM

LIKELIHOOD CRITERION

As previously discussed, the channel model for multiple synchronous QPSK signals impinging

on an antenna array is as follows

[ ] [ ] [ ]x n s n z n= +A (4.1)
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where [ ]s n , is a Du×1 vector of the n
th set of symbols impinging on the array from users 1

through Du. [ ]x n is a M×1 vector of the nth received array signal. The matrix A is the array

response. Finally, [ ]z n is the M×1 noise vector with zero mean and Auto –correlation

H

zz E zz =  ΦΦΦΦ . The auto-correlation matrix can model background thermal noise as well as

directional noise (see Appendix B.3).

If no ISI is present on the channel, then the joint-ML criterion for detecting synchronous users

impinging on an antenna array can be reduced to a symbol-by-symbol detector. The joint-ML

(JML) detector for this case is:

( ) ( )1ˆ[ ] arg min [ ] [ ]
H

zz
s

s n x n s x n s−= − −A AΦΦΦΦ (4.2)

In the case of spatially uncorrelated noise, 2Φ zz zσ= I , and the joint-ML detector reduces to least

squares enumeration. We seek an alternate form of the ML detector, which can exploit large

differences in AOA. Expanding products and dropping terms independent of the optimization,

equation (4.2) is equivalent to:

{ }{ }1 1ˆ[ ] arg min Φ 2 (Φ )H H H

zz zz
s

s n s s s x− −= −Α Α ΑRe (4.3)

Now, define a Du×Du matrix, H, and Du×1 matrix, y , such that

1

1

Φ ,

Φ

H H

zz

H H

zzy x

−

−

=

=

H H A A

H A
(4.4)

Further, let [ ]h d be the d
th row of H. Then, the joint ML receiver can be written as

2

2

1

ˆ[ ] arg min

ˆarg min [ ] [ ]
u

s

D

s d

s n y s

y d y d
=

= −

= −∑

H

(4.5)
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where ˆ[ ] [ ]y d h d s= . For a reduced complexity search, the matrix H should be chosen such that

the energy of each row is concentrated on as few symbols as possible. We will consider a brief

example.

4.2.1 EXAMPLE

Consider Du= 6 synchronous QPSK users equally spaced in angle of arrival impinging on an M=

5 element calibrated circular array with a radius, Ra= .2λ in the presence of spatially

uncorrelated additive white Gaussian noise. Let11 1/ 2( )H=Η Α Α . This scenario is illustrated in

Figure 4.2.

.4λ

600

600

600

600

600

600

User 1

User 5 User 6

User 4

User 3 User 2

Figure 4.2: Illustration of Example Scenario

Since the matrix HA A is Hermitian symmetric, H=H H is also Hermitian symmetric. Further,

let † H=W H A and y x= W . Then H and y satisfy equation (4.4). Instead of explicitly giving H

numerically, we will plot the magnitude of each element of H. This is given in Figure 4.3.

11 Here 1/ 2( ) denotes the spectral square root defined more formally later.
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Figure 4.3: Checkerboard plot of the matrix H. Each i,jth square displays the magnitude of the i,jth element of H.

Note that the most of the energy of H is concentrated along the diagonal. Each row of H is used

in one summation term of equation (4.5). The matrix H resembles a circulant matrix12. That is,

the equation y s= H resembles the matrix form of circular convolution ˆ[ ] [ ] [ ]y d h d s d= ⊗

defined in a previous chapter. The off diagonal rows where |i-j| > 2 (with the exception of the

corners) are near zero. In the overloaded case, the matrix H is rank M. The d
th row of the matrix

W may be considered as a beam-former for the d
th signal. The beam pattern corresponding to

each row is illustrated in Figure 4.4.

12 A circulant matrix is a matrix where each row is a circular shift of the previous row.



J. Hicks Chapter 4: Spatially Reduced Search Joint Detection 65

0.2

0.4

0.6

0.8

1

30

210

60

240

90

270

120

300

150

330

180 01

23

4

5 6

Figure 4.4: A polar plot of the implicit beams formed by the operation y x= W . Angles of arrival are labeled in

degrees. Beams are normalized to their peak amplitude. Each beam is labeled with its corresponding row in W.
Clearly, in this case the dth beam focuses on the dth user.

In the previous example, we call W a reduced-span spatial filter. The object of the linear

processing stage is to separate the signals in the environment into a series of overlapping groups.

These groups should be made as small as possible in order to reduce the complexity of the

subsequent joint-detection stage. We have derived such a processor by factoring a matrix of

channel parameters into a trellis-oriented form where the energy on each row is focused on a

specific column. We will now discuss the class of such factorization that preserve the

maximum-likelihood criterion.

The square root of a Hermitian symmetric matrix is not unique. However, a particular square

root can be described in terms of the eigen-value decomposition of:

1H H

zz

− =A A V VΦ ΛΦ ΛΦ ΛΦ Λ (4.6)

where ΛΛΛΛ is a diagonal matrix of eigen-values and U are an orthonormal set of eigen-vectors.

1 1
2 21( )H H

zz

−= =H A A V VΦ ΛΦ ΛΦ ΛΦ Λ (4.7)
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Hence, a straightforward way of taking a square root of a Hermitian symmetric matrix is to take

the square root of its eigen-values (all-real). However, if A is rank M, (e.g. all of the AOAs are

distinct) then, by Sylvester’s Rank Inequality [222], the matrix 1H

zz

−
A AΦΦΦΦ will also be rank M and,

by equation (4.7), H will be rank M.

In the previous example, we satisfied equation (4.4) with a spectral square-root factorization

of 1H H

zz

− ∝A A A AΦΦΦΦ . However, at this juncture, its not understood if this is the only applicable

factorization. For instance all unitary13 rotations, U, satisfy equation (4.4). This is true because

if we denote the spectral square-root as

1
21( )H H

zz

−= =H A A HΦΦΦΦ� � (4.8)

and if we let

=H UH� (4.9)

for any unitary, U,

2

1

( )H H

H H

H

H

zz

−

=

=

= =

=

H H UH UH

H U UH

H H H

A AΦΦΦΦ

� �
� �
� � � (4.10)

which satisfies equation (4.4). Since unitary rotations preserve rank, the matrix H will have the

rank properties of its Hermitian symmetric cousin, H� . There is an infinite number of U we can

choose, and hence, there is an infinite number of H which satisfy equation (4.4). On a final note,

we should briefly discuss our choice of y . The vector y must follow our choice of H. We

choose H to minimize the complexity of our joint detection algorithm. Then, we choose y to

complete the square of our cost function. Hence, when we come to our choice of y , the

quantities on the right side of equation (4.4)(b) are known and the matrix H is known. In

general, since H is not full rank, the system y b=H may not have a solution. However, in

Appendix A, we show that the system (4.4) (b) always has a solution. This existence has to do

13 A matrix is unitary if U
H
U= I
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with the fact that no matter which matrix, H, we choose, the row-space of H is the same as the

row-space of A. In this thesis we will always choose the pseudo-inverse:

( )( )† 1H H

zzy H x x−= =A WΦΦΦΦ (4.11)

4.3 ITB-DDFSE

This section discusses the Viterbi-based joint detection portion of the receiver: Iterative Tail-

Biting Delayed Decision Feedback Sequence Estimation (ITB-DDFSE). We will now explain

how the factored matrix, H can be applied in equation (4.5) to reduce the complexity of an ML-

like search. Comparing with the plot in the last example of chapter 3, we see that H is very

similar to a circularly-convolutional channel; both are tail-biting. The one subtle difference is

that the off-diagonal elements of H in this case are not exactly zero. We will develop an ITB-

DDFSE algorithm that provides an approximation to equation (4.5).

Let us divide the estimate ˆ[ ] [ ]y d h d s= into two components: an enumeration term, ˆ [ ]ey d , and

feedback term, ˆ [ ]fby d . So, ˆ ˆ ˆ[ ] [ ] [ ]e fby d y d y d= + . Let [ ]e dU be the set of signal indices to

jointly detect in order to minimize the d
th term of equation (4.5). Let [ ]fd dU be the set of signal

indices to cancel with feedback in d
th term of equation (4.5). Finally, let [ ]e dU be the

compliment of [ ]e dU such that [ ] [ ] {1, 2, , }e e ud d D∪ =U U … . Then ˆ [ ]ey d and ˆ [ ]fby d are

defined as follows:

ˆ [ ] [ , ] [ ]

ˆ [ ] [ , ] [ ]

e

fb

e

u

fb

u

y d h d u s u

y d h d u s u

∈

∈

=

=

∑

∑
U

U

(4.12)

If the set of non-enumeration signals { }[ ] | [ ]
e

s d s d ∈U considered at the d
th stage are assumed to

be zero, equation (4.5) is equivalent to finding the path with the minimum cost through a trellis,

which wraps around upon itself. Such a trellis for Example 4.2.1 is illustrated in Figure 4.5 and

Figure 4.6. One stage of the trellis is illustrated Figure 4.5. The entire trellis is illustrated in

Figure 4.6.
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Figure 4.5: One stage of the reduced search trellis for Example 4.2.1.
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Figure 4.6: Reduced Search Trellis for Example 4.2.1. Each face of the trellis is identical to Figure 4.5. The dth

face can be associated with the joint detection of the dth user with a select number of dominant interferers.
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The tail-biting property of the joint detection trellis arises from the fact that each signal

experiences significant interference from signals adjacent in AOA. Had the sixth user not

interfered with the first user, the reduced search trellis would be flat.

As we will see, the sequence of sets, [ ]e dU , completely describe the joint detection trellis.

Usually [ ]e dU is chosen to include the dominant interfering symbols in each element of y[d]

(that is, the entries on the d
th row of H with the most energy).

The estimate of the interfering signals can be derived in several ways:

• Full Decision Feedback: estimate the signals [ ]e dU by looking back through survivors in

the cylindrical trellis, i.e. [ ] [ ]fb ed d=U U .

• Truncation: assume that symbols in the set [ ]e dU are zero: i.e. [ ]fb d = ∅U .

• Partial Decision Feedback: a combination of the two approaches, i.e. [ ] [ ]fb ed d⊂U U .

At this point, it is not clear which method, if any is best. In the subsequent examples, we will

begin with truncation and apply decision feedback as reliable estimates of interfering signals

become available.

We will conclude our discussion of the algorithm with two more examples. The first example

presents results for an 8-element circular array with a radius of Ra= λ/4. The second example

presents the same number of users with spatially uncorrelated AWGN.

4.3.1 EXAMPLE

Consider Du= 16 signals, equally spaced in AOA impinging on an M=8 element calibrated

circular array with a radius, Ra= .25λ and spatially uncorrelated AWGN. Let 1/ 2( )H=H A A

where the
1

2( ) operator denotes the spectral square root. A checkerboard plot of the matrix H is

provided in Figure 4.7.
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Figure 4.7: Checkerboard plot of the spectral-factorization, H, for environment of Example 4.3.1.

Similar to the case in Example 4.2.1, most of the energy of H is concentrated along the diagonal.

Also, like Example 4.2.1, H is in tail-biting form. However, there are two important differences.

Firstly, there are more large off-diagonal values. Secondly, the small off-diagonal values have a

larger magnitude than the small off-diagonal values of Example 4.2.1. The reduced search trellis

for synchronous QPSK users will consist of a cylindrical trellis with Du= 16 faces and 44= 256

states/stage. This is still a great computational savings over a brute-force search compared to

416≈ 4•109 possible interfering signal values.

4.3.2 EXAMPLE

Consider Du= 17 signals equally spaced in angle of arrival impinging on an M= 8 element

calibrated circular array with a radius, Ra= λ/2. Let 1/ 2( )H=H A A where the
1

2( ) operator

denotes the spectral square root. In addition to Du =16 equally spaced users, an AWGN signal

impinges on the array from an AOA of 00. The power of this AWGN is equal to that of the

other users. This scenario is illustrated in Figure 4.8. A checkerboard plot of the matrix H is

provided in Figure 4.9.
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Figure 4.8: illustration of the scenario considered in Example 4.3.2.
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Figure 4.9: Spectral square root factorization, H, for example 4.3.2

Note in Figure 4.8 that the spectral square root is distorted by the spatially correlated AWGN

source. The spatial-“whitening” of the noise source shows up as weak entries for users close to

the directive noise in AOA: users 1,2,15,16. The smaller SINR experienced by these users is not
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an artifact of the spectral square-root factorization, but a physical consequence of directive noise.

Figure 4.9 suggests a reduced search QPSK trellis with 16 faces and 44=256 labels/face.

4.3.3 EXAMPLE

Consider 16 equal power signals impinging on an M= 8 element calibrated circular array with a

radius, Ra= λ/2 and spatially uncorrelated AWGN. The users are bunched around an AOA of

1800. The AOA degree spacing between users are as follows:

[360 290 230 190 150 120 110 100 110 120 150 190 230 290 360 600]

where the first represents the spacing between user 1 and user 2 the second between user 2 and

user 3 and so on. The last AOA value is the difference between user 16 and user 1. This

scenario is illustrated in Figure 4.10. A checkerboard plot of the matrix H is provided in Figure

4.11.
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Figure 4.10:Illustration of the scenario considered in Example 4.3.3.
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Figure 4.11: Spectral square root factorization for the scenario in Example 4.3.3.

This figure suggests a lopsided tail-biting trellis whose size varies with each stage. The first set

of states will consist of all possible combinations of signals 1, and 16. The second set of states in
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the trellis will consist of all possible combinations of users 1,2, and possibly 3. The size of the

trellis will grow until the 8th stage that will consist of all possible combinations of users signals

5-10. Thereafter the trellis size will shrink.

We will conclude our discussion of the algorithm with a few comments on factorizations for

other array geometries. Firstly, it has been found that the spectral factorization is highly

sensitive to array radius. It should be noted that this is not true for the brute-force JML search

which has been found to be very insensitive to array geometry. The difference is that SRSJD

relies on a front-end linear transformation to reduce the complexity of the search. We expect

that this sensitivity to array radius can be improved with factorizations other than the spectral

square root. However, for large array sizes M > 5, this dependence seems to be less important.

Secondly, for a given overloading ratio, Du/M, spectral factorizations suggest a lower µ for

higher Mel. Moreover, for small array sizes, e.g. M= 2, 3, very little reduction in complexity is

achievable.

4.3.4 TRELLIS CONSTRUCTION

We will now discuss how to construct a trellis from a sequence of enumeration sets: [ ]e dU .

Before we do, we will introduce the concept of a sparsity pattern. A sparsity pattern is a way of

visualizing the sequence of enumeration sets, [ ]e d ฀U . It can be obtained from the matrix, H,

simply by coloring the near-zero entries of H with light, and the non-zero entries of H with dark

(e.g. one-bit b/w plot for H). For purposes of illustration, we will limit our sparsity patterns to

sizes of small Du. Consider the matrix of Example 4.2.1. There are three dominant interfering

signals on each element of y . Hence, the sequence of enumeration sets is:

[1] {6,1,2}

[2] {1, 2,3}

[3] {2,3,4}

[4] {3,4,5}

[5] {4,5,6}

[6] {5,6,1}

e

e

e

e

e

e

=

=

=

=

=

=

U
U
U
U
U
U
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From the sequence of enumeration sets, [ ]e dU , we construct a sparsity pattern by coloring the

dominant entries of the d
th row of H in [ ]e dU dark, and the rest light. This is illustrated in Figure

4.12.
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Figure 4.12: Sparsity pattern corresponding to example 4.2.1

It should be obvious how this sparsity pattern can be constructed visually from H. Conversely,

the sequence of enumeration sets, [ ]e dU , can be constructed directly from a sparsity pattern by

inspection. In [208], Calderbank illustrates how a tail-biting trellis may be constructed from a

sparsity pattern. The method is based on that of Kschischang and Sorokine, which forms a cross

product of elementary trellises, obtained from the columns of H. The method has the drawback

that there is not a direct relationship between states and symbols that form those states. We

propose an alternative, more straightforward, technique that facilitates delayed decision

feedback. The method assumes that [ ] [ 1] [ 1]e e ed d d⊆ − ∪ +U U U 14. This is equivalent to saying

that if user d+1 has a dominant entry in the d
th row of H, then, the d

th user will have a dominant

entry in the (d+1)th row of H. Under this assumption we can apply the following state definition:

[ ] [ 1] [ ]e ed d dσ = − ∩U U (4.13)

This assures that at the d
th stage of the trellis, we will be enumerating over

14 Of course, indexes are wrapped back into the index set {1,2, , }uD…
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[ ] [ 1] ( [ 1] [ ]) ( [ ] [ 1])

[ ]

e e e e

e

d d d d d d

d

σ σ∪ + = − ∩ ∪ ∩ +

=

U U U U
U

(4.14)

which is the desired result. For convenience, let us denote the size of the state definition of the

d
th state as [ ] | [ ] |d dµ σ= . In the previous example, this state definition will result in the state

sequence:

[1] { [6], [1]}

[2] { [1], [2]}

[3] { [2], [3]}

[4] { [3], [4]}

[5] { [4], [5]}

[6] { [5], [6]}

s s

s s

s s

s s

s s

s s

σ

σ

σ

σ

σ

σ

=

=

=

=

=

=

The size of all the states are uniform: [ ] 2,d dµ = ∀ . This state sequence implies a TBT

illustrated in Figure 4.6.

With this state definition in hand, we can now describe Iterative Tail Biting Delayed Decision

Feedback Sequence Estimation (ITB-DDFSE) and its application to the overloaded array

problem. Let 1[ ]d

d iρ + denote the surviving partial path around15 the TBT on the [ ] thd iσ = state of

the d
th stage. This path starts at the d+1

th stage and ends at the d
th stage. Then the cost of the

( )thi j→ transition is

( , ) ˆ[ ] [ ] [ ]i j

ije d y d y d= − (4.15)

where
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∈
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∑

∑

U

U

(4.16)

and the candidate symbol values in the above expression are taken from the state values

15 Of course this path may wrap around so 1 ( [ 1], , [ ], [1], , [ ])d

d ud D dρ σ σ σ σ+ = + … …
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Then, the Viterbi Algorithm update is the same as for MLSE:

{ }( ) ( ) ( , )[ ] arg min [ ] [ ]
j

j i i j

s
i

i k k e kξ
∈

= +
A

(4.18)

{ }( ) ( ) ( , )[ 1] min [ ] [ ]
j

j i i j

i
k k e kξ ξ

∈
+ = +

A
(4.19)

4.3.5 EXAMPLE: SPARSITY-PATTERN FOR LOP-SIDED TRELLISES

We will illustrate the construction of a tail-biting trellis for a more complicated result. Consider

the sparsity pattern illustrated in Figure 4.13.
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Figure 4.13: Example sparsity pattern for a lop-sided TBT.

This sparsity pattern is analogous to the one generated by the H matrices in Figure 4.11 in that it

has a row-span that differs on each row. This type of sparsity pattern might occur when users 3,

4, and 5 are closely spaced together but the other users are relatively far apart. The TBT

generated by this sparsity pattern for an environment with all BPSK signals is illustrated in

Figure 4.14. In this case, the trellis is drawn flat with the first set of states being drawn at the

beginning and end of the diagram. The state definition sequence generated by equation (4.13) is

clearly labeled at the top of each stage. The sequence of state sizes is obviously
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[ ] {2,1,2,3, 2, 2}dµ = . The value of each state is also labeled in vector form. The deepest

portion of the trellis corresponds to the row with the widest span.
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Figure 4.14:Tail-biting trellis for a sparsity pattern in Figure 4.13 and Example 4.3.5.

4.3.6 EXAMPLE

As a final example, we will consider a situation where the joint detection problem is separable.

That is, the signal environment consists of two isolated sets of interfering signals. This situation

is suggested by the sparsity pattern in Figure 4.15. Here, users 4,5, and 6 do not interfere with

users 1,2, and 3. The resulting joint detection trellis contains stages with just one state. At these

stages a final decision is made for one interference set. Because these stages contain one state,

the joint detection trellis is no longer tail biting. However, if the original H matrix that suggests

this sparsity pattern has non-zero elements outside the sparsity-pattern, treating the trellis like a

TBT and applying the ITB-DDFSE algorithm may yield better results.
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Figure 4.15:Example sparsity pattern.
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Figure 4.16: Trellis corresponding to the sparsity pattern in Figure 4.15.
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4.3.7 SUMMARY OF ITB-DDFSE (ASSUMED KNOWN CHANNEL)

1. Allocate an max| | 1µ ×A array of cumulative partial path metrics, ( )[ ]i dξ . Initialize

max( )[ 1] 0, 0,1, ,| | 1i d i
µξ = = ∀ = −A… .

2. Allocate a 1uD × list of [ ]| | 1dµ ×A arrays. This list of arrays stores surviving transitions

into the [ 1] thd jσ + = state at the d
th stage, ( )[ ]j

si d .

3. Start the iterative recursion, continue for a specified number of iterations around the

trellis, Nround.

For each stage, 1,2, , ,1,2,ud D= … …

For each stage, [ 1]0,1, ,| | 1dj µ += −A…

Find the survivor (4.16), (4.17), (4.18).

Update the list of cumulative partial path metrics, ( )[ ]i kξ , (4.19)

4. Terminate the trellis.

5. Trace back: after the last stage of the trellis, reconstruct the least cost path from the

survivor list, ( )[ ]j

si d .

6. Translate a state sequence into a symbol sequence.

4.4 CHOOSING A SPARSITY PATTERN

The choice of sparsity pattern for a particular trellis-oriented factorization is a difficult one.

Generally, the linear filter in SRSJD will not yield an H that is strictly banded. That is, the

elements of H outside the main super-diagonal are not strictly zero. We would like to find a

joint detection trellis of reasonable complexity that provides an adequate approximation to the

joint ML receiver in some sense. This requires the following: on each row of H, we must define
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a threshold, tγ , for forming a sparsity pattern. That is the ( , )thi j element of the sparsity pattern,

P, is defined as

,

,

1 | |

0
i j t

i j

h
p

else

γ > 
=  


(4.20)

Finding the best way to choose this threshold is difficult. Obviously, we would like to choose a

threshold that yields a symbol error probability that meets some specification. However, since

the probability of error expressions for ITB-DDFSE are not available, this is a difficult

specification to meet. Hence, we would like to define a sub-optimal criterion. Define the

Desired Signal Energy to Interference Ratio (DEIR) for the d
th beam-former output, [ ]y d , to be

2 2

2
2

[ ]
[ ]

[ , ] [ ] [ , ]

[ , ]
[ , ] [ ]

e

e

d

u d
u d

E h d d s d h d d
DEIR

h d u
E h d u s u

∈
∈

 
 = =

 
 
  

∑∑ U
U

(4.21)

The DEIRd is just the ratio of the dominant interferers in the d
th beam-former output due to

signals in the enumeration set to the energy of the signals outside that set. One possible way to

choose a sparsity pattern is to choose the enumeration set at each stage by finding the smallest

[ ]e dU which meets some specified DEIRd. Henceforth, we will call this the DEIR-Rule. For

instance, a 6-dB DEIR-Rule forms a sparsity pattern that assures DEIRd > 6 dB for each d.

4.5 COMPLEXITY

The complexity of the reduced search ML-like algorithm is dependent on several parameters.

Among these are:

• The size of the reduced-search trellis [ ]dµ .

• The number of iterations around the cylindrical-trellis, Nround

The required size of the reduced state trellis depends on the signal environment at hand. As an

example, we will consider the case where users are equally spaced in AOA around a circular

array. This environment yields uniform-depth joint detection trellises such as those of Figure

4.6. We further assume that hardware cost of multiplies far exceeds the cost of data accesses or
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additions; so it is meaningful to speak in terms of multiplies/sec. Finally, we will assume every

possible combination of [ , ]h d u , and [ ]s u is pre-computed and stored in a | |u uD D× × A array.

These computations are negligible compared to the cost of ITB-DDFSE. The remaining

multiplies are associated with the cost of each squared-error computation ( , ) 2| [ ] |i je d , requiring

two real multiplies. There are hence, ( 1)2 | | µ +A multiplies/stage and there are

round uN D stages/channel/symbol. Hence , ITB-DDFSE requires ( 1)2 | |round uN D µ +A

multiplies/channel/symbol to demodulate a single transmitted symbol from each co-channel

interfering signal. Compare this with the 2 | | uD
M A multiplies/channel/symbol required by the

brute-force JML search.

Now consider the special case of QPSK signals impinging on an M=8 element circular array.

The required number of iterations around the trellis is not yet well understood, but we have had

success in a later chapter with Nround= 2. A judicious choice of µ depends on the number of users

and the number of elements. Table 6.3.1 1 lists a recommended choice of µ for different Du.

Here, an M= 8 element calibrated circular array with a radius of Ra =λ/4 is considered. For each

case, the choice of µ is chosen by looking at the number of relatively large values in the matrix

H. Also, in this table the required multiplies/second/channel is given for each Du and

recommended µ. Also, for 24ksymbols/sec signals (IS-136’s symbol rate) the multiplies/sec are

given. Finally, the factor savings over a brute-force ML search is given. For large Du the

reduced search provides a computational savings factor in excess of 103.
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Table 4.1: Computational Complexity of the reduced search vs. number of equal AOA-spaced, equal power QPSK
users impinging on an M= 8 element array. Mults/sec assume IS-136 data rates.

Du recommended

 m
Mults/

symbol/
channel

Mults/
sec

Factor
Savings

9 2 2E+03 6E+07 2E+03

10 2 3E+03 6E+07 7E+03

11 2 3E+04 7E+08 2E+04

12 4 5E+04 1E+09 5E+03

13 4 5E+04 1E+09 2E+04

14 4 6E+04 1E+09 7E+04

15 4 6E+04 1E+09 3E+05

16 4 7E+04 2E+09 1E+06

17 4 7E+04 2E+09 4E+06

18 6 1E+06 3E+10 9E+05

4.6 CONCLUSION

In this section, we have outlined the application of SRSJD to overloaded array processing. The

proposed algorithm here relies on two steps: reduced span linear filtering and ITB-DDFSE.

Reduced span filtering attempts to find a MIMO beam-former that reduces the complexity of

later non-linear processing stages while still preserving the JML criterion. We have proposed a

particular method of reduced-span filtering obtained through a spectral square-root factorization

of (assumed) known channel parameters. However, we have recognized that other factorizations

exist which may yield better results. Improved reduced span linear filtering is an area of future

research. Finally, we have recognized that, although a MIMO beam-former can group the

energy on each row of H, it cannot force elements off of the main diagonal of H to zero. Hence,

strict application of the ITB-VA is not appropriate. For these reasons, we have proposed the

ITB-DDFSE algorithm, which accounts for near zero (but not necessarily zero) off diagonal

elements of H with decision-feedback.
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Chapter 5: TEMPORALLY REDUCED SEARCH JOINT

DETECTION (TRSJD)

In the last chapter, we have shown that overloaded array processing is possible for symbol

synchronous signals. In this chapter, we show that a similar approach can be used to jointly

detect asynchronous signals with a single antenna. Jointly detecting asynchronous, narrow-band,

linear modulated signals with zero partial response pulse-shapes is a well-studied problem in the

literature [207]. However, joint detection of linear modulated signals with partial-response

signaling has been neglected. In this chapter, we will explain how signals employing a square-

root raised cosine pulse shape can be jointly detected with an achievable complexity.

5.1 INTRODUCTION

As shown in the previous chapter, SRSJD can greatly reduce the number of computations

required for joint detection by exploiting the spatial distance properties. The algorithm is limited

to environments where users are symbol-synchronous. Although course frame synchronization

is a common feature in modern TDMA cellular systems, synchronizing users on the symbol level

imposes difficult and expensive system requirements. We would like to extend the SRSJD

algorithm to the asynchronous case. Toward this end, this section investigates the possibility of

jointly detecting two asynchronous Root-Raised Cosine Pulse shaped QPSK signals impinging

on a single antenna.
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One difficulty with jointly detecting asynchronous users is that the k
th symbol transmitted from

any given user is interfered with by both the k
th and the (k+1)

th symbol from other users. This

difficulty can be mitigated with a joint sequence estimator. The development of joint detection

trellises require two major steps [8]:

• Treat the sequence of all users as one long sequence to be estimated.

• Expand the definition of the channel state to incorporate all users.

First, we will briefly overview Verdu’s approach to joint detection. Next, we will describe a new

joint detection algorithm that reduces the complexity of Verdu’s processor in two ways:

• It requires fewer A/D converters on the front end.

• It attempts to reduce the required states of a sequence detector.

5.2 VERDU’S JOINT-ML SEQUENCE DETECTOR

Consider Du asynchronous cochannel signals impinging on a single antenna. The continuous

time received signal can be written as

( )

1

( ) [ ] ( ) ( )
fr gqu

gq

N MD
d

d s d

d l M

r t A s l p t lT z tτ
−

= =−

= − − +∑ ∑ (5.1)

where s
(d)

[l], Ad, pd(t) and τd are the symbol sequence, complex amplitude, pulse, and symbol

sequence of the d
th user. Verdu showed that if the channel parameters are assumed known, the

joint estimate of all the user’s symbol sequences which maximizes the likelihood of a continuous

time received signal, r(t), is

( )

( ) 2

{ [ ]}

( )

1

ˆ{ [ ]} arg min | ( ) ( ) |
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u
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d
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s k r t r t dt

r t A s l p t lT τ

∞
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=

= −

= − −

∫

∑∑

�

�
(5.2)

Verdu showed that a bank of Du matched filters provides a sequence of sufficient statistics,

r
(d)

[k], for joint ML detection. That is a ML criterion can be written in terms of r
(d)

[k] that is
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equivalent to Equation (5.1). Expanding the ML criterion for r
(d)

[k] results in a joint detection

algorithm that exploits the temporal dependence between interfering signals.
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Figure 5.1: Front-end processor for Verdu’s Maximum Likelihood Joint detector.

5.3 TRSJD

Although Verdu’s ML Joint detector will obtain the optimal performance in Additive White

Gaussian Noise, it has two drawbacks:

• It requires a separate A/D synchronized to each interfering signal.

• Its trellis does not try to mitigate the complexity imposed by non-zero partial response

signaling (.e.g. Root-Raised Cosine Signaling)

To simplify the matched filter for the special purpose of detecting narrow-band signals, we

propose to replace the bank of matched filters with a single fractionally spaced sampling A/D.

This is illustrated in Figure 5.2. Let Q denote the oversampling factor.
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Figure 5.2: The front-end processor for TRSJD.

An discrete equivalent channel model, g
(d)

[k] can be developed for r[k]:
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where the length of each g
(d)

[k] is Q(2Mgq+1) and Nfr denotes the frame length. The function f(t)

is the front-end anti-aliasing filter and for IS-136 p(t) is a Root-Raised Cosine (RRCOS) pulse

with r= 0.35 rolloff. If we group the outputs of the received signal r[k] into Q-tuplets, we can

form a poly-phase version of the channel model:

( ) ( )

1

[ ] [ ] [ ] [ ]
gqu

gq

MD
d d

q

d p M

r pQ q s p p g p z pQ q
= ∆ =−

+ = − ∆ ∆ + +∑ ∑ (5.4)

The quantity ( )[ ]d

qg p∆ is the q
th poly-phase filter for the d

th user given by:

( ) ( )[ ] [ ]d d

qg p g q pQ∆ = + ∆
(5.5)
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This model is illustrated in Figure 5.3.
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Figure 5.3: Polyphase filter model of multiple-access channel.

Using this poly-phase model, a joint detection algorithm can be devised by considering the

symbols from all interferers as one symbol-stream. Towards this end, we form a Du×1 vector,

( )(1) (2)[ ] [ ] [ ] [ ]u
T

D
s l s l s l s l =  "

by stacking the l
th symbols transmitted by each user. We form a DuNfr×1 vector , s , by stacking

all user’s symbols first in order of user and secondly in order of transmission. Then, we stack all

the received symbols into one vector, r . With these definitions in hand, we can write a block-

Toeplitz relation between transmitted and received symbols.
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The Toeplitz sub-block, G0, is formed by interleaving the conjugate-flipped poly-phase filters

from all the users. The joint estimate that maximizes the likelihood of the received sampled

signal is

2
ˆ arg min

s

s r s= − G (5.7)

because of the ISI introduced by the Root-Raised Cosine pulse shape, a direct minimization of

Equation (5.7) results in an inefficient trellis. To simplify the trellis we perform a matrix

factorization similar to the one performed by SRSJD. That is, we will form a DuNfrXDuNf matrix

H and a vector y , which satisfy the following conditions:

( )
†

11

,

pkt
u fr

H H

H H

QN xD N x

y r

=

=

=

G G H H

W H G

W

(5.8)

If these conditions hold, then y is a sufficient statistic. That is,

2

2

ˆ arg min || ||

arg min

s

s

s r s

y s

= −

= −

G

H
(5.9)

It advantageous to choose an H that minimizes the required ML-trellis as much as possible.
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5.3.1 EXAMPLE

Consider Du= 2 QPSK users w/ r= .35 RRCOS pulse shaping, {τd}= {-.2Ts, .15Ts}, Q= 2, User

2’s power is 3dB down from user 1. Each user transmits Npkt=10 symbols. A checkerboard plot

of the spectral factor, H= (GH
G)(1/2) is illustrated in Figure 5.4.

Column

Row

Spectral Square RootTransient
associated
w/ symbols
preceding
packet

Transient
associated
w/ symbols
trailing
packet

Region of
Interest

Figure 5.4: Example spectral factorization for a 10-symbol block. The number of Non-transient rows in the
factorization is DuNpkt= 20. The remaining rows DuMgq= 6 top/bottom rows are transients. Judicious application
of the trellis will operate on rows containing non-negligible entries.
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Figure 5.5: Zoom in on sub-block of the matrix illustrated in Figure 5.4.
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To illustrate how the structure of H can be applied to a trellis, we will zoom in on a particular

sub-block. This is illustrated in Figure 5.5. The 11th row of H yields the dominant components

of y[4] and the 12th row of H yields the dominant signal components of y[5]. Clearly, y[4]

consists of a large component of the symbol s
(1)

[2] which is interfered with by temporally

adjacent symbols s
(2)

[1] and s
(2)

[2]. For this reason, the trellis for the 4th stage should account

for all possible combinations of symbols: s
(1)

[2], s
(2)

[1] and s
(2)

[2]. Such a trellis would have a

complexity of 4
(µ+1) = 64 transitions per stage.

5.4 CONCLUSION

In this section we have outlined an approach for the joint detection of signals with root-raised-

cosine signaling. If only one co-channel signal were present, a simple matched filter would

mitigate all the ISI induced by a pulse shape. However, since there are multiple signals present

in the channel, an A/D matched to any particular user will contain several symbols of ISI for

other signals. We have avoided the use of multiple A/D’s synchronized to the delays of different

users. Also, we have mitigated the multi-user ISI problem with a spectral square root

factorization of the channel cross-correlation matrix. Although this factorization is costly for

long block lengths, it demonstrates that trellis based joint detection of asynchronous partial-

response signals can be made possible with linear pre-processing.
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Chapter 6: SIMULATION RESULTS

This section compares simulation results for the algorithms discussed in the previous chapters:

1. Optimum-SINR Linear Beamformer.

2. Joint Maximum-Likelihood Detector.

3. Spatially Reduced Search Joint Detection.

4. Temporally-Reduced Search Joint Detection.

If not specified otherwise, SNR is taken as the ratio of signal variance to noise variance

experienced at the receiver:

2

10 2
10log s

z

SNR
σ

σ
= (6.1)

6.1 JOINT MAXIMUM-LIKELIHOOD RECEIVER

Simulation of the ML receiver is prohibitively expensive for a large number of users. However,

it is instructive to investigate its performance for a small range of signals and SNRs. Consider

the M= 5 element circular array of radius Ra=.2λ in Figure 4.2. Consider Du > 5 equal power

symbol and phase synchronous QPSK signals impinging on the array from equally spaced angles

of arrival. Figure 6.1 plots the symbol error probability verse the number of equal-AOA spaced

QPSK signals impinging on the array. For JML detection with a circular array, we have

observed large degradation in performance when signals impinge on the array from opposite
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angles of arrival. This is not an anomaly of the algorithm but a fundamental limit of the circular

array. It is expected that signals impinging on the array from opposite angles of arrival result in

more closely spaced signal points in array signal space. This is not an idiosyncrasy of the

algorithm but rather a fundamental limitation of the chosen array geometry.
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Figure 6.1: Signal capacity simulation of brute-force maximum-likelihood search for M =5 elements.

6.2 SRSJD

Simulation results have been compiled for SRSJD. Firstly, we will compare the reduced search

ML-like approach to the brute-force ML approach for equally spaced users impinging on an M=

5 element array. We will find that for moderate SNRs, the reduced state approach achieves a

huge reduction in complexity with light performance penalty. Finally, we will present

simulation results for an eight-element array.

6.2.1 SYMMETRIC INTERFERENCE ENVIRONMENT

Figure 6.2 illustrates capacity curve for scenarios similar to Example 4.2.1. We consider a

number , Du, of equal power QPSK signals impinging on an array with equally spaced AOAs
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from 00 to 3600. Again, the signals are assumed to be symbol and phase synchronous. The array

is a 5-element circular with radius Ra= .2λ. Three algorithms are compared: the optimum SINR

linear beam-former, a brute-force ML search and the reduced search ML-like algorithm. The

SNR per signal per element, as defined in Equation (5.1) is kept at 10dB. Since the users are

uniformly distributed in AOA, the reduced search trellis for each case is tail-biting and uniform

in complexity. We will describe the complexity of the reduced search trellis in terms of a

parameter µ: the trellis size will be 4µ+1 on each face of the cylindrical trellis. For each case, the

parameter µ is set by looking at the number of non-zero elements on each row of H. This will be

investigated in more detail later. Full decision feedback was used. Finally, Nround= 2 ITB-

DDFSE iterations around the TBT were used. When the ITB-DDFSE terminates, symbol

estimates are pulled out of the least-cost path by tracing-back through survivors in the trellis. In

general, the ITB-DDFSE often yields a path through the tail-biting trellis that is not closed.

Symbol estimates are taken from the least cost path in reversed order. If the ITB-DDFSE

terminates on the th

termd stage, then the ITB-DDFSE uses the symbol exiting the state [ ]termdσ .
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Figure 6.2: Signal Capacity comparison of three receivers for a synchronous QPSK users, equally spaced in AOA.

5elM = element array.

The SNR per signal per element is defined in Equation (5.1). We have plotted symbol error rate

(SER) vs. Du for two values of SNR= 5dB, 10dB. For each simulation, we have reported the

worst symbol error rate experienced by any user in the simulation. The complexity of the trellis

is labeled for each case. For the maximum-likelihood receiver, the simulation was run until 20

errors were experienced by the worst user. The optimal SINR beamformer is discussed in

Appendix B. For the optimum SINR and SRSJD, the simulations were run until 50 errors were

experienced. Figure 6.3 illustrates the simulation results for SNR= 10dB. For JML detection

with a circular array, we have observed large degradation in performance when signals impinge

on the array from opposite angles of arrival. This is not an anomaly of the algorithm but a

fundamental limit of the circular array. In the case of the linear beam-former, symbol error rates

are marginal at small overloading factors but errors approach 50% Du= 9. In contrast, the JML

detector and SRSJD can support up to Du= 11 users acceptable error rates . Symbol errors were

reasonably uniform across all users. There is marginal performance penalty for the search
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reduction over all signal capacities. We conclude from these simulations that the reduced-search

algorithm can achieve a huge reduction in complexity with a small performance penalty.

However, at lower SNRs the picture is different. For example, Figure 6.3 illustrates the

simulation results for SNR= 5dB. For a fair comparison, the same complexity and number of

iterations were used as in the SNR= 10dB case. Also, decision feedback and trace-back are

performed in the same manner. Here, the symbol error probability for SRSJD can be an order of

magnitude worse than the true JML detector. However, in this case, even the JML receiver’s

performance is marginal for users 7uD > .
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Figure 6.3: Signal Capacity comparison of three receivers for a synchronous QPSK users, equally spaced in AOA.

5elM = element array. The signal to background noise ratio, SNR, is less than the previous case.

Figure 6.4 compares the performance of several SRSJD processors with different complexities.

In this case the SNR= 10dB. Again, µ denotes state size. In this case, there appears to be no

benefit in choosing 6µ = over the range of signal capacities yielding acceptable performance.

Choosing 2µ = is clearly acceptable until 8,9uD = where the interference from second nearest

neighbors exceeds that which can be reliably mitigated with decision feedback.
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Figure 6.4: The effect of trellis size on SRSJD’s symbol error rate performance. Signal Capacity curve for equally
AOA spaced QPSK signals impinging on an M= 5 element antenna array.

Figure 6.5 illustrates a capacity curve for an M= 8 element calibrated cylindrical array with a

radius of / 4aR λ= . Again, we consider Du equal power baud-synchronous, QPSK signals

impinging on an array with equally spaced AOAs over 3600 . This time, however, the phase of

each user has been assumed random and uniform over [0,2π). Decision feedback and trace-back

are performed in the same manner as the 5 element array. Several different SRSJD receivers of

varying complexity are compared against the optimal SINR beam-former. For the large number

of users that an eight-element array affords, simulation times for the brute-force ML search

become excessively long. Hence, for this case, we have simulated only the reduced search

algorithm. Again, the optimal SINR BF exhibits poor performance for even small overloading

factors. However, SRSJD provides adequate SERs (with FEC) up to Du= 19 users. Recall that

with an 5M = element array, we incurred difficulties with signals impinging from opposite

AOAs. However, for a larger array size and randomized received phases, this problem is not

apparent. The eight- element array can handle overloading factors of two but with a higher
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complexity than the circular array. Also note, as with the 5 element array, a gradual increase in

µ with Du allows a smooth cost/performance tradeoff.

Figure 6.6 illustrates the effect of feedback depth on SRSJD’s performance. In this case, we

have chosen a varying state size, µ, to yield a graceful degradation of performance vs. signal

capacity, Du. Three different feedback schemes are compared:

1. Full Feedback – all symbols not in the enumeration set (interference set) are accounted

for in the trellis. , | | ( 1)fb I fb uD µ= = − +U U U .

2. Partial Feedback – only a certain number of symbols in the interference set are feed-back.

In this case,
( 1)

, | |
2

u
fb I fb

D µ− + 
⊂ =   

U U U .

3. No Feedback - interference outside of the enumeration set is assumed zero (Truncation).

fb = ∅U .

In this case the SNR= 10dB. Surprisingly Full Feedback can outperform partial feedback by two

orders of magnitude. It is difficult to say; however, how much this translates to environments

with lower SNRs or less symmetric interference geometries.
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Figure 6.5: Effect of trellis state size on the performance of SRSJD. All SRSJD receivers are compared to a
Maximum SINR Beam-former (see Appendix B) as a baseline. Signal Capacity curve for equal-AOA spaced
QPSK signals impinging on an M= 8 element antenna array.

On a final note, we will investigate the effect of the number of iterations. To provide a fair

comparison across a wide range of Du, we report the number of iterations around the trellis,

roundN (as opposed to the counting the number of stags). roundN is a fractional

number if the number of stages traversed is not an integer multiple of Du. It seems reasonable

that, in order for all users to benefit from an extra iteration around the trellis, the following must

be done: all the energy from each user’s signals, must be accounted

for in the Viterbi algorithm. For this reason we report roundN in terms of another parameter, rN .

1
, 1, 2,3,

2
round r r

u

N N N
D

µ +
= + = 

 
… (6.2)
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There is a surprising improvement in performance on the second iteration but little benefit there-

after. Again, it is difficult to generalize these results to harsher signal

environments.
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Figure 6.6: The effect of feedback on SRSJD’s symbol error probability performance. Signal Capacity curve for

equally AOA spaced QPSK signals impinging on an elM = 8 element antenna array.
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Figure 6.7: The effect of the number of iterations, roundN , on SRSJD’s error rate performance. Signal Capacity

curve for equally AOA spaced QPSK signals impinging on an M = 8 element antenna array. The chosen state

size for each number of users is labeled. For a given Du, the state size is the same for all curves (i.e. all rN ).

6.2.2 NON-UNIFORM ENVIRONMENT

In chapter 4, we found that non-uniformly spaced AOAs translate to trellis-oriented factors, H,

that are fat on some rows and skinny on others. In this section we will consider the interference

environment of example 4.3.3. We will consider two receivers: one with the sparsity pattern

displayed in Figure 6.8(a), the other with the sparsity pattern displayed in Figure 6.8(b). The

former was generated with a 6dB DEIR rule, and the later with a 10dB DEIR rule. This time, we

will consider symbol synchronous but phase asynchronous BPSK modulated signals. Symbol

error rates were evaluated with simulations; the simulations were run until 20 errors were

experienced by the best user. The symbol error probabilities for select users are plotted vs. SNR

in Figure 6.9. Here, statistics are given for three select users: user 1, user 14, and user 8. User 1

is widely spaced in AOA from other users. User 4 is moderately spaced in AOA from other

users. User 14 is widely spaced in AOA from other users. The SRSJD receiver employing the

6dB DEIR rule cannot reliably separate closely spaced users such as user 8, even at high SNRs.



J. Hicks Chapter 6: Simulation Results 102

We can safely conclude that for the chosen receiver complexity, user 8 is interference limited.

Similarly, user 1 experiences steady improvement in SER vs. SNR until about 10 dB when an

error-floor effect occurs. Surprisingly, this error floor was not experienced by user 14. There

are two possible reasons for this. Firstly, user one impinges on the array from a direction

opposite the majority of the interference. It is possible that user 1’s error floor is an artifact of a

cross-array interference effect we observed with the maximum-likelihood receiver in section 6.1.

Under this hypothesis, the error floor is a fundamental limitation of the circular array. No

receiver could do better. A second possibility is that user 14 enjoys more receiver complexity

allocated to detecting its symbols. User 14’s stage is 25=32 times more complex than user 1. In

additional simulations, none of the users benefited from less decision feedback or longer

traceback depths.
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Figure 6.8: Two sparsity patterns for the asymmetric interference environment considered in Figure 4.10 of
example 4.3.3 (a) (left) the sparsity pattern generated by a 6dB DEIR Rule. (b) (right) the sparsity pattern
generated by a 10dB DEIR Rule.
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Figure 6.9: Performance of SRSJD employing the sparsity pattern of Figure 6.8(a) subject to asymmetric
interference geometries.

Figure 6.11 illustrates the performance of SRSJD employing the 10dB DEIR rule (see Figure

6.8). Here all users enjoy a greater receiver complexity at higher SNRs. Again, we observe a

crossover in the performance curves of user 1 and user 14 at high SNRs.
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Figure 6.10: Performance of SRSJD employing the sparsity pattern of Figure 6.8 (b) subject to asymmetric
interference geometries

6.3 TRSJD RESULTS

Simulations of TRSJD applied to the above example have been run for packet sizes of pktN = 160

symbols. Again, user 1’s received power is 3dB higher than user 2’s and their delays relative to

the receiver clock are .2l sTτ = − and .15l sTτ = , respectively. Symbol error rates have been

evaluated through simulation. As a baseline comparison, we have compared the performance of

TRSJD to the ML receiver for a single user. Joint detection favors the user with the highest

power, but, in this case, there is at most a 1 dB difference in separation. Adequate symbol error

rates for voice encoding, less than 10-2 can be obtained for both users for (1)
0sE N in excess of

15dB. As expected, TRSJD cannot achieve the same SNR performance as a single user receiver.
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Figure 6.11: Symbol Error Rate curve for TRSJD for example 5.3.1

6.4 CONCLUSION

This chapter has evaluated, through simulation, the algorithms proposed in this thesis. In the

case of the SRSJD, the optimal JML receiver and the optimal linear beamformer have been

included as base-line comparisons. We have observed that, at moderate SNRs, SRSJD can

achieve the performance of the optimal receiver but at low SNRs, SRSJD falls short. However,

in both cases, SRSJD far outperforms the optimal linear receiver. This chapter demonstrates

SRSJD’s performance with small array sizes in order to compare its performance o the JML

receiver. This chapter also demonstrates its application to larger array sizes and, in particular,

investigated its performance in asymmetric interference geometries. We have found that in

reasonable environments, all users enjoy an increase in SRSJD receiver complexities but this

trend exhibits diminishing returns. We have found in symmetric interference geometries, that

SRSJD can separate signals with overloading factors in excess of 2M in modest signal to noise

ratios. This is an important result for systems that can reliably assign users to SDMA/FDMA
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channels. In the asymmetric case, we have observed particular receiver sparsity patterns can

favor users with less inter-AOA spacing. Moreover, if not enough receiver complexity is

allocated to a particular user, an error flooring effect occurs in a user’s SNR curve when the

receiver becomes interference limited. Increasing the receiver’s complexity can mitigate this

error floor. Finally, TRSJD has been observed to successfully separate partial response users

closely spaced in power (SIR= 3dB) but slightly favors (in SER) the user with the largest power.
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Chapter 7: CONCLUSION AND FUTURE WORK

This thesis has proposed a novel approach to Overloaded Array Processing: Spatially Reduced

Search Joint Detection (SRSJD). In addition, we have shown that a similar approach,

Temporally Reduced Search Joint Detection, can be applied to separate asynchronous signals

employing partial response pulse-shapes.

In moderate signal to noise ratios (SNR), SRSJD provides was shown through simulation to well

approximate the joint maximum likelihood receiver, yielding acceptable voice-grade bit error

rates with overloading factors in excess of two. We have identified the most difficult operating

environment for OLAP: all signals are co-channel, near equal power, with tight excess

bandwidth and identical modulation types. Although SRSJD is much more expensive than

conventional linear beam-forming, it succeeds where beam-forming fails, and is several order of

magnitude less complex than any other known OLAP solution.

Analyzing the performance of SRSJD is difficult, because it can be applied to many different

environments and array geometries. Further analysis of SRSJD will surely illuminate its

strengths and weaknesses. For one, we relied on simulation for performance evaluation. No

analytical performance bounds have been derived. Indeed, analysis of SRSJD’s performance is

difficult because it borrows from beam-forming, iterative detection, sequence estimation, and

decision feedback. The author expects that these elements will interact in interesting ways.

Duel-Hallen’s work with DDFSE [24] should prove helpful. Moreover, all simulation results

assume a known channel. Channel estimation in tandem with SRSJD is an area of future work.

Talwar’s ILSE [106] is a potential candidate scheme. Future analysis should account for

imperfect channel estimates, synchronization errors, and other channel degradations such as

Doppler carrier shifts.



J. Hicks Chapter 7: Conclusion and Future Work 108

SRSJD exhibits the following strengths: scalability, and generality. The algorithm is scalable

with overloading factor and array size. True, if array size is fixed and overloading factor is

increased, then SRSJD has exponential complexity; however, if the overloading factor is fixed

the complexity increases roughly linearly with the number of users. In addition, the general

formulation of SRSJD makes it applicable to many different linear modulation types of the same

data rate. This feature makes it attractive for hybrid cellular systems such as EDGE. Future

work in this area will be SRSJD’s application to non-linear modulation types (e.g. GMSK or π/4-

DQPSK) and joint detection of signals employing different data rates.

Nevertheless, in its still nascent stages of development, SRSJD still exhibits three major

limitations. The most important limitation is the baud-synchronization requirement: signals must

arrive at the receiver perfectly aligned in symbol. We have partially addressed this issue by

showing that SRSJD’s time-domain counterpart, TRSJD, can successfully separate

asynchronous co-channel signals employing partial-response signaling. However, a Space-Time

version, say STRSJD, which allows for separation of asynchronous signals is yet to be

developed. Indeed such a development presents new challenges because the power of both

SRSJD and TRSJD is derived from trellis-based non-linear processing. In the former, a trellis is

constructed, in some sense, over space. In the later, a trellis constructed over time. Since

trellises are, by definition, directed graphs, reduced-search trellises cannot be constructed over

both space and time simultaneously. Hence, space-time overloaded array processing, in the

general case, necessitates a new joint-detection framework analogous to, but different from,

trellis based approaches. Factor-graphs and iterative joint detection may provide such a

framework [216].

Secondly, it has been observed in the literature that joint multi-user detection and forward error

correction well out-perform these operations in cascade. Iterative decoding employs trellised

based algorithms with soft decision metrics and has been found in [214] to provide an attractive

cost/complexity tradeoff. SRSJD outputs hard symbol decisions, and hence, is not compatible

with iterative detection. Instead, Joint-Maximimum A Posteriori Probability (JMAP) receivers

[207, 216] may provide a bridge between iterative detection and a factor-graph based joint

detection framework.
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Finally, SRSJD was observed to yield poor complexity reductions for some array geometries.

This may be overcome with improved channel factorization algorithms. We have observed that

the spectral square-root is not the only factorization that facilitates SRSJD. For one, unitary

rotations of the spectral square root also preserve the maximum-likelihood criterion. This fact

licenses the use of well known matrix factorization tools such as Jacobi Rotations, Givens

Rotations, and Householder transforms [222].

Overall, joint detection has found a surprising application in a new research area: overloaded

array processing. The algorithms proposed in this thesis provide a baseline approach for further

development. In particular, this chapter outlines some possible new approaches. Although, there

are likely to be many more. With so many research directions to take, Overloaded Array

Processing should prove to be a fruitful area of future research.
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Appendix A: PROOF OF CONSISTENCY

In this appendix, we will show that the solution, y , to the following equation exists:

1H H

zzy x−=H A ΦΦΦΦ (A.1)

for the chosen class of solutions:

( )
1

21

,

H

zz

H

−=

= =

H A A

H QH Q Q I

ΦΦΦΦ�

�
(A.2)

Remark: In general, the u uD D× system of equations

H y b=H (A.3)

may not have a solution if the matrix, H, is not full rank. Indeed, in overloaded case, H, is rank

uM D< . From the fundamental theorem of algebra [222] we know that equation (A.3) will have

a solution if and only if { }Hb ange∈ HR . We will now show that this is the case for equation

(A.1).

We will start our argument with the spectral square root. Then we will show that if the claim is

true for a spectral square-root, then it is true for any unitary rotation. It is enough to show that

{ } { }H Hange ange⊆A HR R because if this is true, for every 0
elM

x ∈^ , there exists a

uD
y ∈^ such that 0

H Hy x=H A . But obviously, for every Mx ∈^ , there exists a 1
0 zzx x−= ∈^ΦΦΦΦ .
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We thus, complete our proof by showing that , in fact, { } { }H Hange ange=A HR R by

construction. Toward this end, let us define the Hermitian symmetric matrix and its eigen-

decomposition.

1H H

A zz

−= =R A A V VΦ ΛΦ ΛΦ ΛΦ Λ (A.4)

where 1 2 uM Dv v v v =  V " " is a matrix whose columns are the normalized eigen-

vectors of AR . Also, the matrix, ΛΛΛΛ , is a diagonal matrix of the eigen-values of AR . Since

AR is Hermetian, then U is unitary [222]. Now, the set { }1 2 Mv v v" provides an

orthonormal basis for { }Aange RR .

Now, define the spectral square root factorization

( ) ( )
11 122 21H H

A zz

−= =H R A A U UΦ ΛΦ ΛΦ ΛΦ Λ� � (A.5)

Since HH� has the same eigen-vectors as AR , the set { }1 2 Mv v v" is also an orthonormal

basis for { }Hange HR � . Hence, { } { }H

Aange ange=H RR R� since they have the same basis.

We will now show that { } { }H

Aange ange=A RR R . For every { }Ax ange∈ RR฀ , there exists a

0x such that 1
0

H

zzx x−= A AΦΦΦΦ . Hence, there exists a 1
0zzy x−= AΦΦΦΦ such that Hx y= A . Hence, we

know at least { } { }H

Aange ange⊆A RR R . Conversely, for every { }Hy ange∈ AR฀ there exists

a 0x such that 0
Hy x= A . But since the matrices 1

zz

−ΦΦΦΦ and A are rank M, by Sylvester’s

Inequality, 1
zz

− AΦΦΦΦ is rank M system of equations 1
0 0zz y x− =AΦΦΦΦ has a solution. Thus, for every

{ }Hy ange∈ AR฀ there exists an 0y such that 0Ay yR==== and hence, { } { }H

Aange ange⊇A RR R .

But, before we found that { } { }H

Aange ange⊆A RR R so { } { }H

Aange ange=A RR R .

We have shown thus far that for the spectral square root,

{ } { } { }H H

Aange ange ange= =A R HR R R � .
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We will now consider unitary rotations =H QH� . If a solution exists to the system

1H H

zzy x−=H A ΦΦΦΦ� , then a solution, 0y y= Q , exists to the system of equations 1
0

H H

zzy x−=H A ΦΦΦΦ .

Since the unitary matrix, Q, is invertible, the converse is also true. Hence,

{ } { }H Hange ange=A HR R which completes our proof.

It should be said that since H is not full rank, infinitely many solutions exist. In this thesis, we

will choose a particular solution: the pseudo-inverse, which is the minimum-norm solution. That

is, the pseudo-inverse [222], denoted as

( )
† 1

*
H H

zzy x−= H A ΦΦΦΦ (A.6)

finds the solution to equation (A.1) with the smallest L2-norm, *|| ||y .
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Appendix B: BACKGROUND IN ANTENNA ARRAYS

This thesis will consider a circular antenna array illustrated in Figure B. 1. Consider a single

wave-front carrying a signal s(t), impinging on a circular array with a depression angle of dε ,

and an azimuth of dθ . The vector of complex, baseband, signals experienced by each element,

( )x t , can be expressed as

( ) ( , ) ( ) ( )d dx t a s t z tε θ= + (B.1)

where ( )z t is a vector of spatially uncorrelated additive white complex Gaussian noise. The

mapping of the received signal (w/o noise) to an array response vector is described with a

steering vector, ( , )d da ε θ .

For simplicity, we will assume that the array elements are perfectly isotropic (i.e. receive with

equal gain in all directions). The steering vector for an M element λ/2 spaced circular array is

given as

( )1
2 ( 1)( , ) [ ] , exp sin cosT

d d M m R d d

m
a a a a j

M
πε θ κ θ ε− = = − − 

 
" (B.2)

where the constant 02 /R aRκ π λ= and λ0 is the wavelength of the carrier frequency.
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A linear beam-former forms a single output signal from a linear combination of the antenna elements.

( ) ( )Hy t w x t= (B.3)

where w is carefully chosen vector of element weights. Consider a single signal impinging on the array

from a depression angle of εd and an azimuth of θd. The optimal-SNR beam-former in spatially

uncorrelated additive white complex Gaussian noise is given as [223]

( , )opt d dw a ε θ= (B.4)

The gain pattern of a beam former indicates the gain in the power of y(t) for a signal received from a

certain direction. For a given weight vector, w , the gain pattern as a function of azimuth θ, and

depression, ε, is given as:

2( , ) | ( , ) |HG w aε θ ε θ= (B.5)

εd

θa

z

yRa

x

εd

θa

z

yRa

x

Figure B. 1: Bottom view of an eight element circular array with a planar wave impinging on the array at a
depression angle of εd and an azimuth angle of θd. Each blue dot is assumed to be a perfectly isotropic antenna.
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B.1 OPTIMAL SINR SOLUTION

In the subsequent discussion, and for the entirety of this thesis, we will assume that all impinging

signals arrive with depression, εd= 0. Consequently we will refer to the azimuth angle as the

Angle of Arrival (AOA).

Now consider the following situation: a number, Du, of signals impinge on the circular array,

each with AOA, θd. Further, let these signals be synchronized in baud, frequency, and phase.

Let [ ]1 2[ ]
T

Mx n x x x= " be a vector of matched filtered and synchronously sampled array

signals, ( )mx t . Further, let A be the uM D× matrix whose thd column is the steering vector for

the thd signal:

1 2( ) ( ) ( )
uDa a aθ θ θ =  A " (B.6)

Then, a discrete equivalent channel can relate the symbols modulated by the d
th signal [ ]ds n as

follows. Define a vector of transmitted signals:

1 2[ ] [ ] [ ] [ ]
u

T

Ds n s n s n s n =  "

and let

[ ]1 2[ ] [ ] [ ] [ ]
T

Mz n z n z n z n= "

be a vector of Additive White Gaussian Noise (AWGN) match filtered an sampled along with

the signals of interest. Then [ ]z n has a stationary auto-correlation matrix [ ] [ ]H

zz E z n z n  ΦΦΦΦ � .

The discrete equivalent channel model is given by the following linear equation:

[ ] [ ] [ ]x n s n z n= +A (B.7)

We will now define the optimal SINR beamformer, dw for a particular signal, [ ]ds n . Separate

Equation (B.7) into desired and interference terms. For convenience, we will drop the time

index, n, in the following equations.

d dx d i= + (B.8)
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where

( )d d dd a sθ= (B.9)

and

d d d
i A s z= + (B.10)

Then the power of the desired signal, sd, collected by the beamformer, dw , is given as

2
H H

d d d d dd dP E w d w w  =  
R� (B.11)

where

2 ( ) ( )H

dd s d da aσ θ θ=R (B.12)

Similarly, the power of the interference with the desired signal, sd, is

( ) 2 ( )| |I H H d

d d d d ii dP E w i w w  =  R� (B.13)

where

( ) 2d H

ii s d zzd
σ= +R A A ΦΦΦΦ (B.14)

and the matrix
d

A is the matrix, A, with its thd column removed. Then the Signal to Interference

and Noise Ratio (SINR) is just the ratio

( ) ( )

H

d d dd d

I H d

d d ii d

P w w
SINR

P w w
=

R

R
� (B.15)

It is shown in [223] that this quotient is maximized when

1
, ( )d opt ii dw a θ−∝ R (B.16)

The proportionality indicates that a scalar multiple of any optimum SINR beam-former is itself

an optimum SINR beamformer. Usually, we will scale ,d optw to have unity norm.



117

Appendix C: BIBLIOGRAPHY

[1] T.E. Biedka, M.F. Kahn, “Methods for Constraining a CMA Beamformer to Extract a

Cyclostationary Signal,” Second Workshop on Cyclostationary Signals, Monterey, CA,

Aug. 1994.

[2] Van der Veen, Paulraj, “An Analytical Constant Modulus Algorithm,” IEEE

Transactions on Signal Processing, vol. 44, no. 5, May 1996.

[3] Van der Veen, “Weighted ACMA,” ICASSP ’99, 1999.

[4] Castedo, Escudero, Depena, “A Blind Signal Separation Method for Multiuser

Communications,” IEEE Transactions on Signal Processing, vol. 45, no. 5, May 1997.

[5] J.H. Reed, R. He, “Spectral Correlation of AMPS Signals and its Application to

Interference Rejection,”Vehicular Technology Conference, 1994.

[6] J. Hamkins, “A Joint Viterbi Algorithm to Separate Cochannel FM Signals,” ICASSP

1998

[7] R. Raheli, A. Polydoros, C. Tzou, “Per-Survivor Processing: A General Approach to

MLSE in Uncertain Environments,” IEEE Transactions on Communications, Vol. 43,

No. 2/3/4, February/March/April 1995, pp. 354-507.



J. Hicks Appendix C: Bibliography 118

[8] A.V. Keerthi, J.J. Shynk, “Separation of Cochannel Signals in TDMA Mobile Radio,”

IEEE Transactions on Signal Processing, Vol.46, No.10, October 1998, pp.2684-2697.

[9] Y.K. Lee, R. Chandrasekaran, J.J. Shynk, “Separation of Cochannel GSM Signals Using

an Adaptive Array,” IEEE Transactions on Signal Processing, Vol. 47, No.7, July 1999,

pp.1977-1987.

[10] Agee, Bruzzone, Bromberg, “Exploitation of Signal Structure in Array Based Blind Copy

and Copy-Aided DF Systems,” Vehicular Technology Conference, June 1998.

[11] E.R. Ferrara, Jr. “Frequency domain implementations of periodically time-varying

adaptive filters,” IEEE Transactions on Acoustics Speech and Signal Processing, Vol.

33, No. 8, August 1985, pp. 883-892.

[12] Ranta, Honkasalo, “Co-Channel Interference Cancelling Receiver for TDMA Mobile

Systems,” -Proc. of IEEE ICI, Seattle, 1995, pp. 17-21.

[13] Grant, Cavers, “Performance Enhancement Through Joint Detection of Cochannel

Signals Using Diversity Arrays,” IEEE Transactions on Communications, Vol. 46, No. 8,

August 1998.

[14] Giridhar, Chari, Shynk, Gooch, “Joint Demodulation of Cochannel Signals Using MLSE

and MAPSD Algorithms,” Proc. of ICASSP, Minneapolis, 1993, Vol. IV, pp. 160-163,

1993.

[15] J.H. Reed, A.A. Quilici, and T.C. Hsia, “A frequency domain time-dependent adaptive

filter for interference rejection,” IEEE Military Communications Conference, October

1988, pp. 391-397.

[16] TDMA Cellular/PCS –Radio Interface- Mobile Station –Base station Compatibility –

Traffic Channels and FSK Control Channel. TIA/EIA/IS-136.2-A.



J. Hicks Appendix C: Bibliography 119

[17] Lindskog, Ahlen, Sternad, “Combined Spatial and Temporal Equalization Using and

Adaptive Antenna Array and a Decision Feedback Equalization Scheme,” Proc. Of Int.

Conf. On Acoustics, Speech, and Signal Processing, May 1995.

[18] Lndskog, Ahlen, Sternad, “Spatio-Temporal Equalization for Multipiath Environments in

Mobile Radio Applications,” Proc. of the 45
th

IEEE Vehicular Technology

Conference,pp. 775-779 July, 1995.

[19] Torlak, Hansen, Xu, “A Fast Blind Source Separation for Digital Wireless Applications,”

29
th

Asilomar Conference on Signals, Systems, & Computers 1998.

[20] Giridhar, Shynk, Mathur, Chari, Gooch, “Nonlinear Techniques for the Joint Estimation

of Cochannel Signals,” IEEE Transactions on Communications, Vol 45, No. 4, pp. 473-

483, April 1997.

[21] Tidestav, Ahlen, Sternad, “A Comparison of Interference Rejection and Multiuser

Detection,” IEEE International Symposium on Personal, Indoor and Mobile Radio

Communications., pp. 732-736, 1998

[22] Winters, “Signal Acquisition and Tracking with Adaptive Arrays in the Digital Mobile

Radio System IS-54 with Flat Fading,” IEEE Transactions on Vehicular Technology,

Vol. 42, November 1993.

[24] Hallen, Heegard, “Delayed Decision-Feedback sequence Estimation,” IEEE

Transactions on Communications, Vol. 37, No. 5, pp. 435, May 1989.

[25] Ariyavistakul, Winters, “Joint Equalizatoin and Interference Suppression for High Data

Rate Wireless Systems,” Vehicular Technology Conference, February 1999.



J. Hicks Appendix C: Bibliography 120

[26] Ariyavisitakul, Winters, Lee, “Optimum Space-Time Processors with Dispersive

Interference: Unified Analysis and Required Filter Span,” IEEE Transactions on

Communications, Vol 47, No. 7, July 1999.

[27] Heidari, Nikias, “Co-Channel Interference Mitigation in the Time-Scale Domain: The

CIMTS Algorithm,” IEEE Transactions on Signal Processing, Vol. 44, No. 9, September

1996.

[28] Shin, Nikias, “Adaptive Interference Canceler for Narrowband and Wideband

Interferences Using Higher Order Statistics,” IEEE Transactions on Signal Processing,

Vol. 42, No. 10, October 1994.

[29] Petersen, Falconer, “Suppression of Adjacent-Channel, Cochannel, and Intersymbol

Interference by Equalizers and Linear Combiners,” IEEE Transactions on

Communications, Vol 42, No. 12, pp. 3109-3117 December 1994.

[30] Edepalli, Andayam, “Combined Equalizatoin and Cochannel Interference Cancellation

for the Downlink Using Tentative Decisions,” Proc. ICASSP, 1999.

[31] Ratnavel, Paulraj, Constantinides, “MMSE Space-Time Equalization for GSM Cellular

Systems,” Vehicular Technology Conference, pp. 331-335, 1996.

[32] Gregory E. Bottomley, Karl J. Molnar, “Adaptive Channel Estimation for Multichannel

MLSE Receivers,” IEEE Communication Letters, Vol.3, No.2, February 1999, pp.40 –

42.

[33] F. Pipon, P. Chevalier, P. Vila, D. Pirez, “Practical Implementation of a Multichannel

Equalizer for a Propagation with ISI and CCI – Application to a GSM Link,” Proc. 47
th

IEEE Vehicular Technology Conf., May 1997, pp. 889-893.



J. Hicks Appendix C: Bibliography 121

[34] G.E. Bottomley, K. Jamal, “Adaptive Arrays and MLSE Equalization,” 45th
IEEE

Vehicular Technology Conference, Volume 1, pages 50-54, 1991.

[35] H. Yoshino, K. Fukawa, H. Suzuki, “Interference Canceling Equalizer (ICE) for Mobile

Radio Communication,” IEEE Transactions on Vehicular Technology, Vol.46, No.4,

November 1997, pp. 849-861.

[36] S.M. Redl, M.K. Weber, and M.W. Oliphant, An Introduction to GSM, Mobile

Communications Series, Artech House, Inc., 1995.

[37] J.D. Laster and J.H. Reed, “Interference Rejection in Digital Wireless Communications,”

IEEE Signal Processing Magazine, pp. 37-62, May 1997.

[38] K.J. Molnar, G.E. Bottomley, “Adaptive Array Processing MLSE Receivers for TDMA

Digital Cellular/PCS Communications,” IEEE Jounal on Selected Areas in

Communications, Vol. 16, No.8, October 1998, pp. 1340-1351.

[39] A.J. Paulraj, B.C. Ng, “Space-Time Modems for Wireless Personal Communications,”

IEEE Personal Communications, February 1998, pp. 36-48

[40] K. Fukawa, H. Suzuki, “Blind Interference Canceling Equalizer for Mobile Radio

Communication,” IEICE Transactions on Communications, Vol.E77-B, No.5, May 1994,

pp. 849-861.

[41] B. C. W. Lo, K.B. Letaief, “Adaptive Equalization and Interference Cancellation for

Wireless Communication Systems,” IEEE Trans. On Communications, Vol. 47, No. 4,

April 1999.

[42] Alle-Jan vand der Veen, Shilpa Talwar, A. Paulraj, “Blind Estimation of Multiple Digital

Signals Transmitted over FIR Channels,” Signal Processing Letters, Vol 2, No. 5., May

1995.



J. Hicks Appendix C: Bibliography 122

[43] G. Paparisto, K.M. Chugg, “PSP Array Processing for Multipath Fading Channels,”

IEEE Transactions on Communications, Vol. 47, No. 4, April 1999, pp.504-507.

[45] J. Liang, A.J. Paulraj, “Two Stage CCI/ISI Reduction with Space-Time Processing in

TDMA Cellular Networks,” Conference Record of Thirtieth Asilomar Conference on

Signals, Systems and Computers, pp. p.607-611

[46] S. Ratnavel, A.Paulraj, A.G. Constantinides, “MMSE Space-Time Equalization for GSM

Cellular Systems,” 1996 IEEE 46th Vehicular Technology Conference, pp.331-335,

vol.1, 1996.

[47] CTIA Web pages, http://www.wow-com.com/wirelesssurvey/.

[48] Strategis Group Web page, http://www.strategisgroup.com/.

[49] S. Anderson, M.Millnert, B. Wahlberg, “An Adaptive Array for Mobile Communication

Systems,” IEEE Transactions on Vehicular Technology, Vol. 40, No. 1, February 1991,

pp. 231-236.

[53] T.Wu, C. Schlegel, “Interference Cancellation for Narrowband Mobile Communication

Systems,” Vehicular Technology Conference ’99.

[54] Forney, “Maximum-Likelihood Sequence Estimation of Digital Sequences in the

Presence of Intersymbol Interference,” IEEE Transactions on Information Theory,

pp.363-378, May 1972.

[55] Gottfried Ungerboeck, “Adaptive Maximum-Likelihood Receiver for Carrier-Modulated

Data-Transmission Systems,” IEEE Transactions on Communications, vol 22. No. 5, pp.

624-636, May 1974.



J. Hicks Appendix C: Bibliography 123

[56] Reed, Hsia, “The Performance of Time-Dependent Adaptive Filters for Interference

Rejection,” IEEE Trans. On Acoustics, Speech, and Signal Processing, Vol. 38, No. 8,

August 1990

[57] W.A. Gardner, “Cyclic Wiener Filtering: Theory and Method,” IEEE Transactions on

Communications, Vol. 41, No. 1, January 1993, pp. 151-163.

[58] J. Karlsson, J. Heinegard, “Interference Rejection Combining for GSM,” Proc. 5
th

IEEE

ICUPC, September 1996, pp. 433-437.

[59] Giridhar, Chari, Shynk, Gooch, Artman, “Joint Estimation Algorithms for Cochannel

Signal Demodulation,” Proc. of IEEE ICC, Geneva, 1993, pp. 1497-1501.

[60] Hedstrom, Kirlin, “Co-Channel Signal Separation Using Coupled Digital Phase-Locked

Loops,” IEEE Transactions on Communications, vol. 44, no. 10, October 1996.

[64] Hashimoto, “A List-Type Reduced-Constraint Generalization of the Viterbi Algorithm,”

IEEE Transactions on Information Theory, vol. 33, no. 6, pp. 866-976, November 1987.

[65] Van der Veen, Talwar, Paulraj, “A subspace Approach to Blind space-Time Signal

Processing for Wireless Communication Systems,” IEEE Transactions on Signal

Processing, vol. 45, no. 1, pp. 173-190 January 1997.

[66] Sheen, Stuber, “MLSE Equalization and Decoding for Multipath-Fading Channels,”

IEEE Transactions on Communications, vol. 39, no. 10, pp. 1455-1464 October 1991.

[67] Liu, Xu, “Smart Antennas in Wireless Systems: Uplink Multiuser Blind Channel and

Sequence Detection,” IEEE Trans. On Comm. Vol. 45, no. 2, pp. 187-199 Feb. 1997.

[68] Jamal, Brismark, “Adaptive MLSE Performance on D-AMPS 1900 Channel,” IEEE

Transactions on Vehicular Technology, vol. 46, no. 3, pp. 634-641 August 1997.



J. Hicks Appendix C: Bibliography 124

[69] Krenz, Wesolowski, “Comparative Study of space-Diversity Techniques for MLSE

Receivers in Mobile Radio,” IEEE Trans. Vehicular Technology, vol. 46, no. 3, pp. 653-

663 August 1997.

[70] Godara, “Applications of Antenna Arrays to Mobile Communications, Part 1:

Performance Improvement, Feasibility, and system Considerations,” vol. 85, no. 7, pp.

1031-1060 July 1997.

[71] Godara, “Application of Antenna Arrays to Mobile Communications, Part II: Beam-

Formaing and Direction-of-Arrival Considerations,” vol. 85, no. 8, pp. 1195-1245

August 1997.

[72] Raleigh, Boros, “Joint Space-Time Parameter Estimation for Wireless Communication

Channels,” IEEE Transactions on signal Processing, vol 46, no. 5, pp. 1333-1343 May

1998.

[73] Izzo, Paura, Poggi, “An Interference-Tolerant Algorithm for Localization of

Cyclostationary-Signal Sources,” IEEE Trans. on Signal Processing, vol. 40, no. 7, pp.

1682-1686, July 1992.

[74] R. Chandrasekaran, J.J. Shynk, K. Lai, “A Subspace Method for Separating Cochannel

TDMA Signals,” ICASSP 1999.

[78] M. Yao, L. Jin, Q. Yin, “Selective Direction Finding for Cyclostationary Signals by

Exploitation of New Array Configuration,” ICASSP 1999.

[79] V.B. Manimohan, W.J. Fitzgerald, “Direction Estimation Using Conjugate Cyclic Cross-

Correlation: More Signals than Sensors,” ICASSP 1999.



J. Hicks Appendix C: Bibliography 125

[81] G. Xu, A. Paulraj, Y. Cho, T. Kailath, “ Maximum Likelihood Detection of Co-channel

Communication Signals via Exploitation of Spatial Diversity,” 26
th

Asilomar Conference

on Signals, Systems and Computers, Vol. 2, 1992.

[83] J.W. Modestino, V. Eyuboglu, “Integrated Multielement Receiver Structures for

Spatially Distributed Interference Channels,” IEEE Transactions on Information Theory,

Vol. IT-32, No. 2, March 1986, pp. 195-219.

[86] A. Paulraj, G.G. Raleigh, “Time Varying Vector Channel Estimation for Adaptive

Spatial Equalization,” IEEE Globecomm, Vol.1, 1995.

[97] Brian G. Agee, Stephan V. Schell, William Gardner, “Spectral Self-Coherence Restoral:

A New Approach to Blind Adaptive Signal Extraction Using Antenna Arrays,” IEEE

Proceedings, Vol 74, No. 40, April 1990.

[98] C. Tidestav, M. Sternad, A. Ahlen, “ Reuse Within a Cell – Intreference Rejection or

Multiuser Detection,” IEEE Transactions on Communications, Vol. 47, No. 10, pp.

1511-1522, October 1999.

[99] Tidestav, Sternad, Ahlen, “Reuse Within a Cell-Interference Rejection or Multiuser

Detection?” Vehicular Technology Conference ’99.

[100] Ready, Chari, “Demodulation of Cochannel FSK Signals Using Joint Maximum

Likelihood Sequence Estimation,” 27
th

Asilomar Conference, Vol. 2, 1993.

[102] Tsuji, Xin, Yoshimoto, “Detection of Direction and Number of Impinging Signals in

Array Antennas Using Cyclostationarity,” Electronics and Communications in Japan,

Part 1, Vol. 82, No. 10, 1999.

[103] Agee, “The Least-Squares CMS: A New Technique for Correction of Constant Modulus

Signals,” IEEE ICASSP, April 1986, pp. 953-956.



J. Hicks Appendix C: Bibliography 126

[104] Shynk, Keerthi, Mathur, “Steady-State Analysis of the Multistage Constant Modulus

Array,” IEEE Transactions on Signal Processing, Vol.44, No.4, April 1996.

[105] Shynk, Keerthi, Mathur, “Convergence Properties of the Multistage Constant Modulus

Array for Correlated Sources,” IEEE Transactions on Signal Processing, Vol.45, No.1,

January 1997.

[106] Talwar, Viberg, Paulraj, “Blind Separation of Synchronous Co-Channel Digital Signals

Using an Antenna Array – Part I: Algorithms,” IEEE Transactions on Signal Processing,

Vol. 44, No.5, May 1996, pp. 1184-1197.

[107] Talwar, Viberg, Paulraj, “Blind Separation of Synchronous Co-Channel Digital Signals

Using an Antenna Array – Part II: Performance Analysis,” IEEE Transactions on Signal

Processing, Vol. 45, No.3, March 1997, pp. 706-718.

[108] Ranheim A., “A Decoupled Approach to Adaptive Signal Separation Using an Antenna

Array,” IEEE Transactions on Vehicular Technology, Vol. 48, No. 3, May 1999, pp.

676-682.

[109] Talwar, Viberg, Paulraj, “Reception of Multiple Co-Channel Digital Signals using

Antenna Arrays with Applications to PCS,” SUPERCOMM/ICC, Vol. 2, pp. 790-794,

1994.

[110] Hansen L.K., Xu G., “A Fast Algorithm for the Blind Separation of Digital Co-Channel

Signals,” 31
st

Asilomar Conference, Vol.2, 1997.

[111] Dogan M.C, Mendel J.M., “Applications of cumulants to array processing I: Aperture

extension and array calibration,” IEEE Transactions on Signal Processing, Vol. 43,

No.5, May 1995, pp. 1200-1216.



J. Hicks Appendix C: Bibliography 127

[112] Dogan M.C, Mendel J.M., “Applications of cumulants to array processing IV: Direction

finding in coherent signals case,” IEEE Transactions on Signal Processing, Vol. 45,

No.9, September 1997, pp. 2265-2276.

[113] Dogan M.C, Mendel J.M., “Applications of cumulants to array processing III: Blind

beamforming for coherent signals,” IEEE Transactions on Signal Processing, Vol. 45,

No.9, September 1997, pp. 2252-2264.

[115] Agee B.G., “Exploitation of Signal Structure in Array-Based Blind Copy and Copy-

Aided DF Systems,” ICASSP Presentation, May 13, 1998.

[116] Bottomley G.E., Molnar K.J., Chennakeshu S., “Interference Cancellation with an Array

Processing MLSE Receiver,” IEEE Transactions on Vehicular Technology, Vol.48,

No.5, September 1999, pp. 1321-1331.

[117] R.C. North, R.A. Axford, J.R. Zeidler, “The performance of adaptive equalization for

digital communication systems corrupted by interference,” Asilomar1993, Vol.2, pp.

1548-1554.

[132] R. Roy, T. Kailath, “ESPRIT-Estimation of Signal Parameters Via Rotational Invariance

Techniques,” IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol.37,

No.7, July 1989, pp. 984-994.

[136] T.S. Rappaport, Wireless Communications: Principles and Practice, Prentice Hall, New

Jersey, 1996.

[137] P. Petrus, “Novel Adaptive Array Algorithms and Their Impact on Cellular System

Capacity,” in Ph.D. Dissertation, Virginia Polytechnic Institude and State University,

Blacksburg, March 1997.



J. Hicks Appendix C: Bibliography 128

[138] J.C. Liberti, T.S. Rappaport, Smart Antennas for Wireless Communications: 1S-95 and

Third Generation CDMA Applications, Prentice Hall, New Jersey, 1999.

[139] R.O. Schmidt, “Multiple Emitter Location and Signal Parameter Estimation,” Proc. of

RADC Spectrum Estimation Workshop, Griffiss AFB, NY, pp. 243-258, 1979.

[140] J. Zhang, K.M. Wong, Z.Q. Luo, P.C. Ching, “Blind Adaptive FRESH Filtering for

Signal Extraction,” IEEE Transactions on Signal Processing, Vol.47, No.5, May 1999,

pp.1397 – 1402.

[141] W.A. Gardner, Cyclostationarity in Communications and Signal Processing, IEEE Press,

NY, 1994.

[145] M.J. Rude, L.J. Griffiths, “An Untrained, Fractionally-Spaced Equalizer for Co-Channel

Interference Environments,” 24
th

Asilomar Conference on Signals, Systems and

Computers, 1992.

[149] N.W.K. Lo, D.D. Falconer, A.U.H. Sheikh, “Adaptive Equalization for a Multipath

Fading Environment with Interference and Noise,” VTC’94, Vol. 1, 1994.

[150] N.W.K. Lo, D.D. Falconer, A.U.H. Sheikh, “Adaptive Equalization Techniques for

Multipath Fading and Co-Channel Interference,” VTC’93, 1993.

[152] B.G. Agee, “Blind Separation and Capture of Communication Signals Using a

Multitarget Constant Modulus Beamformer,” Proc. MILCOM, May 1989, pp. 340-346.

[157] R. Lupas, S. Verdu, “Linear Multiuser Detectors for Synchronous Code-Division

Multiple Access Channels,” IEEE Transactions on Information Theory, Vol. 35, No. 1,

January 1989, pp. 123-136.



J. Hicks Appendix C: Bibliography 129

[158] M. Honig, U. Madhow, S. Verdu, “Blind Adaptive Multiuser Detection,” IEEE

Transactions on Information Theory, Vol. 41, No. 4, July 1995, pp. 944-960.

[169] A. Van der Veen, A. Paulraj, “Singular Value Analysis of Space-Time Equalization in

the GSM Mobile System,” ICASSP’96, Vol. 2, pp.1073-1076, 1996.

[170] J.G. Proakis, Digital Communications, McGraw-Hill, New York, 3rd Ed., 1995.

[171] K. Abend, B.D. Fritchman, “Statistical Detection for Communication Channels with

Intersymbol Interference,” Proc. IEEE, Vol. 58, May 1970, pp. 779-785.

[172] M.V. Eyuboglu, S.U.H. Qureshi, “Reduced-state Sequence Estimation with Set

Partitioning and Decision Feedback,” IEEE Transactions on Communications, Vol. 36,

January 1988, pp. 13-20.

[173] G.D. Forney, “The Viterbi Algorithm,” Proceedings of IEEE, Vol. 61, No.3, March

1973, pp. 268-278.

[174] S. Haykin, Adaptive Filter Theory, Third Edition, Prentice-Hall, 1996.

[175] J.J. Shynk, R.P. Gooch, “The Constant Modulus Array for Cochannel Signal Copy and

Direction Finding,” IEEE Transactions on Signal Processing, Vol. 44, No. 3, March

1996.

[176] R.P. Gooch, J.D. Lundell, “The CM Array: An Adaptive Beamformer for Constant

Modulus Signals,” Proc. ICASSP, Tokyo,Japan, April 1986.

[177] B.J. Sublett, R.P. Gooch, S.H. Goldberg, “Separation and Bearing Estimation of

Cochannel Signals,” Proc. of IEEE Military Communications Conference, May 1989, pp.

629-634.



J. Hicks Appendix C: Bibliography 130

[178] R. Lonski, R.P. Gooch, “An experimental angle of arrival system,” Proc. of the Asilomar

Conf. on Signals, Systems, and Computers, November 1991, pp. 969-973.

[179] R.D. Hughes, E.J. Lawrence, L.P. Withers, “A Robust CMA Adaptive Array for Multiple

Narrowband Sources,” Proc. of the Asilomar Conf. on Signals, Systems, and Computers,

November 1992, pp. 35-39.

[180] J. Capon, “High Resolution Frequency-Wavenumber Spectral Analysis,” Proc. of IEEE,

Vol. 57, No. 8, August 1969, pp. 1408-1418.

[181] J. Capon, “Maximum Likelihood Spectral Estimation,” Nonlinear Methods of Spectral

Analysis, Ed. By S. Haykin, Springler, NY, 1979.

[182] A.J. Barabell, “Improving the Resolution Performance of Eigenstructure-based Direction

Finding Algorithms,” Proc. of ICASSP –83, 1983, pp. 336-339.

[183] S.V. Schell, Calabretta, W.A. Gardner, B.G. Agee, “Cyclic MUSIC Algorithms for

Signal Selective DOA Estimation,” Proc. of ICAASP –89, 1989, pp. 2278-2281.

[184] D. Feldman, L.J. Griffiths, “A Constraint Projection Approach for Robust Adaptive

Beamforming,” Proc. of ICASSP, May 1991, pp. 1381-1384.

[185] J.E. Evans, J.R. Johnson, D.F. Sun, “High Resolution Angular Spectrum Estimation

Techniques for Terrain Scattering Analysis and Angle of Arrival Estimation in ATC

Navigation and Surveillance System,” MIT Lincoln Lab., Lexington, MA, Rep. 582,

1982.

[186] T.J. Shan, M. Wax, T. Kailath, “On Spatial Smoothing for Estimation of Coherent

Signals,” ICASSP, Vol. ASSP-33, August 1985.



J. Hicks Appendix C: Bibliography 131

[187] K. Takao, N. Kikuma, “An Adaptive Array Utilizing an Adaptive Spatial Averaging

Technique for Multipath Environments,” IEEE Trans. on Antennas and Propagation,

Vol. AP-35, No. 12, December 1987, pp. 1389-1396.

[188] F. Haber, M. Zoltowski, “Spatial Spectrum Estimation in a Coherent Signal Environment

Using an Array in Motion,” IEEE Trans. on Antennas and Propagation, Vol. AP-34,

March 1986, pp. 301-310.

[189] M.J. Rude, L.J. Griffiths, “Incorporation of Linear Constraints into the Constant Modulus

Algorithm,” Proc. of ICASSP, Glasgow, Scotland, UK, May 1989.

[190] W.A. Gardner, “Simplification of MUSIC and ESPRIT by Exploitation of

Cyclostationarity,” Proc. of IEEE, Vol. 76, July 1988, pp. 845-847.

[192] G. Gelli, L. Izzo, “Minimum-Redundancy Linear Arrays for Cyclostationary-based

Source Location,” IEEE Transactions on Signal Processing, Vol. 45, October 1997,

pp.2605-2608.

[194] S.V. Schell, B.G. Agee, “Application of the SCORE algorithm and SCORE extensions to

sorting in the rank-L spectral self coherence environment,” Proc. of the 22
nd

Asilomar

Conf. on Signals, Systems, and Computers, December 1988, pp. 274-278.

[195] S.V. Schell, W.A. Gardner, “Maximum likelihood and common factor analysis-based

blind adaptive spatial filtering for cyclostationary signals,” Proc. ICAASP, Minneapolis,

MN, April 1993, pp. 292-295.

[196] T.E. Biedka, “Subspace constrained SCORE algorithms,” Proc. of Asilomar Conf. on

Signals, Systems, and Computers, November 1993, pp. 716-720.

[197] S. Verdu, “Minimum Probability of Error for Asynchronous Gaussian Multiple-Access

Channels,” IEEE Transactions on Information Theory, vol IT-32, no. 1, January 1986.



J. Hicks Appendix C: Bibliography 132

[198] G.J. Bierman, Factorization Method for Discrete Sequential Estimation, Academic Press,

New York, 1977.

[201] S.N. Diggavi, A. Paulraj, “Performance of Multisensor Adaptive MLSE in fading

channels,” Proc. IEEE VTC, pp. 2148-2152, May 1997.

[202] E. Lindskog, “Multi-channel Maximum Likelihood Sequence Estimation,” Proc. IEEE

VTC, pp. 715-719, May 1997.

[203] K. Fukawa, H. Suzuki, “Blind Interference Canceling Equalizer for Mobile Radio

Communications,” IEICE transactions on communications, Vol. E77-B, No. 5, May

1994.

[204] R. Mendoza, J.H. Reed, T.C. Hsia, B.G. Agee, “ Interference Rejection Using the Time-

Dependent Constant Modulus Algorithm (CMA) and the Hybrid CMA/Spectral

Correlation Discriminator,” IEEE Transactions on Signal Processing, Vol. 39, No. 9,

September 1991, pp. 2108 – 2111.

[205] Van Etten, “Maximum Likelihood Receiver for Multiple Channel Transmission

Systems,” IEEE Transactions on Communications, pp. 276, vol. 24, February, 1976.

[206] Liu, Xu, Tong, Kailath, “Recent developments in Blind Channel Equalization: from

Cyclostationarity to Subspaces,” Signal Processing, pp. 83-89, vol 50, April 1996.

[207] Sergio Verdu, Multi-user Detection, Cambridge, UK: Cambridge University Press, 1998.

[208] Liu, Xu, Tong, Kailath, “Recent developments in Blind Channel Equalization: from

Cyclostationarity to Subspaces,” Signal Processing, pp. 83-89, vol 50, April 1996.



J. Hicks Appendix C: Bibliography 133

[209] G.D. Forney, Jr., “The Forward-Backward Algorithm”, Procedings of 34th Annual

Allerton Conference on Communication, Control, and Computing, Univ. Illinois. 1996,

pp. 432-446.

[210] A. Fernandez, K. Efe, “Generalized Algorithm for Parallel Sorting on Product

Networks”, IEEE Transactions on Parallel and Distributed Systems, vol. 8, no. 12, Dec.

1997.

[211] Ulukus, “Optimum Multiuser Detection Is Tractable for Synchronous CDMA Systems

Using M-Sequences”, vol. 2, no. 4, April 1998.

[212] C. Sankaran, A. Ephremides, “Solving a Class of Optimum Multiuser Detection

Problems with Polynomial Complexity,” IEEE Transactions on Information Theory, vol.

44, no. 5, Sept. 1998.

[213] J. Hagenauer and P. Hoeher, “A Viterbi Algorithm with soft-decision outputs and its

applications, “ Proc. IEEE Globecom, pp. 1680-1686, 1989.

[214] M. Moher, “An Iterative Multi-user Decoder for Near-Capacity Communications”, IEEE

Transactions on Communications, vol. 46, no. 7, July 1998, pp. 870-880.

[215] J. G. Proakis, D.G. Manolakis, Digital Signal Processing, Principles, Algorithms, and

Applications, Third Edition, Prentice Hall, Upper Saddle River, NJ,  1996.

[216] B. Frey, Graphical Models for Machine Learning and Digital Communication, MIT

Press Cambridge, MA,  1998.

[217] A. Reznik, Iterative Decoding of Codes Defined on Graphs, MIT Thesis, June 1998.



J. Hicks Appendix C: Bibliography 134

[218] S. Bayram, J. Hicks, J.H. Reed, B. Boyle, “Overloaded Array Processing in Wireless

Airborne Communication Systems”, to be published in MILCOM, October 22-25, 2000,

Los Angeles.

[219] S. Bayram, J. Hicks, J.H. Reed, B.Boyle, “Overloaded Array Processing: Non-Linear vs.

Linear Signal Extraction Techniques”, to be published in Wireless 2000 Conference,

Calgary, July 10-12, 2000.

[220] S. Bayram, J. Hicks, J.H. Reed, B. Boyle, “ Joint ML Approach in Overloaded Array

Processing,” to be published in Vehicular Technology Conference, Sept. 24-28, Boston.

[221] B. Agee, The Property-Restoral Approach to Blind Adaptive Signal Extraction,

University of California Davis Dissertation,  1989.

[222] R. Horn, C. Johnson, Matrix Analysis,  1985, Camgridge University Press, NY, NY.

[223] R. Monzingo, T. Miller, Introduction to Adaptive Arrays,  1980, John Wiley & Sons,

Inc. , NY, NY.

[224] J. Litva, T. Lo, Digital Beamforming in Wireless Communications,  1996, Artech

House, Boston, MA.



J. Hicks Appendix C: Bibliography 135

VITA

James Hicks was born in Fairfax, VA on September 13, 1974. He received his Bachelor of

Science degree in Electrical Engineering from George Mason University, Fairfax, VA (GMU) in

May 1997. While pursuing his undergraduate studies at GMU, he completed two Cooperative

Education programs. From June 1994 to June 1996, James worked at the United States Naval

Research Laboratory as a graphics programmer for real-time tactical warfare simulation. From

June 1996 to June 1997, he worked at Stanford Telecommunications where he helped develop

several satellite propagation model tools. James has been consulting part time for Information

Systems Laboratories (ISL) in Vienna, VA since 1997. While at ISL, he has developed

algorithms and system analysis for single satellite position location systems. James is currently

pursuing his Ph.D. in electrical engineering at Virginia Tech, Blacksburg, VA as a Bradley

Fellow. His research interests are digital signal processing and system modeling for wireless

communications with a special interest in antenna arrays, spread-spectrum, and Markov

modeling.


