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Abstract 

In many applications, the dataset for classification may be highly imbalanced where most 

of the instances in the training set may belong to some of the classes (majority classes), while only 

a few instances are from the other classes (minority classes). Conventional classifiers will strongly 

favor the majority class and ignore the minority instances. The imbalance problem can occur in 

both binary data classification and also in ordinal regression. Ordinal regression is a supervised 

approach for learning the ordinal relationship between classes. Extensive research has been 

performed for addressing imbalanced datasets for binary classification; however, current methods 

do not address within-class imbalance and between-class imbalance at the same time. Similarly, 

there has been very little research work on addressing imbalanced datasets for ordinal regression. 

Although current standard oversampling methods can be used to improve the dataset class 

distribution, they do not consider the ordinal relationship between the classes. 

The class imbalance problem is a big challenge in classification problems. Most of the 

clinical datasets are highly imbalanced, which can weaken the performance of classifiers 

significantly. In this research, the imbalanced dataset classification problem is also examined in 

the context of a clinical application, particularly pelvic organ prolapse diagnosis. Pelvic organ 

prolapse (POP) is a major health problem that affects between 30-50% of women in the U.S. 

Although clinical examination is currently used to diagnose POP, there is still little evidence on 

specific risk factors that are directly related to particular types of POP and their severity or stages 

(Stage 0-IV). Data from dynamic MRI related to the movement of pelvic organs has the potential 
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to improve POP prediction but it is currently analyzed manually limiting its exploration and use to 

small datasets. Moreover, POP is a disorder with multiple stages that are ordinal and whose 

distribution is highly imbalanced.  

The main goal of this research is two-fold. The first goal is to design new oversampling 

methods for imbalanced datasets for both binary classification and ordinal regression. The second 

goal is to automatically track, segment, and classify the trajectory of multiple organs on dynamic 

MRI to quantitatively describe pelvic organ movement. The extracted image-based data along with 

the designed oversampling methods will be used to improve the diagnosis of POP. The proposed 

research consists of three major objectives: 1) to design a new oversampling technique for binary 

imbalanced dataset classification; 2) to design a novel oversampling technique for ordinal 

regression with imbalanced datasets; and 3) to design a two-stage method to automatically track 

and segment multiple pelvic organs on dynamic MRI for improving the prediction of multi-stage 

POP with imbalanced datasets.  

The proposed research aims to provide robust oversampling techniques and image 

processing models that can (1) effectively handle highly imbalanced datasets for both binary 

classification and ordinal regression, and (2) automatically track and segment multiple deformable 

structures for feature extraction from low contrast and nonhomogeneous images and classify them 

using the resulted trajectories. This research will set the foundation towards a computer-aided 

decision support system that can automatically extract and analyze image and clinical data to 

improve the prediction of disorders where the dataset is highly imbalanced through personalized 

and evidence-based assessment. 
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Chapter 1  

Introduction 

In this chapter, the motivation and research objectives are presented. The intellectual merit, 

and broader impact are then presented followed by the dissertation outline. 

1.1. Motivation 

Many datasets in various applications are imbalanced where some classes contain many 

more instances than others. Some examples where imbalanced datasets need to be classified 

include detection of fraudulent bank account transactions or telephone calls [1, 2], biomedical 

diagnosis [3, 4], text classification [5], information retrieval and filtering [6] and college student 

retention [7]. In two-class problems, the class that contains many instances is the majority class 

whereas the class that contains fewer instances is the minority class. When the dataset is 

imbalanced, conventional classifiers typically favor the majority class thus failing to classify the 

minority observations correctly and resulting in performance loss [8]. When the training data is 

highly imbalanced, the minority class may not even be detected. This kind of imbalance that exists 

between two different classes is called between-class imbalance. Another kind of imbalance that 

results in performance loss is within-class imbalance, which happens when the minority or 

majority instances have more than one concept (sub-cluster of data) and some of these concepts 

have less number of instances than others. In addition, the presence of high overlapping among 

the concepts is another factor that leads to classifiers’ performance loss on minority instances [9]. 

However, current methods developed for imbalanced problems do not address both within-class 
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imbalance and between-class imbalance at the same time. Most of them also worsen the 

overlapping among the concepts after trying to issue the imbalance problem.      

Traditionally, the objective of supervised learning is to optimize the accuracy for the whole 

dataset, which may cause the classifier to ignore the performance on each individual class. In 

particular, in an imbalanced dataset, if a random classifier predicts all instances as the majority 

class, a very high accuracy can be achieved despite incorrectly classifying all minority instances. 

Therefore, it is strongly suggested to use measurements that are suitable for imbalanced dataset 

classification. 

Ordinal regression is a supervised approach for learning ordering or ranking patterns, and 

has the properties of both multi-class classification and metric regression. It has properties of 

multi-class classification because the outcome is a finite set but it considers the ordinal relationship 

between classes. Ordinal regression also has properties of metric regression as it assumes the 

outcome variable is a latent continuous variable where the number of ranks is finite and the 

difference between ranks is not defined. Ordinal regression has applications in many areas such as 

information retrieval [10], credit rating [11], medical risk assessment [12], and preference learning 

[13] because very often, people represent their preferences via ranks and ordered classes. As an 

example, consider a clinical diagnosis where patients can be categorized to stages ranging from 0 

to IV. Higher stages indicate higher severity of the condition so the misclassification error between 

different stages should be penalized differently. For instance, the misclassification error between 

stages 0 and IV should be much higher than the error between stages 0 and I. On the other hand, 

the stages are not continuous and the difference between adjacent stages is not equal making this 

problem different from regular regression.   
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Highly imbalanced datasets can be found in many applications. In this research, we focus 

on the problem of imbalanced datasets in clinical applications. In particular, we address the 

prediction of pelvic organ prolapse stages, which is a gynecological condition with multiple stages 

of severity and highly imbalanced datasets. Pelvic Organ Prolapse (POP) is a major health problem 

that affects up to 30-50% of women [14] with direct costs of about $1 billion per year [15]. POP 

is a herniation of the female pelvic floor organs (bladder, uterus, small bowel and rectum) into the 

vagina. This condition can cause significant problems including a bothersome vaginal bulge, and 

incomplete bowel and bladder emptying. POP is normally diagnosed through clinical examination 

since there are few associated symptoms. However, very little is known about the risk factors of 

POP even though it is one of the most common reasons for gynecological surgery according to the 

National Center for Health Statistics [16]. This makes POP a common but poorly understood 

condition.  

In an effort to better understand the risk factors of POP and improve its diagnosis, data 

obtained through dynamic magnetic resonance imaging (MRI) of the pelvic floor has been studied 

as it has the potential to offer information not evident on clinical examination [17-20]. However, 

data from MRI is currently extracted manually resulting in a time consuming and reader subjective 

process. This has limited the amount, type, and usefulness of MRI data analyzed in population-

based studies of POP.  

Given the plethora of potential risk factors for POP, it is very likely that this condition is 

caused by a combination of risk factors that are patient-specific. Unfortunately, there is currently 

very few data to predict the risk of development of this disorder and the variables associated with 

its development remain poorly understood [19]. DMRI has been used to analyze the displacement 

of the pelvic organs to complement clinical examination. Some studies have indicated some 
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association between the movement of pelvic organs and POP [21, 22]. However, studies have been 

confined to small datasets limiting conclusive evidence. There is currently no automated or 

quantitative approach to measure multiple pelvic organ movement and their correlation with the 

severity of prolapse. The ability to predict prolapse would be extremely important to improve the 

understanding of POP and to potentially develop adequate preventive strategies. Major challenges 

in the prediction of POP are that current MRI data is extracted manually and is insufficient, and 

the distribution of stages is highly imbalanced preventing the development of robust prediction 

models. 

In addition, some of the challenges of automating the analysis of multiple organ 

movements on DMRI are as follows: (1) many of the frames from the DMRI sequence do not 

provide additional information as the movement of pelvic organs is captured in only a few frames; 

(2) within the few frames that capture organ movement, organs sometimes move significantly 

between consecutive frames so their boundaries do not overlap across the frames; and (3) the 

trajectories of pelvic organs need to be modeled together to capture the interactions among the 

organs. Therefore, it is necessary to identify those frames that capture organ movement to reduce 

computation time, then correctly track organs whose boundaries do not overlap across consecutive 

frames, and finally, perform trajectory classification of multiple organs to quantitatively describe 

their movement and determine their potential association with POP. 

1.2. Research Objectives 

The main goal of this research is two-fold. The first goal is to design new oversampling 

methods for imbalanced datasets for both binary classification and ordinal regression. The second 

goal is to automatically track, segment, and analyze the trajectory of multiple organs on dynamic 

MRI to quantitatively describe pelvic organ movement. Clinical datasets are commonly highly 
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imbalanced, where the majority of the data represents one or few classes. The class imbalance 

problem is a big challenge in classification problems and can significantly weaken the performance 

of classifiers. Moreover, in many applications, the classes are ordinal so in contrast with multi-

class classification, the ordinal relationship between the classes needs to be considered. In this 

research, novel oversampling methods for ordinal regression are proposed. Ordinal regression is a 

supervised approach for learning ordering patterns, and has the properties of both multi-class 

classification and metric regression. It considers the ordinal relationship between classes and 

assumes the outcome variable as a latent continuous variable with finite number of ranks. Finally, 

the designed oversampling methods will be examined in the prediction of two-stage and multi-

stage POP while automatically extracting data from pelvic organ movement from dynamic MRI.  

The proposed research consists of three main research objectives:  

1) To design a new oversampling technique for binary classification. A new method called 

Adaptive Semi-Unsupervised Weighted Oversampling (A-SUWO) is proposed to more 

effectively balance the dataset for two-class classification problems. The proposed method 

clusters the minority instances using a semi-unsupervised hierarchical clustering approach 

and adaptively determines the size to oversample each sub-cluster using their classification 

complexity and cross validation. Then, the minority instances are oversampled depending 

on their Euclidean distance to the majority class. A-SUWO aims to identify hard-to-learn 

instances by considering minority instances from each sub-cluster that are closer to the 

borderline. It also avoids generating synthetic minority instances that overlap with the 

majority class by considering the majority class in the clustering and oversampling stages. 

Results demonstrate that the proposed method achieves significantly better results in most 

datasets compared with other sampling methods.  
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2) To design a novel oversampling technique for ordinal regression. A new oversampling 

method called Cluster-based Weighted Oversampling for Ordinal Regression (CWOS-Ord) 

is proposed for addressing imbalanced datasets in ordinal regression. The proposed 

CWOS-Ord method aims to address this problem by first clustering minority classes by 

considering the instances of other classes and oversampling them based on their distances 

and ordering relationship to other classes’ instances. The final size to oversample the 

clusters depends on their complexity and their initial size so that more synthetic instances 

are generated for more complex and smaller clusters while fewer instances are generated 

for more complex and larger clusters. As a secondary contribution, existing oversampling 

methods for two-class classification have been extended for ordinal regression. Results 

demonstrate that the proposed method provides significantly better results compared to 

other methods based on the performance measures, particularly when used on datasets with 

higher imbalance ratio.     

3) To design a new contour tracking method is presented to automatically track and segment 

pelvic organs on DMRI followed by a multiple-object trajectory classification method to 

improve the diagnosis of pelvic organ prolapse. A model is presented to automatically track, 

segment and analyze multiple pelvic organ movement in DMRI. The outcome of this model 

will provide quantitative data on organ movement to be used in improving the prediction 

of POP. A contour tracking method is proposed to automatically track and segment 

multiple pelvic organs from a sequence of DMRI images. The proposed method first tracks 

the pelvic organs over the frame sequence to generate initial adaptive curves for subsequent 

organ segmentation and to identify those frames that contain significant changes in organ 

movement. Given that segmentation is a computationally expensive process, reducing the 
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number of frames to be segmented to a representative set without losing information aims 

to reduce computation time. On the second stage, pelvic organs are segmented using the 

generated initial adaptive curves on the representative frames. Finally, a new Coupled 

Switched Hidden Markov Model (CSHMM) is proposed as a new dynamic Bayesian model 

to analyze multiple trajectories and their interactions. This model aims to analyze pelvic 

organ movement and define MRI-based features for prolapse diagnosis.  

1.3. Intellectual Merit 

The proposed research aims to address the current challenges regarding the imbalance 

dataset problem in binary data classification and ordinal regression through novel oversampling 

techniques. The proposed research also aims to provide new techniques for tracking, segmenting, 

and analyzing the movement of multiple deformable structures on images for automated feature 

extraction. For binary classification with imbalanced datasets, a new method called ASUWO is 

proposed that identifies hard-to-learn instances and avoids generating synthetic minority instances 

that overlap with the majority class. ASUWO is then extended to address the current challenges in 

ordinal regression with imbalance datasets. The new method called CWOS-Ord considers the 

ordering relationship to other classes’ instances to oversample the clusters based on their 

complexity. Finally, a two-stage method is proposed to automatically track and segment multiple 

pelvic organs from dynamic MRI from a sequence of images. Then, trajectory classification is 

proposed to quantify organ movement to predict the risk of development of POP.  

Clinically, the proposed research is expected to provide a quantitative model to better 

predict the risk of development of POP in women while increasing our understanding of the risk 

factors related to the different types and stages of POP. The proposed techniques will set the 
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foundation towards a computer-aided decision support system that can automatically extract and 

analyze image and clinical data to improve the prediction of POP. 

1.4. Broader Impact 

The outcome of the proposed research will be two new oversampling methods for 

imbalanced datasets for binary classification and ordinal regression. The second outcome is a 

method to automatically track, segment, and classify the trajectory of multiple organs on dynamic 

MRI to quantitatively describe pelvic organ movement. There are a number of broader impacts 

that are expected as a result of this research. First, two generic methods are presented to overcome 

the problem of imbalance datasets for binary classification and ordinal regression. These two 

methods can be applied as the pre-processing stage in any imbalanced datasets with numerical 

features and binary or ordinal outcomes. Experiments on publicly available datasets with different 

imbalance ratios demonstrate the effectiveness of these two methods in addressing the imbalance 

problem and improving classification performance.      

Another broader impact is the ability to automate the process of analyzing the movement 

of multiple deformable structures on images. The proposed method is expected to improve 

automatic tracking, segmentation, and trajectory analysis of multiple deformable structures from 

a sequence of images. The ability to automate the process of tracking, segmentation and 

classification of moving organs in Dynamic MRI is expected to improve the prediction of the 

stages of POP and increase our understanding of risk factors that are directly related to the 

development of a specific stage of POP. This aims to improve the prediction of POP in predisposed 

patients to possibly develop personalized preventive strategies and reduce healthcare costs. 

Although the proposed research focuses on the pelvic region, the proposed techniques are 

applicable to other problems where images have low contrast, high inhomogeneity, and noise. 
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Furthermore, it can be applied to other areas such as motion analysis, gesture recognition, and 

automation and robotics. 

1.5. Outline 

The remaining chapters of the dissertation are organized as follows: Chapter 2 discusses 

the state-of-the-art on imbalanced data classification, ordinal regression with imbalanced datasets, 

POP and current diagnosis, and deformable object tracking and trajectory analysis. Chapter 3 

presents the ASUWO method for addressing the imbalance problem in binary data classification. 

Chapter 4 provides details about the proposed CWOS-Ord method to address the imbalance dataset 

problem in ordinal regression. Chapter 5 presents the proposed automatic tracking, segmentation 

and analysis of multiple pelvic organs on dynamic MRI. Finally, Chapter 6 provides the summary 

and future work, summarizing the major finding and contribution of this dissertation.  
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Chapter 2  

Literature Review 

This chapter provides an overview of previous work in the areas of imbalance data 

classification, the imbalance dataset problem in ordinal regression, pelvic organ prolapse and its 

current diagnosis, and deformable object tracking and trajectory analysis.  

2.1. Imbalanced Dataset Classification 

Methods for addressing imbalanced dataset classification can be categorized into four main 

types of techniques: data preprocessing, algorithmic modification, cost-sensitive learning, and 

ensemble of classifier sampling methods [23, 24].  The data preprocessing techniques modify the 

data distribution in order to address the problem of the skewed class distribution in the learning 

phase [25-27]. The algorithmic modification approaches modify the existing algorithms, to give 

significance to minority instances [28-30]. Cost-sensitive methods combine both algorithm and 

data modification approaches to give different misclassification costs for each class in the learning 

process[31, 32]. Finally, ensemble of classifier sampling methods modify the ensemble learning 

algorithm to address the imbalance problem, however normally they do not change the base 

classifier [33-35].  

Although there is no one single method that works well for all imbalanced dataset problems, 

sampling methods have shown great potential as they attempt to improve the dataset itself rather 

than the classifier [36-39]. Sampling methods change the distribution of each class observation by 

either oversampling the minority samples or undersampling the majority samples. In the case of 
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oversampling, sampling methods generate new minority instances to balance the dataset and in the 

case of undersampling, they remove some majority instances from the dataset. Undersampling 

methods have shown to be less efficient than oversampling methods because the removal of 

majority instances may eliminate important information from the dataset, especially in cases where 

the dataset is small [40-42]. 

The simplest oversampling method is random sampling. It randomly selects a minority 

instance and duplicates it until the minority class reaches a desired size. Random oversampling 

generates new instances that are very similar to the original instances resulting in over-fitting. To 

overcome this problem, Chawla et al. developed Synthetic Minority Oversampling Technique 

(SMOTE) [37] where new synthetic instances are generated between randomly selected minority 

instances and their NN-nearest neighbors, where NN is a user-defined variable. However, this may 

cause over-generalization as the new instances are generated without considering the majority 

instances thus increasing the overlap between minority and majority classes [3, 39, 43]. Over-

generalization can be exacerbated when the dataset has higher imbalance ratio as the instances of 

the minority class are very sparse and can become contained within the majority class after 

oversampling. This can further deteriorate subsequent classification performance [44].   

Various approaches have been proposed to address over-generalization. Safe-level 

SMOTE [45] presents a method that calculates a “safe-level” value for each minority instance, 

then generates synthetic instances closer to the largest safe level. The safe-level value is defined 

as the number of other minority instances among its NN-nearest neighbors. Safe-level SMOTE 

can cause overfitting because synthetic instances are forced to be generated farther from the 

decision boundary. Borderline-SMOTE [38] presents a method to identify the borderline between 

the two classes, and oversamples only the minority samples on the borderline. ADASYN [41] 
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assigns weights to minority instances so that those that have more majority instances in their 

neighborhood have higher chance to be oversampled. However, Borderline-SMOTE and 

ADASYN do not find all the minority instances close to the decision boundary [36]. MWMOTE 

[36] approaches this problem by presenting a two-step procedure to find candidate majority border 

instances and then candidate minority border instances. Then, weights are assigned to candidate 

minority instances based on their Euclidean distances to the candidate majority border instances 

so that those with higher weights have a higher chance to be oversampled. However, small 

concepts of minority instances that are far from the majority class are not detected even if they 

may contain important information as shown in Figure 2.1(a). In general, it is necessary to find 

hard-to-learn instances to be used for oversampling because they contain important information 

for the classifier. These instances are usually near the decision boundary or belong to small 

concepts [3, 40]. The presence of small concepts in the dataset is referred to as within-class 

imbalance.  

 

Recently, clustering-based methods [39, 46-49] have been presented to address within-

class imbalance. Generally, these methods decompose the dataset into several smaller sub-clusters 

Small cluster far 

from majority 

class. 

Minority instances 

Synthetic instances 

Decision Boundary 

Small 

cluster far from 

majority class. 

Majority instances Majority instances 

Minority instances 

Decision Boundary 

Synthetic instances 

(a) (b) 

Figure 2.1 Isolated minority clusters. (a) Minority cluster that is far from the majority 
class is ignored and not oversampled. (b) All minority clusters are oversampled based on 
their misclassification complexity. 
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and use sampling methods to increase or decrease their size. In [46], each class is clustered 

separately so oversampling is performed on all the sub-clusters of the same class to make their size 

equal. Cluster-SMOTE [49] first clusters the minority class into m sub-clusters using k-means 

algorithm and then applies SMOTE to each of them. Under-sampling based on Clustering (SBC) 

[39] method first clusters the whole dataset into m sub-clusters, then for each of them, it computes 

the ratio of the number of majority instances to the number of minority instances. Finally, their 

method removes majority instances based on the ratio, i.e., they remove more majority instances 

from sub-clusters with lower ratio while they keep more majority instances from the ones with 

higher ratio. However, removing instances from the dataset may remove important information. 

In [47], the dataset is partitioned using the Hellinger distance and for each partition, the majority 

instances are undersampled while the minority instances are oversampled to reach a desired 

imbalance ratio. In [48], the minority class is clustered into several arbitrary shaped sub-clusters, 

and the synthetic instances are generated between the minority instances and their corresponding 

sub-cluster's pseudo-centroids. However, these methods do not identify instances that are close to 

the decision boundary and do not consider the classification complexity of the sub-clusters when 

determining the level to which each sub-cluster should be oversampled. 

2.2. Ordinal Regression with Imbalanced Datasets 

Ordinal regression is a supervised approach for learning ordering or ranking patterns, and 

has the properties of both multi-class classification and metric regression. It has properties of 

multi-class classification because the outcome is a finite set but it considers the ordinal relationship 

between classes. Ordinal regression also has properties of metric regression as it assumes the 

outcome variable is a latent continuous variable where the number of ranks is finite and the 

difference between ranks is not defined. Ordinal regression has applications in many areas such as 
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information retrieval [50], credit rating [11], medical risk assessment [12], and preference learning 

[13] because very often, people represent their preferences via ranks and ordered classes. As an 

example, consider a clinical diagnosis where patients can be categorized to stages ranging from 0 

to IV. Higher stages indicate higher severity of the condition so the misclassification error between 

different stages should be penalized differently. For instance, the misclassification error between 

stages 0 and IV should be much higher than the error between stages 0 and I. On the other hand, 

the stages are not continuous and the difference between adjacent stages is not equal making this 

problem different from regular regression.    

Most of the research conducted to address the imbalanced dataset problem focus mainly 

on the two-class problem and some works have addressed the multi-class imbalanced problem [51-

53]. Despite the increasing interest in ordinal regression problems, little research has focused on 

ordinal regression with imbalanced datasets. In [54], a new Ordinal Graph-based Oversampling 

(OGO) framework is proposed to generate synthetic instances by considering the ordering 

relationship between the classes. The framework consists of three versions: OGO-NI, OGO-SP, 

and OGO-ISP. OGO-NI first finds the instances on the border of the adjacent classes and then, it 

creates synthetic instances for the minority class between the minority class instances and the 

instances in the border of the adjacent classes. In OGO-ISP and OGO-SP, minority instances that 

are along the shortest path of their adjacent classes are identified and those that are not on the 

shortest path are removed from the dataset to avoid oversampling outliers. The difference is that 

in OGO-ISP, new instances are created only between the instances of the minority class and not 

the instances of adjacent classes. On the other hand, OGO-SP uses a probability weighting function 

to create synthetic instances between minority classes and also their adjacent classes. All three 
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versions are computationally expensive due to the graph representation of the data and do not 

consider small clusters of data that may contain important information. 

2.3. Pelvic Organ Prolapse and Current Diagnosis 

There are three main types of prolapse depending on the part of the vagina being affected 

[55]: anterior (bladder), apical (uterus), and posterior (rectum). For each type of POP, its severity 

is graded into five levels: Stage 0, I, II, III, and IV, where Stage IV corresponds to the most severe 

level of POP. The distribution of stages for POP has been reported to be highly imbalanced [56, 

57]. Overall, Swift et al. [57] reported the following stage distribution for POP: Stage 0, 6.4%; I, 

43.3%; II, 47.7%; III, 2.6%; and IV, 0%. This highly imbalanced distribution results in insufficient 

data for certain stages of POP. Consequently, this has made it very difficult to identify risk factors 

that are directly related to the development of a certain stage of POP.  

Various potential risk factors have been associated with POP such as age, and vaginal 

delivery [56, 58-61]. However, there is still very little evidence about risk factors that are directly 

related to the different types and stages of POP. Specifically, only weak to moderate correlations 

have been found between the presence of certain factors and the type and stage of POP [62-64]. 

For most cases of severe prolapse (stage II-IV), the preferred treatment is repair surgery. However, 

these surgeries are associated with high failure rates, with approximately 30% of women who 

undergo surgical repair requiring another surgery for recurrence of symptoms [65, 66]. Previous 

studies have shown the benefits of dynamic MRI for complementing clinical examination in the 

evaluation of POP [67, 68].  

Dynamic MRI for pelvic area is a sequence of MRI images taken during straining 

maneuvers starting from minimal to maximal straining as can be seen in Figure 2.2 Dynamic MR 

images (DMRI) offers the advantages of providing a global assessment of the pelvic floor and it 
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has been found especially important in the diagnosis of patients with multi-compartment prolapse 

or who have failed previous prolapse surgeries. It also provides a sequence of MR images to enable 

the observation of pelvic organ movement from rest to maximum strain during examination. DMRI 

is analyzed manually based on pelvic organ movement and reference lines to determine the stages 

of POP.  

Various studies have been performed to correlate clinical examination and MRI data for 

POP diagnosis [17-19]. The main disadvantage of these studies is that they have not been 

completely tested on larger datasets given that the MRI data extraction remains manual, time-

consuming and subjective. Also, there is currently no automated or quantitative approach to extract 

or measure MRI-based features or pelvic organ movement. 

 

Different methods based on DMRI have been suggested to assist in the diagnosis of POP 

[69]. The most common method is to manually find a reference line and determine the distances 

between the lowest point of the pelvic organ wall and the reference line. If the lowest point falls 

Figure 2.2 Dynamic MRI: Midsagittal dynamic MRI of pelvic floor at rest and at 
maximum strain.  
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more than a specified distance below the reference line, the patient is considered to have prolapse. 

Three of the most widely used reference lines are depicted in Figure 2.3 and described as follows:  

1) Pubococcygeal Line (PCL): Straight line between the inferior rim of the pubic bone and 

the last visible coccygeal line [69]. 

2) H-Line: Straight line between inferior rim of the pubic bone to the posterior anal canal [70]. 

3) Mid-pubic line (MPL): Line drawn through the longitudinal axis of the pubic bone and 

passing through its midequatorial point [69]. 

 

 

Even though 3D MRIs could possibly provide more comprehensive information regarding 

pelvic prolapse, it is normally not used clinically due to the high cost-benefit ratio. Moreover, 

using 3D MRI requires reconstruction of the organs, which is a tedious and time-consuming task 

due to highly irregular organ boundaries [71]. For these reasons, 3D MRI is not commonly used 

for supporting the diagnosis of POP so this research concentrates only on 2D MRIs. 

Figure 2.3 DMRI image of pelvic area after maximum strain and the three most 
widely used reference lines. 
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2.4. Deformable Object Tracking, Segmentation and Trajectory Analysis 

The proposed method in Chapter 5 consists of contour tracking followed by trajectory 

classification to improve clinical diagnosis of POP. In this section, an overview of related work on 

object tracking, segmentation, and trajectory classification is presented. 

2.4.1. Tracking 

Object tracking is an important topic in computer vision, particularly in applications such 

as teleconferencing, surveillance, human–computer interface, automation and robotics. Extensive 

surveys for object tracking can be found in [72-74]. Tracking deformable objects is more 

challenging because the object may go through changes in size, shape, color, and texture during 

the image sequence making it very difficult and sometimes impossible to track. Tracking 

algorithms can be grouped into three categories [72, 75]: point tracking, kernel tracking and 

silhouette tracking. 

2.4.1.1.  Point Tracking 

In point tracking, the object of interest is represented by points and the problem is to find 

corresponding points during the video. A very well established method in this category is the 

Kalman Filter [76], which is used to estimate the state of a linear system that is assumed to follow 

a Gaussian distribution.  

Another method in this category is particle filter, which has been shown to be very effective 

and fast for object tracking. A particle filter-based tracker maintains a probability distribution over 

the state (location, velocity) of the object being tracked. Particle filters represent this distribution 

as a set of weighted samples or particles. Each particle is a guess representing one possible location 

of the object being tracked and its corresponding velocity. The set of particles contains more 

weight at locations where the object being tracked has features that are more similar to a set of 
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predefined features. These predefined features describe the intensity and texture of the object being 

tracked [77]. 

2.4.1.2.  Kernel Tracking 

Kernel tracking assume that an object can be distinguished from the background by a kernel 

probability density function (pdf). Among kernel based methods, particle filter [77] uses a cloud 

of weighted particles that propagates in time to represent the posterior pdf. Camshift [78, 79] uses 

the mean shift algorithm to find the centroid of the pdf that represents the object’s location. 

Silhouette tracking is used for complex shapes that cannot be easily described by simple geometric 

shapes. 

2.4.1.3.  Silhouette Tracking  

In silhouette tracking, the object region is estimated in each frame and the information 

inside the object region like appearance density or shape models is used for tracking [72, 75]. 

Contour tracking is an example of silhouette tracking where an initial contour is evolved to its new 

position in the current frame by either using the state space models [80, 81] or direct minimization 

of some energy function [82-84]. In particular, the state space models update the state space at 

each frame to maximize the contour’s posteriori probability. The posterior probability depends on 

the prior state and the likelihood probability of the contour in the current frame. As an example, a 

novel and fast HMM framework is proposed in [80] in which a joint probability data association 

filter (JPDAF) is used to determine the HMM's transition probabilities. Contour evaluation 

methods define the contour as an energy function and minimize it using greedy methods or gradient 

descent. Current contour tracking methods require some part of the object in each frame to have 

overlap with the object region in the previous frame which is not the case in tracking pelvic organs. 
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The organs in dynamic MRI for POP, sometime move dramatically as the patient may move a lot 

during image acquisition. 

2.4.2. Segmentation 

Segmentation is the process of partitioning a digital image into multiple segments. 

Segmentation algorithms can be categorized in several categories including active contours (Snake) 

and graph-based algorithms [72]. Active contours are defined as deforming dynamic curves that 

self-adjust towards the object boundaries by an internal and external energy minimization. 

However, they tend to converge to the closest local minimum of its energy function. Therefore, 

they only provide an accurate segmentation if its initialization is close to the edges of the object. 

In particular, in the segmentation method presented by Chan and Vese [85], the snake starts from 

a rough estimate of the object and then evolves to a close approximation of the object. Each pixel 

on the snake is assigned a velocity that is determined based on the homogeneity of the image and 

shape of the snake at the pixel. This makes the snake move outwards faster in the pixels with higher 

velocity. Graph-based algorithms look for a set of optimum segment boundary lines that separate 

interior and exterior markers. However, they have an inherent bias towards shorter rather than 

better segment boundaries and are sensitive to marker location [86]. 

2.4.3. Trajectory Classification  

Once the object has been tracked and segmented, its trajectory can be used for classification 

by building a model to predict the class of the moving object. Trajectory classification is defined 

as building a model to predict the class of moving objects using their trajectories. It has acquired 

interest recently due to the advance in both hardware and software technologies in extracting 

spatiotemporal data. Trajectory classification has applications in automatic video surveillance, 

activity analysis, sign language recognition, Global Positioning Systems (GPS), intelligent robots 
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and autonomous vehicles. Review for trajectory classification and recognition can be found in 

Morris et al. [87] and Aggarwal et al. [88]. The current trajectory classification methods represent 

the trajectory as a set of 2-dimensional or 3-dimentional points and can be categorized into single 

and multiple trajectories classification. 

2.4.3.1.  Single Trajectory Classification 

Trajectories for hand gestures are extracted in [89] and then classified using time-delay 

neural networks. The input for the neural network is the location, velocity and orientation of the 

points in the trajectories. The trajectory is compressed using Principle Component Analysis (PCA) 

and Gaussian Mixture Models (GMM) is used to model the low-dimensional trajectories in [90]. 

In [91], the trajectory is segmented at points of change in curvature, and then the sub-trajectories 

are represented by PCA. The PCA coefficients of the sub-trajectories are then modeled using 

GMM and Hidden Markov Models (HMM). In one other approach, trajectories are also segmented 

using a set of low level dynamic models [92]. Later HMM is used to describe the switching among 

the segments. Beta process HMM was also used [93], where in contrast to previous methods the 

segments are selectively shared among trajectories. In other words, in all previous methods, 

trajectories from different classes are separately modeled in which the segments cannot be shared 

among activities. 

2.4.3.2.  Multiple Trajectories Classification 

Little research work has been conducted to model multiple trajectories for classification. 

A feature vector in terms of motion energy images (MEI's) and motion history images (MHI's) is 

determined for each instance in [94]. Then, Principle Component Analysis (PCA) is used to reduce 

the dimension of the features followed by a mixture of Gaussian models for classification. 

However, this model is static and does not consider the temporal ordering of the trajectories.  
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Dynamic models have been proposed to take into account the temporal ordering of the 

trajectories. A standard HMM (Figure 2.4.a) can be used to model multiple-objects trajectories 

which results in multidimensional state states and observation space [95]. However, using a simple 

HMM, the number of states increases exponentially with the number of objects and hence it is not 

computationally feasible for large number of objects and over long period of time. To address this 

problem, some topological extensions have been developed by factorizing either the state space or 

the observation space or both. In particular, Multi-Observation Hidden Markov Model (MOHMM) 

was suggested (Figure 2.4.b) in which the observation space is factorized by defining multiple 

observation variables in each time interval [96]. Parallel Hidden Markov Models (PaHMMs) [97] 

(Figure 2.4.c) was also proposed in which both space state and observation states are factorized. 

However, in their method the processes are assumed to be independent which is not always true 

when the trajectories of interacting objects are modeled. A novel distributed multi-dimensional 

hidden Markov model (DHMM) (Figure 2.4.d) was proposed in [98] proposed which first models 

the trajectories as a non-causal, multidimensional hidden Markov model. Then, it distributes the 

T=1 T=2 T=3 T=4 

b) MOHMM a) HMM 

c) PaHMM d) DHMM 

T=1 T=2 T=3 T=4 

Figure 2.4 Schematic comparison of dynamic models for handling multiple 
trajectories 
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non-causal model into multiple distributed causal HMMs which are solvable. Finally, it 

approximates the simultaneous solution of multiple distributed HMMs in a sequential updating 

scheme. However, since DHMM has a fully connected state space, the factorization of the 

variables requires large computations. 

While there has been extensive research on the dynamics of body organs like brain [99], 

heart [100] and lungs [101], few groups have conducted research to develop more efficient 

diagnostic processes using the movement and deformation of soft tissues in the pelvic area. In the 

work proposed in [102], landmarks are tracked over the boundary of pelvic organs during strain 

and the ones in the border having the most contribution to the diagnosis of prolapse are determined 

using statistical analysis. Other works concentrate on simulating the movement of pelvic organs 

(uterus, bladder and rectum) to generate biomechanical models to diagnose prolapse [103]. A 

finite-element-based numerical simulation was presented in [104] to study the effects of vaginal 

delivery on the pelvic floor. However, most of these models are built in 3-dimensional MRI, which 

is not very practical due to their high cost-benefit ratio. 

Current contour tracking methods require manual localization of the objects to be 

segmented. They also rely on the assumption that the boundaries of the objects to be tracked and 

segmented are overlapping in consecutive frames, which is not the case in our MRI dataset. Then, 

the DMRI taken for POP contains multiple frames with very little changes that do not provide any 

additional information. Therefore, these frames need to be identified and removed to reduce 

computation time for segmentation. Finally, in Chapter 5, the concept of switched HMM [92] has 

been extended and solved for multiple trajectories using Coupled HMM.  
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Chapter 3  

Adaptive Semi-Unsupervised Weighted Oversampling (A-SUWO) for Imbalanced 

Datasets1 

A new oversampling method called Adaptive Semi-Unsupervised Weighted Oversampling 

(A-SUWO) is presented for imbalanced binary dataset classification. A-SUWO finds hard-to-learn 

instances by first clustering the minority instances and then assigning higher weights to those 

instances from each sub-cluster that are closer to the majority class. This approach enables the 

identification of all instances that are close to the decision boundary and also considers all sub-

clusters, even small ones, for oversampling as shown in Figure 3.1(b). A-SUWO avoids over-

generalization using two strategies. First, it clusters the minority instances by considering the 

majority class to reduce overlapping between the generated minority instances and majority 

instances. A semi-unsupervised hierarchical clustering approach is proposed that iteratively forms 

minority sub-clusters while avoiding majority sub-clusters in between. Second, it oversamples 

minority instances based on their average Euclidean distance to majority instances to further 

decrease the chance of generating overlapping instances between classes. In addition, A-SUWO 

determines sub-cluster sizes adaptively based on their misclassification error. In our method, 

misclassification error is an indication of sub-cluster complexity and is determined using a new 

measurement based on the standardized average error rate and cross validation. Sub-clusters with 

                                                 

1 This chapter was published in Elsevier Journal of Expert Systems with Applications [105] I. Nekooeimehr and S. K. Lai-Yuen, 
"Adaptive semi-unsupervised weighted oversampling (A-SUWO) for Imbalanced Datasets," Expert Systems with Applications, 2015.. Permission 
is included in Appendix A. 



25 

higher misclassification error will be assigned a larger size while the ones with lower 

misclassification error will be assigned a smaller size.  

A-SUWO consists of three main steps: (1) Semi-Unsupervised Clustering, (2) Adaptive 

Sub-cluster Sizing, and (3) Synthetic Instance Generation. In the first step, the minority instances 

are clustered using a semi-unsupervised hierarchical clustering approach that iteratively forms 

minority sub-clusters while avoiding majority sub-clusters in between. In the Adaptive Sub-cluster 

Sizing step, the size to which each minority sub-cluster will be oversampled is determined based 

on its complexity in being classified (misclassification error). A new measurement based on the 

standardized average error rate is proposed to determine the sub-cluster complexity and is 

calculated using cross validation. Finally, in the Synthetic Instance Generation step, a new 

weighting system is proposed to assign weights to minority instances based on their average 

Euclidean distance to their NN-nearest majority class neighbors so that synthetic instances are 

generated based on these weights. 

3.1. Semi-Unsupervised Clustering 

In general, there are two approaches for generating synthetic instances. The first one is to 

generate a new instance between a candidate instance and one of its 𝑁𝑁-nearest neighbors [37, 38, 

41]. The second approach is to generate a new instance between a candidate instance and one of 

its neighbors from the same sub-cluster [36]. As can be seen in Figure 3.1(a) and 3.1(b), both 

approaches can lead to the generation of synthetic instances that overlap with the instances of the 

other class. In the first approach, some of the 𝑁𝑁-nearest neighbors may be far from the candidate 

instance whereas in the second approach, sub-clusters from different classes may overlap. 

Overlapping synthetic instances can deteriorate the performance of the classifiers significantly [36, 

106]. 
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Our proposed semi-unsupervised hierarchical clustering algorithm is designed to reduce 

the generation of overlapping synthetic instances. The algorithm is based on the Agglomerative 

Complete-Linkage Hierarchical Clustering [107] in which overlapping is checked in each iteration 

for the two minority sub-clusters that are nominated to be merged. If a majority sub-cluster exists 

between them, the algorithm will not merge the minority sub-clusters. Otherwise, the two 

nominated sub-clusters are merged if their distance is less than a pre-defined threshold. In contrast 

with the algorithm presented in [107], our hierarchical clustering method uses information about 

the majority instances to merge the nominated minority sub-clusters and avoid generating 

overlapping synthetic instances as shown in Figure 3.1(c). Given that information about the 

majority instances is used in our clustering approach, the algorithm is not fully unsupervised as in 

conventional clustering approaches but semi-unsupervised. 

Before clustering, noisy instances are identified for both classes using the method 

suggested by [38] and removed from the dataset. For each instance, 𝑁𝑆-nearest neighbors are 

Synthetic instances with 

no overlapping by 

considering the 

majority class. 

Synthetic instances 

generated between 

instances from same 

cluster 

Selected instance and 

its four k-nearest 

neighbors 

(a) (b) 

Minority instances 

(c) 

Majority instances 

Majority cluster 

Figure 3.1 Approaches for new instance (red dots with green outline) generation. (a) 
between selected instances and two of its 4-nearest neighbors (red dots) where the 
generated instances overlap with majority instances (blue dots); (b) between instances of 
the same cluster where the generated instances overlap with majority instances; and (c) 
between selected instances and its 4-nearest neighbors provided that they belong to the 
same cluster. The majority class was also considered while clustering the minority 
instances. 
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found. If all the 𝑁𝑆-nearest neighbors belong to the other class, then the instance is considered as 

noise and removed from the dataset because it indicates that it is surrounded by instances of the 

other class. The Semi-Unsupervised clustering algorithm starts by first clustering the majority class 

using hierarchical clustering, which results in m majority sub-clusters 𝐶𝑚𝑎𝑗𝑖=1,… ,𝑚 . For the 

minority class, a modification of the hierarchical clustering approach was used because 

hierarchical clustering enables the detection and avoidance of majority sub-clusters between the 

generated minority ones. The steps of our proposed semi-unsupervised hierarchical clustering 

algorithm are as follows, assuming that we have a dataset with 𝑁 instances as input:  

1) Assign each minority instance to a separate sub-cluster. This will result in 𝑁 sub-clusters 

of size one 𝐵 = {𝐶𝑚𝑖𝑛𝜏=1,…,𝑁}.  
2) Identify the two sub-clusters say 𝐶𝑚𝑖𝑛𝑎 and 𝐶𝑚𝑖𝑛𝑏 with the lowest Euclidean distance 

between them. Let their distance be represented by 𝜋.  

3) Find majority sub-clusters, say 𝐶𝑚𝑎𝑗𝑖∈𝐴 with the Euclidean distance to 𝐶𝑚𝑖𝑛𝑎 and 𝐶𝑚𝑖𝑛𝑏 

less than 𝜋. 𝐴 is the set of majority class indices with such property.   

4) If 𝐴 ≠ ∅, then, there exists a majority sub-cluster between 𝐶𝑚𝑖𝑛𝑎 and 𝐶𝑚𝑖𝑛𝑏 and hence 

they should not be merged. The distance between 𝐶𝑚𝑖𝑛𝑎 and 𝐶𝑚𝑖𝑛𝑏 will be set to a large 

number to avoid being considered for merging again.  

5) Else, 𝐶𝑚𝑖𝑛𝑎 and 𝐶𝑚𝑖𝑛𝑏 are merged into one sub-cluster 𝐶𝑚𝑖𝑛𝑐. This will result in one 

less member in 𝐵. 

6) Finally, the Euclidean distance between the newly formed minority sub-cluster 𝐶𝑚𝑖𝑛𝑐 and 

existing sub-clusters is recalculated. Steps 2 to 6 are repeated until the Euclidean distance 

between the closest sub-clusters is less than a threshold T. This will result in n minority 

sub-clusters. 
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In contrast with the clustering algorithm from [107], our proposed semi-unsupervised 

hierarchical clustering algorithm checks whether the two sub-clusters 𝐶𝑚𝑖𝑛𝑎 and 𝐶𝑚𝑖𝑛𝑏 contain 

part of a majority sub-cluster (steps 3 through 5). If so, they will not be merged.  

In order to obtain a better estimate of T for both minority and majority classes, the median 

Euclidean distance 𝑑𝑚𝑒𝑑,ℎ of each minority (majority) instance ℎ to all other minority (majority) 

instances is determined. The median Euclidean distance is used rather than the average distance 

because the former is more robust to noisy minority instances. Then, we define 𝑑𝑎𝑣𝑔 as the average 𝑑𝑚𝑒𝑑,ℎ over all minority (majority) instances. Therefore, T can be estimated as follows:   𝑇 =  𝑑𝑎𝑣𝑔 ∗ 𝑐𝑡ℎ𝑟𝑒𝑠                 (3.1) 

where 𝑐𝑡ℎ𝑟𝑒𝑠 is a user-defined constant parameter and its optimum value depends on the dataset. 

Further suggestion regarding the selection of reasonable values for this parameter can be found in 

the “Results and Discussion” section. 

3.2. Adaptive Sub-cluster Sizing 

In current cluster-based oversampling techniques, all sub-clusters have similar sizes after 

oversampling. However, there might be some sub-clusters with higher misclassification error rate 

that need more oversampling. Similarly, there might be some with lower misclassification error 

rate that do not need much oversampling. In the proposed A-SUWO method, the size of the sub-

clusters depends on the misclassification rate of the instances in the sub-cluster. The 

misclassification error for each sub-cluster is calculated using cross validation. This has two main 

goals. The first goal is to balance the dataset with a 1:1 ratio so that both classes are of the same 

size. The second goal is to assign a larger size to sub-clusters with higher misclassification error 

to provide more importance to the ones whose instances are harder to classify. 
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As shown in Figure 3.2, our method first randomly splits each of the 𝑛 minority sub-

clusters into K similar size partitions (K = 3 in the figure). Then, the classification method (Linear 

Discriminant Analysis) runs 𝐾 times and in each fold, 𝐾 − 1 partitions from each minority sub-

cluster and all majority instances (in gray background) are used as the training set.  Linear 

Discriminant Analysis was used as our classifier because it is simple and does not require any 

parameters to tune. Moreover, it was selected over other methods because the purpose is not to get 

high measures, but rather an estimate of the complexity of the sub-clusters. The remaining one 

partition from each minority sub-cluster (in white background) is used as the testing set. The 

misclassification error 𝜀𝑗𝜅 for each minority sub-cluster 𝑗 in fold 𝜅 is determined as the number of 

minority instances in the testing set incorrectly classified as majority. The error rate 𝜀∗𝑗𝜅  is 

obtained by dividing 𝜀𝑗𝜅 by the number of instances in each sub-cluster 𝑅𝑗. The average error rate 𝜀�̅�∗ is then obtained by averaging the error rate over all folds. 

The next step is to standardize 𝜀�̅�∗ to obtain standardized average error rate 𝜀�̂�∗ using the 

following equation. 

Train 
set 

 

 

Majority 

Clusters 

Minority 
Clusters 

Test set 

Figure 3.2 Adaptive minority cluster size identification for oversampling based on 
misclassification error and cross validation. Majority samples (blue dots) and minority 
samples (red dots). 
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𝜀�̂�∗  =  �̅�𝑗∗∑ �̅�𝑗∗𝑛𝑗=1                       (3.2) 

 Following our second goal, the final sizes of any two minority sub-clusters, say 𝐿1 and 𝐿2 

should have similar ratio to their average error rates 𝜀�̂�1∗  and 𝜀�̂�2∗ . That means,  

𝑆𝐿1𝑆𝐿2 = �̂�𝐿1∗�̂�𝐿2∗  ∀ 𝐿1, 𝐿2 ∈ {1,… , 𝑛}        (3.3) 

where 𝑆𝐿1 and 𝑆𝐿2 are the final sizes of 𝐿1 and 𝐿2 after oversampling, respectively. 𝜀�̂�1∗  and 𝜀�̂�2∗  

are the standardized average error rate for 𝐿1 and 𝐿2, respectively.    

The proposed method does not undersample any sub-cluster even if their size calculated 

using cross-validation is less than the initial sub-cluster size to avoid losing any information. After 

determining the required number of instances for each minority sub-cluster (𝑆𝑗=1,..,𝑛), they should 

be oversampled to have the corresponding sizes. 

3.3. Synthetic Instance Generation 

In A-SUWO, we propose to generate synthetic instances between the original instances 

and their 𝑁𝑁-nearest neighbors provided that they belong to the same sub-cluster (Figure 3.1(c)). 

This is to avoid selecting a 𝑁𝑁-nearest neighbor that is far from the instance and that belongs to 

another sub-cluster thus reducing the generation of overlapping synthetic instances. At the same 

time, A-SUWO assigns weights to the instances of all sub-clusters separately, which will guarantee 

that all sub-clusters are oversampled and no isolated small ones are ignored. This is in contrast 

with the work in [36], where there might be some sub-clusters that are not oversampled at all. It is 

important to oversample all sub-clusters in order to overcome within-class imbalance because 

ignoring some of them will bias the classifier toward oversampled ones.     

Following is the description of the A-SUWO oversampling approach. The first step in 

oversampling each minority sub-cluster is to assign weights to each minority instance in the sub-
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cluster based on its average Euclidean distance to 𝑁𝑁-nearest majority class neighbors. The reason 

for giving weights to minority instances lies on the fact that the minority instances closer to the 

majority instances are more prone to be misclassified and thus more important for classification. 

This is in contrast with [36], where the weights are assigned based on their average Euclidean 

distance to all candidate majority border instances even if they are far to some of the minority 

instances. 

For the ℎth minority instance 𝑥𝑗ℎ  in minority sub-cluster 𝐶𝑚𝑖𝑛𝑗 , we find its k nearest 

neighbors according to its Euclidean distance among majority instances 𝑦𝑗ℎ(𝑣)  and record the 

distance 𝑑(𝑥𝑗ℎ, 𝑦𝑗ℎ(𝑣)), where 𝑣 = 1,… , 𝑘 represents the indices of the 𝑁𝑁-nearest neighbors. We 

normalize the distance  𝑑(𝑥𝑗ℎ, 𝑦𝑗ℎ(𝑣)) by dividing by the number of features 𝐷 to make it robust to 

datasets with different number of features. Therefore, we have: 

�̂�(𝑥𝑗ℎ, 𝑦𝑗ℎ(𝑣)) =  𝑑(𝑥𝑗ℎ,𝑦𝑗ℎ(𝑣))𝐷                 (3.4) 

Now, let's define Γ(𝑥𝑗ℎ, 𝑦𝑗ℎ(𝑣)) as the closeness factor between 𝑥𝑗ℎ and 𝑦𝑗ℎ(𝑣).  Γ(𝑥𝑗ℎ, 𝑦𝑗ℎ(𝑣)) =  𝑓𝑖 ( 1�̂�(𝑥𝑗ℎ,𝑦𝑗ℎ(𝑣)))               (3.5) 

where 𝑓𝑗 is a cutoff function for sub-cluster 𝐶𝑗 that prevents 
1�̂�(𝑥𝑗ℎ,𝑦𝑗ℎ(𝑣)) from becoming extremely 

large in the case when the two instances 𝑥𝑗ℎ and 𝑦𝑗ℎ(𝑣) become too close to each other. Therefore, 𝑓𝑗  is defined as:  

𝑓𝑗  (𝑥) =  {𝑥              𝑖𝑓 𝑥 ≤ 𝑇𝐻𝑖 𝑇𝐻𝑗            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              (3.6) 

𝑇𝐻𝑗 is the largest value 𝑓𝑗  (𝑥) can reach. In our method, 𝑇𝐻𝑗   is determined for each sub-

cluster 𝐶𝑗  automatically. This is achieved by finding the Euclidean distance of all minority 
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instances 𝑥𝑗ℎ  in each sub-cluster to their closest majority instance 𝑦𝑗ℎ(1)  and then determining 𝑓( 1�̂�(𝑥𝑗ℎ,𝑦𝑗ℎ(1))). 𝑇𝐻𝑗  is then set as the average of 𝑓( 1�̂�(𝑥𝑗ℎ,𝑦𝑗ℎ(1))). 𝑇𝐻𝑗  =  ∑ 𝑓( 1�̂�(𝑥𝑗ℎ,𝑦𝑗ℎ(1)))𝑅𝑗𝑗=1              (3.7) 

where 𝑅𝑗 is the number of instances in 𝐶𝑗.  Determining 𝑇𝐻𝑗  automatically is a critical step in our 

method as our weighting algorithm runs for each minority sub-cluster separately and each sub-

cluster requires a specific threshold.        

In equation 3.5, we have taken the reciprocal of �̂�(𝑥𝑗ℎ, 𝑦𝑗ℎ(𝑣))  because the minority 

instances closer to the majority instances should have higher weights, while the ones farther from 

majority instances should have lower weights. Finally, the weights 𝑊(𝑥𝑗ℎ) are determined based 

on the Euclidean distance of 𝑥𝑖𝑗 from all 𝑁𝑁-nearest neighbors as follows:  𝑊(𝑥𝑗ℎ) =  ∑ Γ(𝑥𝑗ℎ, 𝑦𝑗ℎ(𝑣))𝑘𝑣=1             (3.8) 

The weights are converted into a probability distribution 𝑃(𝑥𝑖) by dividing each weight by 

the summation of all weights as follows: 

𝑃(𝑥𝑗ℎ) =  𝑊(𝑥𝑗ℎ)∑ 𝑊(𝑥𝑗ℎ)𝑅𝑗ℎ=1                  (3.9) 

In the last step, each 𝐶𝑗 , 𝑗 = 1,… , 𝑛 will be oversampled so that they will have size 𝑆𝑗. In 

order to oversample them, we first select an instance 𝑎 in the sub-cluster by sampling from the 

probability distribution 𝑃(𝑥𝑗ℎ). Then, one of its 𝑁𝑁-nearest neighbors 𝑏 is randomly selected 

provided that they belong to the same sub-cluster and a new instance 𝑐 is generated between 𝑎 and 𝑏 as follows: 𝑐 =  𝛽𝑎 + (1 −  𝛽)𝑏               (3.10) 
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where 𝛽 is a random number between 0 and 1. At the end, as can be seen in Figure 3.3, each 

minority sub-cluster will have some synthetic instances that are generated between original 

minority instances and are closer to the majority instances. The proposed Adaptive Semi-

Unsupervised Weighted Oversampling (A-SUWO) procedure is described as follows: 

    Algorithm 3.1 – Adaptive Cluster-based Borderline Oversampling (A-CBOS): 
Inputs: 
- 𝐼: Original dataset to be oversampled. 
- 𝑐𝑡ℎ𝑟𝑒𝑠: Coefficient to tune the threshold for clustering. 
- 𝑁𝑁: Number of nearest neighbors to be found for each minority instance to determine the weights. 
- 𝑁𝑆: Number of nearest neighbors used to identify noisy instances.  
- K: Number of folds in the K-fold Cross Validation. 
 Outputs: 𝑂: Oversampled dataset. 

     Procedure: 
Semi-Unsupervised Clustering 
1. Remove noisy instances from the dataset.  
2. Determine T using equation 3.1. 
3. Cluster majority class, which will result in m sub-clusters 𝐶𝑚𝑎𝑗𝑖=1,… ,𝑚. 
4. Assign each minority instance to a separate sub-cluster. 
5. Find the two closest sub-clusters 𝐶𝑚𝑖𝑛𝑎 and 𝐶𝑚𝑖𝑛𝑏. 
6. Check if there is any overlapping majority sub-cluster between 𝐶𝑚𝑖𝑛𝑎 and 𝐶𝑚𝑖𝑛𝑏. 
7. If yes, set their distance to infinity and return back to step 5. Else, merge 𝐶𝑚𝑖𝑛𝑎 and 𝐶𝑚𝑖𝑛𝑏 into one sub-cluster 𝐶𝑚𝑖𝑛𝑐.  
8. Repeat steps 5 to 7 until the Euclidean distance between the closest sub-clusters is less than a threshold T. 

Adaptive Sub-cluster Sizing 

1. Randomly split each minority sub-cluster into K folds. 
2. Build a model using 𝐾 − 1 folds from each minority sub-cluster in addition to all majority instances as the training set. 
3. Test the model using the remaining one fold from each minority sub-cluster. 
4.  Determine Standardized Average Minority Error Rate  𝜀�̂�∗. 
5. Repeat steps 2 to 4 K times. 
6. Determine final sizes 𝑆𝑗  for all sub-clusters 𝐶𝑚𝑖𝑛𝑗=1,..,𝑛 using equations 3.2 and 3.3. 

Synthetic Instance Generation 

Determine the probability distribution for instances within each minority sub-cluster:  
- For each sub-cluster j = 1, 2, … , n 

1. For all minority instances 𝑥𝑗ℎ in sub-cluster 𝐶𝑚𝑖𝑛𝑗, find 𝑁𝑁-nearest neighbors among majority instances. 
2. Determine 𝑊(𝑥𝑗ℎ) for each minority instance in sub-cluster 𝐶𝑚𝑖𝑛𝑗 using equations 3.4 – 3.8 and by estimating 𝑇𝐻𝑗. 
3. Transform the weights to a probability distribution  𝑃(𝑥𝑗ℎ) using equation 3.9. 

Oversample minority instances: 
- Initialize 𝑂 = 𝐼.  
- For each sub-cluster j = 1, 2, … , n 

1. Select a minority instance 𝑎 in sub-cluster 𝑗 by sampling from the probability distribution 𝑃(𝑥𝑗ℎ). 
2. Select randomly one of its 𝑁𝑁-nearest neighbors 𝑏 that belongs to the same sub-cluster. 
3. Generate a new synthetic instance 𝑐 between 𝑎 and 𝑏 using equation 3.10. 
4. Add 𝑐 to set 𝑂. 
5. Repeat steps 1 to 4 until the sub-cluster size reaches 𝑆𝑗. 

 

3.4. Results and Discussions 

The proposed A-SUWO method was evaluated on 16 publicly available datasets and 

compared with eight other oversampling techniques: 1) Random Oversampling, 2) SMOTE [37], 

3) Borderline SMOTE [38], 4) Safe-Level SMOTE [45], 5) Cluster SMOTE [49], 6) SBC [46], 7) 
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Clustering-Based Oversampling (CBOS) [46], and 8) MWMOTE [36]. The techniques were 

implemented using Matlab on a workstation with 64-bit Operating System, 4.00 GB RAM, and 

2.67 GHz CPU.  

In this study, the performance measures used to compare the different methods are: F-

measure, G-mean, and Area under Receiving Operator Characteristics Graph (AUC). F-measure 

can be calculated using equations 3.11, 3.12 and 3.13 in which minority instances are referred to 

as positive (𝑃) and majority instances are referred to as negative(𝑁) in the confusion matrix.    𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃𝑇𝑃+𝐹𝑃                  (3.11) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃𝑇𝑃+𝐹𝑁                     (3.12) 

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
(1+𝛽2)∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝛽2∗𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛                    (3.13) 

Precision measures the exactness of the classifier that is, the number of instances labeled 

as positive (minority) that are actually positive. Recall measures the completeness of the classifier 

as the number of positive examples that were classified correctly as positive. The parameter 𝛽 for 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 adjusts the relative importance between precision and recall.   

The G-mean is determined as follows: 

𝐺𝑚𝑒𝑎𝑛 =  √ 𝑇𝑃𝑇𝑃+𝐹𝑁 × 𝑇𝑁𝑇𝑁+𝐹𝑃                             (3.14) 

More Synthetic 

instances generated 

closer to majority 

instances. 

Minority 

Clusters 
C1 

C2 

Figure 3.3 Generation of synthetic instances. Synthetic instances (red dots with green 
outline) are generated between original minority instances (red dots) where the 
generated instances are closer to majority instances (blue dots). 
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G-mean considers the accuracy for both classes. As a result, if the minority class is ignored 

by the classifier and the majority class is favored, the classifier will obtain a low G-mean. 

AUC is the area under ROC graph and is not sensitive to the distribution of the two classes 

which makes it suitable as a performance measure for the imbalanced problem. The ROC graph is 

obtained by plotting the True Positive Rate (TPR) over the False Positive Rate (FPR) as defined 

as follows: 𝑇𝑃𝑅 =  𝑇𝑃𝑁𝑝             𝐹𝑃𝑅 =  𝐹𝑃𝑁𝑛                          (3.15) 

where 𝑁𝑝  is the number of positive (minority) instances and 𝑁𝑛  is the number of negative 

(majority) instances.  

Table 3.1 Description of the datasets 

# Dataset Minority Class Majority 

Class 

# of 

features 

# of 

instances 

# of minority 

instances 

# of majority 

instances 

Imbalanced 

Ratio 

1 Vehicle Class "van" All other 17 846 199 647 1:3.25 
2 Ecoli Class "pp" All other 7 336 52 259 1:4.98 
3 Pima Class "1" Class "0" 8 768 268 500 1:1.87 
4 Balance Class "2” All other 4 625 49 576 1:11.76 
5 Liver  Class "1" Class "2" 6 345 145 200 1:1.38 
6 Wine Class "2" All other 13 178 71 130 1:1.83 
7 Breast Tissue Class "car" and “fad All other 9 106 36 70 1:1.94 
8 Libra Class "1", “2”, “3” All other 90 360 72 288 1:4:00 
9 LEV Class  “1” All. other 4 1000 93 907 1:9.75 
10 Iris Class "2" All other 4 150 50 100 1:2.00 
11 Heart Class "1" Class "-1" 13 270 120 150 1:1.25 
12 Glass Class "1" All other 9 214 70 138 1:1.97 
13 Haberman Class "2" Class "1" 3 306 81 225 1:2.78 
14 Eucalyptus Class "5" All other 91 736 105 631 1:6.01 
15 Heating Class “6”, “7”, “8” All other 8 768 201 567 1:2.82 
16 Segment Class of “WINDOW” All other 18 2310 330 1980 1:6.00 

 

More detailed information about the 16 datasets is shown in Table 3.1. For those datasets 

with more than two classes, they were converted into two-class datasets. In order to determine the 

mean and standard deviation of the performance measures for the oversampling methods, 4-fold 

stratified cross validation was used. Each experiment was repeated 3 times to report the average 

in order to alleviate the randomness effects on the results. 
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Four classifiers were used to evaluate the oversampling methods: Support Vector Machine 

with radial basis function (SVM) [108], Logistic Regression [109], Nearest Neighbors (KNN) 

[110], and Linear Discriminant Analysis (LDA) [111]. The parameters of the four classifiers and 

the nine sampling methods are optimized over a small set of values using stratified cross-validation 

and considering only the training set.  

The cross-validation criterion is G-mean because it is the only criteria that accounts for all 

values in the confusion matrix and provides the more reliable measure. In particular, for SVM, the 

parameters for both cost 𝐶 and gamma γ were selected among the values (2−1 , 20 , 21). For KNN, 

the number of nearest neighbors was selected among the values (4, 5, 6). Logistic Regression and 

LDA do not require any parameters to be tuned. For ASUWO, 𝑐𝑡ℎ𝑟𝑒𝑠 was selected among (1, 2) , 𝑁𝑁 was selected among (3, 5). 𝑁𝑆 was selected among (4, 6) and 𝑘 was set to 3.     

Tables 3.2, 3.3, 3.4 and 3.5 show the results of the mean and standard deviation for our 

proposed A-SUWO method and the other eight sampling methods on the 16 datasets classified 

using the four classifiers. The best measures are shown in bold. A-SUWO obtains the best results 

according to at least one of the measures in 13 out of the 16 datasets when SVM and Logistic 

Regression were used and in 10 out of the 16 datasets when KNN and LDA were used. 

Additionally, the performance variability for A-SUWO does not vary significantly over the four-

fold cross validation and 3 iterations.  

The results are further summarized in Table 3.6, which shows each method’s mean 

rankings in terms of F-measure, G-mean and AUC for all the tested datasets. For each dataset, the 

best performing method receives a ranking of 1 while the method with the worst performance 

receives a ranking of 9. Friedman’s test followed by Holm’s test were performed to verify the 
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statistical significance of our method compared to the other sampling methods. Friedman test is a 

non-parametric equivalent of the repeated-measures ANOVA.  

The null hypothesis in Friedman test is whether all classifiers are performing similarly in 

mean rankings. The results for the Friedman test are shown in Table 3.7. As can be observed from 

the results, for all four classifiers and all three measures, there exists enough evidence at α = 0.05 

to reject the null hypothesis, which means that classifiers are not performing similarly.    

Since the null hypothesis is rejected for all three performance measures, a post-hoc test is 

applied. The Holm’s test was used where our method was considered as the control method. 

Holm’s test is the non-parametric analog of multiple t-test that adjusts α to compensate for multiple 

comparisons in a step-down procedure. The null hypothesis is whether ASUWO performs better 

than other methods as the control algorithm. Table 3.8 shows the adjusted α and the corresponding 

p-value for each method.  

As can be seen from the table, the proposed A-SUWO method outperforms all other 

methods based on all three measures when SVM was used as the classifier. When KNN, Logistic 

Regression and LDA was used as the classifier, A-SUWO is significantly better than all other 

methods in terms of G-mean and F-measure.  

We can also observe that the cluster based undersampling method [39] was the method that 

performs the worst based on all three measures for all classifiers. On the other side, SMOTE and 

Cluster SMOTE perform well according to AUC, while MWMOTE and Safe-Level SMOTE 

perform satisfactory according to F-measure and G-mean. Moreover, it can be observed that 

methods that perform well in terms of G-mean also perform well in terms of F-measure while they 

do not perform well in terms of AUC.     

 



38 

Table 3.2 Results for the sampling methods on the 16 datasets classified using SVM 

Dataset Meas. Random SMOTE 
Borderline 

SMOTE 

Safe-level 

SMOTE 
SBC 

Cluster 

SMOTE 
CBOS MWMOTE A-SUWO 

Vehicle 
F_M 0.955±0.014 0.953±0.019 0.959±0.010 0.954±0.014 0.917±0.026 0.858±0.099 0.955±0.015 0.948±0.010 0.961±0.012 

G-M 0.969±0.009 0.969±0.013 0.972±0.009 0.970±0.009 0.962±0.014 0.931±0.064 0.973±0.007 0.970±0.006 0.976±0.007 

AUC 0.995±0.002 0.994±0.003 0.995±0.003 0.996±0.001 0.993±0.003 0.989±0.013 0.996±0.002 0.995±0.002 0.996±0.002 

Ecoli 
F_M 0.844±0.055 0.860±0.023 0.756±0.069 0.867±0.033 0.586±0.158 0.671±0.230 0.796±0.081 0.851±0.025 0.860±0.032 

G-M 0.933±0.039 0.940±0.032 0.905±0.035 0.938±0.030 0.818±0.114 0.835±0.144 0.913±0.030 0.934±0.032 0.940±0.034 

AUC 0.954±0.036 0.958±0.028 0.947±0.028 0.960±0.034 0.946±0.038 0.929±0.040 0.961±0.031 0.950±0.035 0.959±0.031 

Pima 

F_M 0.593±0.086 0.589±0.080 0.595±0.088 0.607±0.065 0.652±0.020 0.660±0.037 0.649±0.028 0.669±0.022 0.658±0.018 

G-M 0.682±0.071 0.678±0.066 0.681±0.071 0.692±0.053 0.726±0.016 0.736±0.031 0.726±0.022 0.743±0.018 0.734±0.015 

AUC 0.769±0.080 0.757±0.069 0.754±0.069 0.767±0.063 0.809±0.022 0.822±0.036 0.811±0.016 0.813±0.021 0.825±0.022 

Balance 
F_M NaN 0.113±0.066 0.129±0.051 NaN 0.183±0.060 0.213±0.032 0.250±0.054 0.221±0.030 0.212±0.036 

G-M 0.115±0.126 0.358±0.116 0.398±0.086 0.079±0.122 0.574±0.113 0.634±0.048 0.654±0.089 0.596±0.050 0.548±0.086 

AUC 0.666±0.012 0.703±0.030 0.715±0.022 0.679±0.077 0.648±0.096 0.695±0.021 0.767±0.045 0.727±0.026 0.758±0.026 

Liver  

F_M 0.623±0.032 0.607±0.055 0.628±0.042 0.637±0.044 0.590±0.033 0.592±0.030 0.596±0.057 0.595±0.053 0.604±0.044 

G-M 0.668±0.026 0.655±0.041 0.670±0.033 0.683±0.036 0.565±0.067 0.546±0.051 0.640±0.037 0.643±0.040 0.659±0.033 

AUC 0.726±0.027 0.727±0.034 0.734±0.038 0.735±0.034 0.672±0.062 0.671±0.049 0.697±0.046 0.712±0.047 0.719±0.032 

Wine 

F_M 0.976±0.020 0.976±0.020 0.976±0.020 0.976±0.020 0.874±0.113 0.974±0.023 0.981±0.017 0.983±0.021 0.979±0.018 

G-M 0.978±0.019 0.978±0.019 0.978±0.019 0.978±0.019 0.874±0.137 0.978±0.020 0.983±0.015 0.985±0.020 0.981±0.017 

AUC 0.999±0.001 0.999±0.001 0.999±0.001 0.999±0.001 0.990±0.011 0.999±0.002 0.999±0.002 0.999±0.001 0.999±0.001 

Breast 

F_M 0.634±0.085 0.654±0.085 0.677±0.082 0.663±0.060 0.695±0.074 0.679±0.063 0.664±0.087 0.672±0.087 0.685±0.088 

G-M 0.704±0.077 0.722±0.078 0.741±0.081 0.729±0.057 0.749±0.085 0.718±0.082 0.734±0.077 0.739±0.086 0.748±0.088 

AUC 0.815±0.063 0.829±0.052 0.834±0.071 0.833±0.054 0.806±0.076 0.834±0.077 0.860±0.059 0.849±0.065 0.860±0.066 

Libra 
F_M 0.509±0.085 0.625±0.140 0.540±0.098 0.610±0.117 0.731±0.142 0.803±0.099 0.719±0.101 0.670±0.080 0.684±0.098 

G-M 0.725±0.072 0.756±0.115 0.750±0.082 0.750±0.093 0.762±0.115 0.828±0.092 0.751±0.082 0.711±0.065 0.723±0.079 

AUC 0.995±0.007 0.994±0.007 0.995±0.007 0.995±0.007 0.989±0.013 0.988±0.012 0.996±0.006 0.996±0.006 0.996±0.006 

LEV 
F_M 0.477±0.048 0.510±0.043 0.471±0.039 0.568±0.049 0.358±0.056 0.459±0.103 0.415±0.053 0.513±0.045 0.553±0.064 
G-M 0.747±0.047 0.746±0.049 0.746±0.041 0.762±0.048 0.750±0.055 0.773±0.066 0.792±0.040 0.797±0.057 0.804±0.076 

AUC 0.748±0.055 0.750±0.053 0.755±0.053 0.787±0.062 0.864±0.034 0.884±0.041 0.869±0.038 0.889±0.029 0.870±0.073 

Iris 

F_M 0.947±0.035 0.956±0.025 0.938±0.042 0.956±0.025 0.803±0.141 0.828±0.120 0.951±0.031 0.947±0.034 0.956±0.025 

G-M 0.967±0.024 0.972±0.018 0.962±0.028 0.972±0.018 0.832±0.136 0.868±0.100 0.967±0.022 0.970±0.021 0.972±0.018 

AUC 0.993±0.004 0.994±0.004 0.986±0.014 0.993±0.004 0.990±0.012 0.983±0.016 0.993±0.005 0.993±0.004 0.994±0.004 

Heart 
F_M 0.797±0.028 0.796±0.034 0.794±0.022 0.793±0.026 0.790±0.059 0.812±0.027 0.794±0.030 0.801±0.037 0.810±0.036 

G-M 0.817±0.023 0.816±0.029 0.813±0.019 0.814±0.022 0.776±0.130 0.828±0.021 0.814±0.025 0.821±0.031 0.829±0.030 

AUC 0.865±0.027 0.867±0.027 0.858±0.020 0.864±0.026 0.864±0.043 0.870±0.031 0.860±0.022 0.872±0.028 0.873±0.027 

Glass 

F_M 0.755±0.028 0.740±0.042 0.746±0.047 0.745±0.035 0.650±0.040 0.662±0.042 0.741±0.031 0.750±0.033 0.755±0.027 

G-M 0.828±0.028 0.813±0.036 0.819±0.041 0.818±0.031 0.699±0.050 0.709±0.067 0.812±0.032 0.821±0.027 0.828±0.025 

AUC 0.873±0.020 0.873±0.022 0.867±0.030 0.880±0.023 0.821±0.063 0.856±0.037 0.862±0.030 0.861±0.035 0.870±0.028 

Haber 

F_M 0.435±0.036 0.410±0.042 0.445±0.067 0.401±0.035 0.442±0.049 0.395±0.059 0.389±0.034 0.395±0.069 0.412±0.050 

G-M 0.591±0.031 0.571±0.037 0.604±0.059 0.566±0.031 0.593±0.042 0.553±0.045 0.552±0.028 0.559±0.062 0.571±0.046 

AUC 0.651±0.031 0.645±0.040 0.649±0.052 0.632±0.027 0.628±0.032 0.636±0.049 0.621±0.025 0.633±0.042 0.659±0.018 

Eucal. 
F_M NaN 0.189±0.118 0.412±0.082 0.162±0.097 0.327±0.130 0.379±0.124 0.410±0.127 0.421±0.059 0.417±0.061 

G-M 0.097±0.112 0.335±0.145 0.567±0.063 0.303±0.116 0.594±0.192 0.648±0.182 0.615±0.132 0.604±0.077 0.617±0.061 

AUC 0.707±0.053 0.733±0.036 0.778±0.031 0.724±0.045 0.746±0.072 0.752±0.073 0.753±0.049 0.797±0.053 0.785±0.045 

Heating 
F_M NaN 0.591±0.021 0.572±0.022 0.614±0.027 0.741±0.071 0.698±0.031 0.746±0.022 0.756±0.039 0.759±0.052 

G-M 0.431±0.374 0.690±0.007 0.674±0.012 0.706±0.025 0.844±0.052 0.823±0.013 0.846±0.025 0.859±0.025 0.865±0.034 

AUC 0.844±0.038 0.875±0.027 0.853±0.011 0.887±0.015 0.891±0.044 0.880±0.037 0.919±0.020 0.919±0.014 0.923±0.021 

Seg. 
F_M 0.874±0.017 0.886±0.031 0.852±0.024 0.883±0.033 0.650±0.158 0.696±0.062 0.855±0.015 0.826±0.056 0.868±0.006 

G-M 0.956±0.009 0.956±0.014 0.940±0.027 0.950±0.012 0.884±0.081 0.915±0.021 0.957±0.011 0.946±0.011 0.948±0.008 

AUC 0.986±0.006 0.986±0.006 0.986±0.004 0.983±0.002 0.969±0.017 0.976±0.006 0.987±0.004 0.983±0.008 0.984±0.005 
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Table 3.3 Results for the sampling methods on the 16 datasets classified using KNN 

Dataset Meas. Random SMOTE 
Borderline 

SMOTE 

Safe-level 

SMOTE 
SBC 

Cluster 

SMOTE 
CBOS MWMOTE A-SUWO 

Vehicle 

F_M 0.840±0.025 0.835±0.018 0.864±0.027 0.840±0.022 0.743±0.102 0.833±0.022 0.869±0.032 0.842±0.023 0.903±0.020 

G-M 0.930±0.014 0.928±0.009 0.940±0.018 0.929±0.010 0.854±0.074 0.926±0.011 0.942±0.014 0.930±0.012 0.954±0.010 

AUC 0.981±0.006 0.984±0.007 0.982±0.004 0.985±0.005 0.962±0.014 0.985±0.004 0.983±0.004 0.982±0.005 0.983±0.008 

Ecoli 

F_M 0.735±0.042 0.731±0.072 0.692±0.055 0.828±0.045 0.601±0.141 0.766±0.025 0.780±0.068 0.795±0.057 0.840±0.049 

G-M 0.906±0.027 0.902±0.031 0.890±0.029 0.932±0.035 0.822±0.107 0.915±0.026 0.913±0.029 0.924±0.035 0.935±0.034 

AUC 0.939±0.035 0.939±0.035 0.924±0.026 0.947±0.040 0.932±0.033 0.944±0.037 0.935±0.034 0.944±0.039 0.945±0.037 

Pima 

F_M 0.617±0.029 0.616±0.044 0.609±0.026 0.627±0.034 0.590±0.050 0.639±0.022 0.579±0.034 0.618±0.035 0.612±0.023 

G-M 0.690±0.023 0.687±0.039 0.673±0.024 0.701±0.028 0.663±0.036 0.707±0.020 0.663±0.029 0.687±0.031 0.683±0.020 

AUC 0.742±0.042 0.741±0.045 0.733±0.036 0.754±0.036 0.736±0.032 0.768±0.026 0.715±0.037 0.747±0.033 0.741±0.026 

Balance 

F_M 0.000±0.000 0.094±0.038 0.093±0.052 0.000±0.000 0.208±0.021 0.243±0.045 0.124±0.051 0.134±0.061 0.126±0.075 

G-M 0.076±0.118 0.362±0.085 0.357±0.107 0.170±0.137 0.612±0.041 0.649±0.081 0.417±0.109 0.433±0.125 0.417±0.146 

AUC 0.445±0.020 0.525±0.042 0.528±0.048 0.454±0.040 0.729±0.039 0.717±0.064 0.564±0.049 0.557±0.064 0.592±0.056 

Liver  

F_M 0.592±0.029 0.576±0.039 0.596±0.031 0.574±0.049 0.557±0.054 0.581±0.037 0.587±0.031 0.584±0.036 0.553±0.064 

G-M 0.567±0.025 0.551±0.044 0.569±0.019 0.554±0.054 0.481±0.049 0.550±0.040 0.577±0.039 0.562±0.021 0.567±0.033 

AUC 0.608±0.044 0.602±0.035 0.629±0.044 0.607±0.054 0.575±0.058 0.611±0.037 0.612±0.036 0.616±0.048 0.603±0.030 

Wine 
F_M 0.950±0.030 0.953±0.027 0.958±0.031 0.964±0.028 0.910±0.118 0.957±0.024 0.960±0.022 0.964±0.030 0.969±0.031 

G-M 0.956±0.026 0.960±0.023 0.965±0.026 0.968±0.025 0.908±0.132 0.964±0.022 0.964±0.020 0.968±0.027 0.971±0.029 

AUC 0.990±0.012 0.990±0.012 0.992±0.012 0.991±0.012 0.979±0.035 0.990±0.013 0.981±0.020 0.991±0.012 0.991±0.013 

Breast 

F_M 0.682±0.076 0.697±0.080 0.700±0.083 0.706±0.066 0.689±0.075 0.738±0.095 0.698±0.075 0.700±0.067 0.710±0.064 

G-M 0.752±0.065 0.763±0.075 0.763±0.080 0.771±0.064 0.734±0.093 0.795±0.090 0.760±0.072 0.766±0.069 0.779±0.053 

AUC 0.845±0.035 0.849±0.039 0.851±0.046 0.846±0.039 0.825±0.052 0.859±0.054 0.844±0.056 0.856±0.038 0.845±0.045 

Libra 
F_M 0.974±0.018 0.979±0.021 0.966±0.025 0.974±0.026 0.811±0.140 0.949±0.039 0.979±0.018 0.977±0.019 0.981±0.020 

G-M 0.983±0.014 0.984±0.015 0.979±0.015 0.978±0.024 0.918±0.073 0.978±0.022 0.984±0.015 0.984±0.015 0.985±0.016 

AUC 0.986±0.015 0.988±0.015 0.988±0.015 0.986±0.015 0.986±0.014 0.992±0.012 0.986±0.015 0.986±0.015 0.988±0.015 

LEV 

F_M 0.446±0.044 0.451±0.033 0.436±0.038 0.568±0.056 0.324±0.036 0.474±0.072 0.465±0.042 0.477±0.042 0.581±0.066 
G-M 0.760±0.044 0.755±0.034 0.759±0.038 0.768±0.038 0.735±0.046 0.755±0.064 0.741±0.036 0.771±0.043 0.759±0.038 

AUC 0.791±0.046 0.799±0.042 0.787±0.039 0.810±0.050 0.833±0.049 0.814±0.056 0.795±0.038 0.801±0.046 0.807±0.043 

Iris 
F_M 0.937±0.035 0.942±0.040 0.916±0.041 0.937±0.043 0.826±0.114 0.937±0.039 0.929±0.047 0.933±0.034 0.942±0.025 

G-M 0.959±0.025 0.962±0.026 0.946±0.030 0.957±0.031 0.873±0.099 0.959±0.029 0.954±0.033 0.957±0.024 0.965±0.016 

AUC 0.975±0.023 0.980±0.019 0.973±0.026 0.975±0.022 0.966±0.024 0.979±0.020 0.979±0.019 0.972±0.019 0.977±0.020 

Heart 
F_M 0.825±0.024 0.826±0.021 0.809±0.014 0.824±0.024 0.823±0.017 0.823±0.027 0.787±0.026 0.820±0.024 0.832±0.021 

G-M 0.836±0.021 0.838±0.019 0.812±0.019 0.836±0.021 0.833±0.016 0.835±0.023 0.801±0.025 0.832±0.022 0.845±0.018 

AUC 0.893±0.019 0.890±0.020 0.876±0.015 0.892±0.020 0.888±0.024 0.894±0.019 0.861±0.021 0.891±0.020 0.886±0.027 

Glass 

F_M 0.688±0.027 0.707±0.041 0.696±0.029 0.696±0.034 0.629±0.038 0.702±0.031 0.709±0.034 0.700±0.034 0.720±0.023 

G-M 0.766±0.024 0.783±0.037 0.773±0.024 0.773±0.029 0.669±0.062 0.778±0.027 0.786±0.030 0.779±0.029 0.796±0.022 

AUC 0.839±0.039 0.855±0.036 0.841±0.048 0.850±0.030 0.819±0.043 0.853±0.026 0.859±0.034 0.846±0.033 0.856±0.030 

Haber 
F_M 0.401±0.043 0.393±0.068 0.403±0.071 0.367±0.057 0.391±0.052 0.447±0.047 0.383±0.052 0.401±0.087 0.392±0.048 

G-M 0.560±0.038 0.552±0.062 0.559±0.068 0.535±0.051 0.520±0.036 0.593±0.046 0.548±0.045 0.560±0.078 0.558±0.042 

AUC 0.574±0.035 0.566±0.054 0.569±0.051 0.571±0.039 0.562±0.062 0.609±0.043 0.578±0.040 0.576±0.062 0.576±0.044 

Eucal. 

F_M 0.395±0.027 0.343±0.025 0.342±0.018 0.354±0.024 0.340±0.020 0.388±0.061 0.361±0.021 0.329±0.031 0.368±0.020 

G-M 0.679±0.028 0.647±0.032 0.644±0.021 0.650±0.029 0.620±0.036 0.687±0.064 0.666±0.020 0.632±0.035 0.674±0.020 

AUC 0.724±0.049 0.730±0.026 0.719±0.028 0.728±0.018 0.730±0.041 0.734±0.069 0.708±0.032 0.701±0.040 0.720±0.025 

Heating 

F_M 0.697±0.022 0.711±0.030 0.707±0.044 0.724±0.019 0.697±0.014 0.716±0.021 0.665±0.098 0.704±0.014 0.752±0.048 

G-M 0.821±0.011 0.835±0.021 0.834±0.035 0.845±0.015 0.827±0.011 0.841±0.013 0.781±0.094 0.829±0.006 0.860±0.027 

AUC 0.874±0.014 0.875±0.016 0.866±0.023 0.886±0.019 0.896±0.024 0.897±0.013 0.865±0.033 0.885±0.021 0.886±0.016 

Seg. 
F_M 0.832±0.028 0.827±0.033 0.829±0.024 0.848±0.027 0.593±0.048 0.833±0.041 0.824±0.027 0.838±0.031 0.855±0.025 

G-M 0.948±0.012 0.946±0.013 0.945±0.015 0.950±0.009 0.876±0.027 0.953±0.013 0.947±0.010 0.950±0.011 0.947±0.013 

AUC 0.967±0.012 0.973±0.012 0.972±0.010 0.971±0.012 0.954±0.017 0.978±0.009 0.969±0.009 0.969±0.011 0.964±0.006 
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Table 3.4 Results for the sampling methods on the 16 datasets classified using Logistic 
Regression 

Dataset Meas. Random SMOTE 
Borderline 

SMOTE 

Safe-level 

SMOTE 
SBC 

Cluster 

SMOTE 
CBOS MWMOTE A-SUWO 

Vehicle 
F_M 0.932±0.019 0.934±0.020 0.923±0.028 0.932±0.019 0.903±0.025 0.931±0.021 0.930±0.021 0.934±0.020 0.921±0.028 

G-M 0.963±0.012 0.961±0.014 0.951±0.025 0.960±0.016 0.950±0.009 0.960±0.016 0.958±0.016 0.961±0.014 0.951±0.024 

AUC 0.991±0.006 0.991±0.005 0.989±0.007 0.991±0.006 0.987±0.004 0.991±0.005 0.991±0.006 0.990±0.005 0.991±0.006 

Ecoli 

F_M 0.703±0.039 0.696±0.034 0.601±0.046 0.700±0.020 0.546±0.156 0.692±0.035 0.685±0.085 0.698±0.051 0.716±0.033 

G-M 0.878±0.021 0.871±0.029 0.839±0.015 0.857±0.039 0.780±0.118 0.863±0.024 0.860±0.031 0.873±0.030 0.863±0.015 

AUC 0.933±0.026 0.933±0.027 0.913±0.023 0.933±0.026 0.875±0.088 0.927±0.025 0.924±0.025 0.931±0.026 0.933±0.027 

Pima 
F_M 0.593±0.086 0.589±0.080 0.595±0.088 0.607±0.065 0.652±0.020 0.660±0.037 0.649±0.028 0.669±0.022 0.658±0.018 

G-M 0.682±0.071 0.678±0.066 0.681±0.071 0.692±0.053 0.726±0.016 0.736±0.031 0.726±0.022 0.743±0.018 0.734±0.015 

AUC 0.769±0.080 0.757±0.069 0.754±0.069 0.767±0.063 0.809±0.022 0.822±0.036 0.811±0.016 0.813±0.021 0.825±0.022 

Balance 

F_M 0.110±0.032 0.111±0.025 0.116±0.030 0.115±0.060 0.089±0.028 0.133±0.039 0.102±0.023 0.111±0.019 0.149±0.027 

G-M 0.442±0.068 0.447±0.053 0.456±0.061 0.425±0.093 0.393±0.067 0.489±0.083 0.427±0.052 0.448±0.036 0.517±0.048 

AUC 0.419±0.042 0.432±0.033 0.428±0.037 0.449±0.089 0.448±0.052 0.483±0.070 0.436±0.050 0.417±0.034 0.530±0.065 

Liver  

F_M 0.606±0.052 0.627±0.043 0.611±0.068 0.625±0.037 0.596±0.015 0.617±0.033 0.579±0.064 0.628±0.040 0.637±0.044 

G-M 0.641±0.048 0.658±0.034 0.646±0.054 0.661±0.029 0.570±0.063 0.651±0.030 0.600±0.044 0.662±0.031 0.676±0.034 

AUC 0.714±0.031 0.718±0.029 0.715±0.033 0.720±0.024 0.694±0.026 0.718±0.025 0.690±0.045 0.720±0.023 0.720±0.032 

Wine 
F_M 0.947±0.034 0.945±0.030 0.945±0.030 0.942±0.030 0.942±0.025 0.945±0.030 0.947±0.034 0.945±0.030 0.952±0.036 

G-M 0.954±0.032 0.952±0.030 0.952±0.030 0.950±0.029 0.954±0.022 0.952±0.030 0.954±0.032 0.952±0.030 0.959±0.031 

AUC 0.995±0.005 0.994±0.007 0.994±0.008 0.995±0.006 0.992±0.010 0.995±0.006 0.995±0.005 0.994±0.008 0.996±0.004 

Breast 
F_M 0.724±0.085 0.733±0.096 0.696±0.078 0.738±0.093 0.697±0.064 0.759±0.066 0.739±0.093 0.725±0.074 0.764±0.091 

G-M 0.792±0.070 0.796±0.076 0.770±0.065 0.803±0.075 0.763±0.062 0.821±0.054 0.806±0.080 0.794±0.062 0.824±0.073 

AUC 0.880±0.079 0.882±0.080 0.896±0.061 0.883±0.080 0.854±0.073 0.880±0.083 0.892±0.072 0.885±0.069 0.890±0.073 

Libra 

F_M 0.485±0.109 0.504±0.101 0.505±0.092 0.503±0.098 0.320±0.077 0.498±0.115 0.529±0.128 0.508±0.112 0.541±0.099 

G-M 0.647±0.090 0.662±0.088 0.659±0.084 0.658±0.082 0.536±0.079 0.656±0.104 0.678±0.114 0.665±0.097 0.683±0.088 

AUC 0.696±0.091 0.710±0.106 0.705±0.099 0.707±0.101 0.549±0.095 0.708±0.101 0.708±0.104 0.703±0.102 0.707±0.096 

LEV 
F_M 0.445±0.024 0.469±0.030 0.387±0.025 0.565±0.058 0.428±0.033 0.448±0.045 0.428±0.055 0.512±0.032 0.586±0.082 
G-M 0.813±0.032 0.822±0.033 0.795±0.027 0.815±0.063 0.810±0.026 0.811±0.042 0.815±0.037 0.824±0.042 0.813±0.071 

AUC 0.893±0.034 0.894±0.034 0.888±0.034 0.896±0.034 0.892±0.037 0.893±0.034 0.883±0.050 0.893±0.034 0.897±0.039 

Iris 

F_M 0.936±0.029 0.931±0.031 0.941±0.018 0.941±0.018 0.893±0.110 0.941±0.019 0.931±0.031 0.936±0.029 0.941±0.018 

G-M 0.955±0.023 0.950±0.026 0.960±0.012 0.960±0.012 0.918±0.101 0.957±0.017 0.950±0.026 0.955±0.023 0.960±0.012 

AUC 0.991±0.006 0.992±0.006 0.991±0.006 0.992±0.006 0.970±0.057 0.993±0.005 0.992±0.006 0.992±0.006 0.992±0.005 

Heart 
F_M 0.853±0.027 0.853±0.028 0.852±0.027 0.849±0.029 0.845±0.028 0.852±0.028 0.829±0.025 0.851±0.027 0.853±0.028 

G-M 0.866±0.025 0.865±0.026 0.864±0.026 0.862±0.027 0.858±0.026 0.865±0.026 0.844±0.023 0.864±0.025 0.866±0.026 

AUC 0.930±0.016 0.930±0.016 0.923±0.015 0.930±0.015 0.923±0.015 0.930±0.015 0.915±0.015 0.929±0.015 0.929±0.017 

Glass 
F_M 0.649±0.038 0.637±0.040 0.635±0.050 0.629±0.062 0.642±0.034 0.640±0.058 0.670±0.058 0.641±0.046 0.663±0.040 

G-M 0.735±0.030 0.725±0.033 0.721±0.044 0.718±0.049 0.699±0.049 0.727±0.049 0.753±0.049 0.728±0.037 0.749±0.035 

AUC 0.827±0.037 0.830±0.035 0.820±0.038 0.827±0.034 0.803±0.044 0.824±0.036 0.822±0.037 0.825±0.034 0.818±0.033 

Haber 

F_M 0.477±0.049 0.465±0.032 0.467±0.041 0.462±0.022 0.458±0.075 0.459±0.067 0.469±0.080 0.453±0.056 0.508±0.074 

G-M 0.626±0.041 0.617±0.022 0.622±0.034 0.612±0.022 0.601±0.074 0.605±0.052 0.614±0.079 0.606±0.046 0.649±0.059 

AUC 0.673±0.049 0.648±0.029 0.654±0.039 0.653±0.036 0.629±0.082 0.645±0.062 0.634±0.104 0.638±0.038 0.695±0.074 

Eucal. 

F_M 0.499±0.037 0.498±0.041 0.512±0.048 0.496±0.015 0.366±0.024 0.502±0.077 0.515±0.023 0.498±0.044 0.511±0.029 

G-M 0.731±0.038 0.730±0.039 0.746±0.046 0.720±0.014 0.672±0.036 0.727±0.071 0.747±0.018 0.724±0.034 0.728±0.013 

AUC 0.846±0.016 0.845±0.017 0.843±0.015 0.846±0.018 0.738±0.016 0.842±0.012 0.845±0.023 0.848±0.017 0.834±0.029 

Heating 

F_M 0.720±0.059 0.726±0.041 0.720±0.053 0.723±0.058 0.726±0.055 0.732±0.042 0.720±0.059 0.730±0.048 0.728±0.059 

G-M 0.839±0.045 0.842±0.029 0.845±0.043 0.837±0.044 0.840±0.042 0.844±0.029 0.835±0.043 0.845±0.033 0.841±0.047 

AUC 0.916±0.027 0.919±0.028 0.907±0.030 0.918±0.028 0.915±0.028 0.919±0.026 0.915±0.030 0.917±0.028 0.921±0.026 

Seg. 
F_M 0.641±0.039 0.647±0.030 0.602±0.026 0.657±0.025 0.591±0.075 0.667±0.008 0.630±0.023 0.657±0.034 0.661±0.018 

G-M 0.878±0.012 0.877±0.017 0.854±0.017 0.879±0.016 0.867±0.042 0.872±0.002 0.881±0.019 0.875±0.004 0.879±0.011 

AUC 0.942±0.008 0.942±0.008 0.908±0.021 0.942±0.008 0.901±0.051 0.944±0.010 0.937±0.006 0.944±0.010 0.942±0.008 
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Table 3.5 Results for the sampling methods on the 16 datasets classified using LDA 

Dataset Meas. Random SMOTE 
Borderline 

SMOTE 

Safe-level 

SMOTE 
SBC 

Cluster 

SMOTE 
CBOS MWMOTE A-SUWO 

Vehicle 

F_M 0.923±0.014 0.923±0.020 0.921±0.025 0.925±0.016 0.909±0.020 0.926±0.014 0.932±0.012 0.917±0.019 0.935±0.013 

G-M 0.963±0.005 0.963±0.007 0.950±0.021 0.963±0.005 0.959±0.010 0.963±0.006 0.965±0.007 0.961±0.009 0.964±0.010 

AUC 0.990±0.004 0.991±0.004 0.990±0.007 0.990±0.004 0.986±0.011 0.991±0.004 0.989±0.006 0.991±0.004 0.990±0.005 

Ecoli 

F_M 0.729±0.029 0.724±0.046 0.618±0.039 0.743±0.038 0.583±0.142 0.718±0.034 0.713±0.089 0.722±0.038 0.735±0.021 

G-M 0.907±0.017 0.901±0.008 0.847±0.014 0.911±0.017 0.818±0.116 0.890±0.018 0.899±0.041 0.901±0.010 0.901±0.018 

AUC 0.937±0.027 0.936±0.027 0.919±0.017 0.937±0.028 0.920±0.059 0.939±0.027 0.938±0.027 0.938±0.026 0.939±0.028 

Pima 
F_M 0.663±0.039 0.669±0.038 0.675±0.027 0.670±0.038 0.666±0.034 0.661±0.028 0.652±0.024 0.666±0.025 0.671±0.038 

G-M 0.739±0.033 0.743±0.031 0.747±0.023 0.744±0.031 0.740±0.028 0.737±0.023 0.728±0.020 0.741±0.021 0.745±0.032 

AUC 0.828±0.030 0.829±0.029 0.828±0.031 0.831±0.027 0.825±0.028 0.830±0.025 0.814±0.023 0.828±0.026 0.826±0.028 

Balance 
F_M 0.110±0.031 0.111±0.025 0.116±0.030 0.119±0.066 0.115±0.017 0.126±0.028 0.107±0.035 0.113±0.021 0.149±0.029 

G-M 0.442±0.067 0.447±0.053 0.456±0.061 0.435±0.105 0.454±0.030 0.476±0.059 0.437±0.079 0.451±0.045 0.517±0.049 

AUC 0.419±0.042 0.432±0.033 0.428±0.037 0.449±0.089 0.451±0.032 0.472±0.066 0.454±0.074 0.429±0.043 0.533±0.051 

Liver  

F_M 0.604±0.051 0.601±0.063 0.600±0.064 0.610±0.057 0.599±0.013 0.602±0.062 0.592±0.029 0.603±0.057 0.613±0.063 

G-M 0.636±0.048 0.632±0.051 0.631±0.054 0.640±0.048 0.555±0.057 0.632±0.051 0.621±0.033 0.633±0.050 0.654±0.048 

AUC 0.708±0.040 0.711±0.040 0.710±0.039 0.713±0.039 0.676±0.031 0.710±0.040 0.678±0.038 0.710±0.037 0.708±0.047 

Wine 

F_M 0.965±0.032 0.959±0.029 0.976±0.021 0.961±0.031 0.929±0.068 0.973±0.018 0.966±0.019 0.966±0.022 0.968±0.019 

G-M 0.967±0.031 0.964±0.026 0.977±0.019 0.964±0.030 0.936±0.069 0.974±0.018 0.970±0.017 0.970±0.021 0.970±0.018 

AUC 0.999±0.001 0.999±0.002 0.999±0.002 0.998±0.002 0.990±0.012 0.999±0.001 0.999±0.002 0.999±0.001 0.999±0.001 

Breast 
F_M 0.707±0.066 0.696±0.060 0.698±0.083 0.706±0.076 0.677±0.057 0.704±0.080 0.703±0.078 0.719±0.080 0.719±0.093 

G-M 0.762±0.087 0.754±0.078 0.752±0.094 0.765±0.091 0.720±0.079 0.760±0.092 0.763±0.091 0.769±0.097 0.773±0.102 

AUC 0.899±0.031 0.897±0.042 0.882±0.026 0.891±0.028 0.873±0.044 0.887±0.028 0.887±0.033 0.892±0.034 0.897±0.028 

Libra 
F_M 0.511±0.092 0.521±0.111 0.517±0.106 0.502±0.149 0.300±0.079 0.511±0.100 0.500±0.110 0.506±0.128 0.541±0.098 

G-M 0.676±0.079 0.684±0.096 0.675±0.091 0.667±0.124 0.519±0.083 0.674±0.091 0.662±0.095 0.670±0.112 0.691±0.081 

AUC 0.696±0.089 0.702±0.096 0.705±0.097 0.693±0.094 0.546±0.082 0.701±0.090 0.695±0.081 0.686±0.093 0.715±0.101 

LEV 

F_M 0.498±0.050 0.518±0.055 0.459±0.042 0.533±0.064 0.386±0.028 0.493±0.051 0.489±0.056 0.541±0.071 0.564±0.075 
G-M 0.675±0.034 0.745±0.052 0.712±0.042 0.698±0.045 0.779±0.030 0.736±0.041 0.718±0.052 0.721±0.046 0.712±0.053 

AUC 0.861±0.037 0.854±0.036 0.837±0.034 0.873±0.045 0.869±0.039 0.858±0.017 0.847±0.033 0.853±0.040 0.847±0.058 

Iris 

F_M 0.854±0.027 0.858±0.050 0.820±0.032 0.858±0.038 0.772±0.083 0.879±0.047 0.844±0.056 0.856±0.024 0.855±0.033 

G-M 0.906±0.022 0.910±0.037 0.878±0.028 0.910±0.029 0.829±0.080 0.926±0.032 0.899±0.041 0.909±0.017 0.906±0.024 

AUC 0.984±0.012 0.981±0.014 0.980±0.014 0.982±0.014 0.986±0.014 0.981±0.014 0.983±0.014 0.981±0.014 0.980±0.014 

Heart 
F_M 0.854±0.027 0.854±0.024 0.857±0.029 0.854±0.025 0.849±0.027 0.854±0.025 0.838±0.036 0.854±0.026 0.854±0.026 

G-M 0.864±0.026 0.864±0.023 0.867±0.028 0.864±0.024 0.858±0.026 0.864±0.025 0.849±0.035 0.864±0.024 0.864±0.025 

AUC 0.928±0.017 0.929±0.017 0.923±0.016 0.929±0.016 0.920±0.018 0.928±0.016 0.916±0.027 0.928±0.017 0.927±0.017 

Glass 

F_M 0.640±0.048 0.636±0.034 0.633±0.052 0.634±0.044 0.611±0.037 0.634±0.040 0.644±0.038 0.631±0.059 0.658±0.045 

G-M 0.715±0.050 0.708±0.039 0.703±0.062 0.706±0.053 0.647±0.072 0.710±0.041 0.709±0.045 0.707±0.060 0.739±0.045 

AUC 0.821±0.035 0.821±0.032 0.814±0.035 0.824±0.035 0.803±0.039 0.821±0.034 0.809±0.040 0.818±0.036 0.804±0.047 

Haber 

F_M 0.470±0.060 0.460±0.035 0.462±0.048 0.453±0.025 0.428±0.062 0.419±0.070 0.418±0.104 0.441±0.040 0.483±0.060 

G-M 0.618±0.049 0.611±0.025 0.617±0.039 0.604±0.020 0.581±0.048 0.569±0.055 0.573±0.095 0.597±0.032 0.631±0.054 

AUC 0.664±0.053 0.637±0.036 0.647±0.039 0.643±0.038 0.625±0.061 0.622±0.079 0.643±0.104 0.627±0.043 0.684±0.069 

Eucal. 

F_M 0.268±0.107 0.385±0.069 0.293±0.151 0.406±0.110 0.399±0.122 0.394±0.133 0.432±0.070 0.314±0.041 0.318±0.073 

G-M 0.411±0.105 0.537±0.056 0.436±0.126 0.550±0.096 0.628±0.224 0.534±0.101 0.578±0.053 0.468±0.033 0.460±0.055 

AUC 0.838±0.012 0.860±0.015 0.847±0.029 0.849±0.025 0.782±0.090 0.849±0.029 0.880±0.008 0.865±0.019 0.841±0.018 

Heating 

F_M 0.754±0.060 0.758±0.046 0.726±0.036 0.761±0.030 0.746±0.063 0.741±0.029 0.719±0.062 0.744±0.025 0.751±0.023 

G-M 0.845±0.035 0.851±0.027 0.833±0.018 0.850±0.017 0.852±0.034 0.843±0.015 0.807±0.048 0.838±0.008 0.844±0.009 

AUC 0.920±0.022 0.921±0.017 0.907±0.029 0.925±0.014 0.913±0.043 0.919±0.021 0.917±0.017 0.917±0.018 0.931±0.015 

Seg. 
F_M 0.614±0.016 0.618±0.014 0.613±0.031 0.621±0.014 0.583±0.031 0.625±0.019 0.617±0.012 0.613±0.021 0.621±0.013 

G-M 0.881±0.009 0.881±0.011 0.877±0.030 0.883±0.010 0.868±0.015 0.874±0.024 0.885±0.008 0.878±0.014 0.884±0.010 

AUC 0.931±0.013 0.932±0.012 0.877±0.027 0.932±0.012 0.908±0.033 0.937±0.013 0.924±0.017 0.932±0.014 0.927±0.017 

 

Our results also indicate that compared to other methods, our method works better for 

datasets with higher imbalance ratio like Balance and LEV datasets. This is because in such 
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datasets, minority instances are highly sparse meaning that there exists small minority clusters in 

the dataset. In other words, such datasets have high within-class imbalance. Therefore, it is very 

important to identify these small sub-clusters and emphasize them through oversampling as in 

cluster-based methods. Results also show that our method outperforms other cluster-based 

methods in most datasets. This is because, unlike the cluster-based methods, we adaptively 

determine sub-cluster sizes and oversample minority instances based on their distance to the 

majority class.     

Table 3.6 Results for mean ranking of the 9 methods averaged over the 16 datasets 

Classification method: SVM 

Measure Random SMOTE 
Borderline 

SMOTE 

Safe-level 

SMOTE 
SBC 

Cluster 

SMOTE 
CBOS MWMOTE A-SUWO 

F-measure 5.500 4.969 5.406 4.781 7.438 6.375 4.125 3.906 2.625 

G-mean 5.688 5.406 5.219 4.938 6.500 5.750 4.875 3.938 2.688 

AUC 5.906 5.781 5.844 5.344 6.125 5.438 4.313 3.750 2.500 

Classification method: KNN 

Measure Random SMOTE 
Borderline 

SMOTE 

Safe-level 

SMOTE 
SBC 

Cluster 

SMOTE 
CBOS MWMOTE A-SUWO 

F-measure 5.594 5.125 5.750 4.156 8.000 4.250 5.500 4.438 2.188 

G-mean 5.500 5.125 5.750 4.375 8.188 4.250 5.313 4.125 2.375 

AUC 5.906 4.250 5.875 4.094 6.813 2.500 6.250 4.938 4.375 

Classification method: Logistic Regression 

Measure Random SMOTE 
Borderline 

SMOTE 

Safe-level 

SMOTE 
SBC 

Cluster 

SMOTE 
CBOS MWMOTE A-SUWO 

F-measure 5.000 4.688 5.594 5.000 7.938 4.406 5.750 4.688 1.938 

G-mean 4.500 4.250 5.281 5.750 8.250 5.031 5.000 4.375 2.563 

AUC 5.031 3.500 6.594 3.563 8.188 3.938 5.875 4.813 3.500 

Classification method: Linear Discriminant Analysis 

Measure Random SMOTE 
Borderline 

SMOTE 

Safe-level 

SMOTE 
SBC 

Cluster 

SMOTE 
CBOS MWMOTE A-SUWO 

F-measure 4.750 4.313 5.875 3.250 8.188 5.000 6.563 5.188 1.875 

G-mean 4.313 4.313 5.875 3.688 8.188 5.625 6.125 4.688 2.188 

AUC 4.750 3.094 6.375 3.188 7.875 4.313 6.500 4.500 4.406 

 

 

Table 3.7  Results for Friedman’s test 

F-measure G-mean AUC 
Classification Method P-Value  Classification Method P-value Classification Method P-value  

SVM 0.005956** SVM 0.001138** SVM 3.69E-05** 
KNN 1.35E-06** KNN 1.34E-06** KNN 0.000148** 

Logistic Regression 1.41E-06** Logistic Regression 3.98E-06** Logistic Regression 3.31E-07** 
LDA 1.72E-09** LDA 4.84E-08** LDA 6.55E-07** 
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Table 3.8 Holm’s test P-value - Control algorithm: A-SUWO 

Classification model: SVM 𝑖 𝛼0.10 F-measure G-mean AUC 
Method P-value  Method P-value Method P-value  

1 0.0125 SBC 4.12E-05** SBC 9.06E-05** SBC 3.34E-07** 
2 0.0143 Cluster SMOTE 0.000781** Random 0.000217** Cluster SMOTE 5.38E-05** 
3 0.0167 Random 0.000973** Border SMOTE 0.000277** Random 0.001492** 
4 0.0200 SMOTE 0.002493** SMOTE 0.000351** Border SMOTE 0.002036** 
5 0.0250 Border SMOTE 0.004471** Cluster SMOTE 0.001207** SMOTE 0.007747** 
6 0.0333 Safe-Level SMOTE 0.010068* Safe-Level SMOTE 0.001657** Safe-Level SMOTE 0.012975* 
7 0.0500 CBOS 0.011934* CBOS 0.030607* CBOS 0.060668* 
8 0.1000 MWMOTE 0.098353* MWMOTE 0.098353* MWMOTE 0.092873* 

Classification model: KNN 𝑖 𝛼0.10 F-measure G-mean AUC 
Method P-value  Method P-value  Method P-value  

1 0.0125 SBC 9.68E-10** SBC 9.68E-10** SBC 0.005911** 
2 0.0143 Border SMOTE 0.000117** Border SMOTE 0.000245** CBOS 0.026404 
3 0.0167 Random 0.000217** Random 0.000624** Random 0.056886 
4 0.0200 CBOS 0.000312** CBOS 0.001207** Border SMOTE 0.060668 
5 0.0250 SMOTE 0.001207** SMOTE 0.002254** MWMOTE 0.280638 
6 0.0333 MWMOTE 0.010068* Safe-Level SMOTE 0.019434* SMOTE 0.551361 
7 0.0500 Cluster-SMOTE 0.01658* Cluster SMOTE 0.026404* Safe-Level SMOTE 0.614273 
8 0.1000 Safe-level SMOTE 0.02101* MWMOTE 0.035351* Cluster SMOTE 0.973596 

Classification model: Logistic Regression 𝑖 𝛼0.10 F-measure G-mean AUC 
Method P-value  Method P-value  Method P-value  

1 0.0125 SBC 2.88E-10 SBC 2.13E-09** SBC 6.45E-07** 
2 0.0143 CBOS 4.12E-05 Safe-Level SMOTE 0.000497** Border SMOTE 0.000699** 
3 0.0167 Border SMOTE 7.96E-05 Border SMOTE 0.002493** CBOS 0.007086** 
4 0.0200 Random 0.000781 Cluster SMOTE 0.005391** Random 0.056886 
5 0.0250 Safe-Level SMOTE 0.000781 CBOS 0.005911** MWMOTE 0.087622 
6 0.0333 SMOTE 0.002254 Random 0.022694* Cluster SMOTE 0.325689 
7 0.0500 MWMOTE 0.002254 MWMOTE 0.030607* Safe-Level SMOTE 0.474266 
8 0.1000 Cluster SMOTE 0.005391 SMOTE 0.040681* SMOTE 0.500000 

Classification model: LDA 𝑖 𝛼0.10 F-measure G-mean AUC 
Method P-value  Method P-value  Method P-value  

1 0.0125 SBC 3.53E-11** SBC 2.88E-10** SBC 0.00017** 
2 0.0143 CBOS 6.45E-07** CBOS 2.38E-05** CBOS 0.015293 
3 0.0167 Border SMOTE 1.80E-05** Border SMOTE 6.99E-05** Border SMOTE 0.02101 
4 0.0200 MWMOTE 0.000312** Cluster SMOTE 0.000192** Random 0.361286 
5 0.0250 Cluster  SMOTE 0.000624** MWMOTE 0.004912** MWMOTE 0.461433 
6 0.0333 Random 0.001492** Random 0.014093* Cluster SMOTE 0.538567 
7 0.0500 SMOTE 0.005911* SMOTE 0.014093* Safe-Level SMOTE 0.895934 
8 0.1000 Safe-Level SMOTE 0.077790* Safe-Level SMOTE 0.060668* SMOTE 0.912378 

 

3.4.1. Choosing Parameters for A-SUWO 

A-SUWO requires four parameters to be defined: 𝑐𝑡ℎ𝑟𝑒𝑠, 𝑁𝑁, 𝑁𝑆 and 𝑘. In this section, we 

briefly explain how to choose appropriate values for these parameters. We also perform sensitivity 

analysis by running A-SUWO with different set of values for each parameter. The results are 

shown in Table 3.9. 
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 𝑐𝑡ℎ𝑟𝑒𝑠: This parameter was used to adjust the threshold for agglomerative clustering in 

Section 2.1. Larger values of 𝑐𝑡ℎ𝑟𝑒𝑠 will result in smaller clusters with larger sizes while 

smaller values of 𝑐𝑡ℎ𝑟𝑒𝑠 will result in larger clusters with smaller sizes. Its optimum value 

depends on the dataset. Generating large sized clusters as a result of large 𝑐𝑡ℎ𝑟𝑒𝑠  will 

increase the chance of over-generalization or generation of overlapping instances. On the 

other hand, generating small sized clusters will result in over-fitting or generation of less 

diverse synthetic instances. As can be seen from Table 3.9, a good range for 𝑐𝑡ℎ𝑟𝑒𝑠  is 

between 0.7 and 2. Actually, the G-mean for all values of 𝑐𝑡ℎ𝑟𝑒𝑠 larger than 3 is similar 

because all clusters are merged into one cluster.  

 𝑁𝑁: This parameter determines the number of nearest neighbors used to assign weights to 

each minority instance. The weight for each minority instance depends on the average 

closeness factor to all 𝑁𝑁-nearest neighbors from the majority class. If 𝑁𝑁 is selected as 

a large value, the algorithm assigns almost similar weights to all minority instances even if 

they are far away from the majority class. This is because the closeness factors are averaged 

over a large number of nearest neighbors. On the other hand, if 𝑁𝑁 is selected as a small 

value, then the weights could be very sensitive to noisy majority instances. As can be seen 

from Table 3.9, a reasonable value for 𝑁𝑁 could be selected between 3 and 7. 

 𝑁𝑆: This parameter is used to find noisy instances. If all 𝑁𝑆  nearest neighbors of an 

instance are from a different class, then the instance is considered as noise in our method. 

If 𝑁𝑆 is selected as a large value, then the method is not able to find noisy instances 

whereas if 𝑁𝑆 is selected as a small value, the method will consider many of the valid 

instances as noise. As can be seen from Table 3.9, a reasonable value for 𝑁𝑆  can be 

between 3 and 7.  
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 𝑘: This parameter determines the number of folds in our adaptive cluster sizing. The larger 

this parameter gets the more expensive the computation becomes as the classification 

method used in A-SUWO to determine the complexity of each cluster is required to run 

more times. As can be seen from Table 3.9, 𝑘 can be selected between 2 and 5. 

Table 3.9 Sensitivity analysis on A-SUWO parameters using SVM 

Dataset G-mean measure for 

different values of 𝒄𝒕𝒉𝒓𝒆𝒔 

G-mean measure for 

different values of NN 

G-mean measure for 

different values of NS 

G-mean measure for 

different values of k 𝒄𝒕𝒉𝒓𝒆𝒔 
G-mean 𝑵𝑵 

G-mean 𝑵𝑺 
G-mean 𝒌 

G-mean 

Haberman 0.3 0.516±0.047 1 0.516±0.047 1 0.550±0.054 1 0.582±0.041 
0.7 0.577±0.017 2 0.577±0.017 2 0.584±0.012 2 0.594±0.046 

1.0 0.574±0.039 3 0.574±0.039 3 0.587±0.028 3 0.552±0.066 
1.5 0.541±0.019 4 0.541±0.019 4 0.602±0.018 4 0.559±0.067 
2 0.611±0.040 5 0.611±0.040 5 0.604±0.016 5 0.557±0.085 

2.5 0.584±0.063 7 0.584±0.063 7 0.585±0.015 6 0.550±0.062 
3 0.557±0.031 10 0.557±0.031 10 0.584±0.016 8 0.588±0.069 
8 0.557±0.031 15 0.557±0.031 15 0.585±0.019 10 0.583±0.019 

Ecoli 0.3 0.936±0.026 1 0.941±0.018 1 0.939±0.015 1 0.941±0.024 
0.7 0.935±0.025 2 0.940±0.010 2 0.943±0.011 2 0.942±0.029 

1.0 0.937±0.028 3 0.944±0.012 3 0.941±0.010 3 0.938±0.027 
1.5 0.936±0.030 4 0.944±0.012 4 0.941±0.010 4 0.940±0.027 
2 0.933±0.026 5 0.946±0.010 5 0.942±0.011 5 0.936±0.026 

2.5 0.933±0.026 7 0.942±0.011 7 0.944±0.012 6 0.940±0.027 

3 0.933±0.026 10 0.939±0.009 10 0.942±0.010 8 0.938±0.026 

8 0.933±0.026 15 0.939±0.009 15 0.942±0.010 10 0.938±0.026 

Wine 0.3 0.972±0.021 1 0.967±0.028 1 0.976±0.019 1 0.985±0.015 

0.7 0.970±0.021 2 0.986±0.021 2 0.976±0.019 2 0.985±0.027 

1.0 0.975±0.017 3 0.978±0.018 3 0.979±0.015 3 0.985±0.015 

1.5 0.967±0.015 4 0.978±0.018 4 0.979±0.015 4 0.981±0.012 

2 0.967±0.015 5 0.986±0.011 5 0.979±0.015 5 0.985±0.015 

2.5 0.969±0.015 7 0.993±0.011 7 0.976±0.019 6 0.978±0.026 
3 0.969±0.015 10 0.993±0.011 10 0.976±0.019 8 0.981±0.012 
8 0.969±0.015 15 0.993±0.011 15 0.976±0.019 10 0.978±0.026 

Breast 
 

0.3 0.695±0.034 1 0.690±0.058 1 0.723±0.031 1 0.736±0.114 
0.7 0.705±0.068 2 0.709±0.062 2 0.731±0.074 2 0.747±0.034 

1.0 0.732±0.054 3 0.722±0.056 3 0.750±0.060 3 0.706±0.072 

1.5 0.704±0.029 4 0.730±0.056 4 0.750±0.060 4 0.710±0.074 

2 0.692±0.038 5 0.739±0.067 5 0.742±0.049 5 0.725±0.065 
2.5 0.692±0.038 7 0.653±0.032 7 0.742±0.049 6 0.716±0.069 
3 0.680±0.048 10 0.654±0.034 10 0.742±0.049 8 0.726±0.062 
8 0.680±0.048 15 0.665±0.021 15 0.727±0.064 10 0.706±0.053 

Libra 0.3 0.722±0.045 1 0.726±0.015 1 0.697±0.029 1 0.781±0.036 
0.7 0.751±0.028 2 0.790±0.024 2 0.714±0.063 2 0.782±0.013 
1.0 0.778±0.041 3 0.799±0.013 3 0.763±0.024 3 0.781±0.036 

1.5 0.787±0.045 4 0.799±0.013 4 0.754±0.037 4 0.781±0.036 
2 0.772±0.042 5 0.799±0.013 5 0.763±0.042 5 0.799±0.013 

2.5 0.772±0.042 7 0.781±0.037 7 0.731±0.089 6 0.735±0.049 
3 0.772±0.042 10 0.781±0.037 10 0.742±0.073 8 0.781±0.026 
8 0.772±0.042 15 0.781±0.037 15 0.742±0.073 10 0.790±0.023 
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3.5. Conclusions  

In this paper, a new oversampling algorithm called Adaptive Semi-Unsupervised Weighted 

Oversampling (A-SUWO) has been presented for imbalanced binary dataset classification. The 

advantages of A-SUWO are that it avoids generating overlapping synthetic instances by 

considering the majority instances when clustering minority instances; it determines the sub-

cluster sizes adaptively using the standardized average error rate and cross-validation; it 

oversamples the sub-clusters by assigning weights to their instances to avoid over-generalization; 

and it does not ignore isolated sub-clusters. A-SUWO was tested on 16 publicly available datasets 

with different imbalance ratios and compared with other sampling techniques using different types 

of classifiers. Results show that our method performs significantly better compared to other 

sampling methods in most datasets and in larger datasets with higher imbalance ratio. As future 

work, the application of A-SUWO to multi-class classification problems will be studied. 
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Chapter 4  

Cluster-based Weighted Oversampling for Ordinal Regression (CWOS-Ord) 

In this paper, we propose a new oversampling method called Cluster-based Weighted 

Oversampling for Ordinal Regression (CWOS-Ord) to address the imbalanced dataset problem in 

ordinal regression. CWOS-Ord identifies clusters of data by first clustering all classes except the 

largest class using hierarchical clustering to ensure that all clusters are considered for oversampling. 

The set of all classes except the largest class will be referred to as the smaller classes. The largest 

class is not considered for oversampling. A modification of the traditional hierarchical clustering 

is presented that clusters the instances of smaller classes by considering other class instances to 

reduce overlapping between the generated instances and instances of other classes. Then, the final 

size to oversample the clusters depends on their complexity and initial size so that more synthetic 

instances are generated for more complex and smaller clusters while fewer instances are generated 

for less complex and larger clusters. Consequently, the clusters will not necessary have the same 

size after oversampling but in general, all the classes will be of equal size. This is particularly 

practical for ordinal regression as it contains multiple classes and oversampling the clusters of each 

class to the size of the largest majority cluster can result in a very large dataset. CWOS-Ord avoids 

over-generalization and mislabeling errors in terms of the ordinal label scale by oversampling 

instances of smaller classes based on their average Euclidean distance and rank differences to other 

class instances. Finally, well-known oversampling methods designed for two-class classification 

have been extended to the ordinal regression problem for performance comparison.   
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The contribution of this paper is three-fold. First, a modified agglomerative hierarchical 

clustering is introduced to reduce the generation of overlapping synthetic instances during 

oversampling. This is achieved by iteratively merging clusters of the same class while considering 

clusters of instances of other classes. Second, a new measure is proposed that quantifies the trade-

off between cluster complexity and the initial size of the cluster. The new measure is used to 

determine the number of oversampled instances for each cluster. Finally, a new probability 

distribution is proposed that incorporates the distance as well as rank distance to other-class 

instances so that instances closer to the non-adjacent classes are oversampled more. As an 

additional contribution, existing oversampling methods for binary classification have been 

extended to ordinal regression. 

In order to assess CWOS-Ord, extensive experiments have been conducted. The proposed 

CWOS-Ord method is tested on 11 publicly available datasets, and compared with five other 

techniques. Average Mean Absolute Error (AMAE), and Maximum Mean Absolute Error (MMAE) 

are used as the performance measures. The mean and standard deviation of the performance 

measures for each of the methods are determined using 3-fold stratified cross validation and 

repeated three times.  

The remainder of this chapter is organized as follows. In the next section, a description of 

our extension of well-known oversampling methods to ordinal regression is presented for 

subsequent method comparison. In section 4.2, the proposed CWOS-Ord methodology is 

described. Section 4.3 presents the results and discussion while Section 4.4 provides the 

conclusions.  
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4.1. Oversampling for Ordinal Regression  

In this section, we describe our extension of well-known oversampling methods for ordinal 

regression to enable subsequent comparison. Consider the ordinal regression problem where the 

outcome variable is a set of finite ordered ranks 𝑟𝑗=1,…,𝑚 with ordered relation 𝑟1 ≺ 𝑟2 ≺ ⋯ ≺ 𝑟𝑚. 

In ordinal regression, it is more important to distinguish classes with larger rank differences than 

classes closer to each other. The methods extended for ordinal regression include random 

oversampling, SMOTE [26], MWMOTE [27], and ADASYN [112]. The extension of random 

oversampling and SMOTE [26] for ordinal regression, which we will refer to as E-OR and E-

SMOTE, respectively, consisted of applying the corresponding methods to ensure that all classes 

have the same number of instances. For E-OR, for each class in the dataset, instances were selected 

and duplicated until the class size is equal to the size of the largest class. For E-SMOTE, for each 

class, an instance was selected randomly. Then, one of its k-nearest neighbors in the same class 

was selected randomly and a synthetic instance was generated between them. The process is 

repeated until the class size is equal to the size of the largest class. Instances of the largest class 

are not oversampled.   

In order to extend MWMOTE [27] and ADASYN [112] for ordinal regression, the ordering 

relationship among the classes was considered when assigning weights to minority instances. 

Details about the specific methods are out of the scope of this paper and can be obtained from the 

corresponding references. For the extension of MWMOTE, which we will refer as E-MWMOTE, 

for each class 𝑗, Class Borderline Instances (CBIs) and Other-classes Borderline Instances (OBIs) 

are found. The other-class instances are all instances except the instances that belong to the class 𝑗. In order to find the OBIs, for each instance in class 𝑗, their 𝑘1-nearest neighbors among the 

instances from all other classes are found. Then, for each OBI, its 𝑘2-nearest neighbors among the 
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instances of class 𝑗 are found to obtain the CBIs. After finding OBIs and CBIs for class 𝑗, the next 

step is to assign weights to CBIs based on their average Euclidean distance and their rank 

differences to OBIs. For the 𝑖th CBI in class 𝑗 with the feature vector 𝑥𝑖𝑗, its Euclidean distance 𝑑(𝑥𝑖𝑗 , 𝑦𝑙𝑗)  to the 𝑙 th OBI with feature vector 𝑦𝑙𝑗  is determined. The distance 𝑑(𝑥𝑖𝑗 , 𝑦𝑙𝑗)  is 

normalized by dividing it over the number of features 𝐷 to make it robust to datasets with different 

number of features. We call the normalized distance as 𝑑𝐷(𝑥𝑖𝑗 , 𝑦𝑙𝑗). Then, the closeness factor 𝐶𝑓(𝑥𝑖𝑗 , 𝑦𝑙𝑗) between 𝑥𝑖𝑗 and 𝑦𝑙𝑗 is defined. The ordering relationship is considered by multiplying 

the rank difference in the original equation of MWMOTE for closeness factor. As can be seen 

from Figure 4.1, the instances closer to the non-adjacent classes are assigned higher weights and 

hence have a higher chance to be oversampled.   

The new equation for the closeness factor 𝐶𝑓(𝑥𝑖𝑗 , 𝑦𝑙𝑗) for E-MWMOTE is as follows: 

𝐶(1)𝑓(𝑥𝑖𝑗 , 𝑦𝑙𝑗) =  𝑓( 1𝑑𝐷(𝑥𝑖𝑗,𝑦𝑙𝑗))𝐶𝑓(𝑚𝑎𝑥) ∗  |𝑟𝑥𝑖𝑗 − 𝑟𝑦𝑙𝑗|                (4.1) 

where 𝑓 is a cutoff function that prevents 
1𝑑𝐷(𝑥𝑖𝑗,𝑦𝑙𝑗)  from becoming extremely large in the case 

when the two instances 𝑥𝑖𝑗 and 𝑦𝑙𝑗 become too close to each other, 𝐶𝑓(𝑚𝑎𝑥) is the largest value 𝑓(𝑥) can reach, and the term |𝑟𝑥𝑖𝑗 − 𝑟𝑦𝑙𝑗| is the rank difference among 𝑥𝑖𝑗 and 𝑦𝑙𝑗. The first term 

in equation 4.1 forces higher weights to the instances in class 𝑗 that are closer to the instances of 

other classes whereas the second term gives higher weights to the instances with larger rank 

difference. In other words, the instances in class 𝑗 that are closer to instances of non-adjacent 

classes will have higher weights.  

Using equation 4.1, more synthetic instances are generated for instances of class 𝑗 that 

overlap with non-adjacent classes. The advantage of this new equation is that it can help move the 
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decision boundary towards the class 𝑗 and hence avoid overfitting. Using the closeness factor, a 

weight will be assigned to each instance in class 𝑗 and then the weights are converted into a 

probability distribution 𝑃(𝑥𝑖𝑗) by dividing each weight by the summation of all weights. The 

probability distribution is used to take samples from instances of class 𝑗. Therefore, more synthetic 

instances are generated using the instances with larger closeness factor. 

 

For the extension of ADASYN, E-ADASYN, for each class 𝑗, for the 𝑖th example with the 

feature vector 𝑥𝑖𝑗, its k-nearest neighbors among all instances are found. Then, a weight ratio 𝜌𝑖𝑗is 

assigned to 𝑥𝑖𝑗 using (2), which has been modified to reflect the ordinal relationship among classes. 

The weight ratio 𝜌𝑖𝑗 is: 

𝜌(1)𝑖𝑗 = ∑ (Δ𝑖𝑗ℎ∗|𝑟ℎ−𝑟𝑥𝑖𝑗|)𝑚ℎ=1 𝐾               (4.2) 

where Δ𝑖𝑗ℎ  is the number of instances in the k-nearest neighbors of 𝑥𝑖𝑗  that belong to the ℎth 

class. 𝑟ℎ is the rank of the ℎth class and 𝑟𝑥𝑖𝑗is the rank of the instance 𝑥𝑖𝑗. 𝐾 is a constant that can 

be deleted from (2) as 𝜌𝑖𝑗 will be normalized in the following steps. The modified formula will 

give higher weights to the instances that have more non-adjacent instances in their neighbors. Later 𝜌𝑖𝑗 is converted to probability distribution to take samples from instances of class 𝑗. 

Synthetic instances with no 

overlapping by considering the 

instances of other classes. Cluster of instances 

of other classes 

Figure 4.1 Clustering of class with red points. The instances of other classes (blue, yellow, 
green) were also considered while clustering the instances of class with red points. 
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4.2. Cluster-based Weighted Oversampling for Ordinal Regression (CWOS-Ord) 

In this section, a new oversampling method CWOS-Ord that is specifically designed for 

the imbalanced dataset problem in ordinal regression is presented. The objective is to balance all 

the classes by making all the classes of equal size. To achieve this, we consider all classes except 

the largest class as the smaller classes and the largest class as the only majority class. CWOS-Ord 

identifies clusters of data by clustering the instances of the smaller classes using a One-Versus-All 

(OVA) semi-unsupervised hierarchical clustering approach. The new clustering approach 

iteratively forms clusters for each class while avoiding clusters of other classes in between. Then, 

the size to which each cluster will be oversampled is determined using a new measurement based 

on cluster’s complexity and initial size. In order to avoid over-generalization and mislabeling 

errors caused by ordinal label scale, CWOS-Ord assigns weights to instances of smaller classes 

based on their closeness to instances of other classes and their rank differences. CWOS-Ord 

consists of two main steps: (1) OVA Semi-Unsupervised Hierarchical Clustering, and (2) Synthetic 

Instance Generation. In the first step, the smaller classes are individually clustered following a 

variation of the Agglomerative Complete-Linkage Hierarchical Clustering method [113]. The final 

size of each cluster is determined based on its complexity and initial size. In the Synthetic Instance 

Generation step, a new weighting system is proposed to assign weights to minority instances for 

the generation of synthetic instances. The following sub-sections provide the details of CWOS-

Ord. 

4.2.1. One-versus-All Semi-Unsupervised Hierarchical Clustering for Ordinal Classes 

In general, there are two approaches for generating synthetic instances. The first one is to 

generate a new instance between a candidate instance and one of its 𝑁𝑁-nearest neighbors [26, 38, 

112]. The second approach is to generate a new instance between a candidate instance and one of 
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its neighbors from the same cluster [27]. Both approaches can lead to the generation of synthetic 

instances that overlap with other class instances. In the first approach, some of the 𝑁𝑁-nearest 

neighbors may be far from the candidate instance whereas in the second approach, clusters from 

different classes may overlap. Overlapping synthetic instances can deteriorate the performance of 

the classifiers significantly [27, 106]. 

To reduce the generation of overlapping synthetic instances, we previously designed a 

semi-unsupervised hierarchical clustering algorithm as presented in [25] for binary classification. 

In this algorithm, any two minority clusters that are nominated to be merged are checked in each 

iteration. If a majority cluster exists between them, the minority clusters are not merged. Otherwise, 

the two nominated clusters are merged if their distance is less than a pre-defined threshold. For 

ordinal regression, the semi-unsupervised hierarchical clustering algorithm has been designed in a 

One-Versus-All (OVA) framework to check overlapping of instances of each class with instances 

of other classes. In other words, for each class, the algorithm checks whether a cluster from any of 

the other classes exists between the nominated clusters.    

Before clustering, noisy instances are identified for both classes using the method 

suggested by [38] and removed from the dataset. For each instance, 𝑁𝑆-nearest neighbors are 

found. If all the 𝑁𝑆-nearest neighbors belong to the other non-adjacent classes, then the instance 

is considered as noise and removed from the dataset because it indicates that it is surrounded by 

instances of the other classes.   

In our algorithm, instances of all classes are clustered except for the largest-sized class. For 

each class 𝑗 to be oversampled, the OVA Semi-Unsupervised clustering algorithm starts by first 

clustering the instances of all other classes except the instances of class  𝑗  using hierarchical 

clustering. This results in 𝑚𝑗 clusters 𝐶𝑜𝑡ℎ𝑒𝑟𝑖=1,… ,𝑚𝑗. 𝐶𝑜𝑡ℎ𝑒𝑟𝑖=1,… ,𝑚𝑗 is the set of clusters for the 
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instances of classes other than class j. Then, for each class 𝑗, the proposed OVA semi-unsupervised 

hierarchical clustering algorithm is applied as follows.  

Assuming that the class has 𝑁𝑗 instances, for each desired class 𝑗 to be oversampled: 

1) Assign each instance to a separate cluster. This will result in 𝑁𝑗 clusters of size one 𝐵𝑗 ={𝐶𝑑𝑒𝑠𝜏=1,…,𝑁𝑗}.  
2) Identify the two clusters say 𝐶𝑑𝑒𝑠𝑎 and 𝐶𝑑𝑒𝑠𝑏 with the lowest Euclidean distance between 

them. Let their distance be represented by 𝛿.  

3) Find other-class clusters, say 𝐶𝑜𝑡ℎ𝑒𝑟𝑖∈𝐴𝑗 with Euclidean distance to 𝐶𝑑𝑒𝑠𝑎 and 𝐶𝑑𝑒𝑠𝑏 less 

than 𝛿. 𝐴𝑗 is the set of other-class indices with such property.   

4) If 𝐴𝑗 ≠ ∅, then, there exists an other-class cluster between 𝐶𝑑𝑒𝑠𝑎 and 𝐶𝑑𝑒𝑠𝑏 and hence, 

they should not be merged. The distance between 𝐶𝑑𝑒𝑠𝑎 and 𝐶𝑑𝑒𝑠𝑏 will be set to a large 

number to avoid being considered for merging again.  

5) Else, 𝐶𝑑𝑒𝑠𝑎  and 𝐶𝑑𝑒𝑠𝑏  are merged into one cluster 𝐶𝑑𝑒𝑠𝑐 . This will result in one less 

member in 𝐵𝑗. 
6) Finally, the Euclidean distance between the newly formed cluster of the desired class 𝐶𝑑𝑒𝑠𝑐 and existing cluster is recalculated. Steps 2 to 6 are repeated until the Euclidean 

distance between the closest clusters is larger than a threshold 𝑇𝑗. At the end, we will have 𝑛𝑗 minority clusters for class 𝑗. 
In contrast with the clustering algorithm developed in our previous work [25], the proposed 

OVA semi-unsupervised hierarchical clustering algorithm checks whether the two clusters of the 

desired class 𝐶𝑑𝑒𝑠𝑎  and 𝐶𝑑𝑒𝑠𝑏  contain part of other-class clusters. In order to have a good 

estimate of 𝑇𝑗 for each class, the median Euclidean distance 𝑑𝑚𝑒𝑑,𝑖𝑗 of each instance 𝑖 in class 𝑗 to 
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all other instances of class 𝑗 is determined. Then, 𝑑𝑎𝑣𝑔,𝑗 is defined as the average 𝑑𝑚𝑒𝑑,𝑖𝑗 over all 

instances in class 𝑗. Therefore, 𝑇𝑗 can be estimated as follows:   𝑇𝑗 = 𝑑𝑎𝑣𝑔,𝑗 ∗ 𝐶𝑡ℎ𝑟𝑒𝑠ℎ           (4.3) 

where 𝐶𝑡ℎ𝑟𝑒𝑠ℎ is a user-defined constant parameter used for all classes. Larger values of 𝐶𝑡ℎ𝑟𝑒𝑠ℎ 

will result in smaller number of clusters with larger sizes whereas smaller values of 𝐶𝑡ℎ𝑟𝑒𝑠ℎ will 

lead to larger number of clusters with smaller sizes. Large-sized clusters will increase the chance 

of over-generalization or generation of overlapping instances while small-sized clusters will result 

in over-fitting or generation of less diverse synthetic instances.   

In the next step, 𝑔ℎ𝑗 synthetic instances will be generated for each cluster h in each class j 

with the initial size of 𝑞ℎ𝑗 based on the cluster’s complexity and initial size. Therefore, each cluster 

h in each class j will have 𝑆ℎ𝑗 = 𝑔ℎ𝑗 + 𝑞ℎ𝑗 instances after oversampling. Let’s assume the largest-

sized class has L instances and that all classes will have similar size at the end of oversampling. 

Then, for each class 𝑗, 𝐺𝑗 = 𝐿 − 𝑄𝑗 new instances should be generated where 𝑄𝑗is the initial size 

of the class j.  

In this paper, a new measurement is proposed to determine the final size of each cluster 

based on its complexity and initial size. In order to determine cluster complexity, for each instance 

i in each cluster h of class j, its k-nearest neighbors among all instances are found. Then 𝜌(𝑖)ℎ𝑗, the 

average rank difference of instance i to all its k-neighbors is calculated. 𝜌(𝑖)ℎ𝑗 is an indicator of 

complexity for instance i because higher 𝜌(𝑖)ℎ𝑗  means instance i is surrounded by many non-

adjacent instances. 𝜌(𝑖)ℎ𝑗 is then averaged over all instances of cluster h to denote the average k-

nearest neighbors’ label differences as an indicator of cluster complexity using the following 

formula: 
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�̅�ℎ𝑗 = ∑ 𝜌(𝑖)ℎ𝑗𝑞ℎ𝑗𝑖=1𝑞ℎ𝑗             (4.4) 

where 𝑞ℎ𝑗 is the initial size of the ℎth cluster of the 𝑗th class. Using this equation, the clusters that 

are surrounded by instances of non-adjacent classes are considered as more complex while clusters 

surrounded by instances of the same class or adjacent classes are considered as less complex.     

Finally, we can determine 𝑔ℎ𝑗 , the number of synthetic instances to be generated for each 

cluster, as a factor of both cluster complexity and initial size: 

𝑔ℎ𝑗 = 𝐺𝑗 ∗  �̅�ℎ𝑗∗ 1𝑞ℎ𝑗𝛼∑ �̅�ℎ𝑗∗ 1𝑞ℎ𝑗𝛼𝑛𝑗ℎ=1              (4.5) 

where 𝛼 defines a trade-off between the complexity and initial size of each cluster. As 𝛼 increases, 

the smaller clusters are oversampled more, while as 𝛼  decreases, more complex clusters are 

oversampled more. Equation 4.5 indicates that more instances are generated for clusters with 

higher complexity and smaller initial size. In other words, more complex and smaller clusters are 

emphasized so that they are not ignored for oversampling. 

4.2.2. Synthetic Instance Generation  

In this stage, weights are assigned to instances of smaller classes for subsequent 

oversampling. These weights are assigned by considering the other-class instances to reduce over-

generalization. In CWOS-Ord, new synthetic instances are generated between the original 

instances and their 𝑁𝑁-nearest neighbors in the same class given that they are also from the same 

cluster. The reason to restrict the 𝑁𝑁-nearest neighbors to be in the same cluster is to avoid 

selecting a 𝑁𝑁-nearest neighbor that is far away from the selected instance and that belongs to 

another cluster. This way, the chance of generating synthetic instances that overlap with instances 
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from the other class is reduced. The synthetic instance generation approach of CWOS-Ord is 

repeated for instances of all classes except from the largest-sized class.  

For each cluster ℎ of class 𝑗, we first assign weights to each instance in the cluster based 

on its Euclidean distance and rank difference to other-class instances. For the 𝑖th instance 𝑥𝑖ℎ𝑗 in 

the ℎth cluster of class 𝑗, we find its k nearest neighbors using the Euclidean distance to all other 

instances 𝑦𝑖ℎ𝑗(𝑣) and record the distance 𝑑(𝑥𝑖ℎ𝑗 , 𝑦𝑖ℎ𝑗(𝑣)), where 𝑣 = 1,… , 𝑘 are the indices of the 

k nearest neighbors. We divide the distance  𝑑(𝑥𝑖ℎ𝑗 , 𝑦𝑖ℎ𝑗(𝑣))  by the number of features 𝐷 . 

Therefore, we have: 

𝑑𝐷(𝑥𝑖ℎ𝑗 , 𝑦𝑖ℎ𝑗(𝑣)) =  𝑑(𝑥𝑖ℎ𝑗,𝑦𝑖ℎ𝑗(𝑣))𝐷               (4.6) 𝑑𝐷(𝑥𝑖ℎ𝑗 , 𝑦𝑖ℎ𝑗(𝑣)) is more robust to datasets with different number of features. Later, we 

define Γ(𝑥𝑖ℎ𝑗 , 𝑦𝑖ℎ𝑗(𝑣)) as the closeness factor between 𝑥𝑖ℎ𝑗 and 𝑦𝑖ℎ𝑗(𝑣). Γ(𝑥𝑖ℎ𝑗 , 𝑦𝑖ℎ𝑗(𝑣)) =  𝑓ℎ𝑗 ( 1𝑑𝐷(𝑥𝑖ℎ𝑗,𝑦𝑖ℎ𝑗(𝑣)))          (4.7) 

where 𝑓ℎ𝑗  is a cutoff function for cluster ℎ that prevents 
1𝑑𝐷(𝑥𝑖ℎ𝑗,𝑦𝑖ℎ𝑗(𝑣)) from becoming extremely 

large in the case when the two instances 𝑥𝑖ℎ𝑗  and 𝑦𝑖ℎ𝑗(𝑣) become too close to each other. Therefore, 𝑓ℎ𝑗   is defined as:  

Class III - Adjacent class 

Class IV - Non adjacent class  
Class I - Adjacent class 
Class II – Class to be oversampled  

Figure 4.2 Assigning weights for oversampling. Larger blue circles indicates larger 
weights to be assigned to them. Instances closer to non-adjacent classes are assigned 
higher weights 
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𝑓ℎ𝑗  (𝑥) =  {𝑥              𝑖𝑓 𝑥 ≤ 𝑇𝐻ℎ𝑗  𝑇𝐻ℎ𝑗            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              (4.8) 

𝑇𝐻ℎ𝑗 is the largest value 𝑓ℎ𝑗  (𝑥) can reach. In our method, 𝑇𝐻ℎ𝑗   is determined for each 

cluster 𝐶ℎ𝑗 automatically. This is achieved by finding the Euclidean distance of all instances 𝑥𝑖ℎ𝑗 
in each cluster to their closest other-class instance 𝑦𝑖ℎ𝑗(1) and then determining 𝑓 ( 1𝑑𝐷(𝑥𝑖ℎ𝑗,𝑦𝑖ℎ𝑗(𝑣))). 

𝑇𝐻ℎ𝑗 is then set as the average of 𝑓 ( 1𝑑𝐷(𝑥𝑖ℎ𝑗,𝑦𝑖ℎ𝑗(𝑣))). 

𝑇𝐻ℎ𝑗  =  ∑ 𝑓 ( 1𝑑𝐷(𝑥𝑖ℎ𝑗,𝑦𝑖ℎ𝑗(1)))𝑅ℎ𝑗𝑗=1              (4.9) 

where 𝑅ℎ𝑗 is the number of instances in cluster 𝐶ℎ𝑗.   
Determining 𝑇𝐻ℎ𝑗  automatically is a critical step in our method as our weighting algorithm 

runs for each cluster separately and each cluster requires a specific threshold. Then, the weights 𝑊(𝑥𝑖ℎ𝑗) are determined based on the Euclidean distance of 𝑥𝑖ℎ𝑗  from all 𝑘  nearest neighbors. In 

this step, we impose the ordering relationship among instances of different classes.   𝑊(𝑥𝑖ℎ𝑗) =  ∑ (Γ(𝑥𝑖ℎ𝑗 , 𝑦𝑖ℎ𝑗(𝑣)) ∗ |𝑟𝒙𝑖ℎ𝑗 − 𝑟𝑖ℎ𝑗(𝑣)|) 𝑘𝑣=1          (4.10) 

In this equation, the instances in cluster h of class 𝑗 that are closer to instances of non-

adjacent classes will have higher weights as can be seen in Figure 4.2. 

Finally, the weights are converted into a probability distribution 𝑃(𝑥𝑖ℎ𝑗) by dividing each 

weight by the summation of all weights as follows: 

𝑃(𝑥𝑖ℎ𝑗) =  𝑊(𝑥𝑖ℎ𝑗)∑ 𝑊(𝑥𝑖ℎ𝑗)𝑅ℎ𝑖=1             (4.11) 

In the last step, each cluster 𝐶ℎ𝑗 , ℎ = 1,… , 𝑛𝑗 will be oversampled so that they will have 

size 𝑆ℎ𝑗. For oversampling, an instance a in each class is selected by sampling from the probability 
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distribution 𝑃(𝑥𝑖ℎ𝑗). Then, one of its 𝑁𝑁-nearest neighbors b is randomly selected and a new 

instance c is generated between a and b as follows:            𝑐 =  𝛽𝑎 + (1 −  𝛽)𝑏          (4.12) 

where 𝛽 is a random number between 0 and 1. In terms of complexity, the most time-consuming 

part of the CWOS-Ord algorithm is the OVA semi-unsupervised hierarchical clustering, which has 

a complexity of O(JN3), where J is the number of classes and N is the size of the dataset. By 

implementing the hierarchical clustering using an optimally efficient method [39], the complexity 

can be reduced to O(JN2). The proposed CWOS-Ord algorithm is described through the following 

algorithm: 

Algorithm 1 – Cluster-based Weighted Oversampling for Ordinal Regression (CWOS-Ord) 
Inputs: 

- Original features: The features of original dataset that should be oversampled. 
- Original labels: The labels of original dataset that should be oversampled. 
- 𝐶𝑡ℎ𝑟𝑒𝑠ℎ: The coefficient to tune the threshold for the hierarchical clustering. 
- 𝑁𝑁: Number of nearest neighbors to be found for each instance to determine the weights and cluster complexity. 
- 𝑁𝑆: Number of nearest neighbors used to identify noisy instances.  
- 𝛼: Parameter to tune the trade-off between complexity and initial size to determine cluster size.   

 

Outputs: 
- Final features: The features of the oversampled dataset. 
- Final labels: The labels of the oversampled dataset. 

 

Procedure: 
For each class j except the largest-size class: 
i. Hierarchical Clustering 

1. Remove noisy instances from the dataset.  
2. Determine 𝑇𝑗. 
3. Cluster all instances of other classes, which will result in m clusters 𝐶𝑜𝑡ℎ𝑒𝑟𝑖=1,… ,𝑚𝑗. 
4. Assign each instance of class j to a separate cluster. 
5. Find the two closest clusters 𝐶𝑑𝑒𝑠𝑎 and 𝐶𝑑𝑒𝑠𝑏. 
6. Check if there is any overlapping other-class cluster between  𝐶𝑑𝑒𝑠𝑎 and 𝐶𝑑𝑒𝑠𝑏. 
7. If yes, set their distance to infinity and return to step 5. Else, merge  𝐶𝑑𝑒𝑠𝑎 and 𝐶𝑑𝑒𝑠𝑏 into one cluster 𝐶𝑑𝑒𝑠𝑐.  
8. Repeat steps 5 to 7 until the Euclidean distance between the closest sub-clusters is less than a threshold 𝑇𝑗. 
9. Determine cluster sizes 𝑆ℎ𝑗  for all clusters of class j using equation 4.5. 

ii. Synthetic Instance Generation 
a) Determine the probability distribution for instances within each cluster of class j:  
- For each cluster h = 1, 2, … , 𝑛𝑗 

1. For all instances 𝑥𝑖ℎ𝑗 in cluster 𝐶𝑗, find the 𝑁𝑁-nearest neighbors among other-class instances. 
2. Determine 𝑊(𝑥𝑖ℎ𝑗) for each instance in cluster 𝐶ℎ using equation 4.6 – 4.10 and by estimating 𝑇𝐻ℎ𝑗. 
3. Transform the weights to a probability distribution  𝑃(𝑥𝑖ℎ𝑗) using equation 4.11. 

b) Oversample instances of class j: 
- For each cluster h = 1, 2, … , 𝑛𝑗 

1. Select an instance 𝑎 in cluster ℎ by sampling from probability distribution 𝑃(𝑥𝑖ℎ𝑗). 
2. Select one of its 𝑁𝑁 nearest neighbors 𝑏 randomly given that they belong to the same cluster. 
3. Generate a new synthetic instance between 𝑎 and 𝑏 using equation 4.12. 
4. Repeat steps 1 to 3 until the cluster size reaches 𝑆ℎ𝑗. 
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4.3. Results 

The performance of CWOS-Ord was tested on 11 publicly available datasets and compared 

with five other oversampling methods: 1) Extension of random oversampling (E-RO), 2) Extension 

of SMOTE (E-SMOTE) [26], 3) Extension of MWMOTE (E-MWMOTE) [27], 4) Extension of 

ADASYN (E-ADASYN) [112], and 5) Graph-based Oversampling for Ordinal regression via 

Shortest Path (OGO-SP) [114]. OGO-SP was selected among the three versions of OGO due to its 

superior results compared to the other two versions as demonstrated in [114]. The following 

performance measures were used: Average Mean Absolute Error (AMAE), and Maximum Mean 

Absolute Error (MMAE) [115, 116], which are suitable for imbalanced dataset problems in ordinal 

regression.  

Table 4.1 Description of the datasets 

# Dataset # of 
features 

# of 
instances 

# of 
classes 

# of instances in each class Imbalanced Ratio 

1 Stock 9 950 10 48/110/108/119/168/104/104/103/64/22 2.2:5.0:4.9:5.2:7.6:4.9:4.9:4.8:2.9:1.0 
2 Auto 7 392 5 91/131/101/59/10 9.1:13.1:10.1:5.9:1.0 
3 Machine 6 209 4 152/27/13/17 11.7:2.1:1.0:1.3 
4 Balance 4 625 3 288/49/288 5.9:1:5.9 
5 ESL 4 488 5 14/38/351/62/23 1:2.7:25.1:4.4:1.4 
6 Heating 8 768 8 20/265/112/51/119/85/82/34 1.0:13.3:5.6:2.6:6.0:4.3:4.1:1.7 
7 ERA 4 1000 9 92/142/181/172/158/118/88/31/18 5.1:7.9:10.1:9.6:8.8:6.6:4.9:1.7:1.0 
8 Wisconsin 32 194 5 67/41/43/24/19 3.5:2.2:2.3:1.3:1.0 
9 Triazines 60 186 4 17/26/86/57 1.0:1.5:5.1:3.4 
10 Wine Quality Red 12 1599 6 10/53/681/638/199/18 1.0:5.3:68.1:63.8:19.9:1.8 
11 New Thyroid 5 215 3 30/150/35 1.0:5.0:1.2 

 

AMAE measures the average of Mean Absolute Error (MAE) independently across classes 

and is particularly suitable for imbalanced datasets. MAE is the average deviation of the prediction 

from the observed values. 𝑀𝐴𝐸𝑗 = 1𝑁𝑗∑  |𝑝𝑖 − 𝑜𝑖|𝑛𝑖=1             (4.13) 

where 𝑝𝑖 is the predicted value and 𝑜𝑖 is the observed value. MAE is not used directly as it is not 

suitable for imbalanced datasets. Instead, we use AMAE that is described as follows: 
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Table 4.2 MMAE results for the oversampling methods on the 11 datasets using OR-EBC 

Dataset NO E-OR E-SMOTE E-ADASYN E-MWMOTE OGOSP CWOS-ORD 

Auto 1.000±0.000 0.603±0.168 0.550±0.200 0.639±0.244 0.499±0.124 0.585±0.115 0.533±0.196 
ERA 1.998±0.094 1.980±0.018 1.896±0.171 1.943±0.072 1.883±0.076 1.927±0.053 1.822±0.096 

Balance 0.100±0.053 0.179±0.020 0.179±0.022 0.177±0.015 0.181±0.021 0.212±0.016 0.161±0.019 
ESL 1.000±0.125 0.481±0.130 0.433±0.147 0.428±0.153 0.430±0.031 0.435±0.091 0.417±0.072 

Stock 0.992±0.065 0.740±0.075 0.714±0.084 0.666±0.078 0.736±0.071 0.813±0.070 0.726±0.107 
Wisconsin 2.177±0.216 1.509±0.148 1.593±0.126 1.587±0.145 1.563±0.165 1.611±0.135 1.548±0.105 
triazines 2.000±0.000 1.789±0.141 1.733±0.205 1.706±0.200 1.794±0.142 1.739±0.211 1.728±0.203 
Wine-Red 2.100±0.141 1.319±0.398 1.237±0.230 1.301±0.424 1.219±0.257 1.212±0.283 1.293±0.152 

Machine 0.770±0.196 0.581±0.151 0.576±0.176 0.581±0.151 0.688±0.231 0.634±0.167 0.548±0.279 

Heating 0.880±0.435 0.654±0.339 0.685±0.348 0.647±0.332 0.689±0.356 0.566±0.446 0.520±0.406 

NewThyroid 0.399±0.031 0.161±0.053 0.161±0.053 0.147±0.092 0.140±0.040 0.127±0.046 0.127±0.046 

   

Table 4.3 AMAE results for the oversampling methods on the 11 datasets using OR-EBC 

Dataset NO E-OR E-SMOTE E-ADASYN E-MWMOTE OGOSP CWOS-ORD 

Auto 0.389±0.031 0.304±0.056 0.289±0.045 0.321±0.058 0.290±0.049 0.312±0.042 0.313±0.052 
ERA 1.449±0.136 1.371±0.063 1.302±0.079 1.301±0.089 1.316±0.091 1.366±0.039 1.267±0.096 

Balance 0.057±0.023 0.103±0.011 0.102±0.007 0.101±0.007 0.104±0.011 0.126±0.009 0.093±0.008 
ESL 0.606±0.086 0.269±0.053 0.255±0.043 0.256±0.035 0.297±0.059 0.286±0.082 0.253±0.052 

Stock 0.465±0.025 0.353±0.044 0.349±0.045 0.349±0.042 0.360±0.039 0.379±0.045 0.351±0.034 
Wisconsin 1.205±0.066 1.110±0.079 1.138±0.069 1.129±0.089 1.115±0.087 1.118±0.088 1.106±0.062 

triazines 0.995±0.012 0.951±0.071 0.940±0.116 0.950±0.128 0.985±0.107 0.941±0.070 0.914±0.030 

Wine-Red 1.098±0.044 0.816±0.025 0.805±0.045 0.810±0.016 0.788±0.041 0.786±0.035 0.747±0.019 

Machine 0.446±0.138 0.314±0.056 0.310±0.066 0.313±0.055 0.326±0.068 0.342±0.058 0.291±0.120 

Heating 0.482±0.240 0.260±0.133 0.259±0.132 0.258±0.132 0.272±0.140 0.218±0.174 0.235±0.187 
NewThyroid 0.233±0.042 0.074±0.034 0.076±0.030 0.074±0.060 0.073±0.024 0.067±0.024 0.075±0.042 

 𝐴𝑀𝐴𝐸 = 1𝐽∑  𝑀𝐴𝐸𝑗𝐽𝑗=1                   (4.14) 

MMAE is the maximum MAE among all classes and is a suitable measure for both ordinal 

regression and imbalanced dataset problems. This is because it represents the individual 

performance for the worst ordered class in such a way that a low MMAE represents a low error 

for all classes of the problem (including minority ones):  𝑀𝑀𝐴𝐸 = max  {𝑀𝐴𝐸𝑗; 𝑗 ∈ {1, … , 𝐽}}              (4.15) 

Table 4.4 Results for mean ranking of the 7 methods averaged over the 11 datasets 

Measure NO E-OR E-SMOTE E-ADASYN E-MWMOTE OGOSP CWOS-ORD 

MMAE 6.455 4.682 3.636 3.409 3.818 4.136 1.864 

AMAE 6.455 4.182 3.273 3.636 4.364 4.000 2.091 
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Table 4.6 Holm’s test P-value - Control algorithm: CWOS-ORD 

𝑖 𝛼0.10 
MMAE AMAE 

Method P-value  Method P-value 

1 0.0167 No 3.11E-07** No 1.08E-06** 
2 0.0200 E-OR 0.001108625** E-MWMOTE 0.006806** 
3 0.0250 OGOSP 0.006806454** E-OR 0.011606* 
4 0.0333 E-MWMOTE 0.016923311* OGOSP 0.019107* 
5 0.0500 E-SMOTE 0.027145425* E-ADASYN 0.046695* 
6 0.1000 E-ADASYN 0.046695338* E-SMOTE 0.099745* 

 

Measures like MAE or accuracy were not considered in our experiments. MAE is not 

suitable for imbalanced datasets because datasets with high MAE values for the minority classes 

may have very low MAE as a whole. On the other side, Accuracy is not a good performance 

measure for ordinal regression because it does not consider the difference of errors in the ranks.  

The techniques were implemented using Matlab on a workstation with 64-bit Operating 

System, 16.00 GB RAM, and 3.60 GHz CPU. Table 4.1 contains detailed information regarding 

all 11 datasets from the University of California at Irvine (UCI) repository with different imbalance 

ratios as high as 1:68. Imbalance ratio is defined as the proportion of instances in the majority 

classes with respect to instances of minority classes. In Table 4.1, the imbalance ratio for all classes 

with regard to the smallest class is shown in the last column and the largest imbalance ratio for 

each dataset is shown in bold. Most of the datasets in Table 4.1 are specific for ordinal regression. 

However, some of them (Wisconsin, Stock, Machine, Triazines and Auto) are not originally for 

ordinal regression and were converted into ordinal classification by discretizing the outcome 

variable into equal-sized bins [13]. The mean and standard deviation of MMAE and AMAE for 

each method on the 11 datasets are determined by using stratified 3-fold cross validation and 

Table 4.5  Results for Friedman’s Test 

P-Value for  MMAE P-value for AMAE 
0.0001172*** 0.0003814*** 
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repeating the experiment 3 times. Repeating the experiments several times was performed to 

address the randomness effects on the results. 

Ordinal Regression by Extended Binary Classification (OR-EBC) [117] is used to evaluate 

the oversampling methods because of its fast training speed and good generalization performance. 

OR-EBC has a decomposition framework that first converts the ordinal regression problem into a 

set of binary problems. Then, it solves all the binary problems jointly by proposing a new 

formulation for SVM to obtain a single binary classifier. Finally, it converts the binary outputs to 

ranks. The radial kernel is used for SVM and the parameters for OR-EBC and the oversampling 

methods are optimized over a small set of values using cross-validation. In particular, the 

parameters for both cost 𝐶 and gamma γ are selected among the values (10−1 ,100 ,101). k = 5 

nearest neighbors is used for all methods that require a number of neighbors to be selected as 

suggested by other works [27, 114]. For the graph based method [114] 𝑎 = 2, 𝑏 = 0.15 where 𝑎 

and 𝑏  are the parameters for the gamma distribution used to generate 𝛽  in equation 4.10 as 

suggested by the paper. For our method (CWOS-ORD), 𝐶𝑡ℎ𝑟𝑒𝑠ℎ was selected among (1, 2, 3) and 𝛼 was selected among the values (0.1, 0.5, 1, 1.5) 

The MMAE and AMAE results for CWOS-Ord and the other five methods on 11 real 

datasets and classified using OR-EBC are shown in Tables 4.2 and 4.3, respectively. The best 

measures are shown in bold. It can be observed from these two tables that when no oversampling 

is performed (the first column in Tables 4.2 and 4.3), the results are clearly inferior to all 

oversampling methods for all datasets. Random oversampling also clearly does not provide good 

results because, as mentioned earlier, it leads to overfitting.  

The mean ranking for each method in terms of MMAE and AMAE for all tested datasets 

are shown in Table 4.4. The method that performed the best is assigned a ranking of 1 while the 
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method that performed the worst is assigned a ranking of 7. As can be seen from the table, our 

method has the lowest ranking in terms of both measurements. In order to verify whether the results 

obtained by our method are statistically significant to other methods, the Friedman’s test followed 

by Holm’s test were applied. Friedman test is a non-parametric statistical test and is very similar 

to the repeated-measures ANOVA. The null hypothesis is that all oversampling methods are 

performing similarly in mean rankings. The results for the Friedman test are shown in Table 4.5. 

It can be observed that, for both measures, there exists enough evidence at α = 0.05 to reject the 

null hypothesis. This means that based on the current datasets, the oversampling methods are not 

performing similarly. 

 

Figure 4.3 Timewise comparison of CWOS-ORD and OGO in logarithmic scale (in 
seconds). 
 
Rejection of the null hypothesis for both performance measures means a post-hoc test can 

be followed. As the post-hoc test, Holm’s test was used where our method was considered as the 

control method. Holm’s test is the non-parametric equivalent to multiple t-test in which α is 

adjusted in a step-down procedure to compensate for multiple comparisons. Table 4.6 shows the 
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adjusted α and the corresponding p-value for each method. The largest α is equal to 0.1 in our 

experiments. 

As can be seen from Table 4.6, in terms of both MMAE and AMAE, the proposed CWOS-

Ord method is significantly better than all other methods. Both E-ADASYN and E-SMOTE have 

higher p-values than no oversampling, E-OR and OGO-SP which indicates that both of them 

performed satisfactorily according to MMAE and AMAE. On the other hand, OGO-SP has a lower 

p-value indicating that it did not perform satisfactory. Finally, from Tables 4.2 and 4.3, we can 

also observe that our method has lower variance compared to other methods. 

Table 4.7 Time comparison between OGO and CWOS-Ord in seconds 

Datasets OGO CWOS-Ord Ratio 

Balance 44.02 9.63 4.57 
Heating 45.15 2.33 19.36 
Stock 11.70 2.92 4.01 
Wisconsin 0.84 0.36 2.32 
Machine 0.47 0.07 6.63 
Auto 11.83 0.66 17.93 
ESL 16.83 1.03 16.32 
ERA 15.1 3.12 4.83 
Triazines 2.76 0.13 20.97 
Wine Quality Red 530.20 35.00 15.15 
New Thyroid 1.02 0.09 11.39 

            

We also determined the computation time of our method versus the OGO-SP method, 

which is the only method designed specifically for ordinal regression. The results are shown in 

Table 4.7 and Figure 4.3 in logarithmic scale as the computational time ranges from 0.07 sec to 

530.20 sec so this allowed the real values to be shown in a single graph. It can be observed that 

the computational time depends on the number of instances in the datasets as well as the number 

of features. The larger the dataset and the number of features, the more computation time is needed 

for the OGO method and the more prominent the time difference is between OGO and our method. 

For example, for small datasets like Wisconsin and Machine, our method is two and six times 
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faster, respectively, whereas for large datasets like Heating and Triazines, our method is almost 20 

times faster. Therefore, the proposed CWOS-Ord method is shown to perform better than other 

methods in terms of performance measures and computational time. 

4.3.3. Choosing Parameters for CWOS-Ord 

CWOS-Ord requires four parameters to be selected: 𝑐𝑡ℎ𝑟𝑒𝑠, 𝑁𝑁, 𝑁𝑆 and 𝛼. In this section, 

some suggestions are given to better select these parameters. Sensitivity analysis is also performed 

on few datasets by running CWOS-Ord with different set of values for each parameter. The results 

are shown in Table 4.8. 

 𝑐𝑡ℎ𝑟𝑒𝑠: The threshold for agglomerative clustering is adjusted by this parameter. If 𝑐𝑡ℎ𝑟𝑒𝑠 
is selected as a large value, fewer clusters with larger size will be generated, while if it is 

selected as a small value, more clusters with smaller sizes will be generated. Therefore, the 

best value for 𝑐𝑡ℎ𝑟𝑒𝑠 depends on the dataset. Large sized clusters normally increase the 

chance of over-generalization due to generation of overlapping instances. On the other 

hand, small sized clusters normally lead to over-fitting. As can be seen from Table 4.8 a 

good range for 𝑐𝑡ℎ𝑟𝑒𝑠 is between 1 and 2.5.  

 𝑁𝑁: The number of nearest neighbors used to assign weights to the instances and determine 

cluster complexity is determined by this parameter. For large values of 𝑁𝑁, almost similar 

weights are assigned to all instances and all clusters will have similar complexity. On the 

other hand, for small values of 𝑁𝑁, both the weights and cluster complexity could be very 

sensitive to noisy instances. As can be seen from Table 4.8, a reasonable value for 𝑁𝑁 

could be selected between 3 and 7. 

 𝑁𝑆: Noisy instances are found using this parameter. If for an instance, all 𝑁𝑆 nearest 

neighbors are from non-adjacent classes, then the instance is considered as noise in our 
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method. A large value for 𝑁𝑆 makes the method to not be able to find noisy instances 

whereas a small value for 𝑁𝑆 makes the method to consider many of the valid instances as 

noise. As can be seen from Table 4.8, a reasonable value for 𝑁𝑆 can be between 3 and 7.  

 𝛼: This parameter determines the trade-off between complexity of each cluster and the 

initial size of each cluster as the leading factor in finding the final size of each cluster. The 

larger the 𝛼 is, the more the smaller clusters are emphasized, while more complex clusters 

are ignored and the smaller the 𝛼 is, the less the smaller clusters are emphasized, while 

more complex clusters are emphasized more. As can be seen from Table 4.8, 𝛼 can be 

selected between 0.4 and 1. 

Table 4.8 Sensitivity analysis on CWOS-Ord parameters using OR-EBC 

Dataset 

AMAE measure for different 

values of 𝒄𝒕𝒉𝒓𝒆𝒔 AMAE measure for 

different values of NN 

AMAE measure for 

different values of NS 

AMAE measure for 

different values of 𝛼 𝒄𝒕𝒉𝒓𝒆𝒔 AMAE 𝑵𝑵 AMAE 𝑵𝑺 AMAE 𝜶 AMAE 

Stock 

0.5 0.305±0.023 1 0.310±0.038 1 0.411±0.014 0.1 0.300±0.039 

1.0 0.299±0.026 2 0.305±0.029 2 0.291±0.030 0.4 0.302±0.027 

1.5 0.289±0.023 4 0.300±0.037 4 0.281±0.031 0.7 0.288±0.027 

2.0 0.304±0.029 6 0.303±0.037 6 0.288±0.031 1.0 0.305±0.034 

2.5 0.304±0.028 8 0.309±0.028 8 0.287±0.024 1.5 0.306±0.043 

3.0 0.302±0.028 10 0.303±0.042 10 0.290±0.025 2.0 0.312±0.024 
3.5 0.307±0.027 15 0.307±0.026 15 0.282±0.022 3.0 0.310±0.030 

New 
Thyroid 

0.5 0.038±0.017 1 0.069±0.031 1 0.147±0.086 0.1 0.067±0.040 

1.0 0.037±0.016 2 0.063±0.033 2 0.055±0.030 0.4 0.066±0.037 

1.5 0.032±0.018 4 0.056±0.027 4 0.063±0.036 0.7 0.067±0.053 
2.0 0.045±0.025 6 0.058±0.032 6 0.052±0.032 1.0 0.067±0.028 

2.5 0.047±0.024 8 0.061±0.027 8 0.055±0.035 1.5 0.069±0.042 

3.0 0.052±0.020 10 0.064±0.038 10 0.056±0.037 2.0 0.072±0.050 

3.5 0.050±0.025 15 0.071±0.032 15 0.057±0.043 3.0 0.073±0.036 

Wisconsin 

0.5 1.199±0.115 1 1.174±0.094 1 1.311±0.107 0.1 1.141±0.100 

1.0 1.246±0.094 2 1.180±0.082 2 1.256±0.058 0.4 1.134±0.099 

1.5 1.199±0.101 4 1.174±0.073 4 1.159±0.045 0.7 1.144±0.107 

2.0 1.195±0.128 6 1.183±0.064 6 1.181±0.016 1.0 1.152±0.098 

2.5 1.238±0.088 8 1.186±0.071 8 1.218±0.058 1.5 1.153±0.081 

3.0 1.208±0.087 10 1.188±0.054 10 1.185±0.057 2.0 1.154±0.117 
3.5 1.215±0.113 15 1.175±0.084 15 1.221±0.059 3.0 1.145±0.079 

Triazines 
 

0.5 0.982±0.047 1 0.966±0.035 1 1.000±0.000 0.1 0.960±0.036 
1.0 0.976±0.049 2 0.979±0.036 2 0.977±0.034 0.4 0.967±0.035 

1.5 0.966±0.041 4 0.978±0.040 4 0.964±0.033 0.7 0.947±0.036 

2.0 0.964±0.054 6 0.965±0.051 6 0.971±0.033 1.0 0.954±0.034 

2.5 0.949±0.052 8 0.974±0.037 8 0.970±0.034 1.5 0.953±0.034 
3.0 0.965±0.051 10 0.983±0.039 10 0.966±0.035 2.0 0.954±0.039 
3.5 0.964±0.053 15 0.973±0.055 15 0.969±0.031 3.0 0.956±0.036 
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4.4. Applying Oversampling Methods for Ordinal Regression to Predict Stages of POP  

In this section, clinical and demographical information along with MRI measurements are 

modeled for predicting the stages of POP. The input variables used for the models are shown in 

Table 4.9. Some of the MRI measurements are suggested by [118] and are distinguished from other 

variables by an asterisk next to the name of the variable. These features obtained from MRI were 

identified that, together with the patient’s background information, were found to be significant in 

differentiating between low and high stages of POP. This work [118] only considered the binary 

problem where low stage represents stages 0 and I whereas high stage corresponds to stages II, III, 

and IV. 

Table 4.9 List of demographic, clinical and MRI-based variables 

Category Variable Name 
Demographic information  Age 

BMI(kg/m2) 
Parity 
Gravida 
Vaginal delivery 
Caesarean Delivery 

clinical history Hysterectomy 
Uterosacral colpexy 
Sacrospinous ligament fixation 
Sacrocolpopexy 
Cystocele (anterior) repair 
Rectocele (posterior) repair 
Incontinence Surgery 

MRI-based features: H-Line 

PCL 

Distance Ratio(PCL/MPL)* 

Distance Ratio(TCL/MPL)* 

Distance Ratio(OCL/MPL)* 

Distance Ratio(DCL/MPL)* 

Angle(between TCL and MPL)* 

Angle(between DCL and PCL)* 

 

Logistic Regression for ordinal regression and Ordinal Regression by Extended Binary 

Classification (OR-EBC) were used as the prediction model to investigate if a combination of 

variables correlates to the outcome variable. Prior to building the prediction model, the dataset was 
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pre-processed through the following stages: 1) Dataset normalization; 2) Feature selection; and 3) 

Dataset balancing. Following is a description of the pre-processing stages. 

1) Dataset normalization. The dataset is normalized to transform the range of all variables to 

[0-1]. Normalization is required to transform the variables to the same scale and allow 

comparison.  

2) Feature selection. In order to select relevant features, the greedy algorithm proposed in [] 

was used. In their method, the feature selection problem for ordinal regression is 

formulated as an optimization problem with the purpose of finding the features with the 

maximum total importance scores and minimum total similarity scores. Feature selection 

enhance generalization by reducing overfitting.  

3) Dataset balancing. Given that the dataset contains different number of instances for each 

class, the dataset needs to be balanced. In order to balance the dataset, all the 7 methods 

explained in Chapter 3 were examined.           

After data pre-processing, the prediction models were built. In order to evaluate the 

performance of the prediction models, Weighted Accuracy, AMAE and MMAE were used as 

explained in Chapter 4. 3-fold cross-validation was used to measure the performance of the 

prediction models in terms of measurements. The experiments were repeated three times to report 

the average in order to alleviate the randomness effects on the results. 

The results are shown in Tables 4.10 and 4.11. As can be seen from the results, the accuracy 

is low and AMAE and MMAE are high for all three types of POP. This indicates that currently 

used image and clinical features are not sufficient to discriminate among the five POP stages 

complicating the development of more robust prediction models in the presence of imbalanced 

datasets. 
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Table 4.10 Results for the sampling methods on the POP datasets classified using OR-
EBC 

 
Dataset Meas. NO E-OR E-SMOTE E-ADASYN E-MWMOTE OGOSP CWOS-ORD 

Anterior 
WAcc 0.4770.058 0.5040.063 0.5020.069 0.4890.053 0.4970.059 0.4990.053 0.5230.068 

MMAE 0.921±0.264 0.837±0.179 0.845±0.182 0.860±0.184 0.834±0.107 0.858±0.157 0.784±0.109 

AMAE 0.642±0.096 0.566±0.058 0.567±0.056 0.587±0.044 0.571±0.058 0.567±0.050 0.539±0.048 

Apical 
WAcc 0.3390.017 0.4600.054 0.4190.052 0.4450.049 0.3600.081 0.3830.086 0.4050.087 

MMAE 1.929±0.120 0.802±0.072 0.827±0.064 0.793±0.061 0.947±0.083 0.930±0.085 0.911±0.092 

AMAE 0.981±0.034 0.599±0.062 0.638±0.058 0.622±0.065 0.655±0.086 0.643±0.087 0.642±0.078 

Posterior 

WAcc 0.3390.040 0.3490.019 0.3630.040 0.3570.037 0.3690.060 0.3670.040 0.3480.075 

MMAE 0.980±0.055 0.932±0.059 0.949±0.050 0.956±0.042 0.929±0.104 0.914±0.080 0.930±0.123 

AMAE 0.725±0.048 0.726±0.040 0.707±0.062 0.717±0.047 0.705±0.050 0.707±0.046 0.711±0.073 

 

Table 4.11 Results for the sampling methods on the POP datasets classified using 
Logistic Regression 

 
Dataset Meas. NO E-OR E-SMOTE E-ADASYN E-MWMOTE OGOSP CWOS-ORD 

Anterior 
WAcc 0.4670.043 0.4670.043 0.4670.043 0.5180.045 0.5350.034 0.5440.044 0.5410.042 

MMAE 0.995±0.094 0.995±0.094 0.995±0.094 0.717±0.061 0.719±0.050 0.672±0.077 0.661±0.068 

AMAE 0.735±0.085 0.735±0.085 0.735±0.085 0.595±0.021 0.584±0.030 0.572±0.054 0.594±0.048 

Apical 
WAcc 0.4200.036 0.4200.036 0.4200.036 0.4400.075 0.4360.065 0.4250.050 0.4400.071 

MMAE 1.305±0.208 1.305±0.208 1.305±0.208 0.947±0.131 0.853±0.100 0.943±0.136 0.851±0.123 

AMAE 0.826±0.072 0.826±0.072 0.826±0.072 0.711±0.090 0.744±0.067 0.754±0.024 0.734±0.093 

Posterior 

WAcc 0.4020.071 0.4020.071 0.4020.071 0.4380.067 0.3970.040 0.4180.052 0.4420.020 

MMAE 1.007±0.095 1.007±0.095 1.007±0.095 0.881±0.105 0.928±0.103 0.945±0.098 0.860±0.158 

AMAE 0.706±0.041 0.706±0.041 0.706±0.041 0.729±0.095 0.774±0.053 0.768±0.045 0.709±0.046 

 

4.5. Conclusions 

In this chapter, a new oversampling algorithm called cluster-based weighted oversampling 

for Ordinal Regression (CWOS-Ord) was presented for ordinal regression with imbalanced 

datasets. The advantages of CWOS-Ord are as follows: it avoids generating overlapping synthetic 

instances by considering other-class instances when clustering instances of smaller classes; it 

determines the cluster sizes using a new measurement based on the cluster complexity and initial 

size; and it avoids over-generalization and mislabeling errors in the rank scale by assigning weights 

to instances based on their distance to other-class instances and their rank differences. In addition, 

well-known oversampling algorithms designed for the imbalanced two-class classification were 

extended for imbalanced dataset ordinal regression. CWOS-Ord was compared with five other 

methods. All methods were tested on 11 publicly available datasets with different imbalance ratios 
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and compared using two performance measures. Results show that the proposed CWOS-Ord 

method performs significantly better to all other methods based on both of the performance 

measures. This indicates that identifying small clusters of data for subsequent oversampling 

consideration, and incorporating information on instances’ rank differences and cluster size can be 

important in addressing imbalanced datasets for ordinal regression. 
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Chapter 5  

Automatic Tracking, Segmentation and Analysis of Pelvic Organs Movement in Dynamic 

MRI to Improve Multi-stage POP Diagnosis 

A new contour tracking method is presented to automatically track and segment pelvic 

organs on DMRI followed by a multiple-object trajectory classification method to improve the 

diagnosis of pelvic organ prolapse. Organs are first tracked using particle filters and K-means 

clustering with prior information. Then, they are segmented using the convex hull of the cluster of 

particles. Finally, the trajectories of the pelvic organs are modeled using a new Coupled Switched 

Hidden Markov Model (CSHMM) to classify the severity of pelvic organ prolapse. The tracking 

and segmentation results have been validated using Dice Similarity Index (DSI) whereas the 

classification results have been compared with two manual clinical measurements. Results 

demonstrate that the presented method is able to automatically track and segment pelvic organs 

with a DSI above 82% for 94 tested cases. The accuracy of the trajectory classification is better 

than current manual measurements for all three types of prolapse. In terms of f-measure, the 

proposed method was shown to be better than the manual measurements for anterior and apical 

prolapse but not for posterior prolapse. This work aims to automatically extract and analyze image 

data to improve the prediction of disorders such as pelvic organ prolapse. 
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5.1. Methodology 

The proposed method to automatically track, segment and analyze the movement of pelvic 

organs is described in this section. Figure 5.1 gives an overview of the proposed method. The 

process starts with the data collection, followed by a contour tracking method for automated 

tracking and segmentation of pelvic organs using prior information. Finally, the pelvic organ 

trajectories are analyzed using a proposed coupled switched hidden Markov model. 

5.1.1. Data Acquisition 

A representative clinical dataset of 94 cases with dynamic MRI was used in this study. The 

Institutional Review Board at the University of South Florida considered the study exempt since 

all protected health information was previously removed from the clinical and MRI data before 

collected from a database for this study. MR imaging was taken on a 3-Tesla GE system (General 

Electric Company, GE Healthcare, Buckinghamshire, UK) using an 8-channel torso phased-array 

coil with the patient in a modified dorsal lithotomy position. Prior to imaging, 60ml of ultrasound 

Determine the 
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features 

Data Collection Tracking Segmentatio Trajectory Classification 

Dynamic MRI 
acquisition Randomly create 

initial particles  

Adjust image 
intensities Update the 

position of 
particles 

Apply Chan-
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particles 

 
Remove outlier 

particles 

Select the 5 
frames with the 

largest 
movements 
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Determine 
centroids and 
lowest points 
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switched 

coupled HMM 
for each class  
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set of 
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Contour Tracking                ⬚           ⬚⬚⬚⬚⬚⬚⬚⬚⬚⬚        ⬚⬚⬚⬚⬚

Figure 5.1 Overview of the proposed predictive model  
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gel was placed in the rectum for improved visualization. Dynamic imaging was taken in a 

multiphase, single-slice sequence. The images were acquired in the midsagittal plane for 23-27 

seconds, using a T2-weighted single-shot fast-spin echo sequence. Patients were coached, prior to 

imaging, on performance of an adequate valsalva maneuver. Each patient has 20 frames showing 

the pelvic floor structures from rest to maximum strain. 

The image data has been preprocessed and de-identified.  Each patient has been manually 

examined through POP-Q and a stage has been assigned based on the POP-Q measurements for 

each type of prolapse (anterior, apical and posterior). The stages are from stage 0 through stage 4 

and the patients in this study have different stages of POP. The purpose of this study is to classify 

the patients into two stages: high prolapse and low prolapse. Patients with prolapse stages of 0, 1 

and 2 are considered as low severity of prolapse whereas patients with stages of 3 and 4 are 

considered as high severity of prolapse. 

Before analyzing the MRI data, the images are normalized to improve the contrast of the 

input images by stretching the range of intensity values. Then, a training set is selected from the 

dataset to analyze and extract a representative set of intensity and texture features R for the bladder 

and rectum. The texture features include the range, standard deviation and entropy. The uterus, 

although also a pelvic organ, is not considered in this work as many cases in our dataset belong to 

patients whose uterus has been surgically removed (hysterectomy).  

5.1.2. Automated Tracking and Segmentation of Pelvic Organs Using Prior Information  

In the first stage of the proposed contour tracking method, the bladder and rectum are 

tracked using an adapted particle filter approach with prior information. This information consists 

of the relative locations and common movement directions of the pelvic organs. The following 
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prior information has been incorporated in the particle filter tracking and are explained in more 

details throughout this section: 

1) No part of the bladder and rectum is located on the top quartile of the images.  

2) The pelvic organs tend to move down or to the right during dynamic MRI.   

3) The bladder is always on the left side of the image while the rectum is on the right side. 

This prior information is used to improve the generation, updating, and resampling of the 

particles. For example, since no part of bladder and rectum is located in the top quartile of the 

images, particles are not generated on this quartile to improve particle tracking (Figure 5.2). 

 

  

1) Update the position of the particles by assuming a proper velocity. We assume uniform 

linear motion for the bladder and rectum, and use prior information on their common 

movement directions to improve the tracking results. This is achieved by updating the 

particles using the linear velocity and imposing higher chances that a particle moves down 

or to the right.   

Figure 5.2 Random particles generated using information on common organ location 
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2) Calculate the likelihood of particles )(k
L . For each particle k, we measure how close its 

features 𝑞𝑘 are from R where   is the standard deviation of  Rqk  . 

𝐿(𝑘) = 1√2𝜋𝜎 exp (− (𝑞𝑘−𝑅)22𝜎2 )        (5.1) 

3) Resample the particles with replacement according to their likelihood, where )(k
P is the 

likelihood of the kth particle and N is the number of particles: 𝑃(𝑘) = 𝐿(𝑘)∑ 𝐿(𝑙)𝑁𝑙=1              (5.2)  

After resampling, for each frame, we use k-means to cluster the particles into two groups 

corresponding to each pelvic organ (bladder and rectum). Prior information on the relative location 

of the bladder and rectum in the image is incorporated to provide a better initialization for the k-

means clustering. In particular, it is known that the bladder is always on the left side of the image 

while the rectum is on the right side. Therefore, the initial placement for the centers in k-means is 

based on this information to improve clustering of the two organs. Outlier particles are removed 

from each cluster using the Grubbs test (Figure 5.3) [119], because during the resampling there is 

a chance that some particles with low likelihood are selected. The Grubbs’s test statistics of all 

particles to their corresponding center is measured based on their distance assuming they have 

normal distribution. Then, the ones that are statistically farther from the center at 05.0  are 

identified as outliers and are eliminated. 

It was observed that the majority of the pelvic DMRI frames did not provide any significant 

information on the pelvic organ movement. Given that segmentation is a computationally 

expensive process, frames that do not contribute with information are removed and segmentation 

is performed only on a representative set of frames to reduce computation time without losing 

information. In this work, the movement of particles’ centroids for bladder and rectum are 
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measured and the five frames with the largest movement are selected as the representative frames. 

We chose five frames based on our analysis of the image dataset. 

 

The resulting two clusters of particles are used to define a bounding box for each pelvic 

organ to constrain the search space during segmentation and significantly reduce the computational 

time. An initial adaptive contour is proposed for segmentation that is generated from the convex 

hull of each particle cluster. This provides a good initial contour to initialize the Chan-Vese contour 

segmentation algorithm [85] and automate the process. In contrast with the original Chan-Vese 

algorithm that requires an initial contour to be manually defined for each frame, our approach 

determines the initial contour for each frame automatically and adaptively using the convex hull 

of particles to identify the boundaries of the bladder and rectum. The generated bounding box and 

convex hull are depicted in Figure 5.4. 

5.1.3. Multiple Pelvic Organs Trajectory Analysis  

Using data from the segmented and tracked frames, the trajectory of the bladder’s and 

rectum’s centroids and lowest points are analyzed. The lowest points are considered because they 

Figure 5.3 Updated particles used for tracking after removing outliers. 
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are of clinical interest and currently used to determine the stage (or severity) of prolapse. This 

leads to four trajectories that will be obtained for each patient (Figure 5.5) where the individual 

organ movement and their interactions are important. A new method called Coupled Switched 

Hidden Markov Model (CSHMM) is proposed to capture the interactions among the four 

trajectories to classify the severity of pelvic prolapse.  

 

 

In this work, patients are to be classified into two classes: high severity of prolapse (class 

+1) and low severity of prolapse (class -1), so the set of output variable is }.1,1{ c  For each 

patient i in class c, there exists four trajectories  with the sequence of positions 

 where . CSHMM is a generative model, hence a separate model should 

be made for the examples of each class. As can be seen in Figure 5.6, in our model, the state of 

each trajectory at time t depends on its own state at time t-1, its observation at time t and on the 

states of other trajectories at time t-1.   

}4,3,2,1{l

),..,( 51 lll xxx  2ltx

Figure 5.4 Generating bounding box (red) and initial curve (blue) for bladder (left side) 
and rectum (right side) using their corresponding particles. 
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We consider the observed variables as the set of the relative movement 

 of the four trajectories rather than their absolute positions 

 because we want to study the movements of the organs. As shown in Figure 5.6, 

the hidden states in our model are “stopped”, “moving up”, “moving down-right”, “moving down” 

and “moving down-left”. 

Given the observed feature vector }4,3,2,1),,...,({ 41  lddd lll
 and the corresponding set of 

hidden state }4,3,2,1),,...,({ 41  lhhh lll
, the task is to estimate the set of parameters ),,( cccc AΠ    

for each class c. ),...,({ 41 ssΠ cc  , }4,3,2,1,,...,1  lNsl
 are the initial probabilities for the states, 

given that each state can take N different values.
c  is the set of parameters for the Gaussian 

distribution including the mean ),...,( 41 ss  and the variance ),...,( 41 ss  and 
cA  is the state transition 

probabilities. In contrast to [92], in which first the Gaussian parameters 
c  are estimated and then 

),( cc AΠ  are estimated separately, in our method all the parameters are determined simultaneously 

}4,3,2,1,4,3,2,1),({ ,1,   tlxxd tltllt

}4,3,2,1,{  lxX l

Figure 5.5 Four trajectories to be analyzed for each patient 
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resulting in better estimation of the parameters at the expense of higher computational time. This 

approach can be justified when the dataset is small. 

 After building a model for each class of prolapse, the next step is to classify new cases 

with a set of four observed trajectories into different classes. The maximum a posteriori rule is 

being used for this purpose:  

   )()ˆ,ˆ,ˆ|(maxarg)()|(maxarg cpAΠxpcpcxpc ccccc             (5.3) 

in which the )ˆ,ˆ,ˆ|( ccc AΠxp   is the log likelihood of the most probable explanation (mpe) of example 

x using the model for class c and p(c) is the a priory probability of the class c. In our experiments, 

we set p(c) equal to the proportion of each class in the dataset. Hence, we set p(c=+1) = 0.34 and 

p(c=-1) = 0.66. We also used the Viterbi algorithm [120] to find the mpe and likelihood of each 

new patient for each model. 

T = 1                   T=2             T=3           T=4 

Bladder’s  Lowest points  

Bladder’s  Centroids  

Rectum’s Lowest points  

Rectum’s Centroids  

Figure 5.6 CSHMM model 
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5.2. Results and Discussions  

The proposed contour tracking method for tracking and segmentation of multiple pelvic 

organs has been tested on 94 cases, which were manually segmented by an expert as the ground 

truth. The composition of the dataset based on POP-Q, i.e. the number of patients that are 

diagnosed as high prolapse and low prolapse for the three types of prolapse based on manual 

examination are shown in Table 5.2. As can be seen from Table 5.2, for the anterior and posterior 

prolapse, more patients are suffering from high severity of prolapse, while in the case of apical 

prolapse, less patients are suffering from high severity of prolapse. Tracking and segmentation 

results are validated using Dice Similarity Index (DSI). DSI is a common measure to quantify the 

degree of overlap among objects in binary images [121] and it is defined as follows: 

)2(
2

cba

a
DSI


          (5.4) 

Figure 5.7 The scatterplot of trajectories’ displacement. Each eclipse refers to the 
Gaussian distribution of the hidden states.    
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where a is the number of pixels with a value of “1” in both binary images, b is the number of pixels 

with a value of “1” just in the first image and c is the number of pixels with value of “1” just in 

the second image. DSI was used as a quantitative measure of the similarity between our method’s 

segmentations and the ground truth. For each patient, the DSI for the five frames were calculated 

and averaged. Then the averaged DSI for all the patients were averaged over the 94 patients. 

Results indicate that the proposed method is able to automatically track and segment pelvic organs 

with a DSI of 0.8249±0.0399 for the tested cases. The contour tracking results for a patient are 

shown in Figure 5.8.  

 

 

In order to determine whether there is a relationship between pelvic organs movement on 

dynamic MRI with the severity of prolapse, the maximum displacement of the organs’ lowest point 

from rest to maximum strain was analyzed. The mean and standard deviation of this displacement 

were determined for the total study population and compared with the two classes of prolapse (low 

severity and high severity) as shown in Table 5.1. The statistical significance of the maximum 

displacement difference between the two classes was measured using a two-sided t-test. Alpha = 

0.05 was used to accept or reject whether there exists a difference between the two classes for each 

organ or not. As can be seen from Table 5.1, at alpha = 0.05 the difference is significant for anterior 

Figure 5.8 Results for the tracked and segmented organs. 
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prolapse. On the other hand, although on average the rectum was shown to move more for the case 

of high severity of prolapse, the difference in displacement from rest to maximum strain was not 

found to be significant for posterior prolapse. Therefore, we can conclude that for the case of 

anterior prolapse, large bladder displacement observed on MRI from rest to maximum strain is 

related to high severity of prolapse. However, a similar conclusion cannot be made for the case of 

posterior prolapse.  

Table 5.1 Summary statistics for the total displacement of bladder and rectum 

POP Type Total (n = 46) Low prolapse High prolapse Pvalue 

Anterior 37.049±23.375 27.446±15.429 42.491±25.394 0.0023* 

Posterior 39.749±23.375 34.983±24.016 41.5718±19.557 0.1741 

 

In addition, it was studied whether there exists any correlation between the lowest point’s 

largest displacement of the bladder and rectum on MRI from rest to maximum strain. Figure 12 

shows the displacement of the bladder on the y-axis and the displacement of the rectum on the x-

axis.  

Kendall's tau for the correlation was 0.3636 and the p-value was 2.2113e-07. The Pearson 

correlation coefficient was also 0.3905 and the p-value was 9.9720e-05. Therefore, at alpha = 0.05, 

based on both Kendall's tau and Pearson coefficient, we can conclude that there exists enough 

evidence that the maximum displacement of the bladder and rectum are correlated. This indicates 

that a large bladder displacement tends to also present with high rectum displacement and vice 

versa. These results confirm the importance of considering the interactions of pelvic organs in 

dynamic MRI to improve understanding of the condition. 

The proposed CSHMM used for classification of the severity of posterior pelvic prolapse 

was compared with two commonly-used manual measurements: 1) Pubococcygeal Line (PCL) and 
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2) Mid-pubic line (MPL). These measurements were measured by an expert radiologist and were 

converted to stages of prolapse using the standard criteria described in [122].   

 

 

Leave-one-out cross-validation was used to measure the performance of the prediction 

model in terms of accuracy and F-measure. In leave-one-out cross-validation, all but one of the 

examples from the dataset are used for training the model, and the remaining example is used for 

testing the model. This process is repeated for each of the examples in the dataset to predict if the 

example has high severity of prolapse or not.  

Table 5.2 Composition of the dataset based on POPQ 

POP Type Low Prolapse High Prolapse 

Anterior 34 60 

Apical 78 16 

Posterior 26 68 

 

The prediction for each example is compared with the POP-Q measurement of each 

example to obtain the accuracy and the F-measure of all 94 examples. F-measure is the weighted 

R² = 0.1525
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average of recall and precision. Precision measures the exactness of our prediction model that is, 

the number of patients labeled as low severity that are actually high severity. Recall measures the 

completeness of our prediction model as the number of patients with high prolapse that were 

predicted correctly. The experiments were repeated three times to report the average in order to 

alleviate the randomness effects on the results. The comparison between MPL, PCL and our 

method for the three types of prolapse is shown in Table 5.3. 

The results show that the proposed model provides greater accuracy compared to the 

manual measurements for all types of prolapse. In terms of f-measure, the proposed method is 

showing better results for both MPL and PCL for anterior and apical prolapse, but not for posterior 

prolapse. Also, in agreement with the results in [122] and as a secondary conclusion, MPL 

measurements work better than PCL for the three types of prolapse in our 94 patients. As future 

work, experiments will be performed on the dataset of 207 cases to obtain more robust results, 

determine a patient-specific feature set, and generalize the method to a larger and more diverse 

dataset. 

Table 5.3 Results comparing our proposed CSHMM with commonly-used manual 
measurements to predict severity of posterior prolapse 

POP Type Measurement Proposed method MPL PCL 

Anterior 
Accuracy 0.6277 0.5598 0.3589 

Fmeasure 0.6317 0.6309 0.3524 

Apical 
Accuracy 0.8191 0.7608 0.7321 

Fmeasure 0.8957 0.8512 0.8427 

Posterior 
Accuracy 0.6702 0.5502 0.4354 

Fmeasure 0.4364 0.4891 0.4327 
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Chapter 6  

Summary and Future Work 

The main outcome of this research is the development of two oversampling methods to 

address the imbalance problem in binary data classification and ordinal regression. These 

techniques were tested on public datasets and then were examined in a gynecological diagnosis 

application to predict the risk of development of multi-stage pelvic organ prolapse with imbalanced 

datasets using image data from pelvic organ movement.         

For the first objective of this research, a new oversampling algorithm called Adaptive 

Semi-Unsupervised Weighted Oversampling (A-SUWO) has been presented for imbalanced 

binary dataset classification. The advantages of A-SUWO are that it avoids generating overlapping 

synthetic instances by considering the majority instances when clustering minority instances; it 

determines the sub-cluster sizes adaptively using the standardized average error rate and cross-

validation; it oversamples the sub-clusters by assigning weights to their instances to avoid over-

generalization; and it does not ignore isolated sub-clusters. A-SUWO was tested on 16 publicly 

available datasets with different imbalance ratios and compared with other sampling techniques 

using different types of classifiers. Results show that our method performs significantly better 

compared to other sampling methods in most datasets and in larger datasets with higher imbalance 

ratio.  

For the second objective, a new oversampling algorithm called cluster-based weighted 

oversampling for Ordinal Regression (CWOS-Ord) was presented for imbalanced dataset ordinal 
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regression. The advantages of CWOS-Ord are that it finds small clusters of data and considers 

them for oversampling; and avoids over-generalization and mislabeling errors in the rank scale by 

assigning weights to instances based on their distance to other-class instances and their rank 

differences. In addition, well-known oversampling algorithms designed for the imbalanced two-

class classification were extended for imbalanced dataset ordinal regression. Results show that the 

proposed CWOS-Ord method performs significantly better to all other methods based on the 

performance measures. This indicates that identifying small clusters of data for subsequent 

oversampling consideration, and incorporating information on instances’ rank differences and 

cluster size can be important in addressing imbalanced datasets for ordinal regression. 

For the third and last objective, an automatic method was presented to track, segment, and 

analyze the trajectories of pelvic organs on dynamic MRI. A modified particle filter approach was 

designed by incorporating prior information and clustering to track the pelvic organs automatically. 

An adaptive initial curve for segmentation using the convex hull of the particle clusters was 

proposed to automate and reduce computation time for segmentation. Later, the trajectories of 

centroids and lowest points of the segmented pelvic organs were modeled using a new Coupled 

Switched Hidden Markov Model (CSHMM) to classify the severity of pelvic organ prolapse. 

Results demonstrate that the proposed method can accurately track and segment the pelvic organs, 

and improve the classification of the severity of pelvic prolapse by modeling the resulted 

trajectories. The proposed method can be used to analyze the movement of pelvic organs to 

improve the diagnosis of pelvic organ prolapse. It can also be used for the automatic tracking, 

segmentation and classification of deformable structures from a sequence of images. As future 

work, we would like to extend this work for the case of classifying all the 5 stages of POP and 
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incorporating other patient data such as medical and demographical data. Finally, we would like 

to perform our experiments on a larger dataset.  
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