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Coherent diffraction imaging (CDI) is high-resolution lensless microscopy that

has been applied to image a wide range of specimens using synchrotron

radiation, X-ray free-electron lasers, high harmonic generation, soft X-ray lasers

and electrons. Despite recent rapid advances, it remains a challenge to

reconstruct fine features in weakly scattering objects such as biological

specimens from noisy data. Here an effective iterative algorithm, termed

oversampling smoothness (OSS), for phase retrieval of noisy diffraction

intensities is presented. OSS exploits the correlation information among the

pixels or voxels in the region outside of a support in real space. By properly

applying spatial frequency filters to the pixels or voxels outside the support at

different stages of the iterative process (i.e. a smoothness constraint), OSS finds

a balance between the hybrid input–output (HIO) and error reduction (ER)

algorithms to search for a global minimum in solution space, while reducing the

oscillations in the reconstruction. Both numerical simulations with Poisson noise

and experimental data from a biological cell indicate that OSS consistently

outperforms the HIO, ER–HIO and noise robust (NR)–HIO algorithms at all

noise levels in terms of accuracy and consistency of the reconstructions. It is

expected that OSS will find application in the rapidly growing CDI field, as well

as other disciplines where phase retrieval from noisy Fourier magnitudes is

needed. The MATLAB (The MathWorks Inc., Natick, MA, USA) source code

of the OSS algorithm is freely available from http://www.physics.ucla.edu/

research/imaging.

1. Introduction
When a coherent wave illuminates a noncrystalline specimen

or a nanocrystal, the diffraction intensities in the far field are

continuous and can be sampled at a frequency finer than the

Nyquist interval (i.e. oversampled). If the sampling frequency

is sufficiently fine such that the number of independent

equations of the intensities is greater than or equal to the

number of unknown variables describing the sample structure,

the phase information is, in principle, encoded inside the

diffraction intensities (Sayre, 1952; Miao et al., 1998) and can

be directly retrieved by using an iterative algorithm (Fienup,

1978, 1982; Marchesini et al., 2003; Elser, 2003; Luke, 2005;

Marchesini, 2007; Chen et al., 2007). Since the first experi-

mental demonstration of this lensless imaging technique by

Miao et al. (1999), coherent diffraction imaging (CDI) has

undergone rapid development using synchrotron radiation

(Robinson & Harder, 2009; Chapman & Nugent, 2010; Miao et

al., 2002, 2012; Pfeifer et al., 2006; Chapman, Barty, Marchesini

et al., 2006), X-ray free-electron lasers (X-FELs) (Chapman,

Barty, Bogan et al., 2006; Seibert et al., 2011; Mancuso et al.,

2010; Schlichting & Miao, 2012), high harmonic generation

(Sandberg et al., 2007, 2008; Ravasio et al., 2009; Seaberg et al.,

2011), soft X-ray lasers (Sandberg et al., 2007) and electrons

(Zuo et al., 2003; Dronyak, 2009; De Caro, 2010). Various

forms of CDI methods have been developed, including plane-

wave CDI (Miao et al., 1999, 2002; Chapman, Barty, Marche-

sini et al., 2006; Chapman, Barty, Bogan et al., 2006; Seibert et

al., 2011; Sandberg et al., 2007; Zuo et al., 2003), Bragg CDI

(Robinson & Harder, 2009; Pfeifer et al., 2006; Newton et al.,

2010), scanning (or ptychographic) CDI (Rodenburg et al.,

2007; Thibault et al., 2008; Giewekemeyer et al., 2010),

reflection CDI (Marathe et al., 2010; Roy et al., 2011), Fresnel

CDI (Williams et al., 2006) and others (Abbey et al., 2008;

Szameit et al., 2012). Although significant advances have been

1 This article forms part of a special issue dedicated to advanced diffraction
imaging methods of materials, which will be published as a virtual special issue
of the journal in 2013.
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made over the past few years to develop CDI methods and

pursue their application in materials science, nanoscience and

biology, it remains a challenge to reconstruct fine features in

weakly scattering objects such as biological specimens from

noisy experimental data.

Overcoming this challenge requires (i) the construction of

dedicated CDI instruments for measuring high-quality

diffraction patterns (Xu et al., 2011) and (ii) the development

of more advanced algorithms for phase retrieval of noisy data.

In this article, we will focus on the latter. To date, a number of

iterative algorithms have been developed to recover the phase

information from oversampled diffraction patterns (Fienup,

1978, 1982; Marchesini et al., 2003; Elser, 2003; Luke, 2005;

Marchesini, 2007; Chen et al., 2007). The most widely used is

arguably the hybrid input–output (HIO) algorithm (Fienup,

1982). HIO iterates back and forth between real and reci-

procal space. In real space the no-density region due to

oversampling of the Fourier magnitudes (Miao & Sayre, 2000)

and non-negativity of the electron density are used as

constraints, and in reciprocal space the Fourier magnitudes as

constraints. An important feature of HIO is its ability to avoid

local minima and converge to a global minimum for noise-free

diffraction patterns. However, when a diffraction pattern is

corrupted by experimental noise, the real-space image usually

oscillates as a function of the number of iterations. In practice,

the error reduction (ER) algorithm can be combined with

HIO to improve its performance, but this approach suffers

from stagnation and the algorithm can become trapped in

local minima of the solution space (Fienup, 1982; Pfeifer et al.,

2006). In 2010, a new real-space constraint (i.e. smoothness)

was first developed by exploiting the correlation information

among pixels or voxels in the no-density region outside a

support (Raines et al., 2010). Most recently the noise robust

(NR) framework was introduced with the intent of improving

the performance of existing phase retrieval algorithms such as

HIO, in the face of experimental noise (Martin et al., 2012). In

this article, we fully exploit the smoothness constraint in real

space and develop an effective iterative algorithm (OSS) for

phase retrieval of noisy diffraction patterns. Both our

numerical simulation and experimental results have demon-

strated that OSS consistently outperforms HIO, ER–HIO and

NR–HIO for the reconstruction of weakly scattering objects

such as biological specimens at all noise levels.

2. Background theory

2.1. A new general constraint for phase retrieval of noisy
diffraction data: smoothness outside the support region

In CDI, the Fourier magnitudes of an oversampled

diffraction pattern, given an oversampling ratio larger than or

equal to 2, can in principle be used to retrieve a set of phases

that encodes an object (Miao et al., 1998). To recover said

phases, iterative algorithms use the Fourier magnitudes as a

constraint in reciprocal space and a support in real space.

Additional constraints in real space can facilitate the phase

retrieval process, but general constraints are difficult to

implement and often require prior knowledge of the structure

being reconstructed or assumptions about the data being

collected. Recently, image regularization, such as total-varia-

tion minimization (Jiang et al., 2010) and L1-norm (Newton,

2012), has been implemented in phase retrieval algorithms as

real-space constraints without prior sample knowledge.

However, in practice, recovery of an accurate set of phases

from oversampled diffraction data in the presence of experi-

mental noise remains a challenge.

Here, we address conditions under which experimental

Poisson noise is a predominant component of the noise profile

of oversampled diffraction data. In such a case, the high-

frequency signal is corrupted by high noise (Fig. 1a), which

destabilizes the phase retrieval process. We note that the area

outside the support can be further exploited to facilitate the

faithful recovery of phases that satisfy the Fourier magnitudes.

As required by the oversampling condition (Miao et al., 1998;

Miao & Sayre, 2000), the region outside the support is

assumed to be zero in ideal cases, but in the presence of noise,

it reflects the character of the noise profile of the diffraction

intensity. The OSS algorithm presented here applies a general

constraint to this region. Namely, OSS forces a smooth density
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Figure 1
(a) A Fourier magnitude profile as a function of the spatial frequency,
calculated from a simulated noisy diffraction pattern. The overlaid error
bars (gray) indicate the signal variation due to Poisson noise. The inset
shows the signal-to-noise ratio of this Fourier magnitude profile,
highlighting the corruption of high-frequency information by noise. (b)
Line profiles of the Gaussian filter functions, evaluated for ten different
values of �, implemented in each of the ten steps of the OSS algorithm.
The parameter � is linearly changed from a value of the order of N in step
1 to 1/N in step 10.



profile onto the region outside the support by means of a

convolution with a proper filter at different stages of the

iterative process. This is equivalent to the application of a

tunable spatial frequency filter (Fig. 1b) to the region outside

the support. This frequency filter weights the contribution of

low-frequency information in this region more heavily than

that of high-frequency information, which suffers from a

greater degree of corruption from experimental noise. As the

total electron density in real space is determined by the

centro-pixel value in reciprocal space, applying the smooth-

ness constraint outside the support can reduce the oscillation

of the electron density inside the support. By properly

choosing spatial frequency filters at different stages of the

iteration process, OSS finds a balance between HIO and ER to

search for a global minimum, while reducing oscillations in the

reconstruction. Furthermore, because the smoothness

constraint is applied only to a region outside the support, the

spatial resolution and fine features are retained in the recon-

struction.

2.2. The OSS framework

In order to search for a global minimum in solution space,

OSS starts with 100 independent runs with different phase sets

as initial input. With powerful computer clusters, more inde-

pendent runs can, in principle, be performed to search a larger

solution space. Each run iterates back and forth between real

and reciprocal space with a total of 2000 iterations. The

transition from the jth to the ( j + 1)th iteration in each run

consists of the following steps.

(i) Apply the Fourier transform to the input image, �jðxÞ,

and obtain a Fourier pattern, FjðkÞ.

(ii) Generate a new Fourier pattern by replacing the Fourier

magnitudes with the measured ones,

F 0j ðkÞ ¼ jFeðkÞjFjðkÞ=jFjðkÞj; ð1Þ

where jFeðkÞj represents the experimental Fourier magnitudes.

(iii) Calculate a new image, �0jðxÞ, by applying the inverse

Fourier transform to the new Fourier pattern, F 0j ðkÞ.

(iv) Revise the image on the basis of the HIO equation

(Fienup, 1982),

�00j ðxÞ ¼

(
�0jðxÞ ðx 2 SÞ \ ½�0jðxÞ � 0�;
�0jðxÞ � � �

0
jðxÞ ðx =2 SÞ [ ½�0jðxÞ< 0�;

ð2Þ

where S represents a finite support and � is a parameter

between 0.5 and 1.

(v) Calculate the image for the ( j + 1)th iteration,

�jþ1ðxÞ ¼

(
�00j ðxÞ x 2 S;
}�1½F 00j ðkÞWðkÞ� x =2 S;

ð3Þ

where }�1 is the inverse Fourier transform, F 00j ðkÞ is the

Fourier transform of �00j ðxÞ and WðkÞ is a normalized Gaussian

function in reciprocal space, defined as

WðkÞ ¼ exp � 1
2 ðk=�Þ

2
� �

: ð4Þ

Equation (3) ensures that the smoothing filter, WðkÞ, is only

applied to the density outside the support. By changing

parameter �, the width of the Gaussian filter can be tuned to

reduce the influence of high-frequency information outside

the support, while the density inside the support is not

disturbed. It is important to note that a Gaussian function

WðkÞ is used here, but other filter functions can be imple-

mented to suit the needs of particular data. In its present

implementation, OSS employs a ten-step function for �,

shown in Fig. 1(b). � is changed linearly from a starting value

of the order of N (step 1) to 1/N (step 10), where N is the array

size in that dimension. The number of steps and parameter �
in the algorithm have been chosen heuristically on the basis of

numerical simulations and the application of the algorithm to

experimental data. In step 1, the filter allows nearly all high-

frequency information to persist outside the support region,

exhibiting behavior similar to that of the HIO framework. In

step 10, the filter heavily suppresses high-frequency informa-
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Figure 2
(a) Noise-free oversampled diffraction pattern of the Lena model. (b)
Oversampled diffraction pattern of the Lena model with Poisson noise
(Rnoise = 15%). (c) Lena model with an inset showing fine features. Final
reconstructions of the Lena model obtained from the noisy diffraction
pattern shown in (b) by using (d) HIO, (e) ER–HIO, ( f ) NR–HIO and (g)
OSS.



tion outside the support region, exhibiting behavior similar to

that of the ER framework. Each step consists of 200 iterations

and the best set of phases with the smallest RF is passed on as

the initial input for the next step. RF is calculated by

RF ¼
P

k

kFeðkÞj � �jFjþ1ðkÞk
.P

k

jFeðkÞj; ð5Þ

where � is a scaling factor and Fjþ1ðkÞ is the Fourier transform

of �jþ1ðxÞ.

By repeating this iterative process, the algorithm terminates

the run after reaching 2000 iterations. The reconstructions of

100 independent runs are compared and the one with the

smallest RF is chosen as the final reconstruction.

3. Results

3.1. Reconstruction of simulated noisy diffraction patterns

To characterize the effects of different noise levels on the

reliability and accuracy of the retrieved phases, we perform a

quantitative comparison among HIO, ER–HIO, NR–HIO and

OSS. We first simulate an oversampled diffraction pattern

from the Lena model (Fig. 2c). Poisson noise is added to the

diffraction intensity with Rnoise ranging from 5 to 25%, defined

as

Rnoise ¼
P

k

kFnoise freeðkÞj � jFnoiseðkÞk
.P

k

jFnoise freeðkÞj; ð6Þ

where jFnoise freeðkÞj represents the noise-free Fourier magni-

tudes and jFnoiseðkÞj the Fourier magnitudes with Poisson

noise. Figs. 2(a) and 2(b) show the noise-free and the noisy

Fourier magnitudes (Rnoise = 15%). Using the same initial sets

of random phases and a loose rectangular support, we

performed 100 independent runs for each of the four algo-

rithms. Figs. 2(d)–2(g) show the final reconstructions by HIO,

ER–HIO, NR–HIO and OSS, respectively. Visually, the OSS

reconstruction is most consistent with the model. Fig. 3(a)

shows the R factor (RF) as a function of the noise levels for the
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Figure 3
(a) R factor (RF) as a function of the noise levels for the reconstruction of
the Lena model. Although ER–HIO has the smallest RF, this does not
mean that ER–HIO produces the best reconstruction. As ER sets the
electron density outside a support to zero during iterations, the
calculation of RF is dominated by the low spatial frequency of the
Fourier magnitudes. (b) Rreal (the difference between the final
reconstruction and the Lena model) as a function of the noise levels.
These simulation results indicate that OSS produces the best reconstruc-
tions among the four algorithms at all noise levels.

Figure 4
(a) Noise-free oversampled diffraction pattern of a biological vesicle
model. (b) Oversampled diffraction pattern of the biological vesicle with
Poisson noise (Rnoise = 20%). (c) The biological vesicle model and some
fine features (inset). Final reconstructions of the biological vesicle
obtained from the noisy diffraction pattern shown in (b) by using (d)
HIO, (e) ER–HIO, ( f ) NR–HIO and (g) OSS.



four algorithms. Although ER–HIO consistently shows a small

RF, this algorithm does not produce the best reconstructions.

As ER sets the electron density outside a support to zero

during iterations, the calculation of RF is dominated by the low

spatial frequency of the Fourier magnitudes. A more rigorous

method to quantify the reconstructions is to compare them

with the model (Rreal), defined as

Rreal ¼
P

x

j�reconðxÞ � �modelðxÞj
.P

x

j�modelðxÞj; ð7Þ

where �reconðxÞ represents the final reconstruction by each

algorithm and �modelðxÞ the model structure. Fig. 3(b) shows

Rreal as a function of the noise levels. These results indicate

that OSS produces consistently better reconstructions than

HIO, ER–HIO and NR–HIO at all noise levels. Next, we

performed phase retrieval of a simulated biological vesicle

(Fig. 4c). Figs. 4(a) and 4(b) show a noise-free and a noisy

diffraction pattern (Rnoise = 20%), respectively. The final

reconstructions of the noisy diffraction pattern by HIO, ER–

HIO, NR–HIO and OSS are shown in Figs. 4(d)–4(g). From

these, it is evident that the OSS algorithm produces the best

reconstructions among the four algorithms. Figs. 5(a) and 5(b)

show RF and Rreal as a function of the noise levels. These

simulation results further confirm that OSS produces the most

faithful reconstructions at all noise levels among the four

algorithms.

3.2. Reconstruction of an experi-
mental X-ray diffraction pattern from
a Schizosaccharomyces pombe spore

To demonstrate the applicability of

OSS to experimental data, we

performed phase retrieval of an X-ray

diffraction pattern measured from a

fixed S. pombe yeast spore (Jiang et al.,

2010). Fig. 6(a) shows the diffraction

pattern collected by using 5 keV

X-rays from an undulator beamline at

SPring-8, in which background noise

was subtracted from the diffraction

data. A missing center in the diffrac-

tion pattern is confined within the

centro-speckle, allowing for direct

phase retrieval (Miao et al., 2005). By

using a loose rectangular support, we

performed phase retrieval of the

diffraction pattern with the four algo-

rithms. As a measure of consistency,

each phase retrieval algorithm was

implemented with five independent

trials, each consisting of 100 runs with

different initial phase sets. For each of

the five trials, the reconstruction with

the smallest RF was chosen as repre-

sentative of that trial. The reconstruc-

tions from the five trials were then

compared, and their mean and
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Figure 5
(a) R factor (RF) as a function of the noise levels for the reconstruction of
the biological vesicle. (b) Rreal as a function of the noise levels for the
reconstruction of the biological vesicle. These simulation results further
confirm that OSS produces the most faithful reconstructions among the
four algorithms at all noise levels.

Figure 6
(a) Oversampled diffraction pattern measured from a fixed S. pombe yeast spore using 5 keV
X-rays. (b) Average RF and the consistency of the five independent trials by using the four
algorithms. The average reconstruction (mean) is shown, out of five independent trials obtained by
(c) HIO, (d) ER–HIO, (e) NR–HIO and ( f ) OSS. Each trial consists of 100 independent runs with
different initial phase sets. The variances of the five independent trials obtained by (g) HIO, (h) ER–
HIO, (i) NR–HIO and ( j) OSS are also shown.



variance were used as a measure of consistency. Figs. 6(c)–6( j)

show the mean and variance of the five independent trials

obtained by HIO, ER–HIO, NR–HIO and OSS. Visually, OSS

produces the most consistent reconstructions. The average RF

and the consistency among each of the best reconstructions in

five independent trials are shown in Fig. 6(b). Although ER–

HIO consistently has a small RF as a result of the bias towards

the low-spatial-frequency data, the reconstructions obtained

by ER–HIO and HIO are more variable from trial to trial than

those from NR–HIO and OSS. Among the four algorithms,

OSS produces the most consistent reconstructions with a

consistency of 96.4%. Furthermore, RF of OSS is smaller than

those of HIO and NR–HIO. This further highlights OSS as a

reliable phase retrieval algorithm for the reconstruction of

biological specimens from noisy experimental data.

4. Discussion

Phase retrieval of oversampled diffraction patterns is funda-

mentally limited by experimental noise. It remains a challenge

to perform consistent phase retrieval of weakly scattering

objects such as biological specimens from noisy experimental

data. Here we develop the OSS algorithm by implementing a

general smoothness constraint upon the region outside the

support, which in principle should be zero but in practice

reflects the character of the noise profile. We demonstrate that

OSS achieves consistent and reliable reconstructions in the

presence of experimental noise, conditions in which other

phase retrieval algorithms, such as HIO, are more susceptible

to corruption by noise. We also want to point out that partial

coherence is another important factor in phase retrieval

(Clark et al., 2012) and has not been explored in this work. The

effect of partial coherence as well as the application of OSS to

other forms of CDI methods (Bragg, ptychographic, reflection

and Fresnel) will be investigated in follow-up studies.

We expect OSS to improve the consistency and accuracy of

phase retrieval efforts from noisy diffraction patterns. The

demand for reliable phase retrieval algorithms such as OSS is

increasing, given that the imaging of weakly scattering objects,

in particular biological specimens, is becoming more popular

(Jiang et al., 2010; Miao et al., 2003; Shapiro et al., 2005; Song et

al., 2008; Nishino et al., 2009; Huang et al., 2009; Lima et al.,

2009; Nelson et al., 2010), and since experimental noise

generally limits these applications. Additionally, with the

emergence of X-FELs (Emma et al., 2010; Ishikawa et al.,

2012), more attention to the treatment of noise is required,

given that the diffraction-before-destruction scheme signifi-

cantly limits the diffraction signal obtained for single X-FEL

pulses (Chapman, Barty, Bogan et al., 2006; Seibert et al., 2011;

Mancuso et al., 2010; Schlichting & Miao, 2012) and poses

challenges to routinely used phase retrieval algorithms.

5. Conclusions

In conclusion, we present here a new phase retrieval frame-

work, termed OSS, which exploits the use of a new general

constraint applied to the region outside the support in the

iterative process. The constraints implemented by OSS

achieve more reliable and faithful reconstructions of noisy

diffraction patterns than HIO, ER–HIO and NR–HIO. We

demonstrate the validity of OSS by using both simulated data

with different noise levels and an experimental data set

obtained from a biological cell. We anticipate that OSS will

find application in coherent diffraction imaging of a wide

range of samples with synchrotron radiation (Miao et al., 1999,

2002, 2012; Robinson & Harder, 2009; Chapman & Nugent,

2010; Pfeifer et al., 2006; Chapman, Barty, Marchesini et al.,

2006), X-FELs (Chapman, Barty, Bogan et al., 2006; Seibert et

al., 2011; Mancuso et al., 2010; Schlichting & Miao, 2012), high

harmonic generation (Sandberg et al., 2007, 2008; Ravasio et

al., 2009; Seaberg et al., 2011) and other fields (Zuo et al., 2003;

Dronyak, 2009; De Caro et al., 2010; Scott et al., 2012;

Bertolotti et al., 2012). The MATLAB (The MathWorks Inc.,

Natick, MA, USA) source code of the OSS algorithm is freely

available from http://www.physics.ucla.edu/research/imaging.
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