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ABSTRACT

On the long nuclear time scale of stellar main-sequence evolution, even weak mixing processes can become relevant for redistributing
chemical species in a star. We investigate a process of “differential heating”, which occurs when a temperature fluctuation propagates
by radiative diffusion from the boundary of a convection zone into the adjacent radiative zone. The resulting perturbation of the
hydrostatic equilibrium causes a flow that extends some distance from the convection zone. We study a simplified differential-heating
problem with a static temperature fluctuation imposed on a solid boundary. The astrophysically relevant limit of a high Reynolds
number and a low Péclet number (high thermal diffusivity) turns out to be interestingly non-intuitive. We derive a set of scaling
relations for the stationary differential heating flow. A numerical method adapted to a high dynamic range in flow amplitude needed to
detect weak flows is presented. Our two-dimensional simulations show that the flow reaches a stationary state and confirm the analytic
scaling relations. These imply that the flow speed drops abruptly to a negligible value at a finite height above the source of heating.
We approximate the mixing rate due to the differential heating flow in a star by a height-dependent diffusion coefficient and show that
this mixing extends about 4% of the pressure scale height above the convective core of a 10 M⊙ zero-age main sequence star.
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1. Introduction

Our lack of understanding of (magneto)hydrodynamic transport
processes in stars has hampered progress in developing the stel-
lar evolution theory since its earliest beginnings. One particular
aspect of the problem is the mixing in the boundary layers be-
tween convection and radiative zones in stellar interiors, which is
also known as the problem of convective overshooting. Despite
the indisputable advance in numerical simulations, the problem
remains extremely challenging owing to the extreme range of the
length and time scales involved in it.

The set of physical mechanisms that provide mixing at a con-
vective/stable interface very likely depends on the type of con-
vection zone involved. Because it is exposed to outer space at the
top, a convective envelope is driven by the cold plumes originat-
ing in the photosphere. It is quite possible that the plumes span
the whole convection zone and even provide mixing at its bottom
boundary (cf. Andrássy & Spruit 2013, and references therein).
A convective core or shell is, on the other hand, fully embed-
ded in the star, its stratification is much weaker, and the tem-
perature fluctuations within it are much smaller. Consequently, a
different set of physical mechanisms may dominate mixing at its
boundary.

It has long been known that the kinetic energy of the low-
Mach-number flow in a convective core (or shell) is so low
that the convective motions are stopped within about one per
cent of the pressure scale height once they enter the steep en-
tropy gradient of the radiative zone (Roxburgh 1965; Saslaw
& Schwarzschild 1965). The motions can reach much farther,
though, if they are vigorous enough to flatten the radiative en-
tropy gradient above the convective core. In this case, known
as the process convective penetration, the motions gradually

⋆ Appendix A is available in electronic form at
http://www.aanda.org

“erode” the radiative stratification on the thermal time scale until
radiative diffusion stops any further advance of the erosion front
(Shaviv & Salpeter 1973; van Ballegooijen 1982; Zahn 1991).
Finally, the fluid parcels hitting the stable stratification always
generates a spectrum of internal gravity waves, which may also
provide a certain amount of mixing (Press 1981; Garcia Lopez
& Spruit 1991; Schatzman 1996).

Several of the processes mentioned may operate at the con-
vection zone’s boundary at the same time. Their effects on long
time scales and at long distances from the boundary are very
different. In full numerical hydrodynamic simulations, the re-
strictions on time scales that can be covered makes it difficult to
disentangle these effects. Physical insight developed by different
means is needed to extrapolate them to longer time scales and
distances.

We take a closer look at one specific process operating at a
convective/stable interface in the interior of a star. Thermal diffu-
sion causes temperature fluctuations from the convection zone’s
boundary to spread into the stable stratification. Temperature dif-
ferences on surfaces of constant pressure set up a flow even in
the absence of momentum transport by hydrodynamic stress. We
call this process “differential heating”, explore the physics of it
in an idealised set-up, and estimate what amount of mixing it
could cause in the stellar interior.

2. The differential heating problem

2.1. Problem formulation and simplification

Consider a horizontal, solid surface with a stably-stratified fluid
overlying it1. A temperature fluctuation imposed at the surface

1 Equivalently, the stably stratified fluid could be placed under the dif-
ferentially heated surface. The role of hot and cold spots on the surface
would be reversed in this case. We discuss only one case for the sake of
concreteness.
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propagates into the fluid by a diffusive process and upsets the
hydrostatic equilibrium. We investigate what the properties of
the resulting flow are.

By replacing the convective/stable interface by a solid wall,
we eliminate all the phenomena related to the inertia of the con-
vective flows and the shear induced by them. This allows us to
study the physics of differential heating in isolation. The upper
boundary is taken far enough not to influence the flow. Next we
introduce further assumptions to facilitate the mathematical de-
scription and the subsequent analysis of the problem:

(1) The flow is confined to a layer that is significantly thinner
than the pressure scale height.

(2) The fluid is a chemically homogeneous, ideal gas.
(3) The Brunt-Väisälä (buoyancy) frequency of the stratification

is constant.
(4) Thermal diffusivity is constant.
(5) The gravitational field is homogeneous.
(6) The differentially heated surface is flat and horizontal.
(7) The flow is constrained to two spatial dimensions.

Assumption (1) allows us to use the Boussinesq approximation
and turns out to be justified. The chemical homogeneity that we
assume in (2) is, at least for the nuclear-burning layers in a star,
only realistic at the onset of the burning. The differential heating
process above a convective core would weaken as the nuclear
burning progresses owing to the increase in the mean molecular
weight in the core. We focus on the chemically homogeneous
case to keep the number of parameters tractable. We introduce
(3) and (4) for the same reason. The Brunt-Väisälä frequency
depends on the distance from the convective/stable interface in a
real star. The constant frequency in our analysis can be thought
of as a typical value for the layer influenced by differential heat-
ing. Finally, we add the last three assumptions to make our anal-
ysis more transparent and to reduce the computational costs of
the numerical solutions. We have to keep in mind, however, that
the constraint (7) might influence the stability properties of the
flow, and thus some of our conclusions may not apply to the
three-dimensional case.

The Boussinesq equations are (Spiegel & Veronis 1960)

∇ · u = 0, (1)

Du

Dt
= − 1

ρm

∇p′ +
T ′

Tm

gk + ν∇2u, (2)

DT ′

Dt
= −TmN2

g
w + κ∇2T ′, (3)

where u is the fluid velocity, D/Dt = ∂/∂t+u · ∇ the Lagrangian
time derivative, ρm and Tm are the mean density and tempera-
ture, respectively, p′ and T ′ the pressure and temperature pertur-
bations, respectively, g is the gravitational acceleration, k a unit
vector pointed in the vertical direction, ν the kinematic viscosity,
N the Brunt-Väisälä frequency, w the vertical velocity compo-
nent, and κ the thermal diffusivity.

Equations (1)–(3) still contain several dimensional param-
eters. It is crucial to realise that there is a natural system of
units for the differential heating problem that makes the equa-
tions dimensionless. The flow in this problem is set off by ther-
mal diffusion in a stably stratified medium, therefore the inverse
of the Brunt-Väisälä frequency, 1/N (or a multiple of it), is a
natural unit of time. Having made this choice, we can define a
natural unit of distance as

√
κ/N, which is a typical thermal-

diffusion length scale on the time scale 1/N. The dimensionless

Boussinesq equations are then

∇ · u = 0, (4)

Du

Dt
= −∇p + ϑk + Pr ∇2u, (5)

Dϑ

Dt
= −w + ∇2ϑ, (6)

where we omit any symbol to indicate the new units. We have
also introduced a new pressure-like variable p = p′/ρm and
the buoyancy acceleration ϑ = gT ′/Tm, which we continue to
call the “temperature fluctuation” in the rest of the paper, be-
cause that is the central concept in the differential heating pro-
cess. The Prandtl number Pr = ν/κ now becomes a measure of
kinematic viscosity, because the new unit of diffusivity is κ.
Equations (4)−(6) are particularly well suited to theoretical stud-
ies since their solution is fully determined by the Prandtl number,
the initial, and the boundary conditions.

The distance unit
√
κ/N is rather short in stellar interiors,

and it only weakly depends on the stratification. To see this, we
express the Brunt-Väisälä frequency in terms of the more com-
mon stellar-structure parameters,

N2 =
g

Hp

(∇ad − ∇), (7)

where Hp is the pressure scale height, ∇ad the adiabatic temper-
ature gradient, and ∇ the actual temperature gradient. Close to a
convection zone’s boundary, we can write

∇ad − ∇ = α
z

Hp

, (8)

where α ≈ 10−1 is a coefficient of proportionality and z the dis-
tance from the boundary (z > 0 in the stable stratification). When
using Eqs. (7) and (8), the unit of distance can be expressed as

√
κ

N
= κ1/2

(
α
g

Hp

z

Hp

)−1/4

, (9)

which is about 107 cm for values typical of a point close to the
convective/stable interface (z ≈ 10−2Hp) in the core of a mas-

sive (10 M⊙), main-sequence star (κ ≈ 1010 cm2 s−1, α ≈ 10−1,
g ≈ 105 cm s−2, Hp ≈ 1010 cm).

Two distinct regimes of differential heating can be expected,
depending on the amplitude and the spatial scale of the temper-
ature fluctuation imposed on the differentially heated surface.
If the heating is strong enough, the heat transport is advection-
dominated (i.e. the flow’s Péclet number is high), and the flow
is generally unsteady. A similar phenomenon takes place right
at the point where the convective flow leaves the unstable strat-
ification, still retaining some positive temperature fluctuation. It
quickly cools down as it rises in the stable medium, its tempera-
ture fluctuation turns negative, and the flow is brought to a halt.
This is the place where we can impose a lower boundary con-
dition for a much weaker kind of differential-heating-induced
flow, in which diffusive heat transport plays a major role (i.e.
the flow’s Péclet number is low). The latter case is the main fo-
cus of this paper. We show in Sect. 3 that such a flow is gen-
erally smooth and reaches a stationary state (to be specified in
Sect. 3.1) even at rather high values of the Reynolds number,
up to Re = 4 × 103. This allows us to gain some insight into
the problem by exploring the scaling properties of the stationary
differential-heating equations, which we do in the next section.
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2.2. Analytical considerations

The stationary differential-heating problem is described in two
dimensions by the set of equations (cf. Eqs. (4)–(6))

∂u

∂x
+
∂w

∂z
= 0, (10)

∂(uu)

∂x
+
∂(uw)

∂z
= −
∂p

∂x
+ Pr

(
∂2u

∂x2
+
∂2u

∂z2

)
, (11)

∂(uw)

∂x
+
∂(ww)

∂z
= −∂p

∂z
+ ϑ + Pr

(
∂2w

∂x2
+
∂2w

∂z2

)
, (12)

∂(uϑ)

∂x
+
∂(wϑ)

∂z
= −w +

∂2ϑ

∂x2
+
∂2ϑ

∂z2
, (13)

where x and z are the horizontal and vertical coordinates, respec-
tively, with the z axis pointed against the gravitational acceler-
ation vector, u is the horizontal velocity component, and w the
vertical one. In what follows, we show how the characteristic
properties of the stationary flow depend on the typical ampli-
tude Θ and the typical horizontal length scale L of the heating
applied.

Assume that there is a well-defined vertical length scale H
in the differential heating flow pattern. Let us denote the typical
horizontal and vertical velocities by U and W, respectively, and
the typical pressure fluctuation by P. We then introduce a new

set of variables x̂, ẑ, û, ŵ, p̂, and ϑ̂, which all reach values of the
order of unity close to the differentially heated surface, and

x = Lx̂, (14)

z = Hẑ, (15)

u = Uû, (16)

w = Wŵ, (17)

p = Pp̂, (18)

ϑ = Θϑ̂. (19)

Upon making these substitutions in Eq. (10), we obtain

U

L

∂û

∂x̂
+

W

H

∂ŵ

∂ẑ
= 0, (20)

which implies the approximate relation

U

L
≈ W

H
· (21)

The horizontal momentum equation (Eq. (11)) attains the form

∂(ûû)

∂x̂
+
∂(ûŵ)

∂ẑ
≈ − P

U2

∂ p̂

∂x̂
+

Pr

UL

∂2û

∂x̂2
+

Pr

WH

∂2û

∂ẑ2
, (22)

where Eq. (21) has been used, so the equality is only approxi-
mate. Nonetheless, we can see that the viscous terms are of the
order of 1/Rex ≡ Pr/(UL) and 1/Rez ≡ Pr/(WH), where Rex

and Rez are Reynolds-like numbers associated with horizontal
and vertical motions, respectively. We introduce this unusual no-
tation to characterise the relative contributions of the two viscous
terms in the case of L ≫ H. We focus on this limit because it
turns out to be the relevant one in stellar interiors (see Sect. 5).
From now on, we assume Rex ≫ 1 and Rez ≫ 1. Equation (22)
shows that pressure fluctuations are of the order of U2 in this
high-Reynolds-number limit, so that we can estimate

P ≈ U2. (23)

The vertical momentum equation (Eq. (12)), with the substitu-
tions defined above and Eqs. (21) and (23), becomes

∂(ûŵ)

∂x̂
+
∂(ŵŵ)

∂ẑ
≈

L

H

(
−
∂ p̂

∂ẑ
+

HΘ

U2
ϑ̂

)
+

1

Rex

∂2ŵ

∂x̂2
+

1

Rez

∂2ŵ

∂ẑ2
,

(24)

and implies a close balance between the vertical component of
the pressure gradient and the buoyancy-acceleration term pro-
vided that L ≫ H in addition to Rex ≫ 1 and Rez ≫ 1. This
allows us to estimate

U2 ≈ HΘ, (25)

which is a plain, order-of-magnitude equality of the character-
istic kinetic and potential energies. Finally, the energy equation
(Eq. (13)) becomes

∂(ûϑ̂)

∂x̂
+
∂(ŵϑ̂)

∂ẑ
≈ −H

Θ
ŵ +

1

UL

∂2ϑ̂

∂x̂2
+

1

WH

∂2ϑ̂

∂ẑ2
· (26)

The diffusion terms in Eq. (26) are of the order of 1/Pex ≡
1/(UL) and 1/Pez ≡ 1/(WH), where Pex and Pez are Péclet-like
numbers associated with horizontal and vertical motions, respec-
tively. We introduce them for the very same reason as we did in
the case of Rex and Rez. Making use of Eqs. (21) and (25), we
can put Eq. (26) into the form

∂(ûϑ̂)

∂x̂
+
∂(ŵϑ̂)

∂ẑ
≈ 1

Pex

∂2ϑ̂

∂x̂2
+

1

Pez

(
− H7/2

LΘ1/2
ŵ +
∂2ϑ̂

∂ẑ2

)
, (27)

which can be greatly simplified in the double limit of Pex ≫ Pez

and Pez ≪ 1. In that case, the two terms in the parentheses on
the right-hand side have to closely balance one another, so that
we can estimate

H ≈ Θ1/7L2/7, (28)

and Eq. (27) becomes linear,

∂2ϑ̂

∂ẑ2
= ŵ. (29)

Equation (29) is a special case of the energy equation in the low-
Péclet-number approximation of Lignières (1999).

Using Eq. (28), we eliminate H from Eq. (25) to get an esti-
mate of U(Θ, L) and, with Eq. (21), also an estimate of W(Θ, L).
The resulting relations also enable us to express Rex, Rez, Pex,
and Pez as functions of Θ, L, and Pr. This way we obtain

U ≈ Θ4/7L1/7, (30)

W ≈ Θ5/7L−4/7, (31)

Rex ≈ Θ4/7L8/7Pr−1, (32)

Rez ≈ Θ6/7L−2/7Pr−1, (33)

Pex ≈ Θ4/7L8/7, (34)

Pez ≈ Θ6/7L−2/7. (35)

One might be tempted to estimate the time scale τ of flow accel-
eration towards the stationary state directly from the buoyancy
acceleration Θ provided by the temperature fluctuation imposed
on the bottom boundary. It is crucial to realise that, as Eq. (24)
shows, the buoyancy acceleration is almost completely compen-
sated for by the vertical component of the pressure gradient in
the case L≫ H. It is only their difference that contributes to the
vertical acceleration. We can, however, consider the horizontal
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acceleration provided by the horizontal component of the pres-
sure gradient and write U/τ ≈ P/L ≈ U2/L (see Eq. (23)). Using
Eq. (30) we obtain

τ ≈ Θ−4/7L6/7. (36)

Finally, we would like to point out that the characteristic
thermal-diffusion length scale corresponding to the time scale
τ is τ1/2 ≈ Θ−2/7L3/7, which scales with Θ and L in quite a dif-
ferent way than H does (see Eq. (28)). This comes about because
our estimates take the back reaction of the flow on the tempera-
ture distribution into account.

2.3. Numerical solutions

The order-of-magnitude estimates derived in the preceding sec-
tion assume that the flow is stationary and that there is a well-
defined vertical length scale in the flow pattern. We performed
a series of time-dependent, numerical simulations of the differ-
ential heating problem to confirm these assumptions and to de-
termine how the solutions depend on the Reynolds number and
how they decrease with height.

We have developed a specialised code dedicated to the study
of the differential-heating problem, because the problem places
rather high demands on the numerical scheme. For instance, it
has to tackle the highly diffusive nature of the flow and its high
aspect ratio and resolve a wide dynamic range within a sin-
gle simulation box. The code is of the finite-difference type,
and it solves the differential-heating equations on a collocated
grid using a variant of the MacCormack integration scheme.
The Poisson equation for pressure, which can be derived from
Eqs. (4) and (5) (or (37), see below), is solved by a spectral
method. Heat-diffusion terms are treated implicitly, again by a
spectral method. In what follows, we discuss a few selected is-
sues related to the numerical solution of the differential-heating
equations that need to be borne in mind when interpreting our
results. The reader interested in the details of the numerical
scheme is referred to Appendix A.

We use periodic boundaries in the horizontal direction and
force the shear stress and the vertical velocity component to
vanish at the lower and upper boundaries of the computational
domain. One could also use non-slip boundaries, but these are
hardly more akin to the physical reality that motivated this study
in the first place, so we omit this case. We impose a tempera-
ture fluctuation in the form ϑ(x, 0) = Θ sin(πx/L) at the bottom
boundary and force the temperature fluctuation to vanish at the
upper boundary. The parameters Θ and L can be identified with
the same symbols as introduced in Sect. 2.2.

The high thermal diffusivity in the differential-heating
problem forces us to use long implicit time steps for the heat-
diffusion terms, which might have an adverse effect on the ac-
curacy of the results. To show that this is not the case, we re-
computed the simulations sr03, sr30, and Re1024 (see Tables 1
and 2 and Sect. 3), decreasing the time step by a factor of ten.
This brings about a change in the velocity field, which is of the
order of 0.1% in the cases sr03 and sr30 and of the order of
1% in the case of Re1024 (measured well away from the field’s
zeroes). The reason for this insensitivity to the time step is the
low Péclet number of the flow. Lignières (1999) shows that in
the low-Pe regime, the energy equation can be approximated
by a Poisson equation for the temperature fluctuation with w as
a source term (see also our Eq. (29)). We do not use this ap-
proximation to make our code more versatile; instead, we nat-
urally obtain a close equilibrium between the terms ∇2ϑ and w

Table 1. Parameters of the series of simulations sampling a patch of the
parameter space {Θ, L} at the constant value of Re = 2.6 × 102.

Id. Θ L Pex Pez

sr00 100 101 8.5× 100 2.5× 100

sr01 100 102 1.4× 102 1.3× 100

sr02 100 103 2.0× 103 5.5× 10−1

sr03 100 104 2.9× 104 2.7× 10−1

sr10 10−1 101 2.5× 100 3.1× 10−1

sr11 10−1 102 4.0× 101 1.4× 10−1

sr12 10−1 103 5.5× 102 6.8× 10−2

sr13 10−1 104 7.7× 103 3.5× 10−2

sr20 10−2 101 7.2× 10−1 4.1× 10−2

sr21 10−2 102 1.1× 101 1.8× 10−2

sr22 10−2 103 1.5× 102 9.3× 10−3

sr23 10−2 104 2.1× 103 4.8× 10−3

sr30 10−3 101 2.0× 10−1 5.4× 10−3

sr31 10−3 102 2.9× 100 2.5× 10−3

sr32 10−3 103 4.0× 101 1.3× 10−3

sr33 10−3 104 5.5× 102 6.7× 10−4

Table 2. Parameters of the series of simulations with Re increasing at
the fixed values of Θ = 10−3 and L = 100.

Id. Resolution Re

Re32 32× 32 3.2× 101

Re64 64× 64 6.4× 101

Re128 128× 128 1.3× 102

Re256 256× 256 2.6× 102

Re512 512× 512 5.1× 102

Re1024 1024× 1024 1.0× 103

Re2048 2048× 2048 2.0× 103

Re4096 4096× 4096 4.1× 103

in Eq. (6) when the Péclet number is low. This equilibrium is
reached so quickly that details of the evolution of ϑ towards the
equilibrium become irrelevant.

It is a well-known fact that any numerical advection scheme
either requires adding a so-called artificial-viscosity term to
guarantee stability or it involves some viscous behaviour implic-
itly. In either case, the effective Reynolds number does not even
come close to the astrophysical regime with current computing
facilities. The artificial viscosity (be it explicit or implicit) thus
exceeds the physical one by a wide margin, so it demands special
attention.

Suppose we include an explicit viscous term as in Eq. (5) to
model the artificial viscosity. Equations (32) and (33) show that
for L ≈ 103 (equivalent to ∼Hp in the astrophysical case men-

tioned in Sect. 2.1) we have Rez ≈ 10−4 Rex as a consequence
of H ≪ L. Using equidistant grids with up to 103 grid points
in each direction, we can achieve Rex ≈ 103. It follows that
Rez � 10−1 and the vertical momentum transport is dominated
by the artificial-viscosity term. A value Rez ≫ 1 is, however, ex-
pected in stellar interiors. We use a simple workaround, replac-
ing the viscous term Pr∇2u by the anisotropic form Prx ∂

2u/∂x2+

Prz ∂
2u/∂z2. The coefficients Prx and Prz are re-computed at each

time step from the relations Prx = hx max |u|Re−1
grid and Prz =

hz max |w|Re−1
grid, where hx and hz are the horizontal and vertical

grid spacings, respectively, and Regrid is the Reynolds number on
the grid scale. We performed a few numerical tests of the code on
a convection problem to determine that the value Regrid = 4 is a
conservative trade-off between the amount of viscous dissipation
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and the code’s stability, so we use this value in all the simulations
presented here.

The anisotropic form of artificial viscosity enables us to
reach Rex ≫ 1 and Rez ≫ 1 at the same time on a grid of rea-
sonable size. We show in Sect. 3 that the solutions with constant
values of Prx and Prz decay exponentially with height. The ef-
fective, local Reynolds number decreases in proportion to the
flow speed, and the solutions quickly become dominated by the
artificial viscosity. This would also happen in an (otherwise ide-
alised) stellar interior at some point but that point would be much
farther from the convection zone’s boundary. Therefore, we gen-
eralise the artificial-viscosity terms, and the momentum equation
(Eq. (5)) in 2D becomes

Du

Dt
= −∇p + ϑk +

∂

∂x

[
Prx(z)

∂u

∂x

]
+
∂

∂z

[
Prz(z)

∂u

∂z

]
, (37)

where are Prx(z) and Prz(z) are proportional to e−ηz with η being
an adjustable parameter. We set η = 0 when we are not interested
in the precise vertical profiles and use η > 0 to suppress the
viscous terms when examining how the solutions decrease with
height. The latter case, η > 0, is a rather touchy problem because
one has to increase η in a few steps, always using the (almost)
stationary flow from a previous run as an initial condition for
the next run. Overestimating the value of η can lead to a lack of
viscous dissipation in some parts of the computational domain
and a numerical instability ensues. Finally, the very goal that
we want to achieve by this treatment, i.e. the flow dynamics’
being dominated by inertial terms at great heights, becomes an
issue since such a flow evolves on the extremely long time scale
corresponding to its low speed.

3. Results

3.1. The stationarity and structure of the flow

Our numerical investigation of the diffusion-dominated differen-
tial heating problem reveals that the flow reaches a stationary
state at all values of the Reynolds number that we have been
able to achieve (up to Re = 4 × 103). We use the rate of change
of the quantity umax = max |u| (taken over the whole simulation
box) as a convergence monitor and a basis of our criterion for
deciding the flow’s stationarity. We show in Sect. 2.2 that the rel-
evant dynamical time scale near the differentially heated bound-
ary should be close to τ given by Eq. (36) (confirmed a posteri-
ori, see below). We pronounce the flow stationary and stop the
simulation once the condition
∣∣∣∣∣

1

umax

∂umax

∂t
τ

∣∣∣∣∣ < 10−3 (38)

has been met at least for one time scale τ. A direct implementa-
tion of this condition would involve extrapolation from the time
scale of one time step, ∆t, to a much longer time scale τ, which
would amplify the round-off noise by a factor of τ/∆t ≫ 1.
Instead, we approximate Eq. (38) by

∣∣∣∣∣
1

umax

umax − umax

τ
τ

∣∣∣∣∣ < 10−3, (39)

where umax is the Euler-time-stepped solution of the equation
∂umax/∂t = (umax − umax)/τ. Thus, umax is a smoothed version of
umax, lagging behind it approximately by τ in time.

The flow in all of the simulations presented in this paper is
composed of several layers of overturning cells with flow speed
rapidly decreasing from one layer to the next (see Figs. 4 or 6).

We characterise the flow properties close to the differentially
heated surface by a vertical length scale H, defined as the height
above the hottest spot at which the flow first turns over (i.e.
w(L/2,H) = 0), and the typical horizontal and vertical veloc-
ity components U = 1

2
max(u) and W = 1

2
max(w), respectively,

where the maxima are taken over the whole simulation box. The
symbols H, U, and W can be identified with the same symbols as
used in Sect. 2.2. The flow always reaches its maximal horizon-
tal speed at the bottom boundary and the maximal vertical speed
in the first overturning cell above the hot spot. The flow pattern is
asymmetric, with the maximum downward flow speed (reached
above the cold spot), max(−w), always lower than the maximal
upward flow speed, max(w). We define the characteristic num-
bers Rex, Rez, Pex, and Pez in an analogous way to what is used
in Sect. 2.2 with the difference that now we have two Prandtl-like
numbers Prx and Prz instead of one Prandtl number Pr.

3.2. Scaling relations

We computed a grid of 16 simulations to verify the ana-
lytical relations derived in Sect. 2.2. All of these simula-
tions, summarised in Table 1, have a resolution of 256 × 512,
and the vertical grid spacing was adjusted so as to obtain
Rex = Rez ≡ Re = 2.6 × 102. The decision to fix the value of Re
is motivated by the fact that the flow pattern turns out to be
scalable over a large part of the parameter space provided that
Re = const. In other words, while changing the heating param-
eters Θ and L at Re = const. does change the amplitude and
the vertical scale of the flow, the structure of the flow, as seen
in a system of normalised coordinates x/L and z/H, remains un-
changed (see Fig. 4). We show in Fig. 1 our numerical results as
compared with the scaling relations fitted to all but the four data
points at L = 101. The excluded data points do not comply well
with the premise L ≫ H and are thus expected not to follow the
scaling relations. Allowing only the constants of proportionality
to change in the fitting process, we obtain

H = 1.3Θ1/7L2/7, (40)

U = 0.77Θ4/7L1/7, (41)

W = 2.7Θ5/7L−4/7, (42)

τ = 0.76Θ−4/7L6/7. (43)

The unexpectedly good fit is a result of the flow’s scalability.

The constants of proportionality in Eqs. (40)–(43), as well
as the structure of the flow, depend on Re. We illustrate this de-
pendence by computing a series of simulations with resolution
ranging from 322 to 40962. This way, we cover about two orders
of magnitude in the Reynolds number from 3 × 101 to 4 × 103

(again with Rex = Rez ≡ Re). We perform this experiment at
L = const. and Θ = const., so any change in Re reflects a change
in Prx and Prz. Nevertheless, we present the dependence on Re,
because the scalability of the flow shows that the absolute values
of Prx and Prz do not matter. Ideally, we should choose the heat-
ing parameters so as to have Θ ≪ 1 and L ≫ 1 as the scaling
relations hold true in this limit (see Sect. 2.2).

Equation (43) shows, however, that the flow’s dynamical
time scale becomes extremely long in the same limit, thus mak-
ing any high-resolution computation unfeasible. Therefore we
use Θ = 10−3 and L = 100, which still keeps the energy equation
approximately linear (since Pex ≈ Pex ≈ 10−2), but we forgo
having L ≫ H. Nevertheless, we expect the changes in the flow
with increasing Re in this case to be similar to those that would
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Fig. 1. Dependence of the global flow characteristics on the heating amplitudeΘ and length scale L. Circles show the values derived from numerical
simulations (Table 1). Solid lines show the scaling relations (Eqs. (28), (30), (31), and (36)), normalised to fit all but the four simulations at L = 101,
which are expected to deviate from the scaling relations.
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Fig. 2. Dependence of the maximal horizontal velocity on the Reynolds
number. Simulation data (circles) are connected by the solid line to
guide the eye. The scaling law umax ∝ Re0.054 is shown by the dashed
line for comparison.

be seen in a simulation with L≫ H because of the energy equa-
tion’s being linear in both cases. All of this series of simulations,
summarised in Table 2, reach the stationary state as defined by
Eq. (39). Figure 2 shows that the maximum horizontal velocity
in the computational domain slowly increases in proportion to
Re0.054 in the high-Re regime. The flow also becomes increas-
ingly asymmetric, as shown by the ratio of the maximum up-
ward and downward flow speeds plotted as a function of Re in
Fig. 3. The seemingly asymptotic trend changes at the highest
Reynolds number considered, but we do not know the reason for
this change.

3.3. Flow at great heights

The flow speed in all our simulations quickly decreases with
height. Figure 5 compares the vertical profiles of the root-mean-
square (rms; computed in the x direction) vertical velocity com-
ponent, wrms(z), in four simulations with widely disparate heat-
ing parameters (sr00, sr03, sr30, and sr33). We find that wrms de-
creases approximately as e−βwz/H in a global sense with βw � 1.5
almost independently of Θ and L. We use the values H(Θ, L)
given by Eq. (40) instead of those measured in the simulations to
normalise the z coordinate, because this brings the slopes much
closer to one another. We have to keep in mind, though, that
these flows are reasonably close to a stationary state only up to
z/H � 2.5, because our convergence criterion (Eq. (39)) is igno-
rant of the weak flow in the upper part of the simulation box, and
consequently, that part of the flow is still slowly evolving when
the computation is stopped.

The simulations discussed so far use constant artificial-
viscosity parameters Prx and Prz, which leads to a rapid decrease
in the local Reynolds number with height (in proportion to the
decreasing flow speed). We computed another two simulations,
this time with Θ = 10−4 and L = 101. In the first one, we set
Prx = const. and Prz = const. (the constant-Pr case hereinafter),
just as we have done so far. In the other one, we set Prx ∝ e−ηz

and Prz ∝ e−ηz as described in Sect. 2.3 to keep a local version of
the Reynolds number approximately constant (the constant-Re
case hereinafter). We increased the slope η from 0 in a few steps
in order to make the ratio of the rms advection terms to the rms
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Fig. 3. Dependence on the Reynolds number of the flow’s asymmetry,
characterised by the ratio of the maximum upward and downward flow
speeds.

viscous terms, i.e. the local Reynolds number, as independent of
height as possible; η = 2 turns out to be a good compromise
in this case. There is a large-scale, residual variation by about
a factor of four in the local Reynolds number, because the sim-
ple exponential profile of the artificial viscosity is not flexible
enough to compensate for it. Using Fig. 2 we estimate that this
variation can change the velocities by ∼0.1 dex at most. Since
our usual stopping condition, Eq. (39), cannot “sense” the weak
flow at great heights, we judge the stationarity of the flow by
comparing the rms values of the ∂/∂t terms to the rms values of
all other terms that appear in Eq. (37) and require the former to
be significantly smaller than the latter. This way, we obtain the
results summarised in Figs. 6−8. The constant-Pr flow can be
considered stationary over the whole range shown, whereas the
constant-Re flow is only stationary for z/H <∼ 3.8, because the
topmost part of that flow evolves so slowly that a global oscilla-
tion develops before it has reached equilibrium (see Sect. 3.4 for
details).

Figure 7 illustrates that the flow is somewhat faster at
z/H > 1 in the constant-Re case, as could be expected from the
massive increase in the local Reynolds number by as much as
two orders of magnitude at z � 3. Much more interesting is, how-
ever, that the overturning cells in the constant-Re case become
apparently thinner with increasing height, hence with decreas-
ing local temperature fluctuation. This observation suggests that
the scaling relations derived in Sect. 2.2 could be used locally
(see the dependence of H on Θ in Eq. (28)). Another piece of
evidence for this hypothesis is shown in Fig. 8, in which we
compare the relative rates of decrease in ϑrms(z), urms(z), and
wrms(z). The envelope of ϑrms(z) can be approximated well by
the function ϑe(z) ∝ e−βϑz/H with βϑ = 1.7 for z/H <∼ 3. We then
regard ϑe(z) as an estimate of the local temperature fluctuation
and rewrite the scaling relations for the velocity components,
Eqs. (30) and (31), to obtain their local versions,

ue(z) ≈ ϑe(z)4/7L1/7, (44)

we(z) ≈ ϑe(z)5/7L−4/7, (45)

where ue(z) and we(z) are expected to be good envelope models
of urms(z) and wrms(z). In other words, we expect ue(z) ∝ e−βuz/H

and we(z) ∝ e−βwz/H with βu =
4
7
βϑ and βw =

5
7
βϑ. Indeed, these
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scalings turn out to be correct, as shown in Fig. 8. Similarly, we
can produce a local version of Eq. (28),

h(z) ≈ ϑe(z)1/7L2/7, (46)

where h(z) is a local, height-dependent estimate of a vertical
length scale analogous to H. As a result, we expect h(z) ∝ e−βhz/H

with βh =
1
7
βϑ, i.e. a slow thinning of the overturning cells with

increasing height, similar to what we observe in Figs. 6−8. This
seemingly innocuous phenomenon has very grave consequences
for the flow at great heights. Instead of fading out exponen-
tially, it decreases even faster (see Fig. 8). We expand on this
in Sect. 4.1 and derive a better model for the flow’s decline with
height to show that the flow speed drops dramatically above a
certain point.

3.4. Late-time evolution of the flow

Having continued some of our simulations for as much as 104τ,
we discover an intriguing phenomenon. At first, a horizontal
mean shear flow develops on top of the differential-heating flow.
Its amplitude grows, and the shear flow begins to oscillate at
some point. Finally, the oscillation saturates at an amplitude
ranging from ∼10−3 to ∼100 of the differential heating flow’s
amplitude, depending on the parameters of the simulation. The
oscillation’s period and development time strongly decrease with
increasing Reynolds number. They do not seem to have an up-
per limit but approach 10τ at Re ≈ 103. This phenomenon most
likely has a physical origin because decreasing the time step by
a factor of ten does not affect the shear flow or its behaviour
significantly. Any detailed study of this phenomenon is certainly
beyond the scope of this paper, but our preliminary research sug-
gests that it is unlikely to be a cumulative effect induced by inter-
nal gravity waves since it (1) also occurs in very small computa-
tional boxes, in which all internal-wave modes are over-damped
by radiative diffusion; and (2) the temporal spectra of the av-
erage horizontal velocity are featureless at periods significantly
shorter than that of the shear flow oscillation.

4. Interpretation of the results

4.1. Improving the model at great heights

After picking up the threads of Sect. 3.3, we presently find that
the diffusion-dominated, high-Re differential-heating flow ac-
tually decreases faster than exponentially with height. To see
this, we make use of two results from Sect. 3.3. First, that the
scaling relations derived in Sect. 2.2 have their local analogues,
which hold within the flow (compare Eqs. (28), (30), and (31)
with Eqs. (46), (44), and (45), respectively). Second, that the
envelope of ϑrms(z) can be approximated well by the function
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ϑe(z) ∝ e−βϑz/H at low heights, where βϑ is independent of Θ
and L. This allows us to write

dlnϑe

dz
= −βϑ

H
· (47)

The characteristic vertical scale H is linked to the heating ampli-
tude Θ by Eq. (28) and is thus relevant close to the differentially
heated surface, where the typical temperature fluctuations are of
the order of Θ. A straightforward generalisation of Eq. (47) is
obtained by replacing H by the local, height-dependent estimate
h(z) given by Eq. (46). Upon doing so, we have

dlnϑ′e
dz′

= − βϑ
h′(z′)

, (48)
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Fig. 8. Comparison of the rms velocities and temperature fluctuations
in the constant-Re case with two models approximating their global
behaviour. Solid lines show urms (top), wrms (middle), and ϑrms (bottom).
Dashed lines show the model, in which ue(z) ∝ e−βuz/H , we(z) ∝ e−βwz/H ,
and ϑe(z) ∝ e−βϑz/H with βu =

4
7
βϑ, βw =

5
7
βϑ, and βϑ = 1.7. Dotted

lines show the improved model given by Eqs. (52)−(54) with γ = 1.3.
The coefficients of proportionality have been adjusted for each variable
independently.

where we have introduced the new variables ϑ′e(z) = ϑe(z)/Θ,
z′ = z/H, and h′(z) = h(z)/H. By Eqs. (28) and (46) we have

h′(z′) ≈ ϑ′e(z′)1/7, (49)

and Eq. (48) becomes

dlnϑ′e
dz′

= −βϑ′ −1/7
e , (50)

where β may differ slightly from βϑ, because we have used an
order-of-magnitude relation in the last step. Equation (50) shows
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that lnϑ′e(z) decreases with a fairly constant slope over a few or-
ders of magnitude, but the slope starts to change as soon as a
wider dynamic range is considered. Since the slope is propor-

tional to ϑ
′ −1/7
e , Eq. (50) describes a runaway process. Indeed,

the solution is

ϑ′e(z′) =
[
ϑ′e(0)1/7 − β

7
z′
]7

(51)

and vanishes at a finite height of z′
0
= 7/β. The constant ϑ′e(0)1/7

must be very close to unity as ϑ′e(0) = ϑe(0)/Θ ≈ 1, and we can
simplify Eq. (51) to obtain

ϑe(z) ∝
(
1 − γ

7

z

H

)7
, (52)

where we have returned to the non-primed variables and intro-
duced a new constant γ = βϑ′e(0)−1/7, which is a parameter to be
adjusted to fit the numerical data. Using the local scaling rela-
tions, Eqs. (44)−(46), we derive the functional dependencies

ue(z) ∝
(
1 − γ

7

z

H

)4
, (53)

we(z) ∝
(
1 −
γ

7

z

H

)5
, (54)

h(z) ∝ 1 − γ
7

z

H
· (55)

The functions ϑe(z), ue(z), and we(z) are shown in Fig. 8. The
constants of proportionality in Eqs. (52)–(54) have been adjusted
independently, but all three functions share the value γ = 1.3.
The good fit indicates that our line of reasoning is probably
correct.

Can we conclude that the flow stops at the finite height we
have just derived? No, since the scaling relations only work in
the high-Re regime. Provided that Re is high close to z = 0,
the flow speed quickly decreases according to Eqs. (53) and (54)
until Re ≈ 1 is achieved at some height z1 < 7H/γ. The weak
flow above this point is supported by viscosity and gradually
vanishes as z→ ∞.

4.2. Allowing for a buoyancy-frequency gradient

So far, we have assumed that the flow occurs in a particularly
simple type of thermal stratification – one characterised by a typ-
ical buoyancy frequency Ntyp = const. Nevertheless, we aim to
apply our results to the immediate vicinity of a convection zone,
i.e. to a medium, in that the buoyancy frequency rises continu-
ously from zero to a finite value. In this section, we first show
how to estimate the value of Ntyp in such a setting and then reap-
ply the techniques developed in Sect. 4.1 to demonstrate how the
varying buoyancy frequency affects the global flow field.

To do this, we have to recover the dependence of all the rel-
evant flow properties on Ntyp by returning to a system of phys-
ical units. We recall that we use 1/Ntyp as a unit of time and

(κ/Ntyp)1/2 as a unit of distance, which implies that the unit of

velocity is (κNtyp)1/2 and the unit of acceleration (hence of ϑ) is

(κN3
typ)1/2. We use these conversion factors throughout this sec-

tion without mentioning them further. The height of the bottom-
most overturning cell is by Eq. (40)

Hph = 1.3

⎛⎜⎜⎜⎜⎜⎝
κ

N2
typ

⎞⎟⎟⎟⎟⎟⎠
2/7

Θ
1/7

ph
L

2/7

ph
, (56)

where we have introduced the index “ph” to indicate the use of
physical units for quantities that are dimensionless in the rest of
our analysis. The buoyancy frequency N is now an increasing
function of zph and can be approximated by Eqs. (7) and (8),

N(zph) =

⎛⎜⎜⎜⎜⎝
αg

H2
p

⎞⎟⎟⎟⎟⎠
1/2

z
1/2

ph
. (57)

The overall scale of the flow pattern is given by the bottommost
overturning cell, which is thus the most important. Therefore we
estimate Ntyp = N(Hph/2), i.e.

Ntyp =

⎛⎜⎜⎜⎜⎝
αg

H2
p

⎞⎟⎟⎟⎟⎠
1/2 (

Hph

2

)1/2
, (58)

and combine Eqs. (56) and (58) to obtain

Hph � 1.4

⎛⎜⎜⎜⎜⎜⎝
κ

2H6
p

α2g

⎞⎟⎟⎟⎟⎟⎠
1/9 (
∆T

Tm

)1/9 (
Lph

Hp

)2/9
, (59)

where we have also expanded Θph = g∆T/Tm to emphasise the
dependence on the imposed temperature fluctuation ∆T/Tm. We
use the sign � in Eq. (59) and also in Eqs. (60)−(62) below to
indicate that we do not expect these estimates to be off by more
than a few tens of percent. The dependence of Hph on the heating
amplitude and length scale is somewhat weaker in Eq. (59) com-
pared with Eq. (56), because Eq. (59) takes into account that any
gain in the flow’s vertical extent brings about an increase in the
typical buoyancy frequency, which in turn makes further pen-
etration harder. This effect can also be seen when we express
the characteristic velocity components and the flow’s dynamical
time scale in physical units,

Uph � 0.8

⎛⎜⎜⎜⎜⎜⎝
κg4H3

p

α

⎞⎟⎟⎟⎟⎟⎠
1/9 (
∆T

Tm

)5/9 (
Lph

Hp

)1/9
, (60)

Wph � 3

(
κg

α

)1/3 (∆T

Tm

)2/3 (
Lph

Hp

)−2/3

, (61)

τph � 0.7

⎛⎜⎜⎜⎜⎜⎝
αH6

p

κg4

⎞⎟⎟⎟⎟⎟⎠
1/9 (
∆T

Tm

)−5/9 (Lph

Hp

)8/9
, (62)

where the exponents have slightly changed compared with
Eqs. (41)–(43).

The spatial variation of N brings on a first-order effect, too;
that is, the stratification offers less resistance to overturning in
the bottom part of the flow field compared with the rest of it. We
mimic this effect by using the flow’s excellent scaling properties
under the assumption that the flow behaves locally as if N was
constant. Our goal is to improve upon the envelope models of
ϑrms(z), urms(z), and wrms(z) derived in Sect. 4.1 by taking the
dependence of N on height into account.

Our starting point is Eq. (48) with the difference that now
we define ϑ′e = ϑe,ph/Θph, z′ = zph/Hph and h′ = hph/Hph. We
caution the reader that ϑe,ph refers to a model with N = N(z)
and not to a direct translation of ϑe that appears in Eq. (48) to
physical units. The local vertical length scale of the flow, h(z)
given by Eq. (46), can be translated to physical units directly,

hph ≈ κ2/7N−4/7ϑ
1/7

e,ph
L

2/7

ph
. (63)

This equation, together with Eq. (56), implies

h′ ≈ N′−4/7ϑ′1/7e , (64)
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where N′ = N/Ntyp = (2z′)1/2 (see Eqs. (57) and (58)). It is
evident that h′ diverges for N′ → 0+, i.e. z′ → 0+. This effect
is purely artificial because the divergence occurs within the bot-
tommost overturning cell of the flow, and the large-scale model
we are developing here cannot capture such local phenomena.
We ignore the divergence for now because only h′−1 appears in
Eq. (48) and use the same procedure as in Sect. 4.1 to derive a
generalised version of Eq. (50),

dlnϑ′e
dz′

= −βz′2/7ϑ′ −1/7
e , (65)

where the parameter β has absorbed all coefficients of the order
of unity. Its value should still be of the order of unity, but it may
be different in this model compared with the model developed in
Sect. 4.1. By analogy to the derivation in Sect. 4.1, we can write
the solution to Eq. (65) in the form

ϑe,ph(zph) ∝
⎡⎢⎢⎢⎢⎢⎣1 −

γ

9

(
zph

Hph

)9/7⎤⎥⎥⎥⎥⎥⎦
7

, (66)

where we have also returned to the non-primed quantities, and
γ = βϑ′e(0)−1/7 is a parameter of the order of unity. The
typical velocity components and the typical vertical vertical
length scale can be estimated using the local scaling relations,
Eqs. (44)−(46), and (66). We obtain

ue,ph(zph) ∝
[

N(zph)

Ntyp

]−2/7
⎡⎢⎢⎢⎢⎢⎣1 −

γ

9

(
zph

Hph

)9/7⎤⎥⎥⎥⎥⎥⎦
4

, (67)

we,ph(zph) ∝
[

N(zph)

Ntyp

]−6/7
⎡⎢⎢⎢⎢⎢⎣1 −

γ

9

(
zph

Hph

)9/7⎤⎥⎥⎥⎥⎥⎦
5

, (68)

hph(zph) ∝
[

N(zph)

Ntyp

]−4/7
⎡⎢⎢⎢⎢⎢⎣1 −

γ

9

(
zph

Hph

)9/7⎤⎥⎥⎥⎥⎥⎦ , (69)

where an explicit dependence on N appears after the transition
to physical units. These expressions diverge for z → 0+ where
N → 0+ (see Eq. (57)), which is just another illustration of the
envelope models’ inability to capture local phenomena (see also
the discussion above). The bottommost part of the flow should
in reality behave approximately as if it was in a medium with
N = Ntyp = const., so we can cut off the problematic part of the
N(z) profile and use, for example, the function

Ñ(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ntyp for 0 ≤ zph ≤ 1
2
Hph

Ntyp

(
2zph

Hph

)1/2
for zph >

1
2
Hph

(70)

instead of N(z) in practical calculations. Doing so makes
the right-hand sides of Eqs. (67)−(69) converge to unity as
zph → 0+.

Just as the results of Sect. 4.1 do not mean that the flow
vanishes at a finite height, neither the results of this section
mean that. Again, the sudden drop in the typical velocities pre-
dicted by Eqs. (67) and (68) only signifies that the flow under-
goes a transition to the low-Re regime at a relatively low height.
Equations (67) and (68) cease to be usable from that point on
and the weak flow supported by viscosity gradually vanishes as
zph → ∞.

5. Application to stellar conditions

The flow in a layer of thickness hph(zph) and vertical velocity
we,ph(zph) at distance zph from the boundary overturns a passive

tracer in it on a time scale τm = hph/we,ph. This suggests an
effective diffusion coefficient Deff ≈ hphwe,ph. For the first layer
above the boundary, this is

Deff(0) = WphHph. (71)

At distance zph, Eqs. (68) and (69) give

Deff(zph) = Deff(0)

⎡⎢⎢⎢⎢⎢⎣
Ñ(zph)

Ntyp

⎤⎥⎥⎥⎥⎥⎦
−10/7 ⎡⎢⎢⎢⎢⎢⎣1 −

γ

9

(
zph

Hph

)9/7⎤⎥⎥⎥⎥⎥⎦
6

, (72)

where Ntyp is given by Eq. (58) and we have replaced N(zph)

in Eqs. (68) and (69) by Ñ(zph) given by Eq. (70) as discussed
in Sect. 4.2. The constant γ is of the order of unity but can-
not be constrained further by our present analysis. It determines
the maximum height zmax,ph that the mixing process can reach,

zmax,ph = (9/γ)7/9Hph.
For a specific example, consider the boundary of the core

convection zone in a 10 M⊙ zero age main sequence star. This en-
vironment is characterised by α = d(∇ad − ∇)/d(zph/Hp) = 0.14,

a thermal diffusivity κ = 5.9 × 1010 cm2 s−1, a gravitational ac-
celeration g = 1.1× 105 cm s−2 and a pressure scale height Hp =

2.9 × 1010 cm. A mixing-length estimate for convection in the
core produces temperature fluctuations∆T/Tm ≈ 10−6 on a hori-
zontal length scale Lph ≈ Hp. Equation (59) then predicts that the

typical vertical length scale is Hph ≈ 2 × 108 cm = 7 × 10−3Hp.

The typical vertical velocity (Eq. (61)) is Wph ≈ 5 × 101 cm s−1.
These numbers imply Pez = (WphHph)/κ ≈ 2; i.e., the bottom
part of the flow is located right at the transition between the
regions of advection-dominated and diffusion-dominated heat
transport. This is not a coincidence, because we are modelling
the region where heat leaks from the convective eddies, allow-
ing them to turn over and sink back to the convection zone. Such
a flow has to have Pez ≈ 1. Therefore, the effective diffusivity
close to the convection zone, Deff(0) in Eq. (72), is of the same
order as the diffusivity of heat κ. Diffusivities that are several
orders of magnitude smaller than κ can be important on the long
nuclear time scale. The maximum height reached by the differen-
tial heating process on this time scale can thus be approximated
by zmax,ph. Assuming γ = 1 we obtain zmax,ph ≈ 4 × 10−2Hp.

Equation (72) is likely to be somewhat of an overestimate
of the actual mixing rate of the differential-heating process. The
layers mix on the hydrodynamic time scale in their interiors, but
as long as they are stationary, transport of the tracer between
layers takes place by diffusion. As in the case of semiconvective
layering (cf. Spruit 2013), this reduces the effective mixing rate
to the geometric mean of the microscopic diffusion coefficient κt
of the tracer and the estimate (72).

More significantly, the picture is complicated by the time de-
pendence of the convective heat source. For the 10 M⊙ example,
only the bottommost part of the flow can approach the station-
ary flow speed before the heating pattern changes because the
dynamical time scale τph ≈ 5 × 106 s (Eq. (62) with the pa-
rameter values stated above) is of the same order as the con-
vective overturning time scale in the core. This is likely to lead
to some form of averaging, reducing the effective amplitude of
the source. The level of this effect can probably be investigated
with a time-dependent simulation.

6. Summary

Various observations show that there is a need for some addi-
tional mixing at the interfaces between the convective and ra-
diative layers of stars. Even processes that are too weak to be
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detectable in numerical hydrodynamic simulations need to be
considered as candidate sources of this mixing, because the nu-
clear time scale on the main sequence is so much longer than the
dynamical time scale of convection, and cumulative effects are
likely to play an important role.

In this work, we have investigated one such weak process,
which we call “differential heating”. The differential heating
process occurs when radiative diffusion transports a tempera-
ture fluctuation from the boundary of a convection zone into the
neighbouring stable stratification. The resulting perturbation of
hydrostatic equilibrium triggers a weak flow, which may provide
mixing up to some distance from the convection zone. We inves-
tigated the flow that is driven by a static temperature fluctuation
varying sinusoidally along the solid horizontal boundary of a sta-
bly stratified, thin layer of gas. This low-Péclet number problem
(i.e. a slow flow dominated by thermal diffusion) turns out to be
intrinsically non-linear, in the sense that the horizontal structure
of the flow is asymmetric. Even for symmetric boundary condi-
tions, the upflow is narrower than the downflowing part for the
flow, and the shape of the flow pattern is nearly independent of
the amplitude of the driving temperature perturbation.

A few additional assumptions (Sect. 2) allow us to describe
the problem by a set of dimensionless equations, the solution to
which depends (apart from the boundary and initial conditions)
only on the Prandtl number. We analysed these differential-
heating equations for their scaling properties under the assump-
tion that the flow is stationary (Sect. 2.2). An astrophysically
interesting corner of the parameter space is characterised by
Rex ≫ 1, Rez ≫ 1, Pex ≫ Pez, and Pez ≪ 1. (The x and z
directions have to be distinguished because such flow has a high
aspect ratio.) In this limit we derive a set of simple relations
(Eqs. (28) and (30)–(36)) to describe how the global flow prop-
erties depend on the heating amplitudeΘ and length scale L. We
find, in particular, that the characteristic vertical length scale H
depends only weakly on the heating parameters (Eq. (28)).

We developed a dedicated numerical code to solve the equa-
tions. The main difficulties are related to the highly diffusive na-
ture of the flow, its high aspect ratio, and the need to resolve a
wide dynamic range in the flow amplitude within the computa-
tional box (as much as five orders of magnitude). The flow in
our two-dimensional, time-dependent simulations reaches a sta-
tionary state at all values of the Reynolds number that we have
been able to achieve (up to Re ≡ Rex = Rez = 4 × 103). The
flow is always composed of several layers of overturning cells,
the shape of which depends only on the Reynolds number and
not on the heating length scale L and amplitudeΘ. This property
makes the flow scaleable in the sense that the flow field corre-
sponding to some heating parameters L1, Θ1 can be stretched in
space and scaled in amplitude to get a good approximation of the
flow field corresponding to a different set of heating parameters
L2,Θ2 provided that Re is in both cases the same. This is also the
reason the scaling relations derived in Eq. (2.2) fit the simulation
data remarkably well at Re = const. (see Fig. 1). Increasing the
Reynolds number has little influence on the flow speed, but it
makes the flow pattern increasingly asymmetric.

We decrease the artificial-viscosity coefficients in the code
with height in order to keep the Reynolds number approximately
the same in every layer of flow cells. The numerical data show
that the global scaling relations derived in Sect. 2.2 have their
local analogues, which can be used within the flow. The flow
speed’s decrease with height, being locally exponential, steepens
with the decreasing flow amplitude according to the local scaling
relations. Based on this we derive a model of the flow’s depen-
dence on height, which closely fits the numerical data over the
whole dynamic range that we have been able to cover (as much
as five orders of magnitude, see Fig. 8). The model shows that the
flow speed drops abruptly to a negligible value at a finite height.
The local scaling relations also allow us to generalise our results
to the more realistic case, in which the buoyancy frequency N
increases with height (see Sect. 4.1).

We illustrated the typical scales associated with the stellar
differential-heating process with the example of the convective
core of a 10 M⊙ zero-age main sequence star (see Sect. 5). We
approximate the mixing due to the differential-heating flow by
an “effective” diffusion coefficient Deff, which is of the order
of the diffusivity of heat near the convection zone and decreases
with height according to Eq. (72). The mixing relevant for stellar
evolution extends about 4% of the pressure scale height above
the convection zone.

The main findings of the paper are:

(1) The flow has a cellular structure and reaches a stationary
state at all values of the Reynolds number that we have been
able to achieve (up to Re = 4 × 103).

(2) Both global and local properties of the flow can be described
by a set of simple analytical relations.

(3) The flow speed drops abruptly to a negligible value at a finite
height above the source of heating.

(4) The mixing relevant for stellar evolution extends about 4%
of the pressure scale height above the convection zone of a
10 M⊙ zero-age main sequence star.
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Appendix A: Numerical methods

A.1. Integration scheme

We have adapted the standard MacCormack method to suit our
specific problem. In the simplest case of a one-dimensional vec-
tor q of conserved quantities being advected on and equidis-
tant grid with a spacing of ∆x, MacCormack’s method can be
written as

q
(1)

k
= qn

k − ∆t
f
(
qn

k+1

)
− f
(
q

n

k

)

∆x
, (A.1)

q
(2)

k
= q

(1)

k
− ∆t

f
(
q

(1)

k

)
− f
(
q

(1)

k−1

)

∆x
, (A.2)

qn+1
k =

qn
k
+ q

(2)

k

2
, (A.3)

where qn
k

is the value of q at the kth grid point and the nth time
step, ∆t the time step, f (q) the flux function, and we use the con-
vention that any parenthesised upper index refers to a sub-step
of the method instead of a time-step index. The method is lin-
early stable provided that the CFL condition ∆t ≤ ∆x/ρ(A) is
met, where A is the Jacobian matrix of the flux vector and ρ(A)
is the largest characteristic value of A. Non-linear stability typ-
ically requires the addition of some form of artificial viscosity.
MacCormack’s method is second-order accurate both in space
and time.

We discretise Eqs. (4), (6), and (37) on a collocated, two-
dimensional grid of M × N cells with constant cell spacing
(∆x, ∆z). The two spatial dimensions and the presence of source
terms in the equations forces us to significantly extend the ba-
sic MacCormack scheme. We begin by advecting the vector of
variables q = (u, w, ϑ) in both spatial directions using Strang
splitting,

q
(1a)

k,l
= qn

k,l −
∆t

2

un
k+1,l

qn
k+1,l
− un

k,l
qn

k,l

∆x
, (A.4)

q
(1b)

k,l
= q

(1a)

k,l
− ∆t
w

(1a)

k,l+1
q

(1a)

k,l+1
− w(1a)

k,l
q

(1a)

k,l

∆z
, (A.5)

q
(1c)

k,l
= q

(1b)

k,l
− ∆t

2

u
(1b)

k+1,l
q

(1b)

k+1,l
− u

(1b)

k,l
q

(1b)

k,l

∆x
, (A.6)

where we have written out the explicit form of the flux terms.
The indices k and l refer to the position along the x and z axes,
respectively. We proceed by adding the source terms to the mo-
mentum equations,

u
(1d)

k,l
= u

(1c)

k,l
+ ∆t

⎡⎢⎢⎢⎢⎢⎢⎣−
pn

k+1,l
− pn

k−1,l

2∆x
+ νl

u
(1c)

k−1,l
− 2u

(1c)

k,l
+ u

(1c)

k+1,l

(∆x)2

+
µl+1/2

(
u

(1c)

k,l+1
− u

(1c)

k,l

)
− µl−1/2

(
u

(1c)

k,l
− u

(1c)

k,l−1

)

(∆z)2

⎤⎥⎥⎥⎥⎥⎥⎦ , (A.7)

w
(1d)

k,l
= w

(1c)

k,l
+ ∆t

⎡⎢⎢⎢⎢⎢⎢⎣−
pn

k,l+1
−pn

k,l−1

2∆z
+ϑ

(1c)

k,l
+νl
w

(1c)

k−1,l
−2w

(1c)

k,l
+w

(1c)

k+1,l

(∆x)2

+
µl+1/2

(
w

(1c)

k,l+1
− w(1c)

k,l

)
− µl−1/2

(
w

(1c)

k,l
− w(1c)

k,l−1

)

(∆z)2

⎤⎥⎥⎥⎥⎥⎥⎦ , (A.8)

where we use second-order-accurate central differences to keep
up with the order of accuracy of the advection scheme, νl =
Prx(zl) and µl = Prz(zl) are the coefficients of our anisotropic

artificial-viscosity prescription (see Sect. 2.3), and µl+1/2 =

(µl + µl+1)/2. The new velocity field u(1d) =
(
u(1d), w(1d)

)
is,

in general, slightly divergent. We correct for this divergence by
subtracting the gradient of a pressure-correction field, u(1) =

u(1d) − ∆t∇(∆p)(1). The condition ∇ · u(1) = 0 leads to a Poisson
equation for the pressure correction,

∇2(∆p)(1) =
∇ · u(1d)

∆t
· (A.9)

Since we use central differences to compute partial deriva-
tives, the discrete form of the Laplace operator in Eq. (A.9)
should be derived by applying the central differences twice.
That would, however, lead to a sparse operator and cause odd-
even-decoupling problems on our collocated grid. Therefore we
use the standard compact Laplacian and solve the approximate
pressure-correction equation

(∆p)
(1)

k−1,l
−2(∆p)

(1)

k,l
+(∆p)

(1)

k+1,l

(∆x)2
+

(∆p)
(1)

k,l−1
−2(∆p)

(1)

k,l
+(∆p)

(1)

k,l+1

(∆z)2
=

1

∆t

⎡⎢⎢⎢⎢⎢⎢⎣
u

(1d)

k+1,l
− u

(1d)

k−1,l

2∆x
+
w

(1d)

k,l+1
− w(1d)

k,l−1

2∆z

⎤⎥⎥⎥⎥⎥⎥⎦ · (A.10)

Equation (A.10) is solved by a spectral solver, see Sect. A.3.
Having computed the pressure correction, we apply it to the ve-
locity field,

u
(1)

k,l
= u

(1d)

k,l
− ∆t

(∆p)
(1)

k+1,l
− (∆p)

(1)

k−1,l

2∆x
, (A.11)

w
(1)

k,l
= w

(1d)

k,l
− ∆t

(∆p)
(1)

k,l+1
− (∆p)

(1)

k,l−1

2∆z
· (A.12)

The approximate nature of the pressure-correction equation
(Eq. (A.10)) causes ∇ · u(1) to be small, but non-zero. Practical
experience has shown that the residual divergence is negligibly
small in the flows analysed in this paper provided that the bound-
ary conditions are treated properly, see Sect. A.2. We should also

write p
(1)

k,l
= pn

k,l
+ (∆p)

(1)

k,l
at this point, but our numerical tests

have shown that the residual divergence in the velocity field be-

comes much smaller if we set p
(1)

k,l
= pn

k,l
, so we use the latter

form. The next step is to integrate the remaining two terms in
the energy equation. We begin by adding the −w term,

ϑ
(1d)

k,l
= ϑ

(1c)

k,l
− ∆tw

(1)

k,l
, (A.13)

where its latest available value, −w(1), has been used. The diffu-
sion sub-step is given by the implicit equation

ϑ
(1)

k,l
= ϑ

(1d)

k,l
+∆t
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(1)
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− 2ϑ
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+ ϑ

(1)
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(∆z)2

⎤⎥⎥⎥⎥⎥⎥⎦ ,

(A.14)

which is also solved by a spectral solver, see Sect. A.3. We have
thus completed the first step of the MacCormack scheme, analo-
gous to Eq. (A.1), and obtained the new variables u(1), w(1), p(1),
and ϑ(1). The second step, which we do not do not go into de-
tail on, differs from the first one at two points. First, advection
is done using backward-space flux differencing, as in Eq. (A.2)
(compare with Eq. (A.1)). Second, the pressure field is updated

in this step, i.e. p
(2)

k,l
= p

(1)

k,l
+ (∆p)

(2)

k,l
. The final step of the

MacCormack’s scheme, Eq. (A.3), is used in the same form, with
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Fig. A.1. Effect of three different methods of treating the pressure at the solid top and bottom boundaries. In all three panels, the vertical velocity
component, w, is plotted on a split logarithmic colour scale. We use Θ = 10−3, L = 101, constant kinematic viscosity and set the resolution to
only 16 × 64 to make the spurious oscillations visible. We obtain the result plotted in the left panel using the simple symmetry conditions for
pressure (Eqs. (A.19) and (A.20)). Preceding the pressure-gradient computation by third-order pressure extrapolation to the ghost cells reduces the
oscillations’ amplitude by a factor of ∼100 (middle panel). Increasing the extrapolation order to six brings about another decrease by a factor of
∼30 in the oscillations’ amplitude (right panel). The pressure gradient is in all three cases computed by the second-order central differences in the
whole computational domain.

q = (u, w, ϑ). We also update the pressure field in the same way,

p
(n+1)

k,l
= 1

2

(
pn

k,l
+ p

(2)

k,l

)
, so that we obtain an estimate of the pres-

sure field for the next time step.

Finally, there is a simple way of increasing the accuracy
of the scheme at a given grid resolution, which we use. The
MacCormack method contains a built-in asymmetry: Eqs. (A.1)
and (A.2) show that it always starts with forward-space flux dif-
ferencing and continues with backward-space flux differencing.
The two flux-differencing methods can be reversed, obtaining
a “reverse” MacCormack method, without decreasing the order
of accuracy of the overall scheme. We compute every time step
using both the “direct” and the “reverse” methods and use the
arithmetic average of the estimates given by the two methods.

A.2. Boundary conditions

The treatment of boundaries is restricted by our decision to use
spectral solvers, which do not allow changing the differentia-
tion operators anywhere in the computation domain. We use the
ghost-cell technique for this reason. The boundary conditions
we impose on the differential-heating flow are summarised in
Sect. 2.3. The periodic boundaries in the horizontal direction are
trivial to implement. The solid boundaries on the top and bottom
of the computational domain, however, require much more care.
We implement them using reflective boundary conditions for the
velocity vector,

uk,−1 = uk,0, (A.15)

uk,N = uk,N−1, (A.16)

wk,−1 = −wk,0, (A.17)

wk,N = −wk,N−1, (A.18)

so that the imaginary walls are located at l = −1/2 and at l =
N − 1/2. The conditions imposed on u also eliminate any shear

on the boundary. The pressure field is required to be symmetric
with respect to the solid boundaries,

pk,−1 = pk,0, (A.19)

pk,N = pk,N−1. (A.20)

The conditions imposed by Eqs. (A.15)–(A.20) can easily be
shown to be consistent with the pressure-correction equation
(Eq. (A.10); sum both sides over k = 0, 1, . . . , M and l =
0, 1, . . . , N). They typically do, however, bring about a cusp in
the pressure field along the normal to the walls. The resulting
discontinuity in the vertical pressure gradient then propagates to
the rest of the domain and can be seen as a low-amplitude oscil-
latory field superimposed on the true pressure field (see the left
panel of Fig. A.1). We tried to cure this problem by changing
the discretisation of the vertical-gradient operator at the walls,
so that the ghost cells would not be used when computing the
pressure gradient. This solution has met with very little success,
most likely because the abrupt change in the operator brings
about an abrupt change in the discretisation error so the prob-
lem remains. Quite surprisingly, preceding the pressure-gradient
computation by high-order pressure extrapolation to the ghost
cells has turned out to be an effective solution, able to eliminate
nearly all of the spurious oscillations (see the middle and right
panels of Fig. A.1). We therefore use sixth-order extrapolation
in the simulations with constant artificial viscosity and increase
the extrapolation order to ten when we let the artificial viscosity
decrease with height. This technique cannot be viewed, however,
as an all-purpose solution, because it is likely to be too unstable
to be useful when computing highly turbulent flows.

We require the temperature fluctuation ϑ to have a fixed sinu-
soidal profile at the bottom boundary and to vanish at the upper
boundary, which translates into

ϑk,−1 = −ϑk,0 + 2Θ sin

(
πxk

L

)
, (A.21)

ϑk,N = −ϑk,N−1. (A.22)
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A.3. Spectral solvers

We use spectral methods to solve the two equations involv-
ing the Laplace operator, the Poisson equation for the pressure-
correction equation (Eq. (A.10)) and the implicit heat-diffusion
equation (Eq. (A.14)). We express both the knowns and un-
knowns as linear combinations of the Laplacian’s eigenfunctions
that comply with the desired boundary conditions. The solu-
tion procedure is then much simplified and effective, provided
that the transform to the eigenfunction basis can be computed
efficiently.

In case of the pressure-correction equation (Eq. (A.10)), we
use the linear transform

f̂m,n =
1

2MN

M−1∑

k=0

⎡⎢⎢⎢⎢⎢⎢⎣2
N−1∑

l=0

fk,l cos

⎛⎜⎜⎜⎜⎜⎜⎝
π n
(
l + 1

2

)

N

⎞⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎦ exp

(
−2πimk

M

)

(A.23)

and its inverse

fk,l =

M−1∑

m=0

⎡⎢⎢⎢⎢⎢⎢⎣ f̂m,0 + 2

N−1∑

n=1

f̂m,n cos

⎛⎜⎜⎜⎜⎜⎜⎝
π n
(
l + 1

2

)

N

⎞⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎦ exp

(
2πimk

M

)

(A.24)

to transform any field fk,l to an array of complex amplitudes f̂m,n
and back. We can see that the basis functions in Eq. (A.24) are
periodic in k and even around l = −1/2 and l = N − 1/2; i.e.,
they comply with our boundary conditions on the pressure field
(see Sect. A.2). Upon using the spectral decomposition defined
by Eq. (A.24) on both sides of the pressure-correction equation
(Eq. (A.10)), we readily obtain its solution in the wavenumber
space,

(∆p̂)m,n =
Ŝ m,n

λm,n

, (A.25)

where we have omitted the upper indices because the expres-
sion applies to both steps of the MacCormack scheme, Ŝ k,l is the
transformed right-hand side of Eq. (A.10). The eigenvalues λm,n

of the Laplacian are

λm,n = −
2 − 2 cos

(
2πm

M

)

(∆x)2
−

2 − 2 cos
(
π n
N

)

(∆z)2
(A.26)

and can be pre-computed. We set λ0,0 to a large number to pre-
vent division by zero and make the undetermined component
(∆p̂)0,0 vanish.

In case of the heat-diffusion equation (Eq. (A.14)), we use
the linear transform

ĝm,n =
1

2MN

M−1∑

k=0

⎡⎢⎢⎢⎢⎢⎢⎣2
N−1∑

l=0

gk,l sin

⎛⎜⎜⎜⎜⎜⎜⎝
π (n+1)

(
l+ 1

2

)

N

⎞⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎦ exp

(
−2πimk

M

)

(A.27)

and its inverse

gk,l =

M−1∑

m=0

⎡⎢⎢⎢⎢⎢⎢⎣(−1)l ĝm,N−1 + 2

N−2∑

n=0

ĝm,n sin

⎛⎜⎜⎜⎜⎜⎜⎝
π (n + 1)

(
l + 1

2

)

N

⎞⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎦

× exp

(
2πimk

M

)
(A.28)

to transform any field gk,l to an array of complex amplitudes ĝm,n

and back. We can see that the basis functions in Eq. (A.28) are
periodic in k and odd around l = −1/2 and l = N − 1/2; i.e.,
they comply with our boundary conditions on the temperature
field in case of a vanishing heating amplitude (see Sect. A.2).
To allow for an arbitrary heating profile at the bottom bound-
ary, we take out the known boundary term from the Laplacian
on the right-hand side of Eq. (A.14) and treat it as a source term.
One can show that it is the same as replacing the diffusion equa-
tion ∂ϑ/∂t = ∇2ϑ by the equivalent equation ∂(ϑ − ζ)/∂t =
∇

2(ϑ − ζ), where ζ is the static solution to the diffusion equa-
tion ∂ζ/∂t = ∇2ζ with the desired boundary conditions (ζ can
be pre-computed for a fixed heating profile). The boundary con-
ditions on the difference ϑ − ζ are then identically zero, and the
spectral decomposition defined by Eq. (A.28) can be used. This
way we obtain an explicit expression for the solution of the im-
plicit Eq. (A.14) in the wavenumber space,

ϑ̂(1)
m,n =

ϑ̂
(1d)
m,n − ζ̂m,n

1 − ∆tΛm,n

+ ζ̂m,n, (A.29)

where the eigenvaluesΛm,n of the Laplacian are

Λm,n = −
2 − 2 cos

(
2πm

M

)

(∆x)2
−

2 − 2 cos
(
π (n+1)

N

)

(∆z)2
(A.30)

and can be pre-computed. An equation analogous to Eq. (A.29)

relates ϑ̂(2) to ϑ̂(2d).
In the practical implementation, we use the FFTW li-

brary (Frigo & Johnson 2005) to compute the transforms in
Eqs. (A.23), (A.24), (A.27), and (A.28). We combine standard,
one-dimensional transforms of different kinds to obtain the non-
standard, two-dimensional transforms that we need. Namely,
Eq. (A.23) is implemented as a series of DCT-II transforms over
the rows of the input array, after which the columns of the re-
sulting array are transformed by a series of DTF transforms. The
backward transform (Eq. (A.24)) is then computed by a series of
DFTs followed by a series of DCT-IIIs. The transforms for the
diffusion equation (Eqs. (A.27) and (A.28)) are implemented in
the same way, but simply replacing the DCT-IIs by DST-IIs and
DCT-IIIs by DST-IIIs. The transforms from the FFTW library
do not include the normalisation factor (2MN)−1.
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