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Abstract The self coupling λ of the Higgs boson in the
Standard Model may show critical behavior, i.e. the Higgs
potential may have a point at an energy scale ∼ 1017−18 GeV
where both the first and second derivatives (almost) vanish.
In this case the Higgs boson can serve as inflaton even if its
nonminimal coupling to the curvature scalar is only O(10),
thereby alleviating concerns about the perturbative unitarity
of the theory. We find that just before the Higgs as inflaton
enters the flat region of the potential the usual slow-roll con-
ditions are violated. This leads to “overshooting” behavior,
which in turn strongly enhances scalar curvature perturba-
tions because of the excitation of entropic (non-adiabatic)
perturbations. For appropriate choice of the free parameters
these large perturbations occur at length scales relevant for
the formation of primordial black holes. Even if these per-
turbations are not quite large enough to trigger copious black
hole formation, they source second order tensor perturba-
tions, i.e. primordial gravitational waves; the corresponding
energy density can be detected by the proposed space-based
gravitational wave detectors DECIGO and BBO.
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1 Introduction

Inflation is a beautiful paradigm for the evolution of the very
early universe: it not only solves the problems of standard
cosmology [1–6], but also generates the initial seeds for the
formation of large structures via quantum fluctuations. The
simplest inflationary models feature a single scalar field that
slowly “rolls down” a rather flat potential (“slow-roll” infla-
tion). The energy density during inflation is then dominated
by the potential, which leads to an approximately exponen-
tial expansion of the universe. Often a separate “inflaton”
field is introduced for this purpose, but it would obviously
be more economical to instead use the single scalar Higgs
field � of the Standard Model (SM) of particle physics
as inflaton. At TeV energies the Higgs self coupling λ is
O(0.1); a coupling of this size leads to a rather steep poten-
tial, which needs to be “flattened” by a large non-minimal
coupling to the Ricci scalar, ξ�†�R [7]. This yields [7–13]
ns ≃ 0.97, r ≃ 0.0034 in agreement with observation, but
for a coupling ξ ∼ 104.1 Such a large coupling may violate
perturbative unitarity cutoff [15–17].

This unitarity issue has been discussed at length in the lit-
erature [18–28]. In particular, it is argued in [18] that the uni-

1 According to [14] Higgs inflation is possible in Palatini gravity even
without nonminimal coupling to R.
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tarity bound could be higher than the inflationary scale if the
inflaton field background is taken into account in the effective
field theory (EFT) setup. However it is shown that unitarity
would still be violated due to the violent production of longi-
tudinal gauge bosons during preheating, where modes with
momenta (much) higher than the perturbative cutoff (even
with the background field) can be excited [26–28].2 So unitar-
ity would still be an issue in the post-inflationary phase even
though it is not during inflation. This has motivated exten-
sions of original scenario to some UV completed theory by
considering Higgs inflation with additional field(s) beyond
the SM [29–36]; however, these models lack the simplicity
of the original suggestion.3

On the other hand, at the large field values where Higgs
inflation may have occurred, the value of λ is expected to
be quite different than at the weak scale. This difference is
described by renormalization group equations (RGE). At the
one-loop order λ is driven to larger values by Higgs self-
interactions (i.e. the λ2 term contributes with positive sign
in the RGE) and by electroweak gauge interactions, but is
reduced by Yukawa interactions, the by far most important
one being that of the top. The evolution of the top Yukawa
coupling in turn is also affected by QCD interactions. For
the measured value of the mass of the physical Higgs boson
(which determines λ at the electroweak energy scale), the
two-loop RGE indicate that λ may show critical behavior at
energy scale ∼ 1017−18 GeV, i.e. λ and its first derivative,
described by its beta function, can both be very small [39].4

This implies that the potential becomes very flat in this region
[41], which can give rise to “critical Higgs inflation” (CHI).5

Since λ is small, one only needs a non-minimal coupling
ξ ∼ O(10) [44–46]; see also [47–50] for recent investiga-
tions concerning CHI and [51] for a comprehensive review
of Higgs inflation.

2 We thank the anonymous referee for bringing these references into
our attention.
3 The unitarity problem could also be resolved by considering the new
Higgs inflation scenario [25,37,38].
4 For the current central values of the top mass (which determines the
top Yukawa coupling at the weak scale) and the gauge couplings, within
the SM λ reaches zero already near 1011 or 1012 GeV. However, the
interpretation of the experimentally measured top mass is somewhat
uncertain [40]. Moreover, at very high energy scales new degrees of
freedom may appear. For example, new strongly interacting particles
without direct coupling to the Higgs boson will increase the strong
coupling, and thereby reduce the top Yukawa coupling, which in turn
increases λ, at energies above the masses of these particles.
5 For only slightly different values of the relevant parameters the Higgs
potential can also have a second minimum at these large field values.
This might not lead to a successful model of inflation since the Higgs
field might get “stuck” in this minimum, in which case inflation would
not end. However if the inflaton carries sufficient kinetic energy, it can
still climb uphill and reach to the end of inflation. See Refs. [42,43] for
Hillclimbing inflationary scenarios.

In addition to reproducing the measured CMB power spec-
trum accurately, recently some other cosmological implica-
tions of the CHI scenario have been investigated. In particu-
lar Ref. [52] showed that curvature perturbations are greatly
enhanced at the length scales that leave the horizon when
the inflaton field enters the very flat region of the potential;
this might even lead to the formation of a cosmologically
significant abundance of primordial black holes (PBH).6 In
fact, in the simplest approximation the strength of the density
perturbations is inversely proportional to the first derivative
V ′ of the inflaton potential V . It is thus tempting to asso-
ciate a spike in the spectrum of density perturbations with
an “ultra-slow roll” (USR) phase in which the inflaton field
moves extremely slowly because it traverses a very flat piece
of the potential. We will see in Sect. 2 that this is not the
whole story: the largest enhancement actually does not hap-
pen in the USR phase, but during a transitionary “overshoot-
ing” stage just before USR where the inflaton potential has
a sizable curvature, so that the slow-roll (SR) conditions are
violated. We will show that in this case curvature perturba-
tions can continue to grow even after they cross out of the
horizon, since the perturbations are no longer adiabatic, i.e.
“entropic” perturbations are excited. To our knowledge, this
is the first investigation of significant effects due entropic
perturbations on observable inhomogeneities.

The enhanced scalar curvature perturbations are expected
to source tensor perturbations at second order, as investigated
in recent papers [54,69–77]. In this paper, we improve and
further extend the analysis in [52] in several ways. First of
all, the power spectrum in [52] is calculated within the SR
approximation at all scales; however this assumption does
not hold during the overshooting phase. We therefore use
the more accurate numerical Mukhanov–Sasaki formalism.
Moreover, detailed explanations for our numerical results for
the power spectrum are given; this might help to understand
features of the power spectrum in other PBH production
scenarios from single field inflation with a near-inflection
point, for example [54,62,66]. With a more realistic result
of scalar power spectrum, we investigate the second order
gravitational wave (GW) signatures arising from large scalar
curvature perturbations in the CHI scenario. We show that
such signatures can be detected by several proposed space
based GW experiments. The calculation of the PBH density
is fraught with considerable uncertainty [78,79]. Our result
indicates that, at least for CHI inflation, an inflationary GW
signal should be detectable in all cases that could conceiv-
ably lead to sizable PBH production, i.e. a failure to detect
the latter in future experiments would exclude the possibil-

6 See also [53–68] for more recent similar works where PBHs are pro-
duced through large quantum fluctuations when the inflaton enters a
very flat stretch of the potential.
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ity that PBHs contribute significantly to cosmological dark
matter.

The reminder of this paper is organized as follows. We first
revisit the curvature perturbations under adiabatic and non-
adiabatic conditions in Sect. 2; in particular, we show that
for non-adiabatic conditions the amplitude of curvature per-
turbations does not necessarily remain constant after horizon
crossing, in contrast to the usual SR treatment. In Sect. 3 we
set up the CHI scenario. Using the general Mukhanov–Sasaki
formalism to compute the power spectrum, we show that the
standard SR approximation to calculate the power spectrum
fails when the inflaton enters an overshooting phase, even
if we use “Hubble” rather than “potential” SR parameters.
In Sect. 4 we discuss second order GW signatures induced
by the scalar curvature perturbations. Finally we summarize
our results in Sect. 5. In Appendix A we give a quick review
of the Mukhanov–Sasaki equation and its analytical solution
for a (quasi) de Sitter spacetime.

2 Evolution of curvature perturbations

2.1 Adiabatic and entropic perturbations

In single field SR inflation the quantum fluctuations are adia-

batic. As a result the perturbations of all inflaton field depen-
dent quantities X i share the same phase trajectory [80]:

δX i (t, x)

˙̄X i

= δX j (t, x)

˙̄X j

= · · · = δt (x), (1)

where i, j denote different observables, X̄ i represents the
average (background) of X i , δX i ≡ X i − X̄ i its perturba-

tion, and ˙̄X the time derivative. In particular, using X1 = p

(pressure) and X2 = ρ (energy density), adiabatic perturba-
tions satisfy

δpad

˙̄p = δρad

˙̄ρ ⇒ δpad ≡
˙̄p
˙̄ρ δρad. (2)

Energy density and pressure are defined via the energy–
momentum tensor T ν

μ , with ρ = T 0
0 and p = −∑3

i=1 T i
i /3.

However, in some cases the perturbation may not be adia-
batic, for example when there are multiple fields interacting
with the inflaton [81] or while the universe undergoes a non-
SR inflationary phase, see Sect. 2.2. Thus more generally the
pressure perturbation can be decomposed into an adiabatic
part and an entropic (i.e. non-adiabatic) one:

δp = δpad + δpen, (3)

i.e. δpen ≡ δp − δpad. We will show in the next subsection
that this distinction has significant impact on the evolution
of curvature perturbations.

2.2 Evolution of curvature perturbations in SR, USR and
overshooting phases

In order to relate inflationary predictions and cosmic micro-
wave background (CMB) measurements the gauge invariant
scalar quantity called curvature perturbation is usually intro-
duced; it is defined by [82,83]

− ζ(t, x) ≡ 	(t, x) + H

˙̄ρ(t)
δρ(t, x). (4)

Here H denotes the Hubble parameter, and 	(t, x) is a scalar
function of coordinates. Physically ζ represents the spatial
curvature of hypersurfaces with uniform energy density [84].
Since the power of the two-point correlation function of ζ is
related to the CMB temperature anisotropies, one has to com-
pute the power spectrum of ζ for a given inflationary model.
This is usually done in Fourier space, where ζ(t, k) is asso-
ciated to perturbations at a comoving length scale 1/k with
k = |k|. As we will review below, under SR conditions the
power spectrum can be computed when some mode k crosses
the horizon, since ζ is frozen at super-horizon scale, i.e. it
remains constant once k ≪ aH where a is the (dimension-
less) scale factor in the Friedman–Robertson–Walker (FRW)
metric. However, whenever the universe deviates from SR
expansion, we must in general take the super-horizon evolu-
tion of ζ into account; unfortunately this considerably com-
plicates the accurate computation of the power spectrum.

Using energy-momentum conservation it can be shown
that the evolution of ζ is given by [84]

ζ̇ = −H
δpen

ρ̄ + p̄
− 
. (5)

Here δpen is the non-adiabatic component of the pressure
perturbation, and 
 is defined as




H
= − k2

3a2 H2

[

ζ − 	B

(

1 − 2ρ̄

9(ρ̄ + p̄)

k2

a2 H2

)]

, (6)

where 	B is a Bardeen potential [82] which does not depend
on k. We thus see that at super horizon scales, i.e. for
k ≪ aH , the second term in Eq. (5) can be neglected. If
in addition the perturbations are adiabatic, i.e. if δpen can
be neglected, then ζ is conserved on super-horizon scales.
Weinberg showed [85] that solutions with δpen = 0, and
hence ζ̇ → 0 for k ≪ aH , always exist. We will see that this
is the only solution if the universe follows a SR expansion, i.e.
for a quasi–de Sitter spacetime; however, under overshooting
conditions a non-adiabatic solution also exists, and can lead
to large enhancement of the curvature perturbation.

Since we define δX = X (φ) − X (φ̄), δX can include
terms that are of higher order in the field perturbation δφ.7

7 Equation (5) holds to linear order in the perturbation δpen. However,
this does not imply that δpen is dominated by terms that are linear in
δφ.
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We assume that only a single (inflaton) field φ has sizable per-
turbations. Moreover, we are interested only in super-horizon
modes where all gradient terms can be neglected. The energy
density and pressure are thus given by

ρ = 1

2

(

φ̇
)2 + V (φ) ; p = 1

2

(

φ̇
)2 − V (φ). (7)

The same equations also describe ρ̄ and p̄, which φ → φ̄ on
the right-hand side. Super-horizon size non-adiabatic pres-
sure perturbations are then given by:

δpen = δp −
˙̄p
˙̄ρ δρ

=
[(

1

2
φ̇2 − V (φ)

)

−
(

1

2
( ˙̄φ)2 − V (φ̄)

)]

−
˙̄φ ¨̄φ − ˙̄φV ′

φ̄

˙̄φ ¨̄φ + ˙̄φV ′
φ̄

×
[(

1

2
φ̇2 + V (φ)

)

−
(

1

2
( ˙̄φ)2 + V (φ̄)

)]

=
[

1

2

( ˙̄φ + δφ̇
)2

− V (φ̄ + δφ) −
(

1

2
( ˙̄φ)2 − V (φ̄)

)]

−
¨̄φ − V ′

φ̄

¨̄φ + V ′
φ̄

×
[

1

2

( ˙̄φ + δφ̇
)2

+ V (φ̄ + δφ) −
(

1

2
( ˙̄φ)2 + V (φ̄)

)]

.

(8)

Using Taylor expansion for the potential up to second order8

of δφ , we obtain V (φ̄ + δφ) = V (φ̄) + V ′
φ̄
δφ + 1

2 V ′′
φ̄
(δφ)2,

where V ′
φ̄

denotes dV (φ̄)/dφ̄. Using this expansion, Eq. (8)

becomes

δpen =
(

˙̄φδφ̇ + 1

2
(δφ̇)2 − V ′

φ̄
δφ − 1

2
V ′′

φ̄
(δφ)2

)

−
¨̄φ − V ′

φ̄

¨̄φ + V ′
φ̄

×
(

˙̄φδφ̇ + 1

2
(δφ̇)2 + V ′

φ̄
δφ + 1

2
V ′′

φ̄
(δφ)2

)

.

(9)

For a strict de Sitter spacetime V has to be constant, i.e. all
derivatives of V vanish. It is easy to see that δpen = 0 in this

case. However, during realistic SR inflation, | ¨̄φ| ≪
∣

∣

∣
V ′

φ̄

∣

∣

∣
, so

8 The second order of the perturbation gives the two-point correlation
function; higher orders contribute to non-Gaussian corrections to the
power spectrum of the perturbation, which are beyond the scope of this
paper.

that Eq. (9) reduces to

δpen =
(

˙̄φδφ̇ + 1

2
(δφ̇)2 − V ′

φ̄
δφ − 1

2
V ′′

φ̄
(δφ)2

)

− (−)

(

˙̄φδφ̇ + 1

2
(δφ̇)2 + V ′

φ̄
δφ + 1

2
V ′′

φ̄
(δφ)2

)

= 2 ˙̄φδφ̇ + (δφ̇)2.

(10)

In order to see that δpen is indeed very small during SR,
consider the equation of motion for δφ [80,86]:

δφ̈ + 3Hδφ̇ − ∇2δφ

a2
+ V ′′δφ = 0. (11)

In momentum space this becomes

δφ̈k + 3Hδφ̇k + k2

a2
δφk + V ′′δφk = 0. (12)

In analyses of inflationary dynamics it is often useful to trade
the time for the number of e-folds N via d N = Hdt ; Eq.
(12) then becomes

d2δφk

d N 2
+ 3

dδφk

d N
+ k2

a2 H2
δφk + V ′′

H2
δφk = 0. (13)

At super-horizon scales (k ≪ aH ) the third term in Eq. (13)
can be neglected. Moreover, during SR the total energy den-
sity is dominated by the potential energy, so that9 H2 ≃ 1

3 V .
Finally, we introduce the second potential SR parameter
ηV ≡ V ′′

V
, which has to be small during SR inflation. Equa-

tion (13) can then be written as:

d2δφk

d N 2
+ 3

dδφk

d N
+ 3ηV δφk = 0. (14)

For constant ηV with |ηV | ≪ 1 the solution of Eq. (14) is
given by

δφk ≃ C1e−3N + C2e−ηV N , (15)

where the constants C1,2 are of order H/(2π), which deter-
mines the size of |δφ| due to quantum fluctuations during
SR inflation. This implies dδφk

d N
≤ H

[

e−3N + O(ηV )
]

, or
equivalently δφ̇ ≤ H2

[

e−3Ht + O(ηV )
]

. Moreover, during

SR | ˙̄φ| ≃ |V ′|
3H

= H
|V ′|
V

= H
√

2ǫV , where ǫV = 1
2

(

V ′
V

)2

denotes the first potential SR parameter. Thus we see ˙̄φ is
also rather small and nearly constant.

9 We set the reduced Planck scale MP ≃ 2.4 · 1018 GeV to 1 in the
following.

123



Eur. Phys. J. C (2021) 81 :182 Page 5 of 22 182

Inserting these estimates in Eq. (10) and using Eqs. (5)
and (7) we find for the time evolution of the curvature per-
turbations at super-horizon scales:

|ζ̇ | = 2H

⎡

⎣

∣

∣

∣

∣

∣

δφ̇

˙̄φ

∣

∣

∣

∣

∣

+ 1

2

(

δφ̇

˙̄φ

)2
⎤

⎦

≤ 2H
3H3

[

e−3Ht + O(ηV )
]

|V ′|

+ H

(

3H3
[

e−3Ht + O(ηV )
]

V ′

)2

≃ 2H2 V
[

e−3Ht + O(ηV )
]

|V ′|

+ H3

(

V
[

e−3Ht + O(ηV )
]

V ′

)2

= 2H2

√
2ǫV

[

e−3Ht + O(ηV )
]

+ H3

2ǫV

[

e−3Ht + O(ηV )
]2

.

(16)

Note that H
ǫV

∼
√

Pζ ∼ |ζ |, where Pζ is the power in the
perturbation. At the length scales probed by the CMB, Pζ ∼
10−9 is very small. More importantly, the last line in Eq. (16)
shows that the time derivative of ζ is suppressed by the SR
parameter ηV once the exponentially decaying part of δφ̇k

can be ignored. This completes our argument that in the SR
regime ζ is (nearly) constant once the mode crosses out of
the horizon.

However, whenever the universe deviates from SR expan-
sion, ζ̇ may no longer be negligible even in the super-horizon
regime due to the entropic pressure perturbation. Solutions
of this kind correspond to what Weinberg called the non-

adiabatic mode [85]. Of special interest to us is the situation
where the acceleration term is much larger than the derivative

of the potential, i.e. | ¨̄φ| ≫ |V ′
φ̄
|. In this case Eq. (9) becomes

δpen =
(

˙̄φδφ̇ + 1

2
(δφ̇)2 − V ′

φ̄
δφ − 1

2
V ′′

φ̄
(δφ)2

)

− (+)

(

˙̄φδφ̇ + 1

2
(δφ̇)2 + V ′

φ̄
δφ + 1

2
V ′′

φ̄
(δφ)2

)

= −2

(

V ′
φ̄
δφ + 1

2
V ′′

φ̄
(δφ)2

)

≈ −V ′′
φ̄
(δφ)2.

(17)

In the last step we have neglected V ′
φ̄

relative to V ′′
φ̄
δφ.

Our assumption | ¨̄φ| ≫ |V ′
φ̄
| is equivalent to having the

second (Hubble) SR parameter ηH ≡ − ¨̄φ/(H ˙̄φ) ≈ 3, which
is manifestly not smaller than unity, i.e. the SR conditions are

violated. Some recent papers state that this scenario corre-
sponds to an USR phase. We disagree with this interpretation.
The expression “ultra-slow” roll implies that the inflaton field
evolves even more slowly than during SR, which happens
when the potential becomes very flat, in which case the SR
parameters should also be small. In other words, the space-
time during USR should be even more de Sitter like than
that during SR, so the perturbations should be even more
adiabatic than during SR, and the evolution of ζ at super-
horizon scales should be even more suppressed. Hence the
SR approximation for the power spectrum, where it is com-
puted at horizon crossing, should work even better in a true
USR phase, rather than breaking down.

So the phase with | ¨̄φ| ≫ |V ′
φ̄
| cannot correspond to USR,

but to an intermediate transition “overshooting” stage (also
mentioned in [63]) between SR to USR, where the curvature
of the potential is sizable but the first derivative is already
rather small. We will see below that critical Higgs inflation
can indeed lead to a situation where ηH ≃ 3 for several
e-folds of inflation.

In order to get a first qualitative understanding of such an
“overshooting” stage, we insert the final result of Eqs. (17)
into (5):

ζ̇ ≈ H V ′′
φ̄

(

δφ

˙̄φ

)2

. (18)

Note that ¨̄φ + 3H ˙̄φ = 0 implies ˙̄φ ∝ e−3N so that 1/ ˙̄φ2 ∝
e6N . As a result the derivative dζ/d N grows exponentially
during this overshooting region. Since neither δφ nor the
curvature V ′′ are (approximately) constant during this over-
shooting epoch, Eq. (18) is not so well suited for a quantitative
treatment of the evolution of the curvature perturbations; this
can be done using the Mukhanov–Sasaki equation, as will be
described in the next section. However, we can already con-

clude that | ¨̄φ| ≫ |V ′
φ̄
| implies that the curvature perturbation

is not frozen at the super-horizon scales, and even increases
significantly if the potential has a large positive curvature V ′′.
Of course, the usual SR treatment of approximating the final
power spectrum by its value at horizon crossing will then no
longer work. We consider Eq. (18) and its consequences to
be one of the central results of this paper, which is applicable
whenever an overshooting epoch occurs during the evolu-
tion of the inflaton field. In the next section we will explore
the quantitative consequences for the case of critical Higgs
inflation.

Before concluding this section we briefly discuss the evo-
lution of the perturbations after inflation ends. During matter
domination the pressure is by definition negligible. During
radiation domination, p ≃ ρ/3 holds locally, which again
implies δpen = 0. Hence curvature perturbations remain
frozen on super-horizon scales after inflation.
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3 Critical Higgs inflation

In this section we discuss critical Higgs inflation, with
emphasis on the enhancement of curvature perturbations
associated with an overshooting region. We first describe the
basic set-up in the Jordan and Einstein frames. In the second
subsection we analyze the inflationary dynamics in the Ein-
stein frame and connect it to CMB observables. In Sect. 3.3
we show that SR conditions are violated in the overshoot-
ing region, just before the inflaton enters the very flat part
of the potential. We then review the Mukhanov–Sasaki for-
malism, which we use in Sect. 3.4 for a detailed numerical
investigation.

3.1 Formalism

Starting point of the analysis is the action in the Jordan frame

(in Planckian units, where Mp =
√

1
8πG

= 1):

SJ = −
∫

d4x
√−g

×
[

1

2

(

1 + ξ(h)h2
)

R − 1

2
∂μh∂μh + λ(h)

4
h4

]

= −
∫

d4x
√−g

[

f (h)R − 1

2
∂μh∂μh + λ(h)

4
h4

]

.

(19)

In the second line we have introduced the function f (h) =
1
2 (1 + ξh2). The crucial observation [52] is that for realistic
values of the relevant SM parameters, the running Higgs self
coupling λ attains a minimum at scale μ. Near this minimum
it can then be expanded as:

λ(h) = λ0 + bλ ln2
(

h

μ

)

. (20)

The running non-minimal coupling ξ to the Ricci scalar is
also expanded around scale μ:

ξ(h) = ξ0 + bξ ln

(

h

μ

)

; (21)

since ξ does not have an extremum at scale μ, the leading
energy dependence is described by a term linear, rather than
quadratic, in ln(h/μ).

While the matter part of the Jordan frame action has its
canonical form, this is not true for the gravitational part,
unless |ξ(h)h2| ≪ 1. In order to use standard results for the
inflationary dynamics we transform to the Einstein frame,
where gravity is described by the well-known Einstein–
Hilbert action and the inflaton is described by a canonically
normalized field χ . To that end we first utilize a conformal
transformation to the Einstein frame:

g̃μν = �2gμν = (1 + ξh2)gμν . (22)

Then we use a field redefinition to obtain a canonical kinetic
term [87]; it is defined by:

dχ

dh
=

√

f (h) + 3 f (h)′ 2

2 f (h)2

=

√

1 + ξh2 + 6
(

hξ + 1
2 h2ξ ′)2

(1 + ξh2)2
.

(23)

After these transformations the action becomes

SE = −
∫

d4x
√

−g̃

[

1

2
R̃ − 1

2
∂μχ∂μχ + V (χ)

]

. (24)

While the gravitational part as well as the kinetic energy term
in the action now have the standard form, the inflationary
potential has become more complicated:

V (χ) = 1

�(χ)4

λ(h(χ))

4
h(χ)4. (25)

It is convenient to introduce the quantities

x = h

μ
, a = bλ

λ0
, b = bξ

ξ0
,

c = ξ0μ
2 and V0 = λ0μ

4

4
.

The inflaton potential can then be written as

V (x) = V0(1 + a ln2 x)x4

[

1 + c(1 + b ln x)x2
]2

. (26)

Note that for nonminimal coupling ξ �= 0 the potential
approaches a constant as x → ∞; it is this “flattening”
which allows inflation. Consistency with the CMB observ-
ables (see below) and with current measurements of SM
parameters can be obtained for parameter values in the ranges
[52] λ0 ∼ (0.01 − 8) × 10−7, bλ ∼ (0.008 − 4) × 10−6,
ξ0 ∼ (0.5 − 15), μ2 ∼ (0.05 − 1.2) and10 bξ ∼ (1 − 18).
In order to compare our calculations, especially the power
spectrum, with those in [52] based on the SR approximation,
we mainly work with their representative set of parameters :

λ0 = 2.23 × 10−7, ξ0 = 7.55, μ2 = 0.102,

bλ = 1.2 × 10−6, and bξ = 11.5. (27)

The inflaton potential for these values of the parameters is
shown in Fig. 1. It features an inflection point11 at x = xc =
0.784. Again following Ref. [52], we introduce one more

10 The large running of the non-minimal coupling bξ could arise from
the scalaron degree of freedom [88,89].
11 The potential can be expressed in analytical form only in terms of
h or x , not in terms of the canonical variable χ . However, dV/dx =
d2V/dx2 = 0 at x = xc implies dV/dχ = d2V/dχ2 = 0 at χ = χc =
χ(xc), i.e. the potential of the canonically normalized inflaton also has
an inflection point. In fact, V (χ) is qualitatively similar to V (x).
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Fig. 1 Inflaton potential as function of the variable x = h/μ for the
parameter set (27), which leads to an inflection point at x = xc = 0.784
leading to an extremely flat region of the potential. Just before this
region, there exists an overshooting regime where the universe deviates
from the SR expansion since the SR parameters are quite large. More-
over, curvature perturbations are not frozen at super-horizon scales in
this regime, as shown in Sect. 2.2, making a numerical treatment nec-
essary

free parameter β in order to study slight deviations from a
perfect inflection point:

a → a(xc, c), b → (1 − β)b(xc, c), (28)

where a(xc, c) and b(xc, c) are the values of the parameters
which lead to V ′(xc) = V ′′(xc) = 0. This is of interest since
the inflaton field can linger near a true inflection point for a
very large number of e-folds. This modification can give a
slight slope to the ultra-flat region. Of course, the shape of
the overshooting region, in particular V ′′, will also be slightly
modified: the larger the slope in the ultra-flat region is, the
smaller V ′′ will be in the overshooting regime. We will use
β in the range 10−5 to 10−4.

3.2 Parameters of the CMB power spectrum

The inflaton dynamics in the Einstein frame is given by the
Klein–Gordon equation in curved space:

χ̈ + 3H χ̇ + dV

dχ
= 0. (29)

Using the relation between the number of e-folds and time,
d N = Hdt , we can rewrite Eq. (29) as [60,90]

d2χ

d N 2
+ 3

dχ

d N
− 1

2

(

dχ

d N

)3

+
[

3 − 1

2

(

dχ

d N

)2
]

V ′(χ)

V (χ)
= 0. (30)

The two Hubble SR parameters are defined as

ǫH = 1

2

χ̇2

H2
= 1

2

(

dχ

d N

)2

(31)

and

ηH = − χ̈

H χ̇
= ǫH − 1

2ǫH

dǫH

d N
. (32)

SR inflation requires ǫH ≪ 1 and |ηH | ≪ 1.
We have seen in Sect. 2.2 that under the SR approximation,

curvature perturbations are basically frozen at super-horizon
scales. The power spectrum is therefore usually computed at
horizon crossing, defined by k = aH , and can be analytically
given by [91] (see Appendix A for details):

Pζ ≃ H2

8π2ǫH

∣

∣

∣

∣

N=Ncross

, (33)

where Ncross denotes the number of e-folds at horizon cross-
ing.12 The scale dependence of Pζ is usually parameterized
as a power law, with spectral index ns given by

ns − 1 = d ln Pζ

d ln k
≃ −4ǫH + 2ηH . (34)

The deviation from an exact power law is described by the
“running” of the spectral index, parameterized through the
quantity α:

α = dns

d ln k
≃

(

−8ǫ2
H + 8ǫH ηH + 2

dηH

d N

)

. (35)

The final CMB observable of phenomenological interest is
the tensor to scalar ratio r , i.e. the perturbations in tensor
modes (which can be probed via the polarization of the CMB)
normalized to the scalar perturbations. To leading order in SR
parameters,

r ≃ 16ǫH . (36)

Now our task is to solve Eq. (30), from which the param-
eters of the CMB power spectrum can be computed. We find
it more convenient to calculate the evolution of x , rather than
the canonically normalized field χ ; this is because we have
an explicit expression for V (x), see Eq. (26), and thus also
for V ′(x). By using Eqs. (23), (30) and x = h/μ, we find the
differential equation for x is:

μ

[

d2x

d N 2
g(x) + dx

d N

dg(x)

d N

]

+ 3μ g(x)
dx

d N
− 1

2

(

μ g(x)
dx

d N

)3

+
[

3 − 1

2

(

μ g(x)
dx

d N

)2
]

1

μ g(x)

V ′(x)

V (x)
= 0.

(37)

12 If N = 0 defines some initial field configuration, only the difference
N − Nend is well-defined, where Nend refers to the end of inflation.
Successful models have to provide at least some 60 e-folds of inflation,
but inflation may have lasted much longer.
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Fig. 2 Evolution of the Higgs field with N . The universe expands by
more than 30 e-folds while the inflaton field traverses the flat region
of the potential around the pseudo-critical point x = xc = 0.784;
this corresponds to the USR phase. Between SR and USR, there is
an intermediate overshooting stage where the canonically normalized
inflaton field χ varies rather quickly with N

We have renamed dχ
dh

(x) ≡ g(x) for convenience, see Eq.
(23), with dg/d N = (dx/d N )dg/dx . Eq. (37) is too compli-
cated to solve analytically. For a numerical solution we have
to choose initial values for x and dx/d N at some N = N0.
The initial value of x should evidently be above the field
values where the CMB scales cross the horizon, so that our
solution covers the entire range of scales probed by the CMB
and other cosmological observations. On the other hand, it
would be wasteful to choose x(N0) to be much larger than the
field values probed by the CMB, since this earlier evolution
leaves no observable traces anyway. In practice we have used
x(0) = 8.5. At these large field values the potential is very
flat; if the initial kinetic energy of the field is not very large,
the field evolution will therefore quickly approach the SR
solution.13 The initial choice of dx/d N is therefore largely
irrelevant; we chose dx/d N = −0.21, which corresponds to
assuming the SR solution already at N = N0 = 0.

With these initial conditions, Eq. (37) can be then solved
numerically. Once x(N ) is known, the evolution of the canon-
ical field χ can be obtained by integrating Eq. (23):

χ(N ) =
∫ N

0
μ g(x(N ′))

dx

d N ′ d N ′ + χ(0). (38)

The constant of integration χ(0) can be fixed by using the
fact that g(x) → 1 for x → 0; the natural choice is thus
χ ≃ h for ξh ≪ 1, which corresponds to χ(0) = 6.94.

Figure 2 shows the evolution of x as well as the canonically
normalized field χ with N for our standard set of parameters
(27) with β = 10−5. We see that the field at first gradually
decreases with increasing N ; this is the usual SR phase, for

13 In other words, SR is a strong attractor solution of the equation of
motion when going forward in time. This also implies that one practi-
cally cannot solve this equation going backward in time: for almost all
initial conditions the solution for x will then quickly blow up.

large field values. The evolution of χ becomes quite fast
at N ≃ 30, signaling a break-down of SR. However, from
N ≃ 36 both x and χ remain nearly constant for more than
30 e-folds; this is when the inflaton traverses the very flat part
of the potential around the pseudo-critical point. Evidently
the behavior of the field differs qualitatively from that in the
SR phase, justifying the use of the expression “ultra-slow
roll” for much of this epoch. Inflation ends when the inflaton
leaves this region.

Once the dynamics of the inflaton field is known, the
parameters of the CMB power spectrum can be computed.
Using our standard parameter set (27) and β = 10−5 we find
that the CMB “pivot scale” k = 0.05 Mpc−1 crosses out of
the horizon at Nend − NCMB ≈ 68. The numerical values of
the CMB parameters at this scale are

Pζ = 2.09 × 10−9;
ns = 0.951; α = −0.0018; r = 0.043, (39)

which is consistent with the Planck 2018 results [92] at the
2σ level. The large value of Nend − NCMB is to a large extent
due to the USR phase. This number of e-folds can be reduced
by increasing β, which increases the slope of the potential
near the pseudo-critical point. For example, using β = 10−4,
we find the same predictions as given by Eq. (39) at Nend −
NCMB ≈ 63.

3.3 Slow-roll violation

For our standard set of parameters, CMB scales first crossed
out of the horizon during a SR phase, i.e. the SR approxima-
tion works very well for the predictions collected in Eq. (39).
However, Fig. 2 also shows that the canonically normalized
inflaton field χ moves rather fast for N ≃ 33. In this subsec-
tion we show that the SR conditions are indeed violated in
this “overshooting” region.

The dependence of the potential and its first and second
derivatives, both with respect to x and with respect to χ ,
are plotted as function of N in Fig. 3a. The first deriva-
tives remain positive and fairly small throughout. The second
derivatives are initially small and negative, but increase in
size as the inflaton field approaches the overshooting region,
where the second derivative changes very rapidly from large
negative to large positive values; in the region around the
pseudo-critical point the second derivatives are again very
small.

When discussing non-adiabatic pressure perturbations in
Sect. 2, we had assumed that the second time derivative of
the inflaton field is much larger in magnitude than the slope
of the potential. Figure 3b shows that this is indeed the case
for some range of N around 35. In this case Eq. (29) becomes

χ̈ + 3H χ̇ ≈ 0, (40)
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(a) (b)

Fig. 3 The left frame shows the evolution of potential and its deriva-
tives with N . There is a first SR phase at N < 30 where all deriva-
tives are small, and a USR phase at N > 38 where the derivatives
are indistinguishable from zero on the shown scale. In between there
is an overshooting stage where the curvature of the potential is rather
large and varies rapidly; in this regime the SR approximation breaks

down and entropic perturbations are excited. This is further illustrated
in the right frame which compares the second time derivative χ̈ of the
canonically normalized inflaton field with the slope of the potential; in
the overshooting region, N ∼ 35, the former considerably exceeds the
latter in magnitude

which implies

ηH = − χ̈

H χ̇
≈ 3. (41)

In SR, both ǫH and |ηH | should be (much) smaller than 1;
the result (41) clearly violates this.

This is further illustrated in Fig. 4, which shows the evolu-
tion of the SR parameters with N for the same set of param-
eters. We show both the “Hubble” SR parameters defined in
Eqs. (31) and (32) and their “potential” analogues, defined
via

ǫV = 1

2

(

V ′

V

)2

, ηV = V ′′

V
. (42)

SR implies that ǫH ≃ ǫV and ηH ≃ ηV ; we see that in our
case this holds for N < 30 as well as14 for N > 38. ǫH

and ǫV always remain significantly smaller than 1, but vary
rapidly, and differ markedly, in the overshooting region.15

We have shown in Sect. 2.2 that entropic perturbation can
be excited if the SR conditions are violated, in which case the
curvature perturbation are no longer conserved at super hori-
zon scale. Hence the usual estimate (33) of the power spec-
trum can no longer be justified for modes that first crossed out

14 In our example these relations even hold at N ≃ 70 where SR no
longer holds since inflation ends.
15 We saw in Fig. 2 that the inflaton already moves very slowly at
N = 36. However, since all the SR parameters, in particular ηH , become
small only for N ≥ 38, we denote only this epoch as USR epoch.
Defining USR via the condition ηH ≃ 3, as seems to be done in part
of the literature, does not seem very useful to us, since at the beginning
of the epoch where this condition is satisfied the inflaton field still
mover rather quickly; conversely, for much of the time where the inflaton
moves extremely slowly, ηH ≪ 1. We instead use ηH ≃ 3 to define the
overshooting region.

Fig. 4 The evolution of the SR parameters with N . The parameters
defined via the potential almost coincide with those defined via the
Hubble parameter in the epochs where the SR approximation holds, but
they differ markedly in the overshooting region where ηH > 1

of the horizon near the overshooting region. In the next sec-
tion we instead use the Mukhanov–Sasaki (MS) formalism
to compute the power spectrum numerically.

3.4 Mukhanov–Sasaki formalism

Our numerical treatment of the evolution of the curvature
perturbations is based on the MS equation; a quick derivation
of this equation and its analytical solution in the quasi–de
Sitter limit is reviewed in Appendix A. It is usually written
in terms of the Mukhanov variable

vk ≡ −zζk, (43)
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where z is defined by

z2 ≡
(

dχ

dt

)2
a2

H2
= 2a2ǫH . (44)

In these variables, the MS equation reads:

d2vk

dτ 2
+

(

k2 − 1

z

d2z

dτ 2

)

vk = 0, (45)

where τ denotes the conformal time, i.e. dτ = dt
a

.
Rewriting Eq. (45) using the number of e-folds N instead

of the conformal time gives [60]

d2vk

d N 2
+ (1 − ǫH )

dvk

d N

+
[

k2

a2 H2
+ (1 + ǫH − ηH )(ηH − 2) − d(ǫH − ηH )

d N

]

vk

= 0.

(46)

Under SR conditions the curvature perturbation ζk is frozen at
super-horizon scales, hence the power spectrum of ζk is usu-
ally computed at horizon crossing. However, we have seen
in the previous subsection that the SR approximation fails in
the overshooting regime. In order to account for the evolution
of the curvature perturbation also at super-horizon scales the
power spectrum should be computed at the end of inflation:

Pζ (k) = k3

2π2

∣

∣

∣
ζk

∣

∣

∣

2

N=Nend

= k3

2π2

∣

∣

∣

vk

z

∣

∣

∣

2

N=Nend

. (47)

This can usually only be done numerically. Recall also that
super-horizon perturbations are frozen after inflation, as we
showed at the very end of Sect. 2.

In order to solve Eq. (46), initial conditions are needed.
We follow the usual procedure, which assumes the Bunch–
Davies vacuum at very early times [93]:

lim
τ→−∞

vk = e−ikτ

√
2k

. (48)

Since vk is a complex quantity,16 in practice it is more con-
venient to solve for its real and imaginary parts separately.
To this end one can rewrite the initial condition Eq. (48) as
[60]:

Re(vk)

∣

∣

∣

N=Ni

= 1√
2k

; Im(vk)

∣

∣

∣

N=Ni

= 0; (49)

Re

(

dvk

d N

)

∣

∣

∣

N=Ni

= 0;

Im

(

dvk

d N

)

∣

∣

∣

N=Ni

= −
√

k√
2a(Ni )H(Ni )

. (50)

16 The perturbation ζ introduced in Eq. (4) is a real quantity in config-
uration space, but its Fourier coefficients ζk are in general complex.

Fig. 5 Comparison of the power spectrum computed using the SR
approximation (the blue dashed curve corresponds to Eq. (33) while
the green line represents results with the replacement ǫH → ǫV ) and
the MS formalism (red dotted)

Here Ni is the “initial” point where we start the numerical
integration of the MS equation. In principle the Bunch–Davis
initial conditions (48) should be imposed at τ → −∞, which
also corresponds to N → −∞ if the CMB pivot scale crossed
the horizon at N ≃ 0, as we assumed in the last three figures.
Physically this does not make much sense, since we don’t
know how many e-folds of inflation happened before that
time. Moreover, the ansatz (48) remains a very good approx-
imation of the exact solution of the MS equation as long as the
perturbation is well within the horizon, i.e. for k2 ≫ a2 H2.
Let the mode k cross the horizon at N = Nk,cross. In practice it
is then usually sufficient to use �N ≡ Nk,cross−Ni = 2 ∼ 3.
We have checked that reducing Ni , which costs a lot of CPU
time since the term k2/(a2 H2) in Eq. (46) grows ∝ e2�N

requiring correspondingly reduced step sizes to attain numer-
ical convergence, does not change the final result appreciably.
However, we will see below that choosing too small a value
for �N can lead to inaccuracies.

3.5 Power spectrum for critical Higgs inflation

We now apply the MS formalism to CHI. In order to compute
the power spectrum we have to integrate Eq. (46) with the
initial conditions Eq. (48) till the end of inflation, and then
plug the solution into Eq. (47).

The result for our standard parameter set with β = 10−5 is
shown in Fig. 5. We see that the SR approximation fails badly
for modes crossing the horizon in the vicinity of the over-
shooting region. In particular, the SR approximation gets both
the location and the depth of the dip in the power spectrum
wrong by more than one order of magnitude. The approxi-
mation (33) using ǫH underestimates the maximum of Pζ by
only a factor of about 1.4, but gets the location kmax of the true
maximum off by an order of magnitude, and underestimates
the power at kmax by about five orders of magnitude. Using
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the approximation (33) but replacing ǫH by ǫV , as is done in
much of the older literature on inflation, actually gets kmax

approximately right, but overestimates the power at this scale
by more than two orders of magnitude. In contrast, the SR
approximation works well both for the large scales probed
by the CMB and for the much smaller scales that cross out
of the horizon in the USR regime after the end of the over-
shooting epoch. The power at these small scales exceeds that
at CMB scales by roughly five orders of magnitude due to
the overshooting behavior.17

In order to better understand the red curve in Fig. 5, in
Fig. 6 we show the evolution of Pζ with N for four repre-
sentative values of k. These results have been obtained by
numerically solving the MS equations; the different curves
refer to different values of Ni = Ncross − �N where the
initial conditions (48) have been imposed.

While the results of Fig. 6 have been obtained from Eq.
(46), the qualitative behavior is more easily understood by
combining Eqs. (45) and (43), which yields the equivalent
differential equation

d2ζk

d N 2
+ (3 + ǫH − 2ηH )

dζk

d N
+ k2

a2 H2
ζk = 0. (51)

This equation again has to be satisfied by both the real and
imaginary parts of ζk .

For sub-horizon modes, where k2 ≫ a2 H2, the last term
in Eq. (51) dominates; this by itself leads to an oscillatory
behavior of ζk , with amplitude increasing ∝ eN/2 and with
exponentially decreasing oscillation frequency. For SR con-
ditions, ǫH , |ηH | ≪ 1, the second term in Eq. (51) is a
damping term, which reduces the amplitude of the oscilla-
tions ∝ e−3N/2. Altogether this yields Pζ ∝ e−2N , which
explains the initial steep decline in all four cases depicted in
Fig. 6.

Of course, the term ∝ k2 in Eq. (51) decreases ∝ e−2N ,
due to the exponential growth of a(N ); by definition the coef-
ficient multiplying ζk in this term equals 1 at N = Ncross.
Moreover, the SR conditions are badly violated in the over-
shooting region. The evolution of the power depends on
where Ncross lies relative to the overshooting region. To see
this, let us discuss the four cases depicted in Fig. 6 one by
one.

Figure 6a: Here we chose k = 2.5 × 1010 Mpc−1, so
that horizon crossing takes place at N = 29.7, where the

17 Regarding the jump of the power spectrum, we thank the anonymous
referee for bringing refs. [94–98] to our attention. These papers consider
some discontinuous step in the inflaton potential, which can give rise
to interesting wiggles in the power spectrum. Depending on regime of
the discontinuity (motivated by [94]), the resulting primordial power
spectrum can lead to significant production of primordial black hole
[95], and can even offer better fit for the Planck data with the so-called
Wiggly Whipped Inflation model [96–98], where an overshooting phase
can also appear.

SR conditions still hold. As shown in Fig. 6a, the power
spectrum for this mode first approaches a constant after hori-
zon crossing. Here the last term in Eq. (51) is negligible. As
long as the coefficient of the second term is close to +3, the
absolute value of the first derivative of ζk keeps decreasing
exponentially with increasing N ; this corresponds to an over-
damped oscillator. The solution for this range of N can thus
be written as ζk(N ) = C1 + C2e−3(N−Ncross), where C1, C2

are two constants determined by the initial conditions.18 Let
NSR denote the number of e-folds which ζk undergoes in the
SR regime after horizon crossing, but before overshooting;
then this epoch suppresses the first derivative of ζk by a fac-
tor e−3NSR . Since the derivative of ζk is small, ζk itself is
basically constant.

This solution is no longer valid in the overshooting region,
where ηH ≈ 3 while ǫH remains rather small, so that
(3 + ǫH − 2ηH ) ≈ −3, i.e. the second term in Eq. (51)
changes sign relative to the SR epoch. This means that now
the first derivative to ζk begins to grow exponentially in mag-
nitude, however without changing sign. At the end of this
epoch one thus has ζk(N ) = C3 + C4e+3NOS , where NOS

is the total “length” of the overshooting epoch, i.e. the num-
ber of e-folds during which ηH ≈ 3.19 By matching the two
solutions for ζk at the point where the overshooting epoch
begins, one finds C1 = C3 and C4 = −C2e−3NSR . So after
overshooting ends, the value of ζk is approximately given by
ζk = C1 − C2e3(NOS−NSR). Since afterwards the SR condi-
tions hold again, ζk remains approximately constant, i.e. this
result still holds at the end of inflation.20

The overshooting region will therefore only have signif-
icant impact on the final power for modes that crossed out
of the horizon not much more than NOS e-folds before its
onset. From the left frame of Fig. 7 we read off that for
our numerical example overshooting starts at N ≈ 34, with
NOS ≈ 3.5. For the case considered in Fig. 6a NOS and NSR

are comparable. For much smaller co-moving wave number
k, NSR ≫ NOS, so that the effect of the overshooting region
on the final power is not significant. This explains why the
standard SR approximation works for k < 1010 Mpc−1 in
Fig. 5.

The detailed evolution of the real and imaginary parts of
ζk is shown in Fig. 8. Note that the overshooting region has
significant impact on ζk itself (as opposed to its derivative)
only beginning at N ≈ 37, where the exponential growth
of the modulus of the derivative compensated its exponen-

18 The value of C2 is roughly of order O(10−5) according to our finding
in Eq. (16), while C1 depends on k.
19 The exponential growth of dζk/d N agrees with our earlier discussion
of Eq. (18).
20 Actually after the overshooting dynamics ends, the inflaton enters
the USR phase, where the matter perturbation is even more adiabatic
compared to that in a SR.
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Fig. 6 Evolution of the power
spectrum for four different
modes which cross the horizon
at Ncross near the overshooting
region. The different colors refer
to different initial values
Ni = Ncross − �N when
integrating Eq. (46). Evidently it
is sufficient to use �N = 2 ∼ 3
in practice, since the curves for
even smaller Ni merge with
each other, and yield same
results. However, using too
small �N leads to inaccurate
results, for example the one we
have showed with �N = 0.5

(a) (b)

(c) (d)

Fig. 7 Evolution of the two
coefficients in Eq. (51); the left
frame is independent of k, while
the result of the right holds for
k = 1011 Mpc−1 and scales
∝ k2

(a) (b)

Fig. 8 Evolution of curvature perturbations for the mode with co-
moving k = 2.5 × 1010 Mpc−1. This figure shows the epoch from
a few e-folds before horizon crossing to a few e-folds after the end of
the overshooting region

tial suppression between horizon crossing and the onset of
the overshooting epoch. Since overshooting already ends at
N ≈ 38, its total effect is still moderate for this value of k.
Notice, however, that the second flat region lies well below
the first one, which corresponds to the prediction of the usual
analytical SR estimates. This is because in the overdamped
oscillator phase just after horizon crossing, the first deriva-
tive of ζk always has the opposite sign as ζk itself, for both
the real and imaginary part. The exponential decrease of the
modulus of the derivatives will therefore decrease |ζk |, and
thus Pζ . We will come back to this point shortly.

Figure 6b: for co-moving k = 1011 Mpc−1, Pζ nearly
vanishes for a value of N during the overshooting epoch.21

Now the nominal horizon crossing at N = 31.2 occurs just
before the onset of the overshooting epoch, which means we

21 To the best of our knowledge, a similar behavior as shown in Fig. 6b
was first explored in [99] and recently was mentioned in [61,66].

123



Eur. Phys. J. C (2021) 81 :182 Page 13 of 22 182

Fig. 9 Evolution of curvature
perturbations for the mode with
co-moving wave number
k = 1011 Mpc−1

(a) (b)

(c) (d)

cannot always assume k ≪ aH when we discuss the evo-
lution of the curvature perturbation around the overshooting
regime. In the following discussion we denote the coefficient
of the second and third terms in Eq. (51) by A and B, respec-
tively; their dependence on N is depicted in Fig. 7. After
horizon crossing, the evolution of ζk undergoes four stages,
which are shown in Fig. 9:

• 31 < N < 34, Fig. 9a: in this region, A is always
positive and therefore acts as a friction term, and B

decreases exponentially. Since we are already beyond
horizon crossing, B2 − A2/4 < 0, i.e. Eq. (51) approxi-
mately describes an over-damped oscillator. This means
that ζk does not oscillate any more, but decreases rather
slowly. This explains the first, short flat region in Fig. 6b.
In this region the second derivative of ζk can be neglected,
thus the curvature perturbation satisfies dζk

d N
≈ B

A
ζk . This

approximation ceases to hold somewhat before the value
N0 where A turns to zero, i.e. where the overshooting
region starts; recall that in our case N0 ≈ 34.

• 34 < N < 37, Fig. 9b: for N ≥ N0, B ≤ 0.01 (see Fig. 7)
has become essentially negligible, while A changes from
positive to negative hence acts as a driving term. As dis-
cussed above this leads to an exponential increase of the
first derivative of ζk . Since the epoch of exponentially
decreasing first derivatives is considerably shorter than
for k = 2.5 · 1010 Mpc−1, ζk itself now begins to vary
appreciably already at N ≈ 36.

Remarkably, shortly thereafter both the real and imagi-
nary parts cross the zero point nearly at the same time,

leading to ζk → 0. This can be understood from the
approximate solution for ζk in this range of N :

ζk(N ) ≈ ζk(N0) − 1

A

dζk

d N

∣

∣

∣

N0

(

e−A(N−N0) − 1
)

. (52)

Since dζk

d N

∣

∣

∣

N0

∝ ζk(N0), we see that the real and imag-

inary parts of ζk(N ) go through zero at the same point,
which is also the origin of the very sharp minimum
depicted in Fig. 6b. Note that for the previous case,
k = 2.5 · 1010 Mpc−1, the overshooting epoch ended
before ζk reached zero; the sharp minimum of the final
power spectrum depicted in Fig. 5 corresponds to that
value of k where the overshooting epoch lasts just long
enough to drive ζk to zero, and then ends. In the case at
hand instead |ζk | again increases exponentially beyond
the zero crossing.

• 37 < N < 38, Fig. 9c: this is the stage just after the
overshooting epoch, i.e. A is again positive so that the
modulus of the first derivative of ζk is decreasing expo-
nentially again. For a while |ζk | keeps increasing, albeit
more slowly than before. Of course, B ≤ 10−5 is now
completely negligible.

• 38 < N < 70, Fig. 9d: the overshooting phase has ended
and the universe comes back to (U)SR inflation, therefore
curvature perturbations are frozen again at the super hori-
zon scale and matter perturbation evolve adiabatically
again. This corresponds the second flat region shown in
Fig. 6b. For this value of k the second flat region is already
higher than the first one, thus the analytical SR approxi-
mation underestimates the final power.
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(a) (b)

Fig. 10 Evolution of curvature perturbations for the modes with co-moving wave number k = 1013 Mpc−1 (left) and k = 2 × 1014 Mpc−1 (right)

Figure 6c: for the mode with k = 1013 Mpc−1, horizon
crossing occurs at N = 36.5; this lies in the middle of the
overshooting regime. Hence there is no overdamped oscilla-
tor phase, and therefore also no plateau in the evolution of
Pζ , before the overshooting epoch, unlike in Fig. 6a,b.

Nevertheless for N < 34 Eq. (51) again describes a
damped oscillator, the amplitude of the oscillation decreas-
ing ∝ e−N . This is also shown in Fig. 10a. However, at
N = N0 ≃ 34 the second term in Eq. (51) changes sign,
eventually reaching −3 as shown in Fig. 7. For N0 < N <

Ncross Eq. (51) therefore leads to oscillations whose ampli-
tude grows ∝ e2N . For N > Ncross the approximately expo-
nential growth continues for a while, this time for |ζk | itself
which no longer oscillates. As before, for N > 37 the deriva-
tive of ζk begins to decrease exponentially in magnitude,
which leads to ζk itself becoming essentially constant for
N > 38, after the end of the overshooting epoch. Not sur-
prisingly, for this mode the analytical SR estimate for the
final power also fails.

Figure 6d: for the mode with co-moving wave number
k = 2 × 1014 Mpc−1, horizon crossing takes place at
N = 39.5, i.e. during USR well after the end of the over-
shooting epoch. We again see an (initially very rapid) oscil-
lation whose amplitude first drops ∝ e−N and then increases
∝ e2N once N > 34, i.e. in the overshooting regime. Since
for this value of k the overshooting epoch ends before horizon
crossing, for N > 38 the function ζk again undergoes a few
oscillations with exponentially decreasing amplitude, before
settling into an overdamped oscillator mode, i.e. approaching
a constant.

In this case the analytical SR approximation for the final
power actually works quite well. On the one hand this may
not be surprising, since the arguments of Sect. 2 imply that
perturbations are now adiabatic at super-horizon scales. On
the other hand, it may be surprising that one still gets the
correct result by imposing the initial conditions (48) just a
couple of e-folds before horizon crossing. This implies that

these initial conditions capture the dynamics of the MS equa-
tion even in the overshooting regime, as long as the mode is
still (deep) inside the horizon.

In fact, Eq. (48) shows that |vk | is simply a constant (inde-
pendent of N ) for sub-horizon modes. The dynamics is there-
fore entirely captured by the factor 1/z which relates ζk to
vk , see Eq. (44). This contains a factor 1/a ∝ e−N , which
dominates the N -dependence in the (U)SR regime where
the SR parameter ǫH is approximately constant (and small).
However, Eq. (30) shows that in the overshooting regime,
where the term containing the derivative of the potential can
be neglected,

√
ǫH ∝ |dχ/d N | ∝ e−3N , so that altogether

|ζk | ∝ 1/(a
√

ǫH ) ∝ e+2N , as we had inferred from the MS
equation.

For modes with even larger k, the situation is very similar
to the case with k = 2 × 1014 Mpc−1, i.e. the analytical SR
approximation for the final power agrees with the numerical
result, as shown in Fig. 5, as long as the modes cross out of the
horizon (well) before the end of inflation. The approximation
fails again for modes with very large k which cross the hori-
zon near the end of inflation where SR again fails; however,
we know of no way to probe those modes observationally.

From the above discussion it is easy to understand that the
peak in the power spectrum shown in Fig. 5 occurs for the
mode which crosses the horizon just at the beginning of the
overshooting regime. In this case, NSR = 0, and the expo-
nential increase of |dζk/d N | is maximized. This also greatly
enhances the final value of |ζk |, leading to the maximum in
the spectrum. We find the maximal scalar power spectrum is
Pζ ≈ 1.1 × 10−4 for k = 1.1 · 1013Mpc−1. According to
Ref. [52], fluctuations of this size are large enough to lead to
significant formation of primordial black holes, which might
even constitute a sizable fraction of all dark matter. In the
next section we will investigate another cosmological con-
sequence of such a large curvature perturbation, namely the
amplification of primordial gravitational wave signatures due
to second order effects.
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Before closing this section we comment on possibilities
to increase the power spectrum even further. According to
Ref. [66], quantum diffusion effects can in principle further
enhance the power; however, we checked that in our case one
always has |χ̇ | ≫ H2/(2π), which indicates that quantum
diffusion does not change the evolution of the inflaton field
significantly. Moreover, Refs. [60,100] argue that a shallow
local minimum of the inflaton potential can also enhance the
power spectrum; this agrees with our finding in Eq. (18),
because the curvature of the potential V ′′ is maximal near a
local minimum. However, the inflaton might get stuck in a
local minimum, in which case inflation would never end. In
contrast, the scenario we presented leads to a well-behaved
inflationary epoch, in agreement with current observations.

4 Second order gravitational wave signatures

As well known, primordial perturbations of the inflaton field
source primordial gravitation waves. Usually the strength of
the GW signal is estimated in linear order in perturbations; for
SR inflation, this leads to the famous prediction r = 16ǫV ,
where r is the tensor-to-scalar ratio. However, in some cases
effects that are second order in the curvature perturbations
can also contribute significantly to the primordial GW signal
[101–104]. As has recently been emphasized in [54], which
analyses a polynomial potential with an inflection point, this
occurs in particular when an overshooting regime enhances
the power spectrum. In the following analysis, we mainly
follow the formalism given in [54,103].

In the radiation era, the second order tensor perturbation
with comoving wave number k satisfies [54,103,105–110]:

h′′(�k, τ ) + 2aHh′(�k, τ ) + k2h(�k, τ ) = S(�k, τ ), (53)

where a prime denotes a derivative with respect to the confor-
mal time τ . S(�k, τ ) denotes the source term, which is given
by [54]

S(�k, τ ) =
∫

d3k̃

(2π)3/2
k̃2

[

1 −
( �k · �̃

k

kk̃

)2]

×
[

12�(�k − �̃
k, τ )�(

�̃
k, τ )

+ 8

(

τ�(�k − �̃
k, τ ) + τ 2

2

d�(�k − �̃
k, τ )

dτ

)

d�(
�̃
k, τ )

dτ

]

.

(54)

The Bardeen potential appearing in Eq. (54) is related to
the curvature perturbation via � = 2ζk/3 [54]. As we have
seen in the last section, the scalar curvature perturbation is
enhanced during an overshooting regime, thus we expect that
the source term for gravitational waves will also be enhanced.

In order to obtain the current gravitational wave density,
we have to solve Eq. (53) with source given by Eq. (54).
To that end we’ll apply the Green’s function method of Ref.
[103]. Rewriting Eq. (53) with v := ah, we get

v′′(�k, τ ) +
(

k2 − a′′

a

)

v(�k, τ ) = aS(�k, τ ). (55)

The solution of Eq. (53) can then be written as

h(�k, τ ) = 1

a(τ )

∫

d τ̃g(�k, τ ; τ̃ )
[

a(τ̃ )S(�k, τ )
]

, (56)

where g is the Green’s function for Eq. (55), which satisfies:

g′′(�k, τ ; τ̃ ) +
(

k2 − a′′

a

)

g(�k, τ ; τ̃ ) = δ(τ − τ̃ ). (57)

Once the tensor perturbations are known, we can further
compute the contribution of these primordial gravitational
waves to the total energy budget of the universe. For a matter-
dominated universe, one has [103]:

�
(2)
GW(k, τ )

= A
(2)
GWP

2
ζ ·

⎧

⎪

⎪

⎨

⎪

⎪

⎩

a(τ )
aeq

k
keq

if k < keq

a(τ )
aeq

(

k
keq

)2−2γ

if keq < k < kc(τ )

aeq

a(τ )
if k > kc(τ )

.

(58)

Here kc(τ ) =
(

a(τ )
aeq

)1/(γ−1)

keq, A
(2)
GW ≃ 10, and γ ≃ 3

[103]. Finally, keq ≈ 0.01Mpc−1 [111] denotes the wave
number that re-entered the horizon when matter and radiation
had the same energy density and aeq ≡ 1/(1 + zeq) denotes
the scale factor at that time. Equation (58) hold after matter-
radiation equilibrium, i.e. for τ > τeq where kc(τ ) > keq. We
are interested in the gravitational wave signatures in the range
of wave numbers that are enhanced by the scalar perturbation
in the overshooting regime, 1011Mpc−1 < k < 1014Mpc−1

(see Fig. 5). These are much larger than kc(τ0); the present
(τ = τ0 with a(τ0) = 1) GW signal is thus [54,103]

�
(2)
GW(k, τ0) ≃ 10 P

2
ζ aeq. (59)

Using zeq = 3387, H0 = 67.4 km s−1Mpc−1 [111] and
the power spectrum Pζ computed via the MS formalism in
the last section, we can calculate the current gravitational
wave energy density due to this second order effect.

The result is shown in Fig. 11, which also shows the sensi-
tivity of several planned gravitational wave detectors. We saw
at the end of the last section that the maximum of the power
spectrum is at k = 1.1 × 1013Mpc−1, which corresponds to
frequency f = 0.017 Hz. This is near the frequency of max-
imal sensitivity of the upcoming space mission LISA, which
may just barely be able to detect this signal if the parameter
β = 10−5 (red curve), while for β = 10−4 (green) the signal
is below the foreseen LISA sensitivity. Recall that the CMB
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Fig. 11 The gravitational wave signal from CHI induced by second
order effects, �GW ∝ P

2
ζ . In the above plot, f = ck

2π
is the fre-

quency of the gravitational wave, with c the speed of light. The fre-
quency range we have shown is 10−12 Hz < f < 103 Hz, which
corresponds to 103 Mpc−1 < k < 6.5 × 1017 Mpc−1. The experi-
mental sensitivity curves we show include the Square Kilometer Array
(SKA), Einstein Telescope (ET), Astrodynamical Space Test of Rel-
ativity using Optical-GW detector (ASTROD-GW), Advanced LIGO
(aLIGO), European Pulsar Timing Array (EPTA), Laser Interferometer
Space Antenna (LISA) [112], Advanced Laser Interferometer Antenna
(ALIA), Big Bang Observer (BBO), Deci-hertz Interferometer GW
Observatory (DECIGO) and TianQin [113]. The sensitivities of EPTA,
SKA, LISA, TianQin and aLIGO limit are taken from [54]. The ALIA,
DECIGO, and BBO sensitivity curves are reproduced from [114]. The
ASTROD-GW and ET curves are adapted from [115]

predictions for both values of β are consistent with latest
Planck measurements, see Sect. 3.2. Since a larger β makes
the potential less flat in the USR region and reduces V ′′ in
the overshooting region, it is expected that the correspond-
ing curvature perturbation is less enhanced compared to that
with a smaller β according to Eq. (18). This explains why the
peak of GW signatures with β = 10−4 is lower. However, the
second generation space missions DECIGO and BBO should
easily detect this signal even for β = 10−4.

As already noted, Eq. (58) hold for a matter-dominated
universe, i.e. for τ > τeq where kc(τ ) > keq. We are not

aware of a calculation of�(2)
GW that includes dynamical effects

due to a cosmological constant; this would be required for
very large wavelengths, which crossed the horizon after the
cosmological constant (or, more generally, dark energy) con-
tributed significantly to the total energy density. Fortunately
we are interested in much shorter wavelengths, with 1011

Mpc−1 < k < 1014 Mpc−1, which crossed the horizon
when the cosmological constant was entirely negligible. The
further dilution of the gravitation wave signal by the recent

accelerated expansion of the universe can then simply be
described by multiplying the right-hand side of Eq. (58) with
the normalized matter density �m(τ ), yielding a suppression
by a factor ≃ 0.3 today.22 These results are shown by the pur-
ple and blue lines respectively for β = 10−5 and β = 10−4.

Figure 11 also shows that the peak of the CHI signal lies
at frequencies that are too large for the pulsar timing arrays
even after SKA comes on-line. The size of the signal is well
below the sensitivity of advanced LIGO, and even below that
of the planned Einstein Telescope (ET).

5 Summary and conclusions

In this paper, we have revisited critical Higgs inflation, care-
fully computing the power spectrum as well as the gravita-
tional wave signatures induced by second order effects.

In Sect. 2 we analyzed the evolution of curvature pertur-
bations under (ultra-)slow roll as well as overshooting con-
ditions in general terms. In the former, the second derivative
of the inflaton field with respect to time can be neglected in
the equation of motion; we showed that the perturbations are
adiabatic in this case, which further implies that the curvature
perturbations are frozen at super-horizon scales. This allows
one to calculate the final power spectrum (at the end of infla-
tion), which seeds all observed structures in the universe, by
simply computing the power spectrum at horizon crossing.
We emphasize that this also holds for ultra-slow roll (USR),
which in our model describes the epoch when the inflaton
field is near the (almost) saddle point of the potential. Here
the deviations from adiabacity are even smaller than in the
SR case, so that the usual approximate treatment is even more
accurate.

In contrast, when the inflaton enters an overshooting phase
where the acceleration |χ̈ | is much larger than the derivative
of the potential |V ′|, we showed that perturbations are no
longer adiabatic; this can be described in terms of entropic
pressure perturbations. In this case the curvature perturba-
tions are not conserved at super-horizon scales, so that the
standard SR approximation for calculating the power spec-
trum is expected to break down. To our knowledge this is
the first time that the significance of entropic perturbations
has been discussed in this context. Our Eq. (18) shows that
the enhancement of the perturbations after horizon crossing
but during the overshooting epoch will increase for larger
curvature V ′′ of the potential. This can be very useful for
inflationary model building if one wants to strongly enhance
the power spectrum, e.g. in order to produce primordial black
holes. See [116] for a recent investigation along this direc-
tion.

22 We thank the anonymous referee for guiding us to this interesting
effect of the cosmological constant.
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In Sect. 3 we illustrated these general results by analyzing
the CHI scenario in detail. For judiciously chosen parame-
ters, an overshooting epoch appears between the SR and USR
eras. During the overshooting stage the Hubble SR param-
eters vary rapidly, which implies the universe deviates sig-
nificantly from SR evolution. As a result the usual analyti-
cal approximation to compute the power spectrum fails. We
instead solved the Mukhanov–Sasaki equation numerically
to compute the power spectrum at the end of inflation. We
find that the modes which cross the horizon just before or
during the overshooting epoch are greatly enhanced. The
power spectrum can reach values of order ∼ 10−4 for
k ∼ 1013 Mpc−1; this is to be compared to values of order
10−9 at the (much smaller) k-values probed by the CMB
anisotropies. These results differ quantitatively from those
of Ref. [52], where the power spectrum was computed in the
SR approximation.

In the course of this discussion we found a version of the
MS equation very useful which holds for the k-space per-
turbation ζk directly, rather than for the related quantity vk

which is usually employed, see Eq. (51). This allowed us
to understand the numerical results in detail: why the SR
approximation agrees with the MS formalism for modes that
cross out of the horizon well before (small k) or well after
(large k) the overshooting epoch; why there is a sharp mini-
mum in the power spectrum, for scales that cross the horizon
a few e-folds before the overshooting region; and where the
maximum of the spectrum lies. These findings are generic and
can also be applied to explain the numerical power spectrum
results for other inflation models featuring a near-inflection
point, for example [54,62,66], where detailed explanations
concerning the numerical results are not given.

Finally we analyzed the second order GW signatures
induced by the enhanced scalar perturbations. The strength
of this signal is proportional to the square of the scalar power
spectrum. The peak of the latter at co-moving wave number
of order 1013 Mpc−1 corresponds to a peak of the GW signal
at a frequency of 0.017 Hz. We find that for our choices of
parameters, the GW signal should remain detectable up to
frequency of order 1 Hz by two planned second-generation
space based GW experiments, DECIGO and BBO. Detection
of this signal is a firm prediction, if the power spectrum is
enhanced to the level that might allow significant production
of PBHs. This statement holds also in other models of infla-
tion proposed recently [53–62]. Hence if future GW exper-
iments fail to detect this signal, one could conclude that no
significant PBH formation occurred immediately after infla-
tion.

In this paper we did not consider effects due to non-
Gaussianity. Since PBHs only form in regions with large
overdensity, their formation rate can be greatly enhanced if
there are significant non-Gaussian tails in the distribution
function of the density perturbations [117,118]. It should

be noted that the calculation of the PBH formation rate is
in any case somewhat uncertain; however, the second order
GW signal computed in the Gaussian approximation should
be detectable by second generation space missions for the
entire range of perturbations that could plausibly lead to siz-
able PBH formation, unless non-Gaussianities are quite large
for the relevant modes. In this context it is important to note
that according to a recent analysis [119,120] primordial non-
Gaussianities will also enhance the second order GW signal
itself. We leave a detailed investigation of the impact on non-
Gaussianities on CHI inflation for future work.
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A Mukhanov–Sasaki equation and its analytical

solution

In this Appendix we briefly review the derivation of the MS
equation and discuss its analytical solution in (quasi) de Sitter
spacetime.

A.1 Derivation of the Mukhanov–Sasaki equation

We start from the general action of a single real scalar field
minimally coupled to gravity,

S = 1

2

∫

d4x
√−g

[

R − gμν
▽μφ▽νφ − 2V (φ)

]

. (60)

Using the Arnowitt–Deser–Misner (ADM) formalism [121]
this action can be expanded as: S = S(0) + S(1) + S(2) + . . . ,
where the order is with respect to the perturbation ζ . S(0)

denotes the background, S(1) vanishes due to the first order
Hamiltonian constraint equation [122–124], S(2) contains
the two-point correlation function we wish to compute, and
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higher orders contribute to non-Gaussian contributions to the
power spectrum which are beyond the scope of our analysis.
In [123,124], it is shown that the action up to the second
order of ζ can be written as

S(2) = 1

2

∫

d4xa3 φ̇2

H2

[

ζ̇ 2 − a−2(∂iζ )2
]

; (61)

here a is the scale factor in the FRW metric. Now define the
Mukhanov variable as

v ≡ −zζ, (62)

where z carries the information about the background field:

z2 ≡ a2 φ̇2

H2
= 2a2ǫH . (63)

Transforming the cosmic time t to the conformal time τ

with dτ = dt/a, we can rewrite the action Eq. (61) as

S(2) = 1

2

∫

dτd3x

[

(v′)2 − (∂iv)2 + z′′

z
v2

]

= 1

2

∫

dτd3xL(2).

(64)

Here a prime denotes a derivative with respect to τ . The
Euler–Lagrange equation derived from L(2) reads

∂L(2)

∂v
− ∂

∂τ

(

∂L(2)

∂v′

)

− ∂

∂x i

(

∂L(2)

∂iv

)

= 0. (65)

Plugging L(2) from Eq. (64) into Eq. (65), we obtain:

v
z′′

z
− v′′ + ∂ i∂iv = 0. (66)

It is usually more convenient to analyse the perturbations
in Fourier space. To that end we write the field v as:

v(τ, x) =
∫

d3k

(2π)3

[

vk(τ )ei k·x + v∗
k(τ )e−i k·x

]

. (67)

Note that v is real by construction, whereas vk is usually
complex. Moreover, k is defined in co-moving coordinates,
i.e. it remains unchanged by the expansion of the universe.

The MS equation in k-space can be found by plugging
Eqs. (67) into (66) [125–127]:

v′′
k +

(

k2 − z′′

z

)

vk = 0. (68)

This equation describes how some perturbation with wave
vector k evolves with time. This equation has no general
analytical solution, due to the dependence on the background
field dynamics via z′′/z. However, in some special cases, such
as the SR inflationary phase, an analytical solution exists, as
we explain below.

A.2 Quantization, initial condition and Bunch–Davies
vacuum

Before discussing analytical solutions of Eq. (68) we first
describe the quantization of our field. After all, the physi-
cal origin of the curvature perturbations generated by infla-
tion are quantum fluctuations of the inflaton field. Using the
canonical quantization procedure, we write the QFT ana-
logue of the classical Fourier decomposition of Eq. (67) [84]:

v̂ =
∫

d3k

(2π)3

[

vk(τ )âkei k·x + v∗
k(τ )â

†
k
e−i k·x

]

, (69)

where âk and â
†
k

are annihilation and creation operators. The
corresponding Fourier modes corresponding to a fixed co-
moving wave vector k are

v̂k = vk(τ )âk + v∗
−k(τ )â

†
−k

; (70)

note that vk in Eqs. (69) and (70) again satisfy the (classical)
MS equation (68).

Similarly one can also introduce the quantum version of
the canonical momentum variable π = ∂L2

∂v′ = v′:

π̂ =
∫

d3k

(2π)3

[

v′
k(τ )âkei k·x + v∗′

k (τ )â
†
k
e−i k·x

]

. (71)

We impose the canonical commutation relation between v̂

and its conjugate momentum variable π̂ ,

[v̂(τ, x), π̂(τ, y)] = iδ(x − y). (72)

From Eqs. (69) and (71) we see that this requires

iδ(x − y) =
∫

d3k

(2π)3

d3q

(2π)3

×
[

vkv
′
q

(

âkâq − âq âk

)

ei(k·x+q· y)

+ vkv
⋆′
q

(

âkâ†
q − â†

q âk

)

ei(k·x−q· y)

+ v⋆
kv

′
q

(

â
†
k
âq − âq â

†
k

)

ei(q· y−k·x)

+ v⋆′
k v⋆′

q

(

â
†
k
â†

q − â†
q â

†
k

)

e−i(k·x+q· y)
]

.

(73)

Equation (73) implies

−i(vkv
∗′
q − v′

kv
∗
q)[âk, â†

q] = (2π)3δ(k − q) ; (74)

vkv
′
q

(

âkâq − âq âk

)

= 0 ; (75)

and

v⋆′
k v⋆′

q

(

â
†
k
â†

q − â†
q â

†
k

)

= 0. (76)

Normalizing the mode functions such that −i(vkv
∗′
k

−
v′

k
v∗

k
) = 1 leads to the canonical commutation relations for

the annihilation and creation operators:

[âk, â†
q] = (2π)3δ(k − q) (77)
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and

[âk, âq] = [â†
k
, â†

q] = 0. (78)

The vacuum state |0〉 is usually defined by

âk|0〉 = 0 ∀k. (79)

Unfortunately this definition is not unique, since Eq. (69)
only fixes the product vkâk, i.e. the vacuum state defined by
Eq. (79) depends on the form of mode function vk. In other
words, Eq. (79) defines the vacuum state uniquely only once
vk has been fixed.

To that end we consider the limit τ → −∞, such that
|kτ | ≫ 1 or k ≫ aH , where k = |k|; this corresponds to
perturbations with wavelength much smaller than the Hubble
horizon. In this limit the mode function vk behaves like a
massless field in Minkowski spacetime, since the z term in
Eq. (68) can be neglected compared to k2:

v′′
k + k2vk = 0. (80)

This describes a simple harmonic oscillator.
At this point we note that Eq. (80), as well as the original

MS equation (68), only depend on k. We can therefore make
the ansatz

vk = vkη(k/k), (81)

where without loss of generality we can normalize the angle-
dependence η such that |η| = 1, i.e. η is a time-independent
pure phase, which factorizes in Eqs. (68) and (80). We then
impose the boundary condition23

lim
τ→−∞

vk = e−ikτ

√
2k

. (82)

Equation (82) fixes the mode function vk and thus also the
vacuum state (up to some angle-dependent phase factor,
which is not physically relevant); this is usually referred to
as the Bunch–Davies vacuum.

A.3 Analytical solution in Quasi-de Sitter spacetime

We now describe the analytical solution of the MS equation
in the limit where the Hubble parameter H is nearly constant.
This also means that the Hubble SR parameter ǫH is small
and nearly constant, thus the time derivative of ǫH can be
neglected; these conditions are met during (U)SR inflation.
Using Eq. (63), we then obtain:

z′′

z
= a′′

a
= 2

τ 2
. (83)

23 Formally this is an initial condition, although physically τ → −∞
may well not fall into the inflationary epoch. Fortunately we saw in
Sect. 3 that to good approximation this initial condition can be imposed
at any time as long as the mode is still well within the horizon.

Inserting this into Eq. (68) yields

v′′
k +

(

k2 − 2

τ 2

)

vk = 0. (84)

The general analytical solution of this equation is given by
[84]

vk = α
e−ikτ

√
2k

(

1 − i

kτ

)

+ β
eikτ

√
2k

(

1 + i

kτ

)

, (85)

where α and β are integration constants. The initial condi-
tions in Eq. (82) imply α = 1 and β = 0, which leads to the
Bunch–Davies mode functions

vk = e−ikτ

√
2k

(

1 − i

kτ

)

. (86)

A.4 Power spectrum in Quasi–de Sitter spacetime

Having solved the Mukhanov–Sasaki equation, we can com-
pute the power spectrum of the field, δφ̂k ≡ a−1v̂k:

〈0|δφ̂k(τ ) δφ̂k′(τ )|0〉 = (2π)3δ(k + k′)
|vk(τ )|2

a2

= (2π)3δ(k + k′)
H2

2k3
(1 + k2τ 2),

(87)

where we have used Eq. (86) as well as the expression for the
scale factor a(τ ) = − 1

Hτ
which holds for constant H , i.e.

during (U)SR inflation. On super-horizon scales, |kτ | ≪ 1
or equivalently k ≪ aH , Eq. (87) becomes

〈0|δφ̂k(τ ) δφ̂k′(τ )|0〉 → (2π)3δ(k + k′)
H2

2k3
, (88)

or in a dimensionless version (recall that we are using Planck-
ian units where Mp = 1):

�2
δφ =

(

H

2π

)2

. (89)

Equation (89) also implies
√

〈δφ2
k
〉 = H/(2π), which is

the frequently used formula for the quantum fluctuations of
light fields (with mass smaller than H ) during SR inflation.
As shown in Sect. 2.2, during SR inflation curvature per-
turbations are frozen at super-horizon scale, thus the power
spectrum can be computed at the horizon crossing, i.e. for
a(tk)H(tk) = k [84]:

〈ζkζk′〉 = (2π)3δ(k + k′)
H2

k H2
k

2k3φ̇(tk)2
. (90)

The corresponding dimensionless power spectrum is

Pζ (k) = �2
ζ (k) = H2

k H2
k

(2π)2φ̇(tk)2
= H2

k

8π2ǫH

, (91)
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where we have used the definition ǫH = 1
2

(

φ̇
H

)2
. Equa-

tion (91) is widely used in the literature when discussing SR
inflation, where ǫH is small and its variation with time can
be neglected. Moreover, during SR inflation, the energy is
mainly dominated by the potential, thus we have H2 = V

3 .
Using in addition the SR solution for the equation of motion
of the inflaton field, φ̇ = −V ′

3H
, allows us to rewrite ǫH as:

ǫH = 1

2

(−V ′

3H2

)2

= 1

2

(

V ′

V

)2

≡ ǫV . (92)

ǫV is usually called the potential SR parameter. This leads to
another frequently used formula for the power spectrum:

Pζ = V

24 ǫV π2
. (93)

However, for non SR inflation – in particular, during the over-
shooting epoch which we have explored in this paper – ǫH

changes rapidly and z′′/z �= 2/τ 2. There Eqs. (91), (92)
and (93) are no longer valid; note in particular that Eq. (93)
predicts a diverging power spectrum at a true saddle point
where V ′, and hence ǫV , vanishes. In this case we must solve
the Mukhanov–Sasaki equation (68) numerically in order to
reliably estimate the power spectrum at the end of inflation.
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