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Abstract

The goal of our research is to investigate the inter-
play between oculomotor control, visual processing,
and limb control in humans and primates by explor-
ing the computational issues of these processes with a
biologically inspired artificial oculomotor system on an
anthropomorphic robot. In this paper, we investigate
the computational mechanisms for visual attention in
such a system. Stimuli in the environment excite a
dynamical neural network that implements a saliency
map, i.e., a winner-take-all competition between stim-
uli while simultenously smoothing out noise and sup-
pressing irrelevant inputs. In real-time, this system
computes new targets for the shift of gaze, executed
by the head-eye system of the robot. The redundant
degrees-of- freedom of the head-eye system are resolved
through a learned inverse kinematics with optimization
criterion. We also address important issues how to en-
sure that the coordinate system of the saliency map
remains correct after movement of the robot. The pre-
sented attention system is built on principled modules
and generally applicable for any sensory modality.

1 Introduction

Visual attention involves directing a “spotlight” of at-
tention [12] to interesting areas, extracted from a multi-
tude of sensory inputs. Most commonly, attention will
require to move the body, head, eyes, or a combination
of these in order to acquire the target of interest with
high-resolution foveal vision, referred to as ‘overt’ at-
tention, as opposed to covert attention which does not
involve movement. In order to provide high-resolution
vision simultaneously with large-field peripheral vision,
our humanoid robot employs two cameras per eye, a
foveal camera and wide-angle camera – this strategy
mimics the log-polar retinal resolution of numerous bi-
ological species. Similar to biology, overt visual atten-
tion is a prerequisite in such a system in order to move
the cameras such that a target can be inspected in the
foveal field of view.
There has been extensive work in modeling atten-
tion and understanding the neurobiological mechanisms
of generating the visual “spotlight” of attention [15],

both from a top-down[16] and a bottom-up perspec-
tive [9, 10] - albeit mainly for static images. From the
perspective of overt shift of focii, there has been some
work on saccadic eye motion generation using spatial
filters [17], saccadic motor planning by integrating vi-
sual information [13], social robotics [4], and humanoid
robotics [6]. In contrast to this previous work, our re-
search focus lies on creating a biologically inspired ap-
proach to visual attention and oculomotor control by
employing theoretically sound computational elements
that were derived from models of cortical neural net-
works, and that can serve for comparisons with biologi-
cal behavior. We also emphasize real-time performance
and the integration of the attention system on a full-
body humanoid robot that is not stationary in world
coordinates. As will be shown below, these features re-
quire additional computational consideration such as
the remapping of a saliency map for attention after
body movement. In the following sections, we will first
give an overview of the attentional system’s modules,
then explain the computational principles of each mod-
ule, before we provide some experimental evaluations
on our humanoid robot.

2 An Overt Visual Attention Control
System

The computations involved in an overt visual atten-
tional mechanism can be modularized into broadly
three distinct subparts: the sensory processing module,
the motor planning module and a module in charge of
interaction issues. Fig. 1 represents a schematic block
diagram based on these distinctions.
The sensory processing module receives as input raw
bottom-up sensory signals from all availabe modalities,
e.g., vision, audition, and haptics, and also top-town
volitional inputs. After appropriate computations, this
module outputs the new desired focus of attention in
camera coordinates as a target for the next saccade.
The motor planning module takes the saccade target
in camera coordinates and converts it into a sequence
of motor commands necessary to drive the oculomotor
system and the head to gaze at this location.
Finally, the interaction issues module is needed to
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Figure 1: A schematic diagram of the various modules involved in the system for implementing overt visual attention

take care of higher level issues of overt attention. For
instance, after a saccade, it is necessary to re-map at-
tentational saliency maps according to the amount of
eye movement, self-motion needs to be canceled as a po-
tential attentional target, or perturbations of the body
need to be factored in.
In the following sections, we will provide the details
in each module. As sensory input, only visual flow is
currently employed since it can be computed reliably
in real-time from dedicated hardware. Other sensory
modalities could be handled in the same way as de-
scribed for visual flow.

2.1 Sensor Pre-processing and Integration

The key element of our Sensory Pre-Processing block
(Fig. 1) is a competitive dynamical neural network, de-
rived in Amari and Arbib’s [1] neural fields approach
for modeling cortical information processing. The goal
of this network is to take as input spatially localized
stimuli, have them compete to become the next saccade
target, and finally output the winning target. For this
purpose, the sensory input pre-processing stage takes
the raw visual flow VF (x, t) as inputs to the stimulus
dynamics, a first order dynamical system. Using x to
denote the position of a stimulus in camera coordinates,
the stimulus dynamics is:

Ṡ(x) = −αS(x) + V isInp(x, t) (1)

where

V isInp(x, t) =

∫
R

G(x, t) ∗ exp(−x
2/2σ2)dx (2)

G(x, t) = VF (x, t) + γ ∗ ⌊V̇F (x, t)⌋+ (3)

Eq.(3) enhances the raw visual flow vector when it is
increasing to emphasize new stimuli in the scene, while
Eq.(2) implements a Gaussian spatial smoother of the
stimuli to reduce the effects of noise. The variable α
was set to a value of 100 in our experiments. The top
of Fig. 2a shows an example of a typical stimulus pat-
tern in the two dimensional neural network due to a
moving object at the top-left of the camera image. In
general, we could have multimodal sensory inputs, e.g.
from color detectors, edge detectors, audio input, etc.,
feeding into Eq.(3) as a sensory signal. As suggested
by Niebur, Itti and Koch [9, 10], it would be useful to
weight these inputs according to their importance in
the scene, usually based on some top-down feedback or
task-specific biasing (e.g., if we know that color is more
important than motion).
This stimulus dynamics feeds into a saliency map
[12], essentially a winner-take-all (WTA) network which
decides on a winner from many simultaneous stimuli
in the camera field. The winning stimulus will become
the next saccade target or focus of overt attention. The
WTA network is realized based on the theory of neural
fields, a spatial neural network inspired by the dynam-
ics of short range excitatory and long range inhibitory
interactions in the neo-cortex [1, 2]. The activation dy-
namics u(x, t) of the saliency map is expressed as:

τu̇(x) = −u(x) + S(x) + h

+
∑
x
′

w(x,x′)σ(u(x′)) (4)

Here, h is the base line activation level within the field,
S(x, t) is the external stimulus input (Eq.1), w(x,x′)
describes the coupling strength between all the units
of the network, and σ(u) controls the local threshold of
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Figure 2: A snap shot of the stimulus and activation dynamics just (a) before and (b) after the saccade

activation. Depending on the choice of parameter h and
the form of σ and w, the activation dynamics of Eq.(4)
can have various stable equilibrium points [1]. We are
interested in a solution which has uniform activation
at base line level in the absence of external stimuli,
and which forms a unimodal activation pattern at the
most significant stimulus in the presence of stimuli that
are possibly dispersed throughout the spatial network.
This is achieved by choosing a transfer function:

σ(u) = 1/(e(−cu) + 1) (5)

with constant c >> 1 and an interaction kernel with
short range excitation and long-range inhibition (H0):

w(x,x′) = ke−(x−x
′)2/σ2

w − H0 (6)

The constants were fixed at τ = 0.01, h = −0.5,
H0 = 0.75, k = 4, σ2

w = 1.4, and c = 5000, the val-
ues of which were decided based the magnitude of the
stimulus dynamics S(x, t), as outlined in [1].
In addition to the stimulus driven dynamics, we also
supress the activation of the most recently attended lo-
cation by adding a large negative activation in Eq.(3)
at the location of the last saccade target. This strat-
egy implements an inhibition of return [10] and ensures
that the robot does not keep attending to the same
location in the continuous presence of an interesting
stimuli. The plots at the bottom of Fig. 2(a)(b) il-
lustrate the behavior of the activation dynamics just
before and after an attention shift, including the effect
of the negative activation after the saccade.

2.2 Planning and Generation of Motor Com-
mands

Given a new saccade target, extracted from the saliency
map, the direction of gaze needs to be shifted to the

center of this target. Since fifth order splines are a
good approximatin of biological movement trajectories
[11, 3], we use this model to compute a desired trajec-
tory from the current position x0 to the target xf , all
expressed in camera coordinates:

disp = xf − x0 (7)

τ = t/T (8)

x(t) = x0 + disp ∗ (15τ4 − 6τ5 − 10τ3) (9)

ẋ(t) = disp ∗ (60τ3 − 30τ4 − 30τ2) (10)

The movement duration T was chosen such that the
maximal movement velocity was the same for each sac-
cade, i.e., T = disp ∗ 0.2[s] in our implementation.
The camera-space trajectory is converted to joint
space by inverse kinematics computations based on Re-
solved Motion Rate Control (RMRC) [14]. We assume
that only head and eye motion is needed to shift the
gaze to the visual target, an assumption that is jus-
tified given that the target was already visible in the
peripherial field of view. For the time being, the inverse
kinematics computation is performed for the right eye
only, while the left eye performs exactly the same mo-
tion as the right eye. Thus, we need to map from a 2D
camera space of the right eye to a 5D joint space, com-
prised of pan and tilt of the camera, and 3 DOFs of the
robot’s neck. To obtain a unique inverse, we employ
Liegeois [14] pseudo-inverse with optimization:

θ̇ = J
#
ẋ+ (I − JJ

#)knull (11)

where J
# = J

T (JJ
T )−1

knull is the gradient of an optimization criterion w.r.t.
the joint angles θ. The second term of the Eq.(11) is
the part that controls the movement in the null space
of the head-eye system. Any contribution to θ̇ from



this term will not change the direction of gaze but will
only change how much we use the head or eye DOFs to
realize that gaze. As optimization criterion we chose:

L =
1

2

∑
i

wi(θi − θdef,i)
2 (12)

resulting in

knull,i =
∂L

∂θi
= wi(θi − θdef,i) (13)

This criteron keeps the redundant DOFs as close as pos-
sible to a default posture θdef . Adding the weights wi

allows giving more or less importance to enforcing the
optimization criterion for certain DOF–this feature is
useful to create natural looking head-eye coordination.
Once the desired trajectory is converted to joint
space, it is tracked by an inverse dynamics controller
using a learned inverse dynamics model [19].

2.3 Interaction Issues

Several issues of our visual attention system require
special consideration. First, there is the problem of
maintaining a frame of reference for the saliency map.
When the robot makes an overt shift of attention, the
camera coordinates are changed and the locations of
the current stimulus and activation dynamics need be
to updated accordingly. In our current implementation,
we use a camera-centric frame of reference and shift
all the stimulus and activation patterns relative to the
center of the visual field. Locations that fall out of the
saliency map are discarded. Obviously, such a remap-
ping strategy cannot guarantee accurate re-mapping
over a chain of movements. However, this inaccuracy
are negliable on the time scale of the dynamics of the
stimulus and saliency map dynamics.
Another important problem is to stabilize the image
on the cameras when the body of the robot moves or
there are external perturbations. In [18], we demon-
strated how image stabilization can be achieved with
learning approaches and we will integrate this strategy
in our attentional system. As a result, re-mapping of
the saliency map and stimulus dynamics will not be
necessary when the robot head moves involuntarily.
A rather difficult issue for attention arises from the
need to neglect self-motion stimuli, i.e., visual flow that
is caused either by the motion of the oculomotor system
or by body parts of the robot that are in the view of the
camera eyes. Currently, we circumvent this problem by
discarding stimuli during the time the robot moves its
eyes and head. In future work, we will address to pre-
dict optical flow from self-motion and actively suppress
such false stimuli.

3 The experimental setup

Fig. 3(a) shows the 30 degree-of-freedom(DOF) hu-
manoid robot that we use as our testbed. Each DOF

of the robot is actuated hydraulically out of a torque
control loop. Concentrating on the oculomotor spec-
ifications: each eye of the robot’s oculomotor system
consists of two cameras, a wide angle (100 degrees
view-angle horizontally) color camera for peripheral vi-
sion, and a second camera for foveal vision, providing
a narrow-viewed (24 degrees view-angle horizontally)
color image. This setup mimics the foveated retinal
structure of primates, and it is also essential for an ar-
tificial vision system in order to obtain high resolution
vision of objects of interest while still being able to per-
ceive events in the peripheral environment. Each eye
has two independent DOF, a pan and a tilt motion.

Fig. 3(b) shows the oculomotor system in detail. Two
subsystems, a control (and learning) subsystem and a
vision subsystem, are setup in each VME rack and carry
out all necessary computations out of the real-time op-
erating system VxWorks. Three CPU boards (Mo-
torola MVME2700) are used for the movement control
and the sensory processing subsystem, and two CPU
boards (Motorola MVME2604) are dedicated to the vi-
sion subsystem. In the movement control/sensory pro-
cessing subsystem, CPU boards are used, respectively,
for: i) sensory processing and saccade target generation
ii) dynamics learning and task execution (behaviors like
overt shifts of attention), and iii) low level motor con-
trol of head, eye and other body joints of our robot
(compute torque mode). All communication between
the CPU boards is carried out through the VME shared
memory communication which, since it is implemented
in hardware, is very fast.

In the vision subsystem, each CPU board controls
one Fujitsu tracking vision board in order to calculate
the visual flow. We use optical flow calculations based
on the block-matching method [8] which is performed
by the Fujitsu Tracking Vision board in real-time. For
our experiments, the visual flow is computed on a grid
of 25x25 nodes spread evenly over the entire peripheral
visual field. This resolution was decided based on real
time data transmission and computation bounds of our
current setup, although scaling it up would just require
a faster processor and faster data transmission. At each
of the flow computation nodes, an 8x8 pixel window is
compared for the best fit at surrounding neighbouring
locations in the next video frame, and the vision track-
ing hardware gives us an optical flow vector (direction
and magnitude) based on the best fit and also a matrix
of confidence bounds distributions. Confidence infor-
mation helps us getting rid of noise and ambiguities
arising from plain non-textured background.

NTSC video signals from the binocular cameras are
synchronized to ensure simultaneous processing of both
eyes’ vision data. Raw extracted vision data (in our
case, the optical flow) are sent via a serial port (115200
bps) to the control (and learning) module. This is
where the sensory processing, described in detail in Sec-
tion 2.1 take place. For the experimental demonstra-
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Figure 3: (a) The 30 DOF Humanoid robot used as a testbed for implementation (b) The experimental setup of
the humanoid vision-head system

tions of this paper, the image from only one periph-
eral camera is processed for visual flow computations
and the motion of the two eyes are coupled together in
both its horizontal (pan) and vertical (tilt) degrees-of-
freedom. Multiple degrees of freedom per camera, and
multiple eyes just require a duplication of our circuits
and a correction for vergence under small focal length.
In order to mimic the semicircular canal of biological
systems, we attached a three-axis gyro-sensor circuit
to the head (Murata Manufacturing). From the sen-
sors of this circuit, the head angular velocity signal is
acquired through a 12 bit A/D board such that active
image stabilization can be performed when the head is
perturbed. The oculomotor and head control loop runs
at 420 Hz, while the vision control loop runs at 30 Hz.

4 Results and Discussion

We implemented the visual attention system on our
humanoid robot. The stimulus dynamics and saliency
map had 44x44 nodes, i.e., twice the length and width
of the 22x22 nodes of the visual flow grid of the pe-
ripheral vision. This extended size assured that after a
saccade, the remapping of the saliency map and stimu-
lus dynamics could maintain stimuli outside of the pe-
ripheral vision for some time. The Jacobian needed for
the inverse kinematics computation was estimated with
linear regression from data collected from moving the
head-eye system on randomized periodic trajectories for
a few minutes. Due to the limited range of motion of
the eye and head DOFs, the Jacobian could be assumed

to be constant throughout the entire range of motion
of head-eye system, which was confirmed by the excel-
lent coefficient of determination of the regression of the
Jacobian. In an alterntive approach, we also directly
learned the inverse kinematics as described in D’Souza
et al. [7], which yielded equally good results as the
analytical method using the regressed Jacobian. The
saliency map was able to determine winning targets at
about 10Hz, which is comparable to the capabilities of
the human attentional system.

An illustration of the working of the attentional sys-
tem is provided in Fig. 4. The top image shows the
robot’s right eye peripheral view of the lab, focussing
on the person in the middle of the image. At the bot-
tom left part of the image, another person was waving
a racket to attract the robot’s attention. This motion
elicited a saccade, recognizable from the middle image
of Fig. 4 which shows the visual blur that the robot
experienced during the movement. The bottom image
of Fig. 4 demonstrates that after the saccade, the robot
was correctly focusing on the new target. Note that the
three images were sampled at 30Hz, indicating that the
robot performed a very fast head-eye saccade of about
60ms duration, which is comparable to human perfor-
mance. Our future work will augment the attentional
system with more sensory modalities, including learn-
ing the sensor modality weighting for different tasks.



Figure 4: Snap shots of the robot’s peripheral view be-
fore, during, and after an attentional head-eye saccade,
taken at 30 Hz sampling rate. Superimposed on the
images is the visual flow field.
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