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Abstract—Software developers are often unsure of the exact
name of the API method they need to use to invoke the desired
behavior. Most state-of-the-art documentation browsers present
API artefacts in alphabetical order. Albeit easy to implement,
alphabetical order does not help much: if the developer knew
the name of the required method, he could have just searched
for it in the first place.

In a context where multiple projects use the same API,
and their source code is available, we can improve the API
presentation by organizing the elements in the order in which
they are more likely to be used by the developer. Usage frequency
data for methods is gathered by analyzing other projects from
the same ecosystem and this data is used then to improve tools.

We present a preliminary study on the potential of this
approach to improve the API presentation by reducing the time
it takes to find the method that implements a given feature. We
also briefly present our experience with two proof-of-concept tools
implemented for Smalltalk and Java.

I. INTRODUCTION

Alphabetical organization of items can be found in both
paper-based telephone books and API documentation systems.
While its merits are incontestable in the former, we argue that
it is superfluous in the latter and we propose that it be replaced
with alternatives that are informed by actual developer needs.

As a testimony to the success of code reuse, an average
project will have several dependencies to source code written
by third parties [3]. However, reuse also comes with chal-
lenges, one of the main ones being learning a new API [12].
Since browsing the source code of upstream dependencies is
often unfeasible, API documentation is generated automati-
cally from the source code to present synthetic details of
entities and their behavior.

Mainstream documentation browsers and code browsers
present the methods of an API in alphabetical order. We
assume that the main reason for the existence of such an
ordering is the fact that it is easy to implement rather than
that it is easy to use. Indeed, there are two use cases in which
a developer needs to refer to an API documentation page:

• When looking up details for a known method.

• When finding the name for a given functionality that
he knows should exist.

In neither case does alphabetical ordering help. In the first
case, search is faster than scrolling and visually hunting the
right artefact. In the second case, alphabetical ordering is as

good as any arbitrary ordering since it does not in any way
increase the likelihood of the desired functionality being found.

We aim to improve the way API documentation is pre-
sented to a developer by obtaining the frequency of use of all
the API methods, and listing the most commonly used ones
first, in the case where such usage information can be obtained.

To obtain the frequency of use of API methods we analyze
the source code of an entire software ecosystem. In this paper
we consider a purely technical perspective [6] of a software
ecosystem as has been done before [7], [4]. Through this
analysis we obtain information on all call sites in the source
code — which method is invoked1 on an instance of which
class. This data encapsulates the frequency of use of each
encountered method, as the number of invocations directly
indicates the popularity of the method. In section II we present
more details. By obtaining the data this way we ignore where
the method is declared, and focus on where it is used. This
means that inherited methods are treated the same as declared
methods.

We conduct a post-analysis of the data gathered from the
ecosystem in order to conclude if presenting a small number
of commonly used methods first would be beneficial. The aim
of this analysis is to answer two questions:

1) How are invocations of methods of a class dis-
tributed?

2) How well does alphabetical sorting reflect the
frequency-of-use data?

We find that typically 60% of the invocations of methods of
a given class are to just 10% of its methods. This shows that a
small set of methods is typically very popular compared to the
others, resulting in a strongly skewed distribution of method
popularity. This is in line with similar studies of software
metric distributions [15]. Details on this analysis and its results
are given in subsection III-A.

Our data show that alphabetical sorting of methods is in no
way better than sorting methods randomly, in the context of
frequency of use. We calculated the average distance between
the index of a method when sorted according to frequency of
use and the index when sorted alphabetically. We also made
the calculation with the index of a randomly sorted methods,
and the results differ insignificantly. Details on this analysis
and its results is given in subsection III-B.

1We use the term “method invocation” to refer to a call site in the source
code, not a run-time invocation



Assuming that frequently used methods are frequently
searched for, we propose that documentation browsers should
augment documentation with information on which methods
are more frequently used than others. In section IV we describe
our proposed solution, as well as give an overview of 2 proof-
of-concept implementations and their small initial evaluation.

In section VII we focus on future work, especially the need
for a user evaluation, and in section VIII we conclude.

II. EXPERIMENTAL SETUP

To obtain the frequency of use of API methods we analyzed
the source code of a large corpus of software systems. We
ran our ecosystem analysis on the QualitasCorpus [13] version
20120401r, which contains 112 systems written in Java2. We
uses QualitasCorpus as a snapshot of a software ecosystem
because all the projects in the QualitasCorpus share depen-
dencies towards a set of libraries, and some depend on other
projects from the QualitasCorpus.

To run the analysis we used Pangea3, a tool for running
language independent analyses on corpora of object-oriented
software projects.

The result of our analysis is a set of triplets

(c,m, n) (1)

stored in a database. A triplet signifies the following: in all
analyzed projects, we found n call sites where the method m
was invoked on an instance of class c.

The triplets can be grouped by a given class c, which means
that the number n, associated with method m summarizes the
frequency of use of that method in the context of class c. The
total number of classes found is 101844.

III. ECOSYSTEM ANALYSIS

We introduce a simple model of the conducted ecosystem
analysis in Figure 1.

Given all the source code in a software ecosystem, C is
the set of all used classes, M the set of all methods, and I
the set of all call sites in the source code. Each method is
defined in one class. This is described by Equation 2. Note
that M is the set of all methods actually invoked throughout
the ecosystem — classes potentially define other methods that
are not used. Equation 3 and Equation 4 state that on every
call site only one method can be invoked on an instance of
one class. Equation 5 is a inverse of Equation 2 returning all
methods of a given class and Equation 6 and Equation 7 return
a set of call sites for a given class or method.

Since we are interested in observing API classes, we define
C ′ in Figure 2. This is a subset of all the classes that have
more than 1000 call sites and more than 10 methods invoked
on their instances. The “1000 call sites” criterion is an arbitrary
cutoff point that filters out all the classes that are not popular
enough to be considered API classes, and the “10 methods

2Our analysis infrastructure could not handle one of the systems in the
corpus

3http://scg.unibe.ch/research/pangea — All URLs verified in June 2014.

def : M → C (2)

csc : I → C (3)

csm : I →M (4)

methods(c) = def−1(c) (5)

sites(c) = {i ∈ I|csc(i) = c} (6)

sites(m) = {i ∈ I|csm(i) = m} (7)

Fig. 1. The core model. C = classes, M = methods, I = call sites. The
methods function returns a set of methods defined in a class, and sites
functions return call sites related with the argument.

C ′ ⊆ C (8)

∀c ∈ C ′, |sites(c)| > 1000, |methods(c)| > 10 (9)

Fig. 2. Definition of C′ — the subset of classes with more than 10 methods
used and the highest number of method invocations.

invoked” filter removes classes with too few methods invoked,
as they are not representative for creating the distribution. The
number of classes in C ′ is 342 and manual inspection shows
that they are API classes — classes used in several different
projects.

A. Method call distribution

In this subsection we aim to answer the question: What
percentage of all method invocations of a class constitutes the
most popular 10% of methods? Note that we are only looking
at invoked methods of a class, so our results are optimistic,
meaning that the resulting percentage can only be higher if
the class declares additional, unused methods.

The motivation for this framing of the question comes from
a manual inspection of usage data for several popular API
classes. We noticed as a recurring pattern that only a small
number of methods are amongst those most frequently invoked.
An example of the distribution for the java.lang.Thread class
is shown in Figure 3. All of the classes we analysed manually
exhibit similar distributions.
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Fig. 3. Call site distribution per method of class java.lang.Thread. The
horizontal axis shows method names and the vertical axis shows the number
of times the method was invoked.

http://scg.unibe.ch/research/pangea


For all classes in C ′ we calculate the invocation inequality
grade of the class. The invocation inequality grade is defined
in Equation 10 where topTenPercent of a class is the number
invocations of the most popular ten percent of methods. It is
essentially the ratio of the number of times the most popular
top ten percent of methods were invoked and the total number
of call sites, expressed as a percentage.

ii grade(c) =
topTenPercent(c, 1)

|sites(c)|
[%] (10)

Fig. 4. Definition of the invocation inequality grade of a class c. The grade
represents the ratio of the number invocations of the most popular ten percent
of methods and the total number of call sites, expressed as a percentage

The average invocation inequality grade of the 342 classes
from C ′ is 59.04%, and the median is 59.64%. The percentage
would have been greater if all methods declared by the classes
had been included in the calculation.

B. On alphabetic sorting

We argue that sorting methods by frequency of use is
a better way to highlight the more important methods. If
we assume this to be true, the question is how different is
alphabetical sorting when compared to “frequency of use”
sorting?

To answer this question we ran an analysis on our ecosys-
tem data. We analyzed the C ′ set of classes described earlier.

We extend our model with a few new concepts to support
this analysis. For every method m we define fm, am and
rm to be the location (index) of method m when the list
of all methods of the defining class is sorted respectively by
frequency of use, alphabetically and randomly4.

For all methods, we calculate Spearman’s rank correlation
coefficient (Spearman’s coefficient) [9] between fm and am
and also fm and rm for all methods of each class in C ′. Of
course, randomly sorting something by its very nature will
give differing results for multiple calculations, so we calculated
Spearman’s coefficient between fm and rm a total of 10 times.

Spearman’s coefficient computes agreement between two
rankings: two rankings can be opposite (value -1), unrelated
(value 0), or perfectly matched (value 1).

The average Spearman’s coefficient between fm and am
is -0.057414819 (-0.042984891 median) and between fm and
rm across all classes and all calculations is 0.000521332
(0.006377102 median)

These numbers suggest that, with respect to frequency of
use, alphabetical sorting of methods is slightly worse than
sorting the methods randomly. Both values are close to zero,
meaning that both alphabetical and random sorting are unre-
lated to frequency of use. Again, we stress that this analysis
does not include all the methods of the analyzed classes but
just those used throughout the analyzed projects. Including all
the methods would yield results that support our claims even
more strongly.

4Pseudo-randomly as determined by the /dev/random implementation in
Darwin.

IV. AN IMPROVED WAY TO ORGANIZE DOCUMENTATION

The previous analysis leads to two conclusions:

1) In a majority of API classes, a small number of
methods is substantially more frequently used than
the rest.

2) Alphabetical ordering is as good as random ordering
with respect to the frequency of use of the API of a
class

Based on these conclusions, we argue that current docu-
mentation browsers can be improved by displaying the subject
artifacts sorted according to frequency of use. As a further
improvement, the documentation for a class should extend the
list of presented methods to include all the commonly invoked
methods, even when inherited from superclasses.

To increase the chances that such a change will be adopted
by developers, current documentation and code browsing sys-
tems should be augmented rather than replaced. Augmenting
the way methods are presented rather than replacing the
existing alphabetical sorting is preferable as it does not require
developers to completely abandon their current knowledge
about the documentation.

Such an augmentation for any given set of API classes
requires an analysis of the ecosystem to which these classes
belong. This analysis needs to be very much like the analysis
described in section II, as it needs to yield exactly the same
data for all interesting classes. This data needs to quantify
the importance of each method in the context of its class, by
counting the number of invocations.

The analysis should be periodically re-run with a newer
version of the ecosystem, in order to keep track of changes in
method popularity.

A. proof-of-concept implementations

We implemented two proof-of-concept tools. One is a
Chromium5 plugin for Java that augments Javadoc documenta-
tion based on the data gathered by the analysis from section II.
A segment of the augmented Javadoc documentation for the
class java.lang.String is shown in Figure 5: it automatically
inserts a “Frequently used methods” block at the beginning of
any Javadoc page that presents a class.

The other is a plugin for the Nautilus6 code browser for
Pharo Smalltalk7 that presents data from a separate analysis.
The corpus used is a set of 109 projects from the Pharo
Smalltalk open source ecosystem, loadable from the config-
uration browser. The configuration browser is a tool to auto-
matically load Smalltalk project source code and dependencies,
similar to Maven8 for Java.

Since Smalltalk is a dynamically-typed language, we gath-
ered call site information by using a type inference engine [11],
resulting in a substantially smaller, but still usable amount of
data.

5http://www.chromium.org/
6http://smalltalkhub.com/#!/∼Pharo/Nautilus
7http://www.pharo-project.org/
8http://maven.apache.org

http://www.chromium.org/
http://smalltalkhub.com/#!/~Pharo/Nautilus
http://www.pharo-project.org/
 http://maven.apache.org


Fig. 5. A browser plugin augments the Javadoc for the java.lang.String class
with the “Frequently used methods” block

B. Initial evaluation

We conducted an initial evaluation of our tools by observ-
ing developers completing simple programming tasks using
the augmented documentation browsers. We identified several
situations in the initial evaluation in which our approach is
directly helpful. To illustrate, we present three cases.

One is the case where a popular method is, due to the
alphabetical sorting of methods, located near the end of docu-
mentation prolonging the method search process. An example
of this is the substring method of the java.lang.String class.
It is, according to out analysis, the third most commonly used
method of the class, yet in documentation it appears in the
48th place out of 65 methods.

The second case is when a popular method of a class
is declared higher in the class hierarchy. This leads to the
developer wasting time looking through the documentation
of a class that does not declare the required method. An
example of that is the method for concatenation9 of ByteStrings
Pharo Smalltalk. This is, according to our analysis, the most
commonly invoked method of the class ByteString, yet it is
declared in the SequenceableCollection class, which is 4 levels
higher in the class hierarchy.

9The selector for this method is the comma operator i.e.,
’Hello ’ , ’World!’

The third case is when a developer that is used to the Java
API switches language to Smalltalk. He needs a method to
copy part of a string, and knows that in Java this method is
named substring() but he does not find a similar method in the
ByteString10 class. Since substring() is a top ranked method in
Java he looks at the top ranked methods in Smalltalk and easily
identifies the method he is looking for, namely copyFrom:to:.

V. THREATS TO VALIDITY

Our analysis is based on static source code, and the con-
clusions drawn are limited in their application to the process
of writing source code. The artefacts in the source code may
not map well to the thought process of the developer, i.e., we
assume that methods that are most frequently used are also
more frequently looked up. This is why we put great emphasis
on the need for a user evaluation of the approach.

Our conclusions are limited by the ecosystem case studies
and the languages we chose. We cannot claim the analysis
would yield the same results for any set of API classes. Nev-
ertheless, analyzing the Qualitas Corpus, as a representative
sample of software systems, is common practice in many
different studies that have been conducted11.

Finally, this approach suffers from a bootstrap problem.
Frequency of use can only be established after the API under
study has been used already in the ecosystem.

VI. RELATED WORK

Aside from the analysis presented in this paper we also
propose to use the data from a large set of projects to improve
the way developers use APIs. Several approaches already exist
that use this high level idea.

A common approach to improving API usage is to provide
code snippets to the developer. The snippets are most com-
monly mined from open source repositories [17], [2], [5] but
other sources are also used [14]. The snippets are presented
to the developer using search engines [14], IDE augmenta-
tions [17], documentation augmentations [8] and others. While
code snippet suggestion provides a whole block of code, we
aim to help the developer find the right method. The usefulness
of each depends on the developers use case.

Another popular field is mining frequent call sequences
from an API [10], [1], [16]. The goal of this is to use other
projects to predict the sequence of method calls the developer
wishes to write. This differs from our approach because API
sequence prediction requires input of one or more method
invocations to predict a sequence, and our approach aims to
help the developer find individual methods that are frequently
used.

VII. FUTURE WORK

The main part of the future work is the need for a
user evaluation. The analysis that we presented in this paper
indicate that the approach described in section IV is a better
way to present methods, but developers might disagree.

10ByteString is the standard String class in Smalltalk
11http://qualitascorpus.com/docs/publications/index.html

http://qualitascorpus.com/docs/publications/index.html


We aim to evaluate our approach on a large set of develop-
ers in order to assess whether or not frequently-used methods
are actually frequently sought by developers, and to try to
quantify the pros and cons of the approach.

We would also like to expand our proof-of-concept tools to
other languages and ecosystems. We plan to build a “frequency
of use” database for the ecosystem of Android12 apps as
Android is currently a very popular development platform.
Using the set of Android APIs to evaluate the approach might
be easier and more concise than a general-purpose set of APIs
used across the QualitasCorpus.

VIII. CONCLUSION

In this paper we present 2 studies performed on data
extracted from the usage of API classes used in the Qual-
itasCorpus ecosystem snapshot. The results of these studies
indicate two things

1) In a majority of API classes, a small number of
methods are substantially more frequently used than
the rest.

2) Alphabetical sorting gives unfounded precedence (in
the context of searching for methods) to some meth-
ods, based on the name of the method rather than its
importance or usefulness.

With these two conclusions in mind, we propose an
augmentation of the current documentation browsers to also
present a small number of the most frequently used methods.

We implemented two proof-of-concept tools, one for Java
and one for Pharo Smalltalk.

We observed developers using the augmented documen-
tation and found several use cases in which our approach is
beneficial to the developer. This shows that the approach has
potential, but a larger study of developer usage is needed to
confirm and quantify the impact of the approach.
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