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Abstract
This paper provides an overview and introduction to the development of non-ergodic 
ground-motion models, GMMs. It is intended for a reader who is familiar with the standard 
approach for developing ergodic GMMs. It starts with a brief summary of the development 
of ergodic GMMs and then describes different methods that are used in the development 
of non-ergodic GMMs with an emphasis on Gaussian process (GP) regression, as that is 
currently the method preferred by most researchers contributing to this special issue. Non-
ergodic modeling requires the definition of locations for the source and site characteriz-
ing the systematic source and site effects; the non-ergodic domain is divided into cells for 
describing the systematic path effects. Modeling the cell-specific anelastic attenuation as a 
GP, and considerations on constraints for extrapolation of the non-ergodic GMMs are also 
discussed. An updated unifying notation for non-ergodic GMMs is also presented, which 
has been adopted by the authors of this issue.

Keywords  Probabilistic seismic hazard analysis · Non-ergodic ground-motion model · 
Gaussian process regression

1  Introduction

Due to the limited number of ground-motion recordings in a region, the traditional 
approach to developing ground-motion models (GMMs) for use in probabilistic seismic 
hazard analysis (PSHA) has been to combine data from similar tectonic environments 
around the world together and develop a model for the scaling with magnitude, distance, 
and site conditions. The median and aleatory variability of a GMM are assumed to be 
applicable to any location within the broad tectonic category. This is known as the ergodic 
assumption in ground-motion modeling (Anderson and Brune 1999).
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The traditional approach of developing ergodic GMMs leads to a stable global aver-
age of the ground motion for a given scenario, but a large aleatory variability between 
an observation and the global average. With the large increase in the number of ground-
motion instruments and recordings over the last decade, it has become clear that there 
are significant systematic differences in ground motion based on the location of the site 
and the source. As a result, the ergodic GMMs generally may not work well for a spe-
cific site/source location. This has prompted the development of non-ergodic ground-
motion models in which these location-specific effects are modeled explicitly, which 
reduces the aleatory variability. The uncertainty in the estimate of the site-specific 
effects is then part of the epistemic uncertainty. As a general classification, uncertainties 
are treated as epistemic if they are expected to be reduced by gathering more data. Vari-
abilities are treated as aleatory if the increase of data is not expected to systematically 
reduce their range (Der Kiureghian and Ditlevsen 2009).

An important difference between the application of statistics in GMMs as compared 
to most other fields is the use of constraints to ensure proper extrapolation. In other 
fields, the assumption is that the key behaviors are represented by the available data. 
Thus, the goal of statistics is to find the trends in the data. However, the problem is 
more complicated in GMMs as they are often applied to earthquake scenarios outside 
the range that is well constrained by the data (i.e., it is an extrapolation problem). For 
instance, Fig.  1 shows the magnitude-distance distribution of the California subset of 
the NGA-West2 database (Ancheta et al. 2014), which is often used for the development 
of GMMs for California. In this dataset, the magnitudes range from 3 to 7.2, with the 
majority of the events being between magnitude 3 and 5, and the distance ranges from 1 
to 400 km, with the majority of the recordings being between 20 and 200 km. However, 
in PSHA, large-magnitude and short-distance scenarios often control the hazard. For 
example, in the San Francisco Bay Area, it is common to have faults that are less than 
10 km away from a site and are capable of producing larger than M7 earthquakes. It is 
the difference between the range of the scenarios that are used to derive a GMM and the 

Fig. 1   Magnitude-distance distri-
bution of the California subset of 
the NGAWest2 dataset
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range of scenarios on which a GMM is applied that makes the proper extrapolation of 
the ground motion an important aspect of a GMM.

This paper serves as an overview and introduction to the development of non-ergodic 
GMMs, with an emphasis on the varying coefficient models (VCM) developed with Gauss-
ian processes (GPs) regression. The combination of a VCM GMM with the cell-specific 
anelastic attenuation and considerations regarding the extrapolation of non-ergodic GMMs 
are also discussed. An updated notation for key elements of non-ergodic GMMs is also 
presented.

2 � Proposed notation

The proposed notation is intended to help the reader understand the role of different terms 
in a GMM and facilitate the comparison of the different non-ergodic models in this special 
issue.

The model variables are categorized into two groups: the model parameters ( � ) and 
model hyperparameters ( �hyp ). The � includes the ergodic and non-ergodic terms that 
directly affect the ground motion, while �hyp includes the set of variables that control the 
behavior of the ergodic and non-ergodic terms and have an indirect effect on the ground 
motion. An example of a model parameter is the coefficient for the linear magnitude scal-
ing, and an example of a hyperparameter is the between-event standard deviation.

The ergodic coefficients of the GMM are denoted as ci where i is the number of the 
ergodic term, and the non-ergodic coefficients are denoted as ci,X or �ci,X . The subscript 
X (subscript after the comma) can be the letters E, P, or S depending on whether the non-
ergodic coefficient in question is intended to capture systematic effects related to the source 
(earthquake), path, or site. The notation � is used to differentiate between non-ergodic coef-
ficients that have a zero mean and act as adjustments to ergodic coefficients, and stand-
alone non-ergodic coefficients that encompass both the average scaling and the systematic 
effects. For instance, the non-ergodic term �c1,E acts on top of c1 to capture the system-
atic effects related to the source. Alternatively, the same behaviour can be modeled with 
c1,E which is equal to the sum of the ergodic coefficient and the non-ergodic adjustment 
( c1,E = c1 + �c1,E ). The non-ergodic adjustments, �ci,X , are typically used when a non-
ergodic GMM is developed with an ergodic GMM as a "backbone" model, in which case 
the non-ergodic adjustments are estimated based on the total ergodic residuals. For exam-
ple, Kuehn et al. (2019) and Lavrentiadis et al. (2021) are non-ergodic GMMs derived with 
this approach. The non-ergodic coefficients, ci,X , are used when a non-ergodic GMM is 
directly estimated with the log of the ground motion as a response variable as in the case of 
Landwehr et al. (2016).

Many of the non-ergodic GMMs in this issue used the cell-specific anelastic attenua-
tion, first proposed by Dawood and Rodriguez-Marek (2013), to model the systematic path 
effects. In the proposed notation, the vector of attenuation coefficients of all the cells is 
denoted as �ca,P , and cell path segments are denoted as �� . The total anelastic attenuation 
is equal to �ca,P ⋅ ��.

The terms �L2L , �P2P , and �S2S introduced by Al Atik et al. (2010) are used here to 
describe the total non-ergodic effects related to the source (they used L for location), path, 
and site, respectively. For instance, if the constant c1 is modified by two site adjustments, 
�c1a,S and �c1b,S , to express the systematic site effects, then �S2S is equal to �c1a,S + �c1b,S . 
Similarly, if the non-ergodic adjustment to the geometrical spreading coefficient, �c3,P , and 
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the cell-specific anelastic attenuation, �ca,P are used to express the systematic path effects, 
then �P2P = ln(R)�c3,P + cca,P ⋅ �� − c7Rrup , where, in this example, c7 is the ergodic 
anelastic attenuation coefficient. The c7Rrup term is subtracted from the median prediction 
from the GMM to remove the systematic effects that are included in the cell-specific ane-
lastic attenuation.

The scale and correlation length which control the spatial distribution of the non-
ergodic terms are denoted as �i,X and �i,X . An in-depth discussion on modeling the non-
ergodic terms as GPs, where �i,X and �i,X are defined, is provided in Sect. 5.1. In keeping 
with the Al Atik et al. (2010) notation, the total epistemic uncertainty of the non-ergodic 
source, path, and site effects are denoted as �L2L , �P2P , and �S2S . Expanding from the exam-
ple above, if �1a,S and �1b,S correspond to the scales of �c1a,S and �c1b,S , then the epistemic 
uncertainty of the site effects is �2

S2S
= �2

1a,S
+ �2

1b,S
.

The response variable of the regression is denoted as y. For a pseudo-spectral accelera-
tion (PSA) or Effective Amplitude Spectrum (EAS) GMM, y is equal to ln(PSA) or ln(EAS).

The location of the source, site, etc. are required in the non-ergodic GMMs included in 
this issue to define the spatially-varying non-ergodic terms. The coordinates of the earth-
quake, site, and mid-point between the source and site are denoted as: tE , tS , tMP , respec-
tively. The definition of the location of the earthquake, tE (e.g. epicenter, the closest point 
to the site, etc.) is defined in each study. Similarly, the cell coordinates are denoted as tC ; 
the exact point of the cell (e.g. center, lower left corner, etc.) to which tC corresponds is 
defined in each study.

The star superscript is used to denote the new scenarios and values of non-ergodic coef-
ficients predicted for the new scenarios. For instance, t∗

E
 corresponds to the source locations 

of the new scenarios where systematic source effects will be predicted, and �c∗
i,E
(t∗
E
) corre-

sponds to the non-ergodic source adjustments of these scenarios.
A list of abbreviations and a glossary of all terms used in this special issue are provided 

at the end of this paper.

3 � Development of ergodic ground‑motion models

A typical GMM has a model for the base magnitude, distance, and linear site scaling, and 
may include more complicated features for non-linear site response, hanging-wall effects, 
basin effects, etc. For example, the median for the ASK14 (Abrahamson et al. 2014) GMM 
has the following form:

where ferg is the function for the ergodic median ground-motion, ci are the ergodic scaling 
coefficients, FRV and FN are the reverse and normal fault scaling factors, fNL is the non-lin-
ear site effects scaling, fHW is the hanging wall scaling, M is the moment magnitude, Rrup is 
the closest distance to the rupture plane, Rx is the horizontal distance from the top edge of 
the rupture measured perpendicular to the fault strike, VS30 is the time-average shear wave 
velocity at the top 30 m, Vref  is the reference VS30 for the linear site amplification, z1100 is 
the depth to 1100 m/sec shear-wave velocity, and Dip is the fault dip angle.

(1)

ferg(M,Rrup,VS30, ...) =c1 + c2M + c3(8.5 −M)2 + (c4 + c5M)ln(Rrup + c6) + c7R

+ c8FRV + c9FN + c10 ln(VS30∕Vref )

+ fNL(VS30, z1100) + fHW (M,Rrup,Rx,Dip)
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A key aspect of GMMs used for seismic hazard studies is that in engineering applica-
tions, they need to be extrapolated outside the data range. Although a GMM is developed 
through a regression analysis, constraints are often imposed on the coefficients to ensure 
that the GMM extrapolates consistently with a physical-based scaling.

Because the recordings for a single earthquake are correlated, it is common to use a 
mixed-effects regression when developing GMMs:

in which the left-hand-side is the observed ground motion ( yes ), while the right-hand side 
includes �Be which is the between-event aleatory term for the eth earthquake and �Wes 
which is the within-event aleatory term for the sth station and from the eth earthquake. �Be 
and �Wes are assumed to be normally distributed with zero mean and � and � standard 
deviations, respectively.

3.1 � Maximum likelihood estimation

In GMM development, the maximum likelihood estimation (MLE) is often used to obtain 
point estimates of the GMM coefficients (fixed terms) and standard deviations of the alea-
tory terms (random terms). In the past, the procedure outlined in Abrahamson and Youngs 
(1992) was commonly used to estimate the mixed-effect terms. More recently, statistical 
packages such as LME4 (Bates et  al. 2015) in the statistical software R (R Core Team 
2020) are used to obtain point estimates and significance test statistics of the mixed terms.

In MLE, the parameters of the model are estimated by maximizing the log-likelihood 
function, or more commonly by minimizing the negative of the log-likelihood function. 
The log-likelihood is a measure of how likely it is to observe the data given the model 
parameters. With the assumption that �Be and �Wes are independent with no spatial correla-
tion and that they are normally distributed, the log-likelihood function is given by:

in which y is a vector with all ground motion observations, � is the median ground motion 
evaluated by ferg(M,Rrup, ...) for the parameters of all ground motion observations, and � is 
the covariance matrix which is given by:

where �
�
 is the identity matrix of size N, which is the total number of recordings, �ni is a 

matrix of ones, Ne is the number of events, and ni is the number of recordings of the i th 
event.

In this approach, assuming that all recordings of the same earthquake are grouped 
together, the covariance matrix has a simple block diagonal form. The diagonal elements of 

(2)yes = f (M,Rrup,VS30, ...) + �Wes + �Be

(3)ln L =
N

2
ln(2�) −

1

2
ln |�| − 1

2
(y − �)T�−1(y − �)

(4)

� =�2
�N + �2Σ

Ne

i=1
�ni

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�2 + �2 �2 �2

�2 �2 + �2 �2

�2 �2 �2 + �2
0

�2 + �2 �2

�2 �2 + �2

0
�2 + �2 �2

�2 �2 + �2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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� are equal to �2 + �2 , the off-diagonal elements that are associated with recordings of the 
same earthquake are equal to �2 , and the remaining elements are equal to zero.

Maximum likelihood regressions are computationally inexpensive, as there are effi-
cient methods to minimize the negative of the log-likelihood (e.g. Bound Optimization 
BY Quadratic Approximation (BOBYQA), Powell (2009)). The most involved step at each 
iteration is the calculation of the inverse of the covariance matrix; however, due to its block 
diagonal and sparse nature, the process is computationally efficient to perform.

3.2 � Other methods for ergodic models

Ergodic GMMs have also been developed using Bayesian regression. Bayesian models 
have been used successfully in the development of a FAS GMM for Mexico City (Ordaz 
et al. 1994), in deriving a PSA GMM that includes the correlation between spectral periods 
and the correlation between the GMM coefficients (Arroyo and Ordaz 2010a, b), in cap-
turing the uncertainty of model parameters, such as VS30 (Kuehn and Abrahamson 2018), 
and in the development of ergodic GMMs with truncated data (Kuehn et al. 2020). More 
closely related to the non-ergodic GMMs of this special issue, Hermkes et al. (2014) used 
a Bayesian GP regression to derive a non-parametric ergodic GMM for shallow crustal 
events. Bayesian regression has a higher computational cost than MLE which is why it is 
less commonly used in GMM development.

GMMs have also been derived through artificial neural networks (ANNs). Derras et al. 
(2014) proposed an ANN that partitions the residuals into within-event and between-event 
terms and used it to develop an ergodic GMM for Europe. Withers et al. (2020) applied an 
ANN to develop an ergodic GMM with ground motions from the CyberShake simulations 
for Southern California. This is a promising approach, especially for large databases, as 
the method scales well to many GBs of data that are frequently produced from simulation 
outputs ( > 108 records). However, extra prudence is required as the modeler does not have 
direct control over the model behavior (such as interdependency among input terms) which 
may limit the accurate extrapolation outside the range of training predictor variables. These 
concerns can be mitigated by applying physics-based constraints on the model or by aug-
menting the empirical dataset with synthetic datasest, however, this approach  requires 
additional validation to ensure that conditions within the synthetic ground motions are con-
sistent with empirical records and do not introduce any inherent bias within the data.

4 � Development of partially non‑ergodic ground‑motion models

The term “partially non-ergodic” has sometimes been used for GMMs that include mean 
regional differences. Here, we use the term only for GMMs that include differences due to 
the location of the site and/or the location of the source, not for average differences between 
broad regions. One such partially non-ergodic GMM approach consists of capturing system-
atic (i.e., site-specific) site effects (Stewart et al. 2017). Every site has its own velocity profile 
which leads to a repeatable site amplification relative to the reference profile of a GMM for 
the same VS30 (Lavrentiadis 2021). This amplification is the same for all ground motions at the 
site of interest and is not applicable to different sites. However, in an ergodic model, any misfit 
between a ground-motion observation and the median ground-motion estimate is considered 
aleatory in nature (i.e. random). That is, ergodic GMMs are based on an assumption that the 
range of site amplification between different sites with the same VS30 is the same as the range 
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of site amplification at the site of interest. It is the goal of partially non-ergodic GMM to prop-
erly categorize the systematic site-specific site amplification effects and remove them from the 
aleatory terms.

In the partially non-ergodic model, the ergodic within-event residual is partitioned into 
a site-specific site term and the new remaining within-event within-site residual ( �WSes ). 
Using the Al Atik et al. (2010) notation:

�S2Ss term represents the systematic difference between the site amplification at the sth site 
and the site amplification in the ergodic GMM.

The parameters of a partially non-ergodic GMM can be formulated as a mixed-effects 
model with three random terms ( �Be , �WSes , and �S2Ss):

�Be , �WSes , �S2Ss are assumed to be normally distributed with zero means and �0 , �SS , and 
�S2S standard deviations, respectively. This leads to a more complicated covariance matrix 
with more non-zero off-diagonal terms:

The main difference to the covariance matrix of the ergodic GMM (Eq. 4) is that the ele-
ments that are associated with the same station include the �2

S2S
 variance. In this frame-

work, 
√

�2
0
+ �2

SS
 is the aleatory variability of the GMM, and, �S2S is the epistemic uncer-

tainty of the site term at a site without site-specific data to constrain the site term.
Alternatively, �S2Ss can be estimated directly by partitioning the ergodic within-event 

residuals, �Wes , into �S2Ss and �WSes . This approach is expected to give similar results, 
but it can be problematic if some of the systematic site effects have been mapped into the 
ergodic event terms.

The �S2Ss of such a partially non-ergodic GMM is spatially independent. This is a 
contrast with the GP-based approach (Sect.  5.1), which allows for �S2Ss to be spatially 
correlated.

5 � Development of non‑ergodic ground‑motion models

The fully non-ergodic GMM extends the partially non-ergodic GMM to account for sys-
tematic and repeatable source and path effects in addition to the systematic site effects. For 
that, two additional non-ergodic terms are added:

The �L2Le term is the systematic source-specific adjustment to the median ground motion 
in the base ergodic model. It is related to repeatable effects in the release of seismic energy 
from a source in a region. For instance, �L2Le will be positive if the average stress drop 

(5)�Wes = �S2Ss + �WSes

(6)yes = ferg(M,R,VS30, ...) + �S2Ss + �Be + �WSes

(7)

� = �2

SS
�N + �2

S2S
Σ
Ns

i=1
�ni

+ �2
0
Σ
Ne

i=1
�ni

=

⎡⎢⎢⎢⎣

�2

SS
+ �2

S2S
+ �2

0
�2
0

�2

S2S
0

�2
0

�2

SS
+ �2

S2S
+ �2

0
0 �2

S2S

�2

S2S
0 �2

SS
+ �2

S2S
+ �2

0
�2
0

0 �2

S2S
�2
0

�2

SS
+ �2

S2S
+ �2

0

⎤⎥⎥⎥⎦

(8)yes = ferg(M,Rrup,VS30, ...) + �S2Ss + �P2Pes + �L2Le + �B0

e
+ �WS0

es
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of earthquakes in a region (i.e. fault system) is systematically larger than the global aver-
age. Supporting this argument, Trugman and Shearer (2018) found a strong correlation 
between the stress drop and between-event term of an ergodic GMM. Similarly, the �P2Pes 
term represents the repeatable difference in the propagation of the seismic waves between 
a source and site and the ergodic GMM. The �P2Pes term will be positive if the attenuation 
in a geographical region is less than the global average.

The non-ergodic terms �L2Le and �P2Pes are assumed to be normally distributed with zero 
means and �L2L and �P2P standard deviation, respectively. The remaining aleatory terms, �B0

e
 

and �WS0
es

 , are assumed to be normally distributed with zero means and �0 and �0 standard 
deviations.

The different GMM paradigms (e.g. ergodic, partially non-ergodic, and fully non-ergodic 
GMMs) should have similar size total aleatory variability and epistemic uncertainty: √
�2 + �2 ≈

�
�2

S2S
+ �2

SS
+ �2 ≈

�
�2
L2L

+ �2

P2P
+ �2

S2S
+ �2

0
+ �2

0
 as there is no change in 

the amount of information—what is different between the three approaches is how the pro-
vided information is treated (i.e. repeatable or random). This is a useful check for ensuring 
that the epistemic uncertainty and aleatory variability of a GMM are not overestimated or 
underestimated. However, it should be noted that the size of aleatory variability and epistemic 
uncertainty also depends on the modeling approach. For example, a single-station partially 
non-ergodic GMM, such as SWUS15 (Abrahamson et al. 2015) has, largely, a constant epis-
temic uncertainty, whereas, a non-ergodic GMM developed as GP has a scenario-dependent 
epistemic uncertainty. Therefore, this check is primarily applicable at the center of the ground 
motion data, not at the model extrapolation.

Lin et al. (2011) estimated the standard deviations for all three non-ergodic terms using 
ground-motion data from Taiwan. The �S2Ss was modeled as a random term based on the 
site ID, and �L2Le was modeled as a spatially correlated random variable based on the site 
location using standard geostatistics. A more complex spatial correlation model was used for 
�P2Pes , as it depends both on the source and site location. For a single site, the �P2Pes corre-
lation is stronger if the earthquakes are closer together, as the seismic waves travel through the 
same part of the crust. The systematic path effects were found to result in the largest reduction 
of the aleatory variability followed by the systematic site effects. Overall, including all three 
effects led to about a 40% reduction in the total aleatory standard deviation compared to the 
ergodic GMM.

In the previous formulation, the non-ergodic effects were modeled with normal distribu-
tions, which may not always be appropriate, particularly, for the path terms; for similar vari-
ations in the attenuation of the earth’s crust, a far apart source-site pair will have more pro-
nounced path effects than a source-site pair that is closer together. The distance dependence of 
the path effects is not significant if all records in the dataset have similar rupture distances, but 
it can be important if the range of Rrup is large.

An alternative option is to describe the non-ergodic GMM as a varying coefficient model 
(VCM). In this approach, the non-ergodic terms are scaled by different model variables (e.g. 
Rrup , VS30 ) which provides a more flexible framework to model the systematic effects. More 
details on the development of non-ergodic GMMs as GP VCMs are provided in the next 
section.
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5.1 � Gaussian process models

The non-ergodic GMMs in this special issue are classified as VCM, as the non-ergodic 
terms are dependent on the earthquake and site locations in addition to any other input 
parameters (e.g. VS30):

with fnerg corresponding to the function of the median non-ergodic ground motion for a 
particular pair of source and site, while ferg is the function of the median ergodic ground 
motion (i.e. the median ground motion for all sources and sites). The systematic source 
term, �L2L , is modeled as a function of the earthquake coordinates ( tE ), and the systematic 
site term, �S2S , is modeled as a function of the site coordinates ( tS ). The systematic path 
term, �P2P , is more complex as it depends both on the earthquake and site location. The 
cell-specific anelastic attenuation which is used to capture the systematic path effects is 
described in Sect. 5.1.3.

At first sight, the development of a non-ergodic VCM GMM may seem futile due to 
the large number of non-ergodic terms that need to be estimated. If the state of California 
is broken into a 5 × 5 km grid, there would be approximately 20,000 grid points and so, 
at minimum, 60,000 non-ergodic coefficients that would need to be estimated; that is the 
simplest non-ergodic model where the systematic source, site, and path effects are captured 
with one coefficient each. It is unfeasible to derive such a model with the existing datasets 
as they contain, at best, in the order of 10,000 recordings. Fortunately, this is not a problem 
in VCM due to the spatial correlation structure imposed on the non-ergodic coefficients.

In the statistical approaches described so far, the GMM coefficients are treated as fixed 
parameters. That is, every coefficient has a single value which is estimated by the MLE 
or another frequentist approach. In a GMM that is developed as a VCM GP, the model 
coefficients are treated as random variables that are assumed to follow Normal (Gauss-
ian) distributions. The choice of the mean and covariance function of these distributions 
is what controls the behavior of each coefficient; for instance, whether a coefficient is con-
stant over a domain, whether it varies continuously on some finite length scale, or whether 
it is spatially independent (i.e. the value of the coefficient at some location is independent 
of the value of the coefficient at some other location). In this sense, in a GP regression, the 
GMM coefficients are modeled similarly to the aleatory terms in the mixed-effects regres-
sion (Sect. 3.1). It is these constraints on the GMM coefficients imposed by the covariance 
function that make the development of a non-ergodic VCM GP GMM tractable. Due to 
this, the non-ergodic GMM coefficients do not have to be estimated directly; instead, only 
the hyperparameters that control the distributions of the non-ergodic terms need to be esti-
mated by the regression. With the current size of datasets, the number of hyperparameters 
is typically about 10.

Furthermore, this formulation leads to a scenario-dependent epistemic uncertainty that 
is more appropriate than the constant epistemic uncertainty assumed in earlier studies. In a 
VCM GP GMM, the non-ergodic coefficients have a constant epistemic uncertainty, but 
the epistemic uncertainty of the ground motion is scaled by the GMM input variables. For 
example, consider a non-ergodic GMM based on the base model (Eq. 1) where the system-
atic path effects are modeled with a spatially varying geometrical spreading coefficient that is 

(9)

yes = fnerg(M,Rrup,VS30, ..., tS, tE) + �B0

e
+ �WS0

es

=ferg(M,Rrup,VS30, ...) + �S2S(VS30, ..., tS) + �P2P(Rrup, ..., tE, tS, )

+ �L2L(M, ..., tE) + �B0

e
+ �WS0

es



5130	 Bulletin of Earthquake Engineering (2023) 21:5121–5150

1 3

a function of the earthquake coordinates ( c4,E(tE) ). In this case, the epistemic uncertainty of 
c4,E(tE) will be equal to �4,E(tE) and the epistemic uncertainty of the ground motion due to the 
systematic path effects will be equal to �P2P = �4,E(tE) ln(R + c6) . This results in a distance-
dependent epistemic uncertainty, the epistemic uncertainty is higher for sites farther from the 
source, which is different from the �P2P values of Lin et al. (2011) which are independent of 
the source-to-site distance.

GP is a particular case of a hierarchical Bayesian model as it is expressed on multiple lev-
els. At the base level are the GMM coefficients and aleatory terms which have a direct impact 
on the response variable y and are defined in terms of some distributions; the variables that 
constitute this level are called model parameters ( � ). At the next level is the set of variables 
that control the distributions of � . The variables of the upper level are called model hyperpa-
rameters ( �hyp ), which in turn could be defined in terms of some other distributions or they 
could be fixed. As an example, in this context, �0 and �0 are hyperparameters that control the 
distributions of the parameters: �WS0

es
 and �B0

e
.

There are two general approaches for developing a non-ergodic GMM with a GP regres-
sion. In the first approach, which was followed by Landwehr et al. (2016), all the coefficients, 
ergodic and non-ergodic, were modeled as GPs. In that case, the non-ergodic GMM is devel-
oped from the beginning and the response variable is typically the log of the ground-motion 
parameter (e.g. ln(PSA)). An alternative approach, which was followed by Kuehn (2021a) and 
Lavrentiadis et al. (2021), is to model the non-ergodic coefficients or non-ergodic coefficient 
adjustments as GPs and keep the ergodic terms fixed. Here, the non-ergodic GMM is based on 
an existing ergodic GMM and the response variable is the ergodic residual. An advantage of 
this approach is that the extrapolation to large magnitudes and short distances from the under-
lying ergodic GMM is preserved in the non-ergodic GMM.

The remaining parts of this section summarize the different elements of the VCM GP 
GMM development: Bayesian regression, covariance functions of the prior distributions com-
monly used in VCM GP GMM, cell-specific anelastic attenuation, prediction of the median, 
and epistemic uncertainty of the non-ergodic coefficients and median ground motion at new 
locations.

5.1.1 � Bayesian regression

In Bayesian statistics, the uncertainty of the model parameters and hyperparameters, � and 
�hyp , before observing the data is expressed by the prior distribution ( p(�,�hyp) ). The uncer-
tainty of � and �hyp is updated based on the ground-motion observations, y , and ground-
motion parameters (such as M, Rrup , VS30 , etc., collectively for all records noted as x ) to pro-
duce the posterior distribution ( p(�,�hyp|y, x) ). The Bayes theorem provides the means for 
this calculation:

Often, the normalizing distribution p(y, x) is omitted for computational efficiency as it is 
not required to sample or compute the maximum of the posterior. In this case the posterior 
distribution is expressed as:

(10)p(�,�hyp|y, x) =
L(�,�hyp)p(�,�hyp)

p(y, x)

(11)p(�,�hyp|y, x) ∝ L(�,�hyp)p(�,�hyp)
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The influence of the ground-motion data in the posterior distribution is expressed through 
the likelihood function ( L(�,�hyp) ) — it corresponds to the likelihood (i.e probability) of 
observing the data given some values for � and �hyp . The likelihood for a single observation 
can be estimated with the functional form of the GMM as:

Because all correlated terms (i.e. non-ergodic terms and between event residuals) are 
included in the mean, the misfit: y − (fnerg(x,�,�hyp) + �B0

e
) , which corresponds to �WS0

es
 , 

is independently and identically distributed, thus, the joint likelihood of all observations is 
the product of the likelihoods of individual observations:

improving computational efficiency. The likelihood function is written in vector notation in 
the first line and expanded in the second line of Equation 13.

The prior distributions express our knowledge and beliefs about � and �hyp . They may 
come from prior experience in building non-ergodic GMMs or based on a desired model 
behavior (i.e. penalize model complexity if not supported by the data (Simpson et  al. 
2017)). When there is little information about � and �hyp , weakly informative priors can 
be used. These are chosen as wide priors distributions so that the posterior distribution is 
primarily controlled by the likelihood function.

The prior distributions of the non-ergodic effects are spatially uniform with zero means 
and large standard deviations because prior to interrogating the ground-motion data, the 
systematic effects are unknown. With the aid of the likelihood function and ground-motion 
data, the non-ergodic effects can be estimated close to stations and past earthquake loca-
tions. This results in posterior distributions that are spatially varying with non-zero means 
and smaller standard deviations where the non-ergodic effects have been estimated. Zero 
posterior standard deviations would imply that the non-ergodic effects are known with 
absolute certainty.

Historically, Bayesian inference has seen limited use due to its high computational 
cost compared to point-estimate inference with MLE. However, in recent years, with the 
increase in computational speed, Bayesian models have been gaining wider adoption. 
There are three main computationally-tractable approaches to obtain the posterior distribu-
tions of complex models that do not have analytical solutions; they are summarized below.

The maximum a posteriori (MAP) approach finds the values of � and �hyp that corre-
spond to the mode of the posterior. The posterior distribution is proportional to the product 
of the likelihood function and the prior distribution (Eq. 11). MAP can be found by mini-
mizing the negative of this product, which can be computed easily numerically with gradi-
ent-based methods. In this sense, MAP is equivalent to a penalized MLE where the prior 
distribution acts as a regularization on the likelihood function. MAP is computationally 
faster than the other numerical solutions of Bayesian models, but its main shortcoming is 
that it provides a point estimate not the entire posterior distribution; thus, the uncertainty of 
the model cannot be assessed. The GPML toolbox (Rasmussen and Nickisch 2010) avail-
able in Matlab and Octave provides such MAP estimates for Gaussian Process models.

The Markov Chain Monte Carlo (MCMC) approach generates samples from the pos-
terior distributions that are used in the inference of � and �hyp . This approach is able to 
recreate the full posterior distribution, but it is computationally slow. An in-depth review 

(12)L(�,�hyp) = pdf (y|f nerg(x,�,�hyp) + �B0

e
,�2

0
)

(13)
L(�,�hyp) = pdf (y|f nerg(x,�,�hyp) + �B0

e
,�2

0
)

= �
ne
e=1

�
ns
s=1

pdf (yes|fnerg(xes,�,�hyp) + �B0

e
,�2

0
)
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of this method can be found at Brooks et al. (2011). Widely used statistical software that 
have implemented this approach are: JAGS (Plummer 2003), BUGS (Lunn et  al. 2009), 
and STAN (Stan Development Team 2019) for general Bayesian models, and GPflow (van 
der Wilk et al. 2020) in Python for GPs.

A more recent approach consists in using approximation methods to compute the pos-
terior distributions of � and �hyp . These approximation solutions are applicable to specific 
families of Bayesian models. One such approximation method is the integrated nested 
Laplace approximation, INLA (Rue et  al. 2009); it uses the Laplace approximation to 
efficiently compute the approximations to the marginal posterior distributions of Latent 
Gaussian Models (LGMs). In this family of models, the response variable is expressed 
as an additive function of the model parameters ( y = Σn

i=1
�ixi ), and all �i follow Normal 

prior distributions. INLA is a useful approximation for developing GMMs as both ergodic 
GMMs and non-ergodic VCM GP GMMs can be formulated as LGMs. Further informa-
tion regarding the INLA approximation can be found in Krainski et al. (2019, 2021) and 
Wang et al. (2018). A primer for developing ergodic GMMs with INLA can be found in 
Kuehn (2021a).

Other methods for Bayesian regression include the Variational Inference (Blei et  al. 
2017) which approximates the posterior distribution with a member of a closed-form prob-
ability distribution.

5.1.2 � Covariance functions

The covariance functions, or kernel functions as often called in the literature, of the prior 
distributions are a crucial ingredient of the GP regression. They impose a correlation struc-
ture which dictates how a random variable (i.e. a coefficient or the ground-motion intensity 
parameter) varies in space. The covariance functions described in this section are isotropic 
and stationary; that is, the size and rate of spatial variation they impose is independent 
of the direction and location. Although this is likely a simplification for the systematic 
ground-motion effects, most of the non-ergodic GMM of this special issue did not use non-
stationary and anisotropic kernel functions due to their additional computational challenge. 
Ground-motion studies that used non-stationary correlation structures include Kuehn and 
Abrahamson (2020) and Chen et al. (2021). Other studies that applied non-stationary and 
anisotropic correlation structures to GP regressions include Paciorek and Schervish (2006) 
and Finley (2011).

The four covariance functions described here are: the identity kernel function, the spa-
tially independent kernel function, the constant kernel function, and the exponential kernel 
function. Examples, where these covariance functions are combined to create more com-
plex spatial correlation structures, are provided at the end of this section. The covariance 
matrices, which are used in the regression and prediction of GP, are created by evaluating 
the covariance functions at all indices, such as the earthquake or station IDs, or coordinate 
pairs, such as the earthquake or station coordinates:

where �i and �i are the covariance function and covariance matrix for the ith coefficient, 
and tk and tl are the kth and lth indices or coordinate values. Indices are used as input to 
the kernel function if the correlation structure of the ith coefficient depends on information 
such as the event or station number, while coordinates are used as input if the correlation 

(14)�i kl = �i(tk, tl)
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structure depends on information like the event or site location. In vector notation the 
covariance matrix is defined as:

where t and t′ are index or coordinate arrays. If �i is used in the regression phase, t and t′ 
correspond to the existing scenarios; these are the scenarios in the regression dataset. How-
ever, if �i is used in the prediction phase, t and t′ correspond to combinations of the exist-
ing and new scenarios. Further details on the GP prediction are provided in Sect. 5.1.4.

The identity kernel function is given by:

where �(x) is the Dirac delta function ( �(x = 0) = 1 and �(x ≠ 0) = 0 ). It is used for ran-
dom variables that are statistically independent with � being the standard deviation of the 
normal distribution. It generates a covariance matrix that is equal to �2 along the diagonal 
and zero everywhere else. This kernel function is used to model the within-event within-
site aleatory term, �WSes.

The spatially independent kernel function is given by:

This kernel imposes perfect correlation between random variables at the same location or 
with the same index, and zero correlation between random variables at different locations 
or with different indices. The hyper-parameter � defines the size of the variability, that is, 
how much the values of the random variable vary between points that are not collocated. If 
tk and tl are pair of coordinates, ‖tk − tl‖ corresponds to the L2 distance norm (i.e. Euclid-
ean distance) between the two coordinates. If tk and tl are indices, ‖tk − tl‖ corresponds to 
the absolute difference between the two values.

Depending on the software, the covariance matrix of a spatially independent non-
ergodic term can be modeled either with the identity or spatially independent kernel func-
tion. For example, consider a spatially independent site term, �ci,S , that has a unique value 
at every site but zero spatial correlation. If a statistical software requires all terms to be of 
size N, where N is the number of records, the spatially independent kernel function should 
be used. That is because, if kth and lth recording have the same station coordinates, �ci,S k 
and �ci,S l should be equal (i.e. perfectly correlated). In this approach, all covariance matri-
ces are size N × N . However, if a statistical software can model terms of different sizes, 
the identity kernel function can be used. In this case, it is more efficient to estimate �ci,S 
at unique station locations and then pass it to the associated recordings. In this approach, 
�ci,S is uncorrelated, as every station coordinate is repeated only once, thus it can be mod-
eled with an identity covariance matrix of size Ns × Ns , where Ns is the number of stations, 
reducing the and number of operations and memory requirements.

The constant kernel function is given by:

with � controlling the deviation from the mean of the prior distribution. It imposes perfect 
correlation between all random variables so that they all have the same offset from the 
mean function. As an example, in Landwehr et al. (2016), the constant kernel function was 
applied to all coefficients to model their deviation from the mean of the prior which was 
equal to zero.

(15)�i = �i(t, t
�)

(16)�i(tk, tl) = �2

i
�(k − l)

(17)�i(tk, tl) = �2

i
�(‖tk − tl‖)

(18)�i(tk, tl) = �2

i
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Alternatively, constant offsets in the coefficients can be modeled with a one-dimen-
sional prior distribution on the mean function of the coefficient, as in the case of �ca,P in 
Lavrentiadis et al. (2021). It depends on the modeler and software which option is more 
attractive. The main advantage of the first option is that it includes all information in the 
kernel function, while the main advantage of the second option is that it can lead to a 
sparse covariance matrix.

The exponential kernel function is given by:

This kernel function is applied to spatially varying random variables. The hyperparam-
eters � and � control the specific length scale and size of the spatial variation. At the two 
extremes of � , the exponential kernel converges to a spatially independent and constant 
kernel function. For � → 0+ the spatial correlation weakens converging to a spatially inde-
pendent kernel function, while for � → +∞ the correlation becomes stronger converging to 
a constant kernel function. With this kernel function, a random variable is assumed to vary 
continuously but not smoothly in space (i.e. the spatial variation of the random variable is 
continuous, but the first derivative of the spatial variation is not). This kernel function is 
widely used in geostatistics to model spatially varying phenomena.

Another kernel function for modeling continuously spatially varying random vari-
ables is the squared exponential. This kernel function is infinitely differentiable result-
ing in very smooth spatial variations that may be unrealistic for spatial processes (Stein 
1991). However, the main advantage of this covariance function is that it is separable in 
the X and Y coordinates which allows for efficient approximations of the kernel function 
for large datasets (Lacour 2022).

More complex correlation structures can be built by combining the kernel functions 
described above using the properties of the Normal distribution. For example, assume a 
non-ergodic site adjustment �ci,S that is the combined effect of an underlying continuous 
adjustment over large distances and a site-specific adjustment. Such a site adjustment 
can be broken into individual components: �cia,S for the underling continuous adjust-
ment, and �cib,S for site-specific adjustment, with �ci,S = �cia,S + �cib,S . In this case, �cia,S 
can be assigned a prior distribution which has a zero prior mean and an exponential ker-
nel function ( �ia,S ), and �cib,S can be assigned a prior distribution which has a zero prior 
mean and a spatially-independent kernel function ( �ib,S):

Based on the linear properties of the Normal distribution, the prior distribution of �ci,S 
has a mean which is equal to the sum of mean functions of the individual components, 
and a kernel function which is equal to the sum of the kernel functions of the individual 
components:

Similarly, the kernel function of the median non-ergodic ground motion can be obtained by 
combining the kernel functions of the GMM coefficients. For simplicity, only three terms 
of the ergodic base GMM (Eq. 1) are used in this example:

(19)�i(tk, tl) = �2

i
e
−

‖tk−tl‖
�i

(20)
�cia,S ∼ N

(
0, �ia,S(tS, t

�
S
)
)

�cib,S ∼ N
(
0, �ib,S(tS, t

�
S
)
)

(21)�ci,S ∼ N
(
0, �ia,S(tS, t

�
S
) + �ib,S(tS, t

�
S
)
)
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where Reff = R + c6 , c1 is the intercept, c4,E is the geometrical-spreading term which is a 
function of the earthquake coordinates and scales with ln(Reff ) , and c10,S is a linear site 
amplification term which is a function of the site coordinates and scales with ln(VS30∕Vref ).

If, the GMM coefficients are modeled as GPs with prior distributions:

with �i and �i being the mean and kernel functions of the ith coefficient, respectively; the 
prior distribution of f nerg is equal to:

in which the symbol ◦ corresponds to the element-wise product, and ln(�eff ) and 
ln(�S30∕Vref ) are column vectors with the ln(Reff ) and ln(VS30∕Vref ) values of all record-
ings. A linear combination of Normal distributions follows a Normal distribution. The 
mean of f nerg is equal to the linear combination of the means of the prior distributions of 
the coefficients. To get a more intuitive feeling for the kernel function of f nerg , first con-
sider the covariance between just two scenarios cov(fnerg k, fnerg l) . By substituting Eq.  22 
into the covariance and assuming the coefficients of the GMM are independent with each 
other ( cov(ci, cj) = 0 if i ≠ j ) we obtain:

The kernel function in Eq.  24 creates the same covariance as Eq.  25 for all recordings. 
For example, for the c1,S contribution, the ln(�eff ) ln(�eff )

⊺ product creates a matrix with 
all ln(Reff k) ln(Reff l) permutations, and the element-wise product with �4(tE, t

′
E) combines 

these permutations with the covariance of the coefficient.
Generalizing from previous example, the covariance function of the median ground 

motion between scenarios k and l is:

in which �nerg is the kernel function for fnerg , �i is the kernel function of the ith non-ergodic 
coefficient, xi is the independent variable in front of the ith non-ergodic coefficient (e.g. 
ln(Reff ) ), ti is input coordinate or ID for �i , and d is the number of the non-ergodic terms.

In matrix notation Eq. 26 can be defined as:

(22)fnerg = c1 + c4,E(tE) ln(Reff ) + c10,S(tS) ln(VS30∕Vref )

(23)

c1 ∼ N
(
�1, �1

)

c4,E ∼ N
(
�4,E, �4,E(tE, t

�
E
)
)

c10,S ∼ N
(
�10,S, �10,E(tS, t

�
S
)
)

(24)

�nerg ∼ N

(
�1 + �4,E ln(Reff ) + �10,S ln(VS30∕Vref ),

�1 + �4,E(tE, t
�
E
)◦(ln(Reff ) ln(Reff )

⊺)

+ �10,S(tS, t
�
S
)◦(ln(VS30∕Vref ) ln(VS30∕Vref )

⊺)
)

(25)

cov(fnerg k, fnerg l) = cov(c1, c1)

+ ln(Reff k)cov(c4,E(tE k), c4,E(tE l)) ln(Reff l)

+ ln(VS30 k)cov(c10,S(tS k), c10,s(tS l)) ln(VS30 l)

= �1 + ln(Reff k)�4,E(tE k, tE l) ln(Reff l)

+ ln(VS30 k∕Vref )�10,S(tS k, tS l) ln(VS30 l∕Vref )

(26)�nerg kl = Σd
i=1

xi k �i(ti k, ti l) xi l
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5.1.3 � Cell‑specific anelastic attenuation

The cell-specific anelastic attenuation was first proposed by Dawood and Rodriguez-Marek 
(2013) and then extended by Kuehn et al. (2019) and Abrahamson et al. (2019) as an approach 
to capture the systematic effects related to the paths. In this method, the domain of interest is 
divided into a grid of cells and each cell is assigned its own anelastic attenuation. For each 
recording, the ray path that connects a point on the rupture with the site is broken into cell-
path segments ( �Ri ) which are the lengths of the ray within each cell (Fig. 2). For a given 
recording, the total anelastic attenuation can be calculated by fatten,P = cca,P ⋅ �� where cca,P 
is vector containing the attenuation coefficients of all the cells.

Currently, there is no consensus on the origin point for the ray path. Dawood and Rod-
riguez-Marek (2013) used the epicenter, while Kuehn et  al. (2019) and Lavrentiadis et  al. 
(2021) used the closest point on the rupture to the site, as the length of that path is equal to 
Rrup , which is a common distance metric for anelastic attenuation in ergodic GMMs. Addi-
tional research is needed in this area to test different options for the origin of the ray path 
and also investigate if there is any magnitude dependence in the location of the representative 
point for finite-fault ruptures.

In GP, the cell attenuation can be modeled similarly to the other spatially varying non-
ergodic terms using a Truncated Normal as a prior distribution:

the cell attenuation is limited to be equal or less than zero to ensure the proper extrapolation 
of the GMM. In statistical software that does not include truncated Normal distributions, 

(27)�nerg = Σd
i=1

�i(ti, t
�
i
)◦(xix

⊺

i
)

(28)cca,P ∼ N(�ca,P,�ca,P(tC, t
�
C
))T(, 0)

Fig. 2   Schematic showing the 
calculation of the cell-path 
segments for the cell-specific 
anelastic attenuation. c

ca,P i
 is the 

anelastic attenuation coefficient 
and �R

i
 is the cell-path seg-

ment of the ith cell
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the cell-specific attenuation is modeled with a Normal prior, but at a postprocessing step it 
is checked that no or only a small number of cells have positive attenuation.

The mean of the prior distribution, �ca,P , controls the average anelastic attenuation of 
the cells, while the kernel function, �ca,P , controls their spatial correlation. In regions with 
sparse coverage, the cell-specific anelastic attenuation is close to �ca,P as there are not 
enough data to inform the posterior. In regions with significant coverage, the cell-specific 
anelastic attenuation deviates from �ca,P to capture the systematic path effects which influ-
ence the ground motion in those regions. The �ca,P can be either fixed to the anelastic atten-
uation of the ergodic GMM or be assigned its own prior distribution. The second option is 
computationally more involved but takes into account the re-weighting of the paths. In an 
ergodic GMM, the anelastic attenuation is controlled by the attenuation of the areas with 
high-path coverage; however, in the cell-specific anelastic attenuation, the mean attenu-
ation is determined at the cell level, the path coverage controls the mean and epistemic 
uncertainty of the individual cells, but it does not have a direct impact on the mean attenu-
ation of all cells, which is why the mean of the cell-specific anelastic attenuation and the 
ergodic anelastic attenuation can be different.

The kernel functions that were presented in Sect. 5.1.2 can also be used to model the 
spatial correlation of the cell attenuation. For instance, Kuehn et al. (2019) used the spa-
tially independent kernel function, while Lavrentiadis et al. (2021) used a combination of 
the exponential and spatially independent kernel function. Other approaches for modeling 
the spatial correlation of cell-specific anelastic attenuation are the conditional autoregres-
sive (CAR) and simultaneous autoregressive (SAR) models (Ver Hoef et al. 2018). These 
models have sparse precision matrices (i.e. inverse of covariance matrices) reducing the 
computational cost.

The prior distribution for the total anelastic attenuation can be derived from the prior 
distribution for the cell attenuation using the linear transformation properties of the Nor-
mal distribution:

where �� is a matrix with the cell-path segments of all recordings, the ith row of �� is 
equal to �� of the ith recording. The f atten,P prior distribution can be used in GP to make 
direct predictions for the median non-ergodic ground motion at new locations (Sect. 5.1.4).

5.1.4 � Prediction

The median non-ergodic ground motion can be predicted for the new scenarios either by 
first predicting the non-ergodic coefficients and then substituting them at the non-ergodic 
functional form or by predicting the non-ergodic ground motion directly. This choice 
depends on how the GPs are modeled. If the GMM terms are modeled as GPs explicitly, 
the first method is used. However, if the GMM terms are modeled as GPs implicitly (i.e. 
they have been integrated out in the likelihood function), the second method is used.

5.1.4.1  Prediction of non‑ergodic coefficients  The non-ergodic coefficient adjustments for 
the new scenarios can be predicted based on the hyperparameters and posterior distribu-
tion of the coefficient adjustments of the existing scenarios. Initially, we consider the case 
where the non-ergodic coefficient adjustments of the existing scenarios have zero epistemic 
uncertainty. The joint prior distribution between the non-ergodic coefficient adjustments of 
the existing and new scenarios is:

(29)f atten,P ∼ N(�� �ca,P,�� �ca,P(tC, t
�
C
) ��⊺)T(, 0)
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in which ��i are the non-ergodic coefficient adjustments of the existing scenarios, ��∗
i
 

are the non-ergodic coefficient adjustments of new scenarios, �i is the prior covariance 
between all pairs of existing scenarios ( �i kl = �i(tk, tl) ), �∗

i
 is the prior covariance between 

all pairs of new scenarios ( �∗
i kl

= �i(t
∗
k
, t∗
l
) ), and �i is the prior covariance between all pairs 

of existing and new scenarios ( �i kl = �i(tk, t
∗
l
)).

Because of the cross-correlation between the non-ergodic coefficient adjustments of 
the existing and new scenarios, described by � , the posterior distributions of �c∗

i
 can 

be predicted by ensuring that they are in agreement with �ci . A naive approach for 
that would be to generate multiple realizations of �c∗

i
 from the joint prior distribution 

(Eq. 30) and reject those that are inconsistent with �ci . The distribution of the accepted 
realizations �c∗

i
 would correspond to the posterior distribution of �c∗

i
 . Although this is 

theoretically correct, it would be computationally inefficient. In statistics, this can be 
performed easily by conditioning �c∗

i
 on �ci , which corresponds to predicting �c∗

i
 based 

on the values of �ci . The conditional distribution of a joint Normal prior distribution is 
also a Normal distribution:

with ��c∗
i
|�ci and ��c∗

i
|�ci being the mean and covariance of the posterior distributions of �c∗

i
 

given by (Rasmussen and Williams 2006):

In other fields where GP regression is used, one is typically interested only in the point-
wise uncertainty which means that the mean and epistemic uncertainty of �c∗

i
 can be calcu-

lated independently for each scenario reducing the computational cost. However, in PSHA 
it is necessary to calculate the full covariance for the new scenarios, as the spatial correla-
tion of �c∗

i
 , which described by the off-diagonal term of ��c∗

i
|�ci , needs to be included in the 

logic tree.
A more realistic case is for there to be some uncertainty in the estimation of the 

non-ergodic coefficient adjustments of the existing scenarios described by the posterior 
distribution ( p(�ci|y, x) ). This uncertainty can be propagated in the prediction of the 
non-ergodic coefficient adjustments of the new scenarios by predicting �c∗

i
 using all pos-

sible values of �ci and considering how likely each �ci is ( p(�ci|y, x) ). In statistics, this 
is defined as marginalization of �c∗

i
:

where the probability density function p(�c∗
i
|�ci) can be obtained from the conditional dis-

tribution in Eq. 31.
A closed-form solution for the posterior distribution of �c∗

i
 which includes the uncer-

tainty of �ci can be obtained if the posterior distribution of �ci is assumed to be Normal 
(Lavrentiadis et al. 2021):

(30)
[
��i
��∗

i

]
∼ N

([
0

0

]
,

[
�i �i

�
⊺

i
�

∗
i

])

(31)�c∗
i
|�ci ∼ N(��c∗

i
|�ci ,��c∗

i
|�ci )

(32)��c∗
i
|�ci = �

⊺

i
�

−1
i
�ci

(33)��c∗
i
|�ci = �

∗
i − �

⊺

i
�

−1
i
�i

(34)p(�c∗
i
|y, x) = ∫ p(�c∗

i
|�ci)p(�ci|y, x) d�ci
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where ��ci|y,x is the mean, and ��ci|y,x is the covariance of the posterior distribution of �ci . 
With this assumption, Eq. 34 results in a Normal distribution:

with the mean and covariance given in Eqs. (37) and (38), respectively (Bishop 2006).

The assumption that the posterior distribution of �ci is Normal is considered reasonable 
because in a GP regression all non-ergodic terms have Normal prior distributions. If the 
hyperparameters are fixed or follow Normal prior distributions, this assumption would 
be absolutely valid; however, because some of the hyperparameters are assigned different 
prior distributions, the posterior distribution of �ci may slightly deviate from this assump-
tion. For the prediction of �c∗

i
 , Kuehn (2021b) showed that this approximation gives con-

sistent results with Eq. 34 where the full posterior distribution of �ci is used.
The non-ergodic coefficients of the new scenarios ( c∗

i
 ) can be computed similarly to �c∗

i
 , 

however, the non-zero prior means needs to be considered:

where ��ci
 and ��c∗

i
 are the prior means of the non-ergodic coefficients for the existing and 

new scenarios.
Prediction of non-ergodic ground motion
An alternative approach to predict the median non-ergodic ground motion for the new 

scenarios, f ∗
nerg

 , is to directly obtain it from the ground-motion observations of the excit-
ing scenarios, y (Landwehr et al. 2016). The main difference between this approach and 
the previous approach is that y includes an aleatory component which must be considered 
in the predictions. The joint prior distribution between ground-motion observations of the 
existing scenarios and median non-ergodic ground motion of the new scenarios is:

where �f  is the prior mean of the ground-motion of the existing scenarios, and �∗
f
 is the 

prior mean of the ground-motion of the new scenarios. The �f  , �∗
f
 , and �f  are the prior 

covariance for the epistemic uncertainty of the ground-motion between all pairs of exist-
ing, new, and existing/new scenarios, respectively, and �2

0
� and �2

0
� are the covariance for 

the within-event and between-event aleatory variability.
The �f  and �∗

f
 depend on how the non-ergodic GMM is being developed. If it is based 

on a backbone ergodic model, �f  and �∗
f
 are equal to f erg for the existing and new sce-

narios. That is, without any knowledge of the non-ergodic effects, both the mean of the 
observations and non-ergodic ground motion are equal to the means the ergodic ground 

(35)�ci|y, x ∼ N(��ci|y,x,��ci|y,x)

(36)�c∗
i
|y, x ∼ N(��c∗

i
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motion. However, if the non-ergodic GMM is developed from the beginning, �f  and �∗
f
 are 

equal to zero.
The prior covariance for the epistemic uncertainty of the ground motion can be 

obtained by combining the kernel functions of the non-ergodic coefficients as shown 
in Sect.  5.1.2, �f kl = Σd

i=1
xi k �i(ti k, ti l) xi l . Similarly, �∗

f kl
= Σd

i=1
x∗
i k
�i(t

∗
i k
, t∗
i l
) x∗

i l
 , and 

�f kl = Σd
i=1

xi k �i(�k, �
∗
l
) x∗

i l
 . The prior covariance for y includes �2

0
� and �2

0
� because the 

deviation of ground-motion observations from �f  is the result of both aleatory variabil-
ity and epistemic uncertainty. There is not aleatory variability in covariance between the 
ground-motion observations of the existing scenarios and the mean ground-motion of the 
new scenarios as any correlation between the two comes from the systematic non-ergodic 
terms. Similarly, the covariance of f ∗

nerg
 does not include an aleatory component, as it cor-

responds to the median prediction of the non-ergodic ground motion.
Once the joint prior distribution is defined, the median non-ergodic ground motion can be pre-

dicted by expressing it as a conditional distribution on the ground-motion observations:

with the mean and the covariance of the conditional distribution given in Eqs. 43 and 44.

5.2 � Model extrapolation constraints and epistemic uncertainty

In developing any type of GMM—ergodic or non-ergodic—attention must be paid to its proper 
extrapolation. That is because GMMs are typically derived on datasets primarily composed of 
small-to-moderate earthquakes at medium-to-large distances, but in PSHA, they are applied to 
large earthquakes at short distances. For that, the trends in the dataset are insufficient to guide the 
extrapolation of a GMM and additional constraints need to be introduced.

These constraints can be imposed both on the model parameters as well as the model 
hyperparameters. Two common constraints for the model parameters are related to the 
magnitude saturation at short distances and anelastic attenuation.

Full magnitude saturation at short distances means that, close to the fault, the ground motion 
does not scale with magnitude. Similarly, over saturation with magnitude means that, close to the 
fault, the ground motions reduce as the magnitude increases. This is a controversial issue because 
empirical datasets, such as NGAWest2, show trends of oversaturation for large magnitudes at short 
periods and small distances, but the results of numerical simulations support positive magnitude 
scaling (Collins et al. 2006; Abrahamson and Silva 2007). Due to the limited number of empirical 
data from large events, and practical design purposes most GMMs do not allow oversaturation 
and impose full saturation as a lower limit on the regressions. One such practical consideration 
is that, if oversaturation is allowed, a structure would need to be designed not only for the largest 
magnitude but for the smaller events too as they could lead to higher seismic demands. This is 
straightforward to model in PSHA, but it becomes more complicated when selecting conservative 
deterministic scenarios.

In a GMM, the magnitude saturation of short periods at zero distance from the rupture is 
controlled by the combination of the linear magnitude scaling coefficient, the geometrical 

(42)f ∗
nerg

|y ∼ N(�f ∗
nerg

|y,�f ∗
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nerg

|y = �∗
f
+ �

⊺

f
(�f + �2

0
� + �2

0
�)−1(y − �f )

(44)�f ∗
nerg

|y = �
∗
f − �

⊺

f
(�f + �2

0
� + �2

0
�)−1�f



5141Bulletin of Earthquake Engineering (2023) 21:5121–5150	

1 3

spreading coefficient, the magnitude scaling coefficient for the geometrical spreading, and 
the pseudo-depth coefficient in geometrical spreading. In the example GMM provided in 
Eq. 1, the coefficients control magnitude saturation are: c2 , c5 and c6 . Full magnitude satu-
ration at zero distance is achieved by:

With this functional form, it is easy to derive a non-ergodic GMM with a full saturation 
constraint, as the c2 , c5 , and c6 coefficients are treated as fixed terms. However, it may be 
more difficult to impose this constraint with other common functional forms. For example, 
Chiou and Youngs (2014) (CY14) uses a different functional form, and full saturation is 
achieved by:

where c2 is the linear magnitude scaling, c4 is the near-source geometrical spreading, and c6 
controls the magnitude dependence of the geometrical spreading. In this functional form, 
it is harder to include a spatially varying non-ergodic geometrical spreading as the value of 
c4 would also affect the magnitude saturation. A non-ergodic GMM developer should con-
sider factors like this when deciding on the functional form and statistical software to use.

The anelastic attenuation is intended to capture the reduction of the amplitude of the 
seismic waves due to the dissipation of energy as they travel through the earth’s crust; thus, 
the anelastic attenuation coefficient or cell-specific anelastic attenuation must be negative 
to make physical sense. However, it should be noted that due to the correlation between 
the linear distance term and the geometrical spreading term, the physical interpretation of 
the linear distance term as anelastic attenuation depends on using a realistic geometrical 
spreading term. Similarly to the magnitude saturation, the GMM developer should either 
use statistical methods and software that allows them to impose an appropriate constraint 
on these terms, or if that is not feasible to ensure that the model has reasonable distance 
scaling when used in forward calculations.

Constraints can also be applied to hyperparameters to impose a desired model behavior. 
For instance, if a VCM GMM contains both a spatially varying site constant and a spatially 
varying VS30 coefficient as a function of the site coordinates, it may be deemed reason-
able to constrain the correlation length of the site constant to be smaller than the correla-
tion length of the VS30 coefficient. That is because, the repeatable effects related to the site 
amplification due to the underlying geologic structure, which the VS30 intends to model, are 
broader than the repeatable effects related to the site-specific site amplification. Addition-
ally, such a constraint will limit any trade-offs between the two coefficients as they would 
capture systematic site effects at different length scales.

The epistemic uncertainty of a non-ergodic GMM quantifies the confidence in estimating 
the systematic source, path, and site effects; however, it does not quantify the confidence in the 
model extrapolation. The latter is typically expressed by the model-to-model epistemic uncer-
tainty, which reflects the range of scientifically defensible approaches for developing a GMM. 
In PSHA, this uncertainty is typically captured either by using multiple GMMs or by shifting 
the median estimate of a base GMM. As an example of the second approach, Abrahamson 
et al. (2019) incorporated the model-to-model epistemic uncertainty into a non-ergodic PSHA 
study for California by estimating the epistemic uncertainty and correlation of the coefficients 
of a common GMM functional based on the NGAWest2 GMMs and propagating them into 
the ground-motion prediction.

(45)c5 =
−c2

ln(c6)

(46)c2 = −c4 c6
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Another source of model-to-model epistemic uncertainty for non-ergodic GMM is related 
to the different statistical approaches and decisions in modeling the non-ergodic terms. For 
example, different covariance functions (e.g. exponential, squared exponential) can be used to 
model the spatially varying non-ergodic terms or even entirely different modeling approaches 
(e.g. GP regression, ANNs). Such choices are expected to lead to bigger differences in areas 
with sparse data.

Different intensity measures are affected differently by magnitude scaling. PSA, especially 
at short periods, is sensitive to the entire frequency content of the ground motion (i.e. spectral 
shape). This can be an issue when developing a GMM predominately with small earthquakes 
as their frequency content is different from the frequency content of large events which are 
more common in PSHA, potentially resulting in incorrect scaling coefficients. A solution to 
this is developing a GMM for an intermediary intensity parameter (IP) that is not sensitive to 
spectral shape and using a transformation to convert the prediction to PSA. One such example 
is Lavrentiadis and Abrahamson (2021) where used EAS was used as an intermediary IP and 
Random vibration theory was used to convert EAS to PSA.

5.3 � Other methods for non‑ergodic models

The previous sections provided an in-depth discussion on developing non-ergodic GMMs 
using Gaussian process. Although it has many useful properties, it is not the only method for 
developing non-ergodic GMMs. This section provides a brief review of other methods that 
have been used for this task.

Sung and Lee (2019) built more than 700 single-station GMMs for the Taiwan region. 
Single-station GMMs do not include non-ergodic site terms, instead, they are independently 
regressed with ground motions recorded at a single station. Kriging interpolation is used to 
estimate the spatial distributions of the single-station GMM coefficients and aleatory terms at 
new locations. This is a simpler approach for developing a partially non-ergodic GMM, but it 
cannot provide estimates of the epistemic uncertainty at the new locations as VCM GP GMM 
does.

Caramenti et  al. (2020) used a multi-source geographically-weighed regression (MS-
GWR) to develop a non-ergodic GMM for Italy. It is similar to GP in that the spatial correla-
tion of the non-ergodic terms is also captured through kernel functions; however, it is more 
efficient as it is based on the least-squares regression. The main shortcoming of this approach 
is that the aleatory variability is described by a single term so it is unable to capture the cor-
relation between the recordings of the same earthquake.

Okazaki et al. (2021) developed a single-station GMM for PGA using an ANN trained on 
strong-motion data from the KiK-net seismograph network in Japan. In this study, the system-
atic site effects were expressed as a function of site ID and estimated through the ANN fitting.

6 � Concluding remarks

A summary of different methods for the development of non-ergodic GMMs is presented 
in this paper. An emphasis is placed on methods that use GP as it offers a convenient 
framework for expressing spatially varying non-ergodic terms. The cell-specific anelastic 
attenuation can be combined with GP to model systematic effects related to the path. A 
simple example of the steps for developing a non-ergodic GMM using a synthetic dataset 
and making predictions at new locations is included in the electronic supplement.
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The use of non-ergodic GMMs in PSHA is a promising development, as the reduction 
in aleatory variability can have a large impact on the seismic hazard at large return periods, 
and improve the accuracy of the site-specific hazard. In PSHA applications, the reduction 
of the aleatory variability should be combined with the change in the epistemic uncertainty 
due to the uncertainty in the estimates of the non-ergodic terms in addition to the epistemic 
uncertainty in the extrapolation to large magnitudes and short distances of the underly-
ing ergodic GMMs. There is a higher computational cost associated with the development 
and application of non-ergodic GMMs. This limitation can be overcome by utilizing high-
performance computers or efficient approximation methods. For example, INLA (Rue et al. 
2009) provides an efficient method for estimating the non-ergodic terms, and Lacour and 
Abrahamson (2019) provide an efficient approach for propagating non-ergodic effects in 
PSHA. Additionally, there is an ongoing effort by the Natural Hazards Risk and Resil-
iency Research Center at the Garrick Institute for the Risk Sciences at the University of 
California, Los Angeles to verify various software packages for developing non-ergodic 
GMMs which is expected to facilitate the adoption of non-ergodic GMMs. The results of 
that effort will be published in the near future.

As larger datasets become available, new non-ergodic GMMs are anticipated to con-
tinue adding spatially varying non-ergodic terms to capture more systematic site, path, and 
source effects. With this, non-ergodic GMMs will start to mimic the spatial resolution of 
numerical simulations with 3-D crustal structures. Numerical simulations can also be used 
to test the decisions and assumptions associated with non-ergodic GMM scaling (Meng 
and Goulet, In press). There is still uncertainty in the repeatability of source effects for a 
given region or for a single fault. In particular, with the use of small magnitude events to 
constrain the non-ergodic terms, the scaling of the non-ergodic source terms from small 
magnitudes to larger magnitudes has not been validated. The variability due to fault physics 
complexity may inherently be irreducible at the time scales we are working with, even in 
consideration of fault maturity information, which is quite limited. In that case, non-ergodic 
GMMs will have a limited improvement in the accuracy of source effects. Similarly, path 
effects constrained by small events are theoretically simpler than for large events (waves 
emitted from different points of the fault and traversing a large volume to a site where 
their effect is aggregated). Developments in three key areas can improve non-ergodic mod-
eling: (a) earthquake physics to help with better prediction of source effects, (b) numerical 
simulations to quantify the differences in path effects of large earthquakes with extended 
ruptures and small earthquakes with point source ruptures, and (c) continued collection 
of recorded motions to further constrain repeatable effects over large areas. Future studies 
should also evaluate the stability of hyperparameters between different areas to determine 
if a set of generic hyperparameters can be used. This will allow the development of non-
ergodic GMM for regions with fewer recordings, as larger datasets are required to estimate 
the model hyperparameters than to estimate non-ergodic terms. Finally, even in consid-
eration of their current limitations, non-ergodic GMMs such as those described here have 
advantages over ergodic (or global) GMMs in increasing the accuracy of PSHA estimates 
and are expected to remain a useful tool to this end.
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7 � Glossary of proposed notation

7.1 � Acronyms

IP	� Intensity parameter
PSA	� Pseudo spectral acceleration
FAS	� Fourier amplitude spectra
EAS	� Effective amplitude spectra
GMM	� Ground motion model
VCM	� Varying coefficient model
MLE	� Maximum likelihood estimation
GP	� Gaussian Process
RVT	� Random vibration theory

7.2 � GMM input variables

M	� Moment magnitude
Rrup	� Closest distance to the rupture plane
Rx	� Horizontal distance from the top of the rupture measured perpendicular to the fault 

strike
Ry0	� Horizontal distance off the end of the rupture measured parallel to strike.
��	� Cell-path segments lengths of the anelastic attenuation cells cells
VS30	� Time average shear wave velocity at the top 30m
Vref 	� Reference VS30 for the linear site amplification
z1100	� Depth to 1100m/sec shear-wave velocity
Dip	� Fault dip angle.
FRV	� Reverse fault scaling factor
FN	� Normal fault scaling factor
fNL	� Non-linear site amplification
fHW	� Hanging wall scaling

7.3 � Model parameters

ci	� Ergodic GMM coefficient
ci,X	� Non-ergodic GMM coefficient where X can be S for systematic site effects, P for 

systematic site effects, or E for systematic site source
�ci,X	� Non-ergodic adjustment to GMM coefficient
cca,P	� Cell specific anelastic attenuation coefficients
�S2S	� Total site-to-site non-ergodic term
�P2P	� Total path-to-path non-ergodic term
�L2L	� Total Source-to-source non-ergodic term
�Be	� Between-event aleatory term
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�Wes	� Within-event aleatory terms
�WSes	� Within-event within-site term of a partially non-ergodic GMM
�B0

e
	� Between-event term of a non-ergodic GMM

�WS0
es

	� Within-event within-site term of a non-ergodic GMM

7.4 � Model hyperparameters

�i,X	� Correlation length in the kernel function of ci,X or �ci,X
�i,X	� Scale/Standard deviation of the ci,X or �ci,X kernel function
�S2S	� Standard deviation of �S2S
�P2P	� Standard deviation of �P2P
�L2L	� Standard deviation of �L2L
�	� Standard deviation of �Bes

�	� Standard deviation of �We,s

�0	� Standard deviation of �B0
e

�0	� Standard deviation of �WS0
e,s

7.5 � Other symbols

y	� Response variable of GMM
x	� Array of GMM input variables (e.g. Rrup , VS30)
�	� Correlation coefficient
�	� Array of all GMM parameters
�hyp	� Array of all GMM hyperparameters
�i(t, t

�)	� Kernel function of ci,x or �ci,x
tE	� Earthquake coordinates
tRup	� Coordinates of the closest-point on the rupture to each site
tS	� Site coordinates
tMP	� Coordinate of mid-point between source and site
tC	� Cell coordinates
�(y)	� Mean estimate of the y ground-motion parameter
�(y)	� Epistemic uncertainty of y ground-motion parameter
�(ci)	� Mean estimate of ci coefficient
�(ci)	� Epistemic uncertainty of ci coefficient
̂∗	� New scenarios in GP predictions (e.g. t∗

E
 corresponds to location of new 

earthquake)
ferg	� Median ergodic ground motion function.
fnerg	� Median non-ergodic ground motion function.
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