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ABSTRACT The high voltage power transformer is the critical element of the power system, which requires
continuous monitoring to prevent sudden catastrophic failures and to ensure an uninterrupted power supply.
The most common failures in the transformer are due to partial discharge (PD) in electrical insulations
which are the results of the insulation degradation over time. Different approaches have been proposed to
monitor, detect, and locate the partial discharge in power transformers. This paper reviews and evaluates
the current state-of-the-art methods for PD detection and localization techniques, and methodologies in
power transformers. Detailed comparisons of PD detection techniques have been identified and discussed in
this paper. The drawbacks and challenges of different partial discharge measurement techniques have been
elaborated. Finally, brief reviews of PD denoising signals, feature extraction of PD signals, and classification
of partial discharge sources have been addressed.

INDEX TERMS Power transformer, partial discharge, condition monitoring, fault diagnosis, feature
extraction.

I. INTRODUCTION

The power transformers are the utmost fundamental part of
the power system utilities [1]. The performance and con-
stancy of the power system utilities are directly dependent on
the power transformer [2]. Therefore, its health is essential for
the power system’s stability and reliability. Any failure may
result in high capital loss with disruption of power supply [3].
The power transformers are exposed to different stress con-
ditions in the form of electrical, mechanical, environmental,
and thermal stress. These stresses are potential sources for
different internal and external faults in the power transformer.
The majority of these faults occur due to the impending
deterioration of the insulation system [2]. To avoid the electric
supply disruption, condition monitoring is performed. Mon-
itoring is a form of predictive maintenance that determines
the operating state and the assessment of the functionality of
the power transformer. This helps in preventing possible fail-
ures by taking early action through scheduling maintenance
tasks [4].
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The power transformer during the stage of operation may
undergo various types of faults with different levels of
severity [5]. Therefore, proper examination for detecting
the transformer’s health level is essential for the continuous
operation of the electrical utilities. The condition monitoring
systems of a power transformer can be classified into two
main categories; online and offline. The online condition
monitoring methods are preferred over offline methods even
though the reliability of offline testing is higher [2]. Offline
condition monitoring methods are usually performed during
the manufacturing phase of the power transformer to examine
the manufacturing defects, which are present in the form
of voids, cracks, and bubbles in the insulation [6]. Offline
testing methods include advanced electrical measurements,
which are efficient enough to examine the PD activities.
However, offline monitoring lacks the actual electrical and
thermal conditions of the insulations that are different during
the operating phase of the transformer [7].

The power transformer is a complex structure experienc-
ing faults, which are categorized into internal and external
faults. Fig. 1 shows the classification of fault in the power
transformer [8]. Global statistics show that 70% - 80% of
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FIGURE 1. Classification of fault in power transformer.

transformer’s faults are internal faults [9]. The initiation
of internal fault starts with the trivial discharge inside the
transformer insulation, which is a transient state. Further,
the trivial value of the discharge in the insulation can grow
rapidly and lead to a complete breakdown. Internal faults
arise due to fault in different areas which include the wind-
ing (axial displacement, buckling deformation, disc space
variation, and short circuit turns) [10], tank, insulating oil
(oxidation, water penetration, dissolution due to temperature
rise, and acidity) [11], core (core insulation failure, shorted
lamination) [12], terminal (open leads, loose connections,
short circuits) [13], cooling system, and tap changer (mechan-
ical, electrical, short circuit, overheating) [14]. External
faults occur due to several reasons including the external
short-circuit of the power system, overflux, and overload.
Fig. 2 shows different areas of fault location for transformer
which are located in the substation (> 100 kV) [15].

FIGURE 2. Transformer failure for transformer at substation
(>100 kV) [15].

The power transformer fault detection and condition mon-
itoring are crucial to increase the electric system reliability.
Several common online condition monitoring techniques are
used. These include dissolved gas analysis (DGA) [16], [17],
partial discharge measurement [18], power factor measure-
ment [19], frequency response analysis (FRA) [11], vibra-
tion and acoustic analysis [20], dielectric spectroscopy [21],
differential protection [22], transformation ratio [23], and
insulation resistance [24]. Among these techniques, partial
discharge monitoring can effectively diagnose the trans-
former’s condition with the possibility of advancement in the
future.

PD is contemplated as the root cause of the insula-
tion degradation where a complete breakdown can lead to
transformer failure [25], [26]. Different PD analysis tech-
niques for condition monitoring are performed for PD detec-
tion, identification, and diagnosis [27]. Several techniques
were developed to detect PD including electrical detec-
tion [28]–[32], electromagnetic detection [26], [33]–[37],
optical detection [38]–[40], acoustic detection [41]–[45], gas
presence detection [16], [46]–[48], and combinational meth-
ods [41], [49], [50]. PD sources signals are received through
a detector and are further analyzed to identify the locations
and severity of insulation defects. The complex geometry
of power transformers with different noise sources becomes
quite challenging to identify the severity of PD defects and
localization. The external noises are in the form of natu-
ral sources such as electrical storms, electrostatic interfer-
ence, electromagnetic interference (through current cables),
radiofrequency interference (from radio signals), and cross
talk (cables separated by small distance). Whereas, the inter-
nal noises are mainly caused by the vibrations of the trans-
former core andwindings. The PD detection system is desired
to precisely identify the severity and locate the defects.
The detection system process includes the denoising pro-
cess of PD activity, feature extraction, PD classification, and
PD clustering methods.

The main contributions of this paper are as follows:
• A brief description of the power transformer, its
advances, and design for the improved insulation.

• Review of state-of-the-art techniques of power trans-
former faults, with a focus on various power transformer
PD forms types, detection, and measurement in power
transformer during the operating state.

• A comprehensive insight into various PD diagnostics
techniques for different types of defects in power trans-
former during operation.

• Further, the common techniques for denoising, feature
extraction, classification, clustering of PD data for local-
ization, and severity of PD source with current advance-
ment have been discussed.

The paper is organized as follows. Section II introduces
partial discharge in the transformer. Section III provides PD
detection techniques for the transformer. Section IV gives the
most efficient PD diagnostics techniques used in the power
transformer. The information regarding different denoising
techniques is discussed in Section V. PD feature extraction,
PD classification, and PD clustering are comprehensively
discussed in Section VI, VII, and VIII, respectively. Finally,
section IX concludes the paper.

II. PARTIAL DISCHARGE IN POWER TRANSFORMERS

PD is the electrical breakdown in the insulation that does
not completely bridge the electrodes resulting in localized
electric stress. This process is a slow insulation degradation
and reducing the insulation life of the power transformer [51].
PD arises when there is a higher electric field than the thresh-
old value causing a partial breakdown of the surrounding
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medium [52]. The transient behavior of the PD has the prop-
erty of pulsating currents of duration between nanoseconds to
microseconds [53]. PD discharge level cannot always justify
the severity due to the possibility of rapid treeing phenomena.
In general, the complete breakdown destroys the insulator,
which does not retain any information regarding PD type [53].
Therefore, it requires continuous monitoring to resolve the
issues in the early stage [54], [55]. Each type of defect has its
distinguished degradation properties whose PD pattern can be
used to figure out the insulation condition [56].
PD phenomenon has a stochastic behavior due to the

unpredictable nature of pulsating PD occurrences. Some steps
of the PD phenomenon can be predicted statistically, but not
accurately due to its complexity. PD pulse properties such as
amplitude, shape, and time of occurrence can examine PD
phenomena keeping into consideration their random behav-
ior. Stochastic behavior of PD can be due to the probability
of introduction of the initial electrons, region of electric
field strength, development of discharge in defects, ion space
charge generation rate, variation in the gas constitution and
density, the existence of ionizing radiation, and formation of
PD pulse from the remainder of previous PD pulse [57].
Partial discharge in a power transformer can be categorized

into five types: internal discharge, surface discharge, corona
discharge, electrical treeing, and barrier discharge [58]. Inter-
nal discharge occurs due to the formation of cavities inside the
insulator during the manufacturing process or due to aging.
Also, due to higher voltage/electric stress in the cavities
as compared to the surrounding medium. PD occurs if the
voltage stress inside the cavity is higher than the inception
voltage. Surface discharge starts at the high electric field
region and then propagates to the lower stress region. The
main cause of the surface discharge is due to the fact that
dielectric strength at the interface of the insulations is less
than the insulation. The surface discharge may occur is dif-
ferent areas which includes the cable terminal, bushings,
line-insulator surface. Corona discharge can occur at the
sharp conducting points, high voltage bare conductors, and
even sharp points at ground potential in air and transformer
oil. Electrical treeing may occur at a high electric field region
inside the dielectric material due to defects in the form of
a gaseous void, sharp electrode-edge, or metallic particle.
The voids under high electric stress generate by-products
(ultra-violet light and ozone gas) that decompose the insulator
and produce new voids. The process of voids generation is
repeated, creating weak points and form the electrical tree
that finally leads to the breakdown. Electrical treeing can also
be formed on the surface of the dielectric under high electric
field stress due to contamination which causes flashover on
the surface. Dielectric barrier discharge generally occurs due
to the presence of insulators (generally silica, silica glass,
ceramics, etc.) between the electrode pair [58].
The occurrence possibilities of PDs in the power trans-

former can be lowered by better design of the insulation
system, reducing manufacturing defects in the drying, and
impregnation process. Complete elimination of cavities in

the insulation system is an impossible task since an ideal
insulator cannot be manufactured.

Different types of defects causing PD can be present within
the power transformer oil-paper insulation. The defects are
(a) voids formation due to the separation of layers of paper
wrapping the windings, where oil impregnation is absent.
(b) Moving metallic particles in the insulating oil due to the
aging process of metallic tanks and manufacturing flaws.
(c) Voids formation in the bushings due to environmental
effects, humidity, and surge voltage (d) Gas bubbles in the
insulating oil due to aging, impurities in oil, and trapped
moisture. (e) Trapped moisture in solid insulation during
the manufacturing process. (f) The localized static electric
charge due to the flow of oil, and the increase of the electric
field resulting in the initiation of PD. (g) Tracking in solid
insulation [59].

Different physical and chemical processes in defects of the
insulation system provide the foundation for PD monitoring
techniques. PD investigation started in the 1960s, and for
a decade, the research was performed to study void dis-
charge phenomena [60]. Further, in the late 1970s satisfactory
advancement took place towards distinct PD mechanisms
such as treeing, flashover, sparks, avalanche, and stream-
ers. [61]–[63]. The physical events occurring due to PD in
the insulation systems of the power transformer are [64]:
(a) Generation of mechanical vibrations results in the creation
of acoustic waves in the ultrasonic region. (b) Emission of
electromagnetic waves in the ultra-high frequency (UHF)
region. (c) Ozone and nitrogen-based oxide formation due
to a chemical reaction. (d) Emission of thermal and light
energy [64].

Recently, data analytics and sensing technology are cre-
ating possibilities for the advancement of the auto-detection
of PDs through PD monitoring systems [65]–[67]. A typical
PD monitoring system comprises a PD signal collection unit,
a feature extraction unit, and a data analysis unit. PD signal
collection unit encompasses sensors designed to sense the
physical phenomena of PD, which emits energy of different
kinds. PD signals from the detectors can be represented into
two different patterns, which are termed as time-resolved
partial discharge pattern (TRPD) and phase-resolved partial
discharge pattern (PRPD [68]. PRPD represents the ϕ- q-n
waveform pattern, where ϕ, q, and n are the PD pulse phase
angle, the amplitude of the apparent charge or discharge volt-
age, and the number of pulses, respectively. TRPD signifies
the q-t waveform, where ‘t’ is the time of the waveform and
‘q’ is the same parameter as of PRPD. PRPD’s most common
illustration is the phase window method, which splits the
power cycle angle of 360◦ into a smaller phase window for
feature generation [69]. The feature extraction for the PD
signals unit extracts the momentous qualities (features) from
the raw data [70]. Further, these features are used in the PD
data analysis unit, which is generally furnished with pattern
recognition methods such as artificial neural network, fuzzy
clustering, and expert system for distinguishing PD from
noise or source of PD and its location [71], [72].
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FIGURE 3. Partial Discharge detection techniques.

III. PD DETECTION TECHNIQUES

PDs consist of different physical phenomena having dis-
tinguished characteristics mainly electromagnetic waves,
current pulses, heat, vibrations, and acoustic waves.
[20], [73]–[75]. PD detections and measurements are feasible
due to the distinguished physical phenomena, which can
be allotted into two groups: electrical and non-electrical
methods. Fig. 3 shows different types of PD detection tech-
niques for power transformers. This section provides a brief
description of the measurement techniques.

A. ELECTRICAL (EE) DETECTION METHOD

EE detection methods apply the current pulse generated sig-
nal detection method. The circuit is directly connected to the
testing region where PD activity is present and the current
pulse is detected [76]. The International Electrical and Elec-
tronics Engineers (IEEE) and the International Electrotech-
nical Commission (IEC) adopt this method [77]. When using
this method, the level of charge due to PD is calculated to
identify the condition level of insulation. The International
Council on Large Electric Systems (CIGRE) proposed sur-
veying the available detection systems for PD in power trans-
formers [78]. The common electrical detection approaches
used for condition monitoring of power transformers are
indirect measurement circuit with external coupling capac-
itor and coupling capacitor through bushing taps, as shown
in Figs. 4(a) and 4(b) [79], [80]. In Fig. 4(a), the indirect mea-
surement test is performed, where the coupling capacitor (Ck)
is kept in a parallel configuration with the tested insulation
system capacitance (CA). The apparent charge is calculated
by the PD measurement device attached to the measuring
impedance (ZM).

For online testing, this method is not used due to a bulky
high voltage coupling capacitor. But, if the bushings tap is
available on the power transformer, as shown in Fig. 4(b),
online testing can be conducted. Currently, the development
methods are not efficient enough to locate the PD activities

FIGURE 4. (a) IEC 60270 based indirect measurement circuit using
external coupling capacitor. (b) Coupling capacitor through bushing
taps [79].

as online testing is prone to electromagnetic interference but
is sufficient for offline testing (eg. routine tests of manufac-
tured products or pre-commissioning routine tests) [81], [82].
Nevertheless, this method provides indications of the proper
understanding of the insulation condition.

B. ELECTROMAGNETIC DETECTION METHOD

The electromagnetic (EM) method during the initial
investigation showed that at a fixed PD location and
constant EM signal propagation, the linear correlation
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between the PD charge and the possible signal sources can
be obtained [83], [84]. The EM method was first introduced
by W. R. Rutgers for the power transformer in 1997 [85].
Antennas such as conical, spiral, and Vivaldi are used as
sensors for ultra-high frequency (UHF) detection [26], [86].
UHF sensors are actively researched due to their advantages
such as resistance to low-frequency signals, the negligi-
ble effect of noise due to internal transformer construc-
tion by implementing denoising techniques and removing
white noise, and corona-free pulse disturbance [33], [87].
UHF detection is affected by radio interference and switching
events. The hindrance can be eliminated by careful denoising
techniques, which are illustrated in section V. The major
challenge for the implementation of UHF sensors is the cal-
ibration process since the measured amplitude is dependent
on a variety of elements.
In [88], the authors examined the effect of different

PD types on UHF calibration in a power transformer whose
circuit diagram is shown in Fig. 5. PD sources examined are
in the form of corona discharge, internal discharge, surface
discharge on polyethylene, surface discharge on pressboard,
and void discharge. Six drain valves help to install differ-
ent UHF probes at different locations. The authors in [88]
introduced the best possible detection frequency range to
measure the UHF signal concerning PD apparent charge.
Also, they illustrated the big challenge to reduce calibration
error due to active transformer parts thereby, it was ineffi-
cient to use the UHF probe. However, the maximum charge
estimation method was proposed where the least feasible
ratio between the UHF quantifier parameter and IEC apparent
charge is achieved in the measurement performed in the
laboratory [88].
Different types of current transformers like Rogowski coil,

high-frequency current transformer (HFCT), and radiofre-
quency current transformer (RFCT) have been extensively
explored as sensors for the PD detection in power trans-
former [89]–[91]. The EM method can be used for localizing
multiple PDs and identifying individual PD sources through
feature extraction and de-noising techniques.

C. ACOUSTIC EMISSION (AE) METHOD

AE in the power transformer can be produced by amechanical
explosion due to the vaporization of oil near the vicinity of the
streamer, electrical arc, and mechanical vibration [92]. The
signals are in the form of pressure waves with unique charac-
teristics for the distinct AE source and can be used to localize
the AE source by the detection of ultrasonic signals with a
frequency ranging from 40 kHz to hundreds of kHz [93], [94].
However, the acoustic PD signals can be affected by the
high-frequency signals which can be removed by denoising
techniques. The advantages of having no EM interference and
at the same time having an economically friendly technique,
have driven the AE method as the most applicable technique
for power transformers. Fig. 6 represents the block diagram of
the power transformer recording system for the detection of
AE signals from PD, which is implemented during the normal

FIGURE 5. Circuit diagram to examine the impact of different types of PD
on UHF calibration in power transformer [88].

FIGURE 6. Power transformer recording system for the detection of
AE signals from PD.

operation of the power transformer [95]. Broadband piezo-
electric transducers are common transduction elements for
many ultrasonic systems. These are fixed on the transformer
tank through a magnetic holder for detecting AE signals. The
AE signals further undergo amplification, filtration process
and are finally fed and recorded by the AE analyzer.

The AE method can be used for detecting multiple
PD sources [93]. To overcome the incapability of detection
of PD level and calibration, the AE method is combined with
other methods such as UHF, optical detection, and electrical
detection. The drawbacks of this method are the complex
behavior of acoustic emission, low intensity detected sig-
nals, and high price. AE detection devices include micro-
phones [96], piezoelectric transducers [93], accelerometer,
fiber optic (FO) sensor [93], [97]. Among these AE detection
devices, Fiber Optic sensors provide superior results due to
wide acoustic field detection and improved signal-to-noise
ratio (SNR). By denoising and optimization techniques, noise
due to internal transformer design can be eliminated, and
multi-PD sources can also be detected. However, the main
problem of the AE technique is the helplessness of PD source
localization in the transformer winding due to rapid signal
attenuation by passing through different mediums [98].

D. GAS PRESENCE METHOD

Dissolve gas analysis utilizes the concept of detection of
gas es released due to the degradation of the transformer
oil and cellulose insulation [99]. Degradation of transformer
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oil results in the liberation of gases in the form of hydrogen
(H2), methane (CH4), ethane (C2H6), acetylene (C2H2), and
ethylene (C2H4). While cellulose insulation mainly releases
gases such as carbon monoxide (CO) and carbon dioxide
(CO2). TheDGA is limited to offline testing in the form of gas
chromatography [100] and air circulation pumpmethod [101]
since this method is time-consuming. The air circulation
pump method is a type of hydrogen detection system where
hydrogen is detected by the circulation effect of the air pump.
The online testing is developed are mainly in the form

of hydrogen detection [102], photoacoustic spectroscopy
(PAS) [103], fiber Bragg grating (FBG) sensor [102],
oil-immersed sensors [104], and membrane-based tech-
nique [105]. A typical gas chromatography system is shown
in Fig. 7 [106], [107]. The injection port vaporizes the oil
sample. The formed gases, fed into the column, contain
lighter gases in the form of argon, helium, nitrogen, and
hydrogen. Each gaseous component is filtered out by the
column individually based on the retention time and comes
into contact with the heat detectors [107]. The detected PD
signals are then recorded and plotted with the data acquisition
system creating chromatograms. The identification of the
gases is performed based on the concentration of the gas and
retention time. Generally, hydrogen gas detection is preferred
over other detections due to better accuracy. During over-
heating and discharges, if the hydrogen gas level rises above
the warning value, the internal insulations need to be diag-
nosed [108]. Several types of research have employed FBG
sensors inside the tank with the normal operating temperature
(60◦C to 90◦C) for detecting the hydrogen gas concentration.
This shows a promising future due to non-interferences from
other gases in addition to the high sensitivity of hydrogen
gas detection at 80◦C [109]. Also, enhanced FBG sensors
(Pd-capped Mg–Ti thin-film-based hydrogen sensor) have
been developed which show sensitivity at a broader range
of temperature (10◦C to 80◦C), having considerably higher
sensitivity than the conventional FBG [110].

E. OPTICAL METHOD

The optical method can become a support tool for detect-
ing the PD activities in power transformer oil. Researchers
have carried out different methods for the PD analysis
through the light detection method for transformer oil/paper
insulation. Common PD optical detection sensors include
Mach–Zehnder interferometry (MZI), Fabry–Perot interfer-
ometer (EFPI), and fiber Bragg grating (FBG) [39]. MZI is
the early optical fiber-based sensor that uses a single-mode
fiber and laser. The beam of light from the source is initially
split into two fibers by a fiber coupler. The first sensing
fiber optic coil is positioned to the zone of the PD signals
in the oil tank and the second fiber is used as the reference
for the optical route of the light. EFPI sensor is based on a
single optical fiber using a silica diaphragm embedded in the
capsuled-shaped silica glass tube. Currently, FBG sensors are
used in power transformers as they can be directly kept inside

FIGURE 7. A typical gas chromatograph [107].

the oil with the additional benefit of having strong dielectric
property and immunity from electromagnetic interference.

The working principle of FBG is depicted in Fig. 8 [111].
FBG works as the narrowband reflective optical sensors,
where a single wavelength of light is reflected by grating, and
the other wavelengths are transmitted.

FIGURE 8. Working of Fibre Bragg Grating Sensors [111].

Initially, in the case of fluorescent optical sensors,
PD detection from light emission was found possible for
air and not for transformer oil. In 2013, the optical method
was found to be reliable for PD measurement in power
transformer through the fluorescent sensor with an uncom-
mon technique [112]. However, the research for PD detec-
tion in transformer oil through fluorescent sensors led to
questionable results with many flaws. The experiments have
been continuously carried out to connect photon activity,
PD through optical signal, and PD charge constraints in the
oil. In 2014, the measurement was possible for power trans-
former oil [112]. However, this was challenging especially
for old transformer oil [113]. The advantages of this method
are high-frequency response, immunity to electromagnetic
interference, measuring a broad range of chemical elements,
and physical parameters [31]. However, the major drawbacks
are: the detection of PD cannot be calibrated, no information
on PDmagnitude, and limitation to identify discharges within
transparent media. The PD detection and localization in trans-
former oil are still being researched currently. X-ray emission
from PD source is also being researched for detection testing
due to the advantage of bypassing the complex geometry of
the power transformer.
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FIGURE 9. Photo-acoustic spectroscopy-based DGA system [115].

TABLE 1. Advantages and Drawback of different Partial Discharge Detection Techniques in Power Transformer.

F. COMBINATIONAL METHOD

For the detection and localization of PD faults in power
transformers, the combination of DGA and AE methods
has been used. For the existence of PD in transformers,
offline DGA has been implemented first, then to locate PD
sources, AE detection for 24 hours has been implemented
for copying the daily load cycle [114]. Photo-Acoustic Spec-
troscopy (PAS) is an example of a combination of the DGA
and AE method. Fig. 9 illustrates the working principle of
PAS [115]. The infrared source provides kinetic energy to the
fault gases. Whereas the microphone detects the pressure sig-
nal and transfers it into the electrical signals. Different gases
detected are based on the intensity of sound waves produced,
which are filtered through optical filters. The combination of
EM and acoustic methods have been used in which ultrasonic
and UHF sensors were arranged in different shapes to provide
worthy performance to detect PD sources for a particular
distance [116]. An example was proposed with the hybrid PD
detecting system by transient earth wire voltage (TEV) and

AE sensors [117]. Innovative forms of AE detection methods
include AE sensors for locating the PD with a signal from EE
for the reference time which allows locating and verifying
that the signal detected is not the noise [118].

The combinations of AE, EE, and DGA have been used
for the PD identification method to find the overall insulation
condition of the transformer [119]. By using EE and EM
techniques, a noise rejection system could be created for the
PD detection, where data from EE detection can be used to
detect the PD source. AE method can be enhanced to have
better sensitivity by combining with the EE method where
EE detection is used for triggering.

In AE and optical combination method, Fabry-Perot fiber
(AE sensor) has been used for PD localization, and flu-
orescent optical fiber (optical sensor) is used as the con-
firmation that the reference signal has been initiated from
the PD source [120]. Table 1 compares the advantages and
drawbacks of different PD detection techniques used in power
transformers.
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IV. PD DIAGNOSTICS IN POWER TRANSFORMER

PD diagnosis of power transformers is a powerful tool to
classify various faults. The main purpose of PD diagnosis is
to identify the cause of PD in the insulation and distinguish
the type of defects. Since power transformers have a highly
complex insulation system with almost inaccessible inner
components, PD diagnosis is demanding and challenging.
Online testing is performed and limited to the transformer
tank and transformer terminals due to the compact structure.
For achieving a proper diagnosis, advanced testing devices
along with experienced personnel is mandatory.
As per IEC 60270 standards, the PD measurement by the

electrical method has excessive noise content due to sensi-
tivity restrictions [121]. The UHF method has a high EM
frequency range (300 MHz–3000 MHz) and the PD in trans-
former oil releases EMwaves in the same range. UHF sensors
installation can be performed inside the transformer by an
oil filling valve during the state of operation, which provides
decent PD signal detection due to EM resistance from the
surroundings by the transformer tank [122]. To record PD
activity by EE or EM method, localization of PD can be
performed by the time of arrival of acoustic signals through
piezo-electric sensors that are fastened on the wall of the
transformer tank [123]. The problem is that the acoustic
signals contain distortion due to the complex structure of
the transformer. It can be resolved by denoising and crafting
averaged signals where acoustic PD signals are overlapped,
and the noise is nullified by averaging.
The physical parameters are the main distinction between

the EM and EE PD measurement method, where the former
measure voltage (in mV) by sensing EM radiation through
UHF sensors and the latter measure apparent charge level
(in pC) by integrating the recharging current [124]. In factory
acceptance tests (FAT), the apparent charge (pC) is accept-
able considering the fact that the real PD value (pC/mV) is
undetermined s the measurement is not directly taken [125].
UHF sensors can overcome the challenge of online monitor-
ing due to surrounding noise and the occurrence of corona
discharges since the UHF antenna can measure PD incidence
in transformer oil as the transformer tank behaves as the
Faraday cage [84]. By this advantage, UHF sensors can be
implemented for offline as well as online routine tests. EE and
EM measurements are predominantly affected by the type
and the level of PD source, signal diminution in the connect-
ing path, sensitivity of the sensors, and measurement device
sensitivity.
The effect of quadrupole or coupling capacitor in the sen-

sitivity of electrical measurement can be amended by the cal-
ibration process. For this, the parameter antenna factor (AF)
should be identified. AF depends on the design in terms of
EM waves and can be estimated by an oil-filled gigahertz-
transversal-electro-magnetic setup (GTEM) cell [122]. The
construction of the GTEM cell comprises of an elongated
coaxial cable in a cell, and with isolation from surrounding
EM disturbance, a known EM field is introduced to the
equipment under test (EUT). GTEM cell is considered as the

initial step of calibration and reflects only the effect of the
sensor. For the competency of the measurement, the UHF
antenna is connected to the transformer for measuring the
calibration sensitivity. In [122], firstly, an identified UHF
calibration impulse is introduced without an antenna for cal-
ibrating cable and measurement devices. Then, the sensor
feature is added to the calibrated path by applying AF. Intro-
ducing the identified transfer function through frequency-
dependent, AF can provide variation of the calibration point
from calibrator to antenna in the transformer. The calibra-
tion process can be shortened by using scalar correction
factor AFs, showing PD frequencies with enough accuracy.
Power transformer online monitoring with diagnostics has
become a necessity now due to the majority of transform-
ers being installed more than four decades back [126]. Per-
forming continuous monitoring help to detect and resolve
sudden faults which minimize any future hazards. The data
generated through monitoring are very high and therefore
need further analysis. One of the common analyses is phase-
resolved PD pattern analysis based on pattern recognition.
The characterization of PD patterns received from online
monitoring is performed and compared with the recognized
pattern [33].

V. PD DENOISING TECHNIQUES IN POWER

TRANSFORMER

Partial discharge pulses are irregular, short-lived, and non-
periodic. The obtained partial discharge signals extracted
from the PD sensors contain excess discharge impulse, which
is challenging for the processing task. The obtained sig-
nals need to be disintegrated further by signal processing
techniques. Taking multiple PD sources generated at dif-
ferent insulation into consideration, the signal processing
techniques becomes handy. The process is conducted by
applying the time and frequency characteristics of obtained
PD signals to create unique collections of time-frequency
maps. Each collection is allocated to a PD source. Various sig-
nal denoising techniques are fast Fourier transform, low pass
filtering, Wigner-Ville Distribution, short-time Fourier trans-
form, least mean squares (LMS) approach, frequency-domain
adaptive filtering (FDAF), recursive least squares (RLS),
and exponentially weighted recursive least squares (EWRLS)
methods, matched filtering, notch filtering, wavelet denois-
ing, artificial neural network, empirical mode decomposition,
and blind equalization [127]–[130]. Some common denoising
techniques are explained as follows:

A. FAST FOURIER TRANSFORM

FFT is the algorithm developed for computing discrete
Fourier Transform (DFT) which is applied to the PD sig-
nal to transform from the time domain to the frequency
domain [27]. FFT is effective for the slow varying signals
having stationary components. Since the property of PD sig-
nals is rapidly changing, non-periodic, irregular, and transient
in nature, therefore, Wavelet Transform is preferred over this
method [131].
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B. WAVELET TRANSFORM

Fourier transform decomposes any signal into sinusoidal
waveforms along with the frequency domain, but the time
data is absent. Wavelet transform is used to decompose
the signals and is a small waveform that has a very short
period and with zero average magnitudes [132]. These are
time-domain signals in the form of two-dimensional sets of
coefficients and, therefore, confining them into the time and
frequency domain. They are employed for finding parameters
such as the breakdown points and noise elimination [133].
The signal is fragmented into different wavelet coefficients
into different frequency ranges. The wavelet transform can
rebuild the PD signals when thewavelet function counterparts
the PD signals. By the thresholding, the wavelet coefficient
of PD signals is retained and the rest are eliminated [130].
The two different ways to prepare the wavelet trans-

form are continuous wavelet transform and discrete wavelet
transform [134]. The former acquires the surface of wavelet
coefficients, while the latter has the discretized scale and
translation.

C. ENSEMBLE EMPIRICAL MODE DECOMPOSITION

Ensemble empirical mode decomposition (EEMD) is a
method which is used to extract Intrinsic Mode Func-
tion (IMF) from the signals and can be handy for non-
stationary and non-linear signal [129]. Hilbert Huang trans-
form (HHT) comprises two sections: Ensemble mode decom-
position (EMD) and Hilbert spectral analysis. HHT is widely
used in fault analysis but contains flaws in the EMD tech-
nique, where the problem arises due to the mode mixing
problem during the sifting process. EEMD is a noise-assisted
analysis technique that is more robust with better accu-
racy [135], [136]. PD signal is disintegrated by eliminating
the riding waves and smooth irregular amplitude that could
be rooted in the IMF. This is termed as a sifting process
that limits the upper and lower measured signal, evaluates
the average values of the boundaries, and deducts them from
the measured signal. In general, IMF is a single component
signal, but the IMF repeatedly clinches disparate frequency
signals. This procedure is further reiterated on the residual
part of the measured signal until all the IMF is acquired. The
signal can be rebuilt by adding all IMF. For improving the
discrimination of noise and PD signal in EEMD, synthesized
white noise is added to themeasured signal as sometimes they
fail to distinguish them [137].
In [136], the self-adaptive denoising techniques by using

EEMD were proposed to eliminate the drawback of WT and
EMD. By utilizing the kurtosis-based selection criterion, the
EEMDmethodwas found to be effective in reducing the noise
to a great extent and retrieve PD impulses without conceding
the quality of PD impulses.

D. MATHEMATICAL MORPHOLOGY

This technique necessitates earlier knowledge of the repet-
itive frequency of the signal, which cannot be availed in
some applications. The theory of mathematical morphology

is centered on a mathematical operator that is implemented
between the measured signal, and the structured element
(flat, sinusoidal, or triangular element) [138]. The filtration
of the PD signal is done by the overlapping of the struc-
tured element and the measured signal, where the filtered
signal is denoted as a morphological feature [40]. In [136],
the mathematical morphology was found to be noteworthy
for denoising the PD signals.

E. BLIND EQUALIZATION (BE)

Blind equalization is the type of de-noising technique where
higher frequencies are eliminated, which are generally pro-
duced by communication systems and radio transmission at
substations [130]. Blind source separation (BSS) and BE
are targeted to retrieve source signal without evaluating the
source [139]. Also, there is a drawback that it requires more
numbers of PD sensors than that of the number of PD sources.

In [130], the author proposed an automatic BE technique
for denoising PD signals in power transformers where tech-
niques BSS andBEwere used for recovering the source signal
without evaluating the source. The denoised PD signal vali-
dated the effectiveness of the PD extraction by suppressing
the high noise level.

F. ARTIFICIAL NEURAL NETWORK

The multilayer feed-forward neural network (MLPFNN) has
become the center of attention to denoise the PD discharge
signals [128]. Function approximation is applied due to the
capability to discover the bond between the input and output
data with the weights of these connected input and output
data that are updated by the backpropagation algorithm. The
Lavenberg-Marquardt algorithm that is used to manufacture
perfectly denoised PD signals by changing the number of
nodes in the hidden layer is implemented in the hidden
layers for enhancing the performance of MLPFNN [140].
To improve the quality of the denoised signal, the number of
nodes in the ANN architecture is increased keeping in mind
the processing time.

Some research works have been performed to inves-
tigate the capability of ANN-based PD signal denoising
techniques [128], [141]. In [128], the authors implemented
the comparison of the performance of ANN with fast
Fourier transform (FFT) and wavelet transform (WT) to con-
clude the ANN-based denoising technique to be superior
to other techniques. In [141], the authors performed ANN
(curve fitting and function approximation) and WT (energy
conservation-based method (ECBT)) denoising technique to
remove white noise of radio frequency (RF) signals for
ceramic disc insulators having defects in the form of internal
voids, cracks, and sharp points. The result of ANN-based
denoising was found to be better than ECBT.

VI. FEATURE EXTRACTION OF POWER TRANSFORMER

Feature extraction is an important process for the
analysis of the PD signals of the power transformer.
Common feature extraction techniques include Fourier
transform, wavelet packet decomposition, Hilbert–Huang
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transforms (HHT), stochastic neighbor embedding (SNE),
principle component analysis (PCA), kernel principal compo-
nent analysis (KPCA), support vector machine (FSVM), and
artificial neural networks (ANNs) [51], [142]. This section
is focused on the statistical overview of feature extraction
in power transformers. Fig. 10 represents the flowchart of
the partial discharge monitoring system. The monitoring
system comprises of three sections, namely PD signal collec-
tion, feature extraction for PD signal, and PD data analysis.
After applying the denoising techniques and localization of
PD signals, the filtered data can be represented by two
different patterns, namely PRPD and TRPD.While analyzing
PD, very high dimensional data are quite common, which
require dimension reduction techniques. PRPD characteriza-
tion can be classified into two different groups; the number of
PD pulse vs. phase angle and amplitude of charge vs. phase
angle which can be categorized further in positive and nega-
tive half-cycles [143]. Statistical features that can be obtained
from these distributions are namely skewness, mean, vari-
ance, kurtosis, andWeibull [144]. The advantage of statistical
features is decreased computation time. In [145], the author
included a statistical feature analysis for the extraction of
PD signals in transformer insulation defects. Kurtosis and
skewness show the sharpness and symmetry of the distri-
bution respectively. Weibull distribution portrays the pulse
height analysis pattern where the PD pulse rate can be shown
in the probability distribution curve. The features of Weibull
distribution in addition to other parameters after analysis are
served to the intelligent classifiers.
Fractal features can be applied to model PD and pattern

recognition due to the ability to model complicated struc-
tures and natural phenomena where presently, the mathe-
matical means are inadequate [146]. In [147], the author
performed fractal-based feature extraction for the identifi-
cation of PD patterns for high voltage power transformers.
PRPD patterns can be processed through box-counting tech-
niques that use two fractal features; fractal dimension (com-
putation for image surface) and lacunarity (fractal surface
compactness) [147]. Even though fractal dimension does not
affect due to variation in scale and promising measurement
of the surface coarseness, the ineffectiveness to distinguish
feature of the same value of fractal surface resulted in the
development of another variable termed lacunarity [148]. The
research was performed based on the removal data contam-
inated by noise in which PRPD patterns were transformed
into a binary image, and fractal features calculations were
performed through ImageJ [143]. Principle component anal-
ysis (PCA) is used to filter essential data from big data
groups thereby serves as the data reduction techniques [149].
PCA, also termed as Karhunen-Loève (K-L) method does
not negotiate with the data information, and with very low
depletion of information, data can be shrunken to compact
space. Space reduction is attained through data projection
in the broadest variance at the lesser dimension that will
boost the scatter of the desired samples [150]. The number
of principal components for attaining the precise value of

actual data can be achieved through a scree plot, which is the
graph of eigenvalue magnitude vs. its number [145]. In [91],
PCAwas implemented for the autonomous localization of the
PD source within transformer winding showing the capability
to locate the PD source.

Machine learning techniques (Artificial neural networks)
have currently shown decent efficiency for PD detection and
recognition [151]–[153]. In [154], the authors used four types
of artificial PD defects (floating, surface, rod-plane, and air
gap discharge) for PD identification, which is similar to the
intelligent framework for power transformer assessment as
proposed in [155]. A deep learning approach called sparse
auto-encoder (SAE) was used for feature extraction. The deep
learning method of SAE and Softmax exhibited promising
results of more than 96% accuracy.

VII. PD CLASSIFICATION IN POWER TRANSFORMER

PD classification in the transformer is a valuable supervised
learning technique since it can organize various kinds of
defects into their respective category for condition assess-
ment. These appropriate classifiers are necessary as any inde-
cision may result in the wrong classification of the PDmodel.
Also, the precision of the PD classification depends on the
features extracted through the PD pattern. Recent artificial
intelligence techniques have shown decent PD classification
of PD defects in power transformers.

ANN can be the proper classification for PD pattern anal-
ysis due to the insensitivity to the minor input deviation
and making appropriate decisions during the training pro-
cess while feeding the data that is quite similar to the input
data [156]. ANN is the supervised learning process where
training employs forward and backward processes, and ini-
tialization is performed through the weights and biases hav-
ing small value [157]. The activation function provides the
computation of the feature vector in their respective output
layers. The layers in between the input and output layers
that are connected and cascaded together to form a network
are termed hidden layers. Hidden layers attribute to acquire
the PD features from various sources and send the extracted
sources to the output. The classification is done based on
the types of PD defects to be classified. In [158], the author
proposed a convolutional Neural network (CNN) architecture
for UHF signal PD pattern source recognition which is shown
in Fig. 11. The input to CNN is 1 × 128 × 256 generated
by Short Time Fourier Transform (STFT). The first three
hidden layers comprise filters, pooling layers, and dropout
layers. The final two hidden layers are fully connected with
500 hidden units each, and the output layer is a fully con-
nected linear layer. By the proposed architecture, the data
accumulated from gas-insulated switchgear showed decent
accuracy and further help in developing more ideas for PD
UHF signal recognition for power transformers.
Adaptive Neuro-Fuzzy Inference System (ANFIS) is the

hybrid system of neural network and fuzzy system that uses a
neural network to eliminate the necessity of finding a suitable
fuzzy network for operation [159]. Takagi and coworkers
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FIGURE 10. Flowchart for partial discharge monitoring system.

FIGURE 11. Convolutional Neural Network- based PD classification [158].

created ANFIS that is based on the fuzzy Sugeno model,
which is a proficient tool for classifying PD patterns by
implementing If-Then rules through a decision tree andspec-
ified input-output data [160]. For improving the efficiency
of the training, input variables are regularized between zero
and one. In [161], the authors implemented a fuzzy and
ANFIS model for PD fault detection using DGA for power
transformer where the ANFISmodel was found to be superior
with an accuracy of 98%.

Support vector machine (SVM) is derived from statistical
learning, where the regulation is managed for several tasks by
applying base algorithms and kernel functions [162]. In this
method, PD pattern data can be portrayed by vector dimen-
sion depending on the number of input features and perform
decently in the complications related to non-linearity, lesser
sample magnitude, and large dimensions [163]. Kernel’s
method is the additional tool to overcome the inefficiency to
analyze non-linear problems.

The authors in [164], performed the classification of PD
pattern based on SVM for the floating metallic particles in
the transformer oil showing promising results irrespective
of big data and complexity. In [165], the authors per-
formed different PD classifications for the AE-based sig-
nals for transformer insulation where SVM performance was
found to be superior to the decision tree and K-nearest
neighbor.

The decision tree method comprises a type of flowchart
assembly in which the internal node is used for the fea-
ture testing, the leaf node shows the class label, and the
route between the root and the leaf shows the classification
rule [182]. This method has been used extensively in the
PD classifications under different PD conditions due to the
advantage of the visible rule for PD classification, unlike
SVM or ANN. A decision tree had been employed to identify
the void size and differentiating the multiple PD sources
in power transformers [183]. K-nearest neighbor (KNN) is
a simple and non-parametric algorithm that classifies the
training sets by recognizing the collection of k objects nearest
to test objects and allotting the type through correlation of
the respective class in the neighborhood [184]. The main
elements of KNN are labeled objects, constant ‘k’, and the
quantity of nearest neighbors. The classification of KNN is
centered on fresh data points according to greater votes for
the neighboring data points.

VIII. PD CLUSTERING IN POWER TRANSFORMER

PD signal clustering is the unsupervised learning technique
where the data are organized into clusters such that each
cluster element is closely associated with the other. The clus-
tering technique is extensively used in PRPD and TRPD for
distinguishing the characteristics of PD pulse in the multiple
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TABLE 2. Recent timeline of partial discharge analysis in power transformer.
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TABLE 2. (Continued.) Recent timeline of partial discharge analysis in power transformer.
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TABLE 2. (Continued.) Recent timeline of partial discharge analysis in power transformer.

PD sources and arranging in groups. Table 2 shows a recent
timeline of partial discharge analysis in power transformers.
K-means (KM) is an efficient and uncomplicated centroid-

based clustering algorithm where parameter ‘K’ represents
the pre-defined number of clusters chosen for iteration.
K-means clustering is applied until the convergence between
the assignment step, and the update step is achieved [185].
However, this method has limitations in the form of local
minimum convergence and pre-assigned value of K, which
may be challenging due to the lack of information regarding
the numbers of different PD sources [186]. Another version
of K-means is Fuzzy C-means (FCM) in which in each cluster
every object is assigned a fuzzy degree [187], [188]. Soft
clustering is done for each object where each object can
be allocated in different clusters while optimizing. In [189],
the author proposed K-means with SVM clustering-based
techniques for DGA in the power transformer for improving
accuracy. The result found was better for KMSVM relative to
SVM and k-mean clustering with a reduction in the training
set and training time.
The density-based spatial clustering of applications with

noise (DBSCAN) is the clustering algorithm prepared by
Martin Ester and coworkers in 1996 [190]. Unlike K-means,
DBSCAN does not require allocation of the number of clus-
ters but assigns the data which are dense and closely related in
clusters. However, DBSCAN fails in the proper clustering of
similar density data and high dimensionality data. DBSCAN
works on the two parameters: the number of minimum points
in the neighborhood of point p (Minpts), and the radius
of neighborhood p (Eps). In [191], the authors performed
automatic pulse grouping through DBSCAN for PD source
separation in power transformer where the effectiveness of
the DBSCAN algorithm over conventional means is evident.
The PD sources are notable by the DBSCAN algorithm,
whereas conventional cannot completely separate the PD
sources. Furthermore, by the PRPD diagram, the different
sources are noticeably recognized.
Hierarchical cluster analysis is the clustering algorithm

where the clusters are generated in the order of domi-
nancy from top to bottom (divisive) or bottom to the top
way (agglomerative) [149]. In the agglomerative hierarchical

clustering, objects are initially taken as separate clusters.
Further, according to the distance between the two objects,
the individual clusters are merged, and the procedure is fol-
lowed until the conditions are fulfilled. Divisive clustering
has initial single clusters where all objects are allocated and
further separated into different clusters according to the con-
dition [3]. This method can be productive for examining big
structures but slow in processing. Also, it lags modification
after developing the splitting/merging decision.

IX. CONCLUSION

This paper enumerates the comprehensive survey of mod-
ern techniques for PD signal analysis of power transform-
ers. PD detection, localization, and severity of fault can be
analyzed through feature representation, classification, and
clustering techniques, which are extensively reviewed. Dif-
ferent methodologies for denoising the PD signals have been
introduced. PD detection in the power transformer is essential
since the power system network depends completely on con-
tinuous operation. The paper explains the overview of partial
discharge with different types of defects in power transform-
ers. Different types of PD detection techniques (electrical
and non-electrical) have been explained, and the advantages
and disadvantages of each technique have been elaborated.
The importance of PD diagnostics for identifying the type of
power transformer PD defects has been elucidated. The PD
monitoring system consists of different steps for analyzing
PD defects. This includes PD detection, denoising, feature
extraction, classification, and clustering. Each step has been
elaborated, including the insight of the modern methods. The
online PD measurements in a power transformer are profi-
cient means for PD analysis with the challenge of the onsite
noise and due to the complex structure of the power trans-
former. PD sensing techniques can be advanced to reduce
the impact of white noise in online sensing and to locate
PD activities in the power transformer.
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