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Abstract

While there have been several proposals of high perfor-
mance global computing systems, scheduling schemes for
the systems have not been well investigated. The reason
is difficulties of evaluation by large-scale benchmarks with
reproducible results. Our Bricks performance evaluation
system would allow analysis and comparison of various
scheduling schemes on a typical high-performance global
computing setting. Bricks can simulate various behaviors
of global computing systems, especially the behavior of
networks and resource scheduling algorithms. Moreover,
Bricks is componentalized such that not only its constituents
could be replaced to simulate various different system al-
gorithms, but also allows incorporation of existing global
computing components via its foreign interface. To test
the validity of the latter characteristics, we incorporated
the NWS system, which monitors and forecasts global com-
puting systems behavior. Experiments were conducted by
running NWS under a real environment versus the simu-
lated environment given the observed parameters of the real
environment. We observed that Bricks behaved in the same
manner as the real environment, and NWS also behaved
similarly, making quite comparative forecasts under both
environments.

1. Introduction

High performance global computing systems fueled by
the rapid progress of high-speed networks and computing
resources are now regarded as the computing platform of

the future[9]. In order to effectively employ computing
resources therein, most proposed global computing systems
embody a resource scheduling framework whose compo-
nents monitor the global computing environment and pre-
dict availability of the resources. For effective investigation
and objective comparison of scheduling algorithms and the
implementation of the scheduling frameworks, large-scale
benchmarks with reproducible results under various envi-
ronments parameterized by the following constituents over
time are required:

� networks — topology, bandwidth, congestion, vari-
ance, and

� servers — architecture, performance, load and vari-
ance.

However, reproducibility over a wide-area network is
extremely costly to achieve, if not impossible. Thus, cur-
rently it is unrealistic to compare the different scheduling
algorithms proposed by other researchers, let alone com-
pare the systems themselves. Cost and scale of possible
benchmarks are also extremely limited. The resulting lack
of impartial comparative approaches is a great hindrance to
global computing research and deployment.

In order to resolve this situation, we are building a per-
formance evaluation system that would allow analysis and
comparison of various global computing systems under re-
producible, controlled environments, calledBricks[1]. The
current version of Bricks mainly focuses on the evaluation
of different scheduling algorithms and schemes based on
a canonical model of high-performance global computing
system we proposed in [4, 5], simulating the behaviors of



networks and resource scheduling algorithms. Moreover,
as Bricks is constructed in a componentalized fashion, such
that not only its constituents could be replaced to simulate
various different system algorithms, but also allows incor-
poration of existing global computing components via its
foreign interface.

To test the validity of the latter characteristics,
we incorporated the NWS (Network Weather Service)
system[12, 13], which physically monitors and forecasts
the behavior of global computing systems in an actual
environment. Experiments were conducted by running
NWS under a real environment versus the Bricks simulated
environment given the observed parameters of the real en-
vironment, without essential changes to the NWS itself, and
we observed the following results:

� Simulated Bricks global computing environment be-
haved in the same manner as the real environment.

� Under both environments, NWS behaved similarly,
making quite comparative forecasts.

2. Overview of the Bricks System

Bricks is a performance evaluation system for scheduling
algorithms and frameworks of high performance global
computing systems. It is written in Java, and embodies the
following characteristics:

� Bricks consists of the simulatedGlobal Computing
Environment and theScheduling Unit (Figure 1),
allowing simulation of various behaviors of

– resource scheduling algorithms,

– programming modules for scheduling,

– network topology of clients and servers in global
computing systems, and

– processing schemes for networks and servers.

The configuration and parameters of the Global Com-
puting Environment can be easily described with the
Bricks script. Users can construct and alter the script
in a composible way, using the building ‘bricks’ within
the script, to test and evaluate a variety of simulations
in a reproducible manner1.

� To systematically obtain information on global com-
puting resources for resource scheduling algorithms,
Bricks embodies a framework and constituent com-
ponents which monitors and predicts the resources in
the global computing environment. Bricks provides
several default components for monitoring, predicting,

1As one might expect, this is how the simulator had been named so.
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Figure 1. The Bricks Architecture.

and scheduling the jobs in the simulated network. Be-
cause the components are designed to be orthogonal
with carefully-defined component APIs, they could
easily be replaced by other Java-written components;
for example, one could describe a new scheduling al-
gorithm in Java according to the Bricks Scheduling
Unit SPI (Service Provider Interface), and test it under
a variety of situations using Bricks. Moreover, the
components could be external, in particular real global
computing scheduling components. Bricks can supply
simulated time as well as various monitored simulated
information to the external resource-related systems,
and receive the results of scheduling decisions made,
which is fed back into the simulation. Although it is
still too early to claim that Bricks could easily integrate
every possible global computing components, we have
been successful in integrating the NWS system, which
had been developed earlier at UCSD, by defining a
Java API for the NWS.

Underneath, Bricks employs a queuing network model in
which servers and networks are modeled as queuing systems
in the Global Computing Environment. In Figure 2, the
network from the client to the server, the network from the
server to the client, and the server are represented by queues,
Qns,Qnr andQs, respectively. Service rates onQns,Qnr

andQs indicate the bandwidth of each of the networks,
the processing power of the server, respectively (A and
A’ denote the same client, but distinguished for notational
convenience). Details of the model could be found in [4, 5].

3. The Bricks Architecture

We now give more detailed descriptions of Bricks.
In Bricks, the Global Computing Environment and the
Scheduling Unit coordinate to simulate the behavior of
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Figure 2. An example of the Global Computing
Environment Model.

global computing systems. Overall, Bricks operates as
a discrete event simulator of a queuing system in virtual
time. An overview of the steps of the Bricks simulation is
illustrated in Figure 1.

3.1. The Global Computing Environment Simula-
tion Part

The Global Computing Environment represents the
global computing simulation environment, and consists of
the following modules:

Client: represents the user machine, upon which global
computing tasks are initiated by the user program.

Network: represents the (wide-area) network intercon-
necting the Client and Server, and is parameterized by
e.g., bandwidth, congestion, and their variance over
time.

Server: denotes the computational resources of the given
global computing system, and is parameterized by e.g.,
performance, load, and their variance over time.

Both Network and Server are modeled as queues, whose
processing schemes can be replaced. The model of a
task invoked by a client machine (Client), communication
models of Network and server models of Server are given
next.

3.1.1. Task Model

It is important for the simulator to manage and discover
the time duration of communication and computation for a
given task. In the current Bricks implementation, a task is
represented by:

� the amount of data transmitted to/from a server with
the task as an input/output of the computation and

� the number of executed instructions (operations) in the
task.

3.1.2. Communication Models

With Bricks, one can flexibly simulate various communi-
cation models of the network with simple specifications of
the Bricks script. Currently, there are two major model
families supported by Bricks: The first family assumes that
the congestion of a network is represented by adjusting the
amount of arrival data from extraneous traffic generated by
other nodes in the system (Figure 2)[4, 5]. Here, one needs
to specify ideal bandwidth, the average of actual bandwidth,
the average size of extraneous data from other nodes, and
their variance. Specifying smaller packets will result in
greater accuracy at the expense of larger simulation cost.

In the second family, the variation of the Network band-
width at each time-step is determined by the observed
parameters of the real networking environment. Although
one needs to accumulate the measurements prior to the
simulation, the Network behaves as if it were real network.
Furthermore, the cost of simulation is much smaller than
that of the first. Because the actual measurements are dis-
crete, we specify an interpolation method, including linear
or curve fitting methods.

The two families already serve to generate a rich set
of models for network behavior of global computing sys-
tems, due to the various parameters that can be specified
(such as various probablistic functions of the arrival rate).
Furthermore, we are working to extend Bricks to accommo-
date more families, for increased accuracy, better execution
speed, user convenience, etc.

3.1.3. Server Models

The current Bricks models the computing servers in the
following way. A server machine processes tasks in a FCFS
manner, and is modeled as a queue as is with the networks.
Its load can be specified and simulated not only by the
arrival rate of tasks from other users (i.e., extraneous tasks),
but also could be specified by the observed parameters of
the real environment.

3.2. Scheduling Unit

The other major portion of Bricks is the Scheduling
Unit that models a canonical scheduling framework for
global computing systems. The constituent modules of the
Scheduling Unit represent common features found in global
computing systems as follows:
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NetworkMonitor: measures network bandwidth and la-
tency in global computing environments. The mea-
sured values are stored into the ResourceDB module.

ServerMonitor: measures performance, load, and avail-
ability of server machines. The measured values are
also stored into ResourceDB.

ResourceDB: serves as a scheduling-specific database,
storing the values of various measurements. The
measured values are accessed by the Predictor and the
Scheduler in order to make forecasts and scheduling
decisions.

Predictor: reads the measured resource information of
certain time duration from the ResourceDB, and pre-
dicts the availability of resources. The predicted
information is typically used for scheduling of a new
global computing task.

Scheduler: allocates a new task invoked by a client on
a suitable server machine(s), making scheduling deci-
sions based on the resource information provided from
ResourceDB and Predictor.

As is with the Global Computing Environment, the com-
ponents of the Scheduling Unit are written in Java, which
facilitates APIs called SPIs. The SPIs allow replacement
of the components with alternative, user-supplied modules.
For example it would be possible to replace the Sched-
uler to accommodate new scheduling algorithms, or replace
the Predictor to incorporate external predictors such as the
NWS.

4. Incorporating Existing Global Computing
Components

As mentioned above, Bricks allows incorporation of
external components including existing global computing
components allowing their validation and benchmarking
under simulated and reproducible environments. This is
mainly achieved by replacing the modules of the Scheduling
Unit, and exploiting the foreign module SPIs to pass on and
receive various information on scheduling, such as those
measured by the monitors, etc.

4.1. Overview of the Scheduling Unit SPI

Each component of the Scheduling Unit is replaceable
by any Java-written component implementing the SPIs in
Figure 3. NetworkInfo represents information of Network
status such as bandwidth, latency, etc. and ServerInfo
represents Server information such as load average, CPU
utilization, etc. Initialization routines for user defined

interface ResourceDB {
// stores networkInfo
void putNetworkInfo(
NetworkInfo networkInfo

);
// stores serverInfo
void putServerInfo(
ServerInfo serverInfo

);
// provides NetworkInfo between
// sourceNode and destinationNode
NetworkInfo getNetworkInfo(
Node sourceNode,
Node destinationNode

);
// provides ServerInfo of serverNode
ServerInfo getServerInfo(
ServerNode serverNode

);
// implements process when a simulation
// finishes
void finish();

}

interface NetworkPredictor {
// returns Prediction of the Network
// between sourceNode and destinationNode
NetworkInfo getNetworkInfo(
double currentTime,
Node sourceNode,
Node destinationNode,
NetworkInfo networkInfo

);
}

interface ServerPredictor {
// returns Prediction of serverNode
ServerInfo getServerInfo(
double currentTime,
ServerNode serverNode,
ServerInfo serverInfo

);
}

interface Scheduler {
// returns serverNodes for the request
ServerAggregate selectServers(
double currentTime,
ClientNode clientNode,
RequestedData data

);
}

Figure 3. Overview of the Scheduling Unit SPI.
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components are automatically invoked by the Bricks via
Java reflective API.

The Interrelationship between the Bricks SPI and the
NWS API is shown in Figure 4.

4.2. Incorporating the NWS system

Although we are still at an experimental stage, as a first
step we have chosen to incorporate the NWS system, which
monitors and forecasts the behavior of global computing
systems based on past observations. NWS was developed
at UCSD prior to Bricks, so there were no special provisions
to run NWS under a simulated environment.

Although there have been several works in integrating
NWS into existing global computing systems by the use of
its C-based API, such as AppLeS[6], Legion[10], Globus[8],
and our Ninf system[11], all the systems executed under a
real environment, and as such NWS required little or no
change despite that parts of its modules had been written
with assumptions about its underlying execution environ-
ment. This is because the systems were orthogonal to NWS,
and assumed an identical or similar execution environment.

For incorporation of NWS into Bricks, the situation is
somewhat different. In this case, NWS must be made
to work in simulated virtual time, and that the observed
measurements will be fed from Bricks.

In order to incorporate NWS, we developed the NWS
Java API[2], which largely offers the same feature as the
C-based NWS API. Most of the work in incorporation
had been done using the Java API, removing some of the
underlying dependencies when necessary, so that NWS
could be managed to work under virtual time.

NWS consists of the following modules:

Persistent State: is storage for measurements. It is similar

NWS Forecaster
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Figure 5. Incorporating the NWS modules into
Bricks.

to the Bricks ResourceDB.

Name Server: manages the correspondence between the IP
address and the domain address for each independently-
running modules of NWS.

Sensor: monitors the states of networks and server ma-
chines in global computing systems.Sensorworks
in a similar manner to the NetworkMonitor and the
ServerMonitor in Bricks.

Forecaster: predicts availability of the resources. Again,
this is similar in behavior to the Predictor in Bricks.

We substituted the default Bricks ResourceDB and the
Predictor with the NWSPersistent Stateand theForecaster
in Bricks, respectively. The Monitors store their measure-
ments into thePersistent State, and the Scheduler allocates
a task using resource availability predicted by theFore-
caster. The NWSResourceDB, the NWSNetworkPredictor
and the NWSServerPredictor implement the SPIs; finally
the NWSAdapter, which converts the data formats between
Bricks and the NWS Java API, mainly serves to interface
NWS and Bricks.

Figure 4, 5 illustrates the incorporation of the NWS
modules into Bricks. Measurements made by the Net-
workMonitor and the ServerMonitor are handed off to
the NWSResourceDB with request for storing the mea-
surements; The NWSResourceDB in turn converts and
stores the measurements into thePersistent Statevia the
NWSAdapter and the Java API. The NWSNetworkPredic-
tor and the NWSServerPredictor also retrieve the predicted
values from theForecastervia the adapter and the API in a
similar manner.
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Parameter Value

the interval of server monitoring 10 [sec]
the interval of network monitoring 60 [sec]
probed data size 300 [kbytes]

Table 1. The parameters of the Sensors.
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Figure 6. One day’s worth of bandwidth measured
between TITECH and ETL under the real environ-
ment in the figure above versus Bricks in the figure
below.

5. Bricks Experiments

We now describe the experiments conducted by running
NWS under a real environment versus the Bricks sim-
ulated Global Computing Environment. The experiments
show that NWS behaved similarly under both environments,
serving as strong supportive evidence that Bricks can pro-
vide a simulation environment for global computing with
reproducible results.

5.1. Experiment Procedure

The overall experiment procedure is as follows. Initially,
we set up the NWS modules in a real wide-area environment
to measure real-life parameters such as network bandwidth.
Then, we have the NWSForecasterpredict the parameters.
At the same time, we drive Bricks under the observed
measurements, and have theForecastermake a prediction
under the simulated environment. Finally we compare the
results of predictions for the real environment versus Bricks.

First, we prepare the NWSSensors on two different
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Figure 7. The comparison of bandwidth measured
under the real environment versus Bricks for two
hours.

nodes located at different sites, namely, Tokyo Institute
of technology (TITECH) and Electrotechnical Laboratory
(ETL) in Tsukuba, situated about 80kms away. TheSensors
measure the network bandwidth and latency between the
nodes, and CPU availability on each. The NWSForecaster
predicts the availability of resources for each time-step of
the measurements. Table 1 shows the parameters of the
Sensors.

Next, we define a Bricks simulation under the second
family of models mentioned earlier, employing the observed
parameters of the real environment measured bySensors,
with cubic spline parameter interpolation, chosen because
the interpolated value only depends on the local past (three
time-steps). We incorporate the NWSPersistent Stateand
Forecasterinto Bricks and set the parameters identically as
shown in Table 1.

5.2. Experimental Results

Figure 6 shows one day’s worth of bandwidth measured
between TITECH and ETL under the real environment on
Feb. 1, 1999, versus that simulated with Bricks. The
horizontal axis indicates real elapsed time or virtual elapsed
time in the Bricks simulation in hours, while the vertical axis
indicates the bandwidth in kbytes per second. These graphs
show the bandwidth measured under Bricks is quite similar
to that for the real environment. Figure 7 magnifies the time
axis to two hours for direct comparison of the real versus
simulated environments. Here, we can confirm that the
bandwidth measured under the real environment and Bricks
coincide quite well. Although there have been proposals
of communication models for TCP/IP transmissions and
simulations using the model, such models have been limited
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Figure 8. One day’s worth of bandwidth predicted
by the NWS Forecaster under the real environment
in the graph above versus Bricks in the graph
below.

to describing the behavior of particular packets types, such
as WWW, FTP or Telnet, due to their complexity. Bricks can
adopt such models, as well as real-world measurements in
cases where analytical modeling of network characteristics
is difficult.

Figure 8 shows one day’s worth of bandwidth predicted
by the NWSForecasterunder the real environment versus
Bricks. Figure 9 magnifies the graph and shows the com-
parison of the prediction for two hours. Here, we again
confirm that both predictions are very similar, serving as
supporting evidence that the NWSForecasterfunctions and
behaves normally under the Bricks simulation2.

6. Related Work

While there have been abundant research on scheduling
algorithms, many of them have not been implemented or
well investigated. In fact there have been very little study
of application of resource scheduling algorithms for global
computing. The primary reason is that, for realistic envi-
ronments, conducting controlled experiments for objective
comparisons against other proposed algorithms and their

2To be more precise, we did experience a small discrepancy between
Bricks and the real measurements. Currently, we are conjecturing that this
is due to missing measurements due to lost packets in the real environment
(i.e., for Bricks-driven simulation, NetworkMonitor is always successful
at making a measurement, whereas in the real environment a measurement
might not be made due to packet being lost in the network). When we
compensated for the dropped packets, the measurements matched quite
well. We are still conducting research to investigate this phenomenon.
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Figure 9. The comparison of the behavior of the
NWS Forecaster under the real environment ver-
sus Bricks for two hours.

implementations is quite difficult. The approach we have
taken in Bricks is to simulate a global computing environ-
ment, and allow integration of various algorithms as well
as modules from real global computing systems. In this
regard, there are a couple of projects that are following a
similar approach.

Osculant[3] from University of Florida is a bottom-up
task scheduler for heterogeneous computing environment.
To evaluate their scheduling algorithms, there is an Osculant
Simulator which can also represent various network topolo-
gies and node configurations. Compared to Bricks, Osculant
Simulator was not designed to be a performance evaluation
environment that can integrate various components.

WARMstones being proposed by the Legion group at
University of Virginia is conceptually similar to Bricks, al-
though it seems to not have been implemented yet. WARM-
stones is based on the MESSIAHS[7] system, which consists
of the system description vector to represent the capabili-
ties of a server machine, the task description vector which
denotes the requirement for the task, and MIL (MESSIAHS
Interface Language) and Libraries to represent different
scheduling algorithms in an easy and flexible manner. In-
stead, we choose to provide an object-oriented framework,
namely the Scheduling Unit SPI as Java interfaces for
implementing various scheduling algorithms, as well as
foreign components. Although there are several ambitious
technical aspects of WARMstones, it remains to be seen
whether WARMstones, when implemented, will offer easy
extensibility or allow integration of modules from existing
global computing systems.
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7. Conclusions and Future Work

We proposed the Bricks performance evaluation sys-
tem that allows objective and reproducible evaluation of
high-performance global computing systems with queuing
theory-based simulation, especially the behavior of net-
work and resource scheduling algorithms. The users of the
Bricks system can specify network topologies, server ma-
chine architectures, communication models and scheduling
framework components using the Bricks script, allowing
easy construction of a particular global computing system
configuration. Moreover, Bricks is componentalized such
that not only its constituents could be replaced to simulate
various different system algorithms, but also allows incor-
poration of existing global computing components via its
foreign interface. Experiments conducted with NWS serve
as a supportive evidence that Bricks is effective in this
regard.

As a future work, we plan to extend Bricks in several
ways. First, the current representations of task, communica-
tion and server models need to become more sophisticated,
requiring extensions to represent wider class of global
computing system configurations. Task models have to
be extended to allow representation of parallel application
tasks, and server models should represent various server
machine architectures, such as SMPs and MPPs, as well as
scheduling schemes of realistic machine-specific resource
schedulers such as LSF (Load Sharing Facility). More-
over, aggregate constraints on resource scheduling, such as
co-scheduling requirements, should be representable. As a
system configuration language, we plan to substitute XML
with the Bricks script for wider usage. Finally, we plan
to investigate suitable scheduling algorithms themselves for
global computing systems, in particular our Ninf system,
using Bricks. We plan on running Bricks on a dedicated
parallel NT cluster of 33 nodes to conduct various parameter
studies.
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