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Abstract
Admixture mapping is a powerful method of gene mapping for diseases or traits that show
differential risk by ancestry. Admixture mapping has been applied most often to African
Americans who trace ancestry to Europeans and West Africans. Recent developments in
admixture mapping include improvements in methods to take advantage of higher densities of
genetic variants as well as extensions to admixed populations with three or more ancestral
populations, such as Latino Americans. In this unit, I outline the key concepts of admixture
mapping. I describe several approaches for inferring local ancestry and provide strategies for
performing admixture mapping depending on the study design. Finally, I compare and contrast
linkage analysis, association analysis, and admixture mapping, with an emphasis on integrating
admixture mapping and association testing.

Keywords
admixture; admixture mapping; ancestry

INTRODUCTION
The goal of this unit is to inform the reader on best practices for mapping complex diseases
using admixture mapping. The basic idea of admixture mapping has been around for several
decades (Rife, 1954) but the data and methods required to perform well powered analysis at
the genome-wide level have been available for only the last decade (Patterson et al., 2004;
Smith et al., 2004). Since 2004, rapid advancements in technology have led to large
increases in the density of genotyped markers, which in turn have led to rapidly evolving
statistical techniques and improved power to detect disease susceptibility or quantitative trait
loci.

Many of the considerations described in (UNITS 1.9, 1.12, 1.14, 1.17, 1.18, 1.22) for other
gene mapping approaches also apply to admixture mapping. As with other gene mapping
techniques, admixture mapping is sensitive to ill-defined phenotypes, confounders, unknown
inheritance patterns, and potential interactions between genetic and environmental risk
factors. Admixture mapping offers similar potential insight into biology, etiology,
prevention, and treatment. However, admixture mapping has special data requirements and
the choice of phenotype to study deserves extra attention. Perhaps the most important
difference between admixture mapping and other gene mapping techniques is that admixture
mapping is poised to directly contribute to the understanding of health disparities because it
is specifically designed to address differential risk by ancestry.
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KEY CONCEPTS
Phenotype

A phenotype is an observable characteristic of an individual. A phenotype reflects the
individual’s genetics, environment, and interactions between and within genetics and
environment. In gene mapping experiments, phenotypes are broadly categorized into
diseases and traits. Diseases are typically measured in terms of cases and controls status and
are therefore represented by binary variables. Traits are typically quantitative and are
therefore represented by continuous variables. A Mendelian phenotype is one for which the
underlying genotype can be predicted given a phenotypic value. In contrast, a complex
phenotype does not show such simple patterns of inheritance (Units 1.4, 1.9). Complex
phenotypes are generally oligogenic (i.e., involving a few genes) or polygenic (i.e.,
involving many genes) and multifactorial. The distribution of phenotypes can vary by
ancestry, e.g., autoimmune diseases such as multiple sclerosis tend to be more common in
individuals of European ancestry whereas other diseases such as prostate cancer, kidney
disease, and hypertension tend to be more common in individuals of African ancestry (Smith
et al., 2004). It is important to recognize that admixture mapping does not assume that risk is
evenly distributed across genetic loci. It is also important to recognize that it is generally
unknown how much differential risk by ancestry is due to genetic vs. environmental risk
factors. Thus, the absence of differential risk by ancestry does not guarantee that admixture
mapping will fail and the presence of differential risk by ancestry does not guarantee that
admixture mapping will succeed.

Locus
For the purposes of this Unit, a locus is defined as a region in the genome; a locus correlated
with a disease is called a disease susceptibility locus whereas a locus correlated with a trait
is called a quantitative trait locus.

Admixture
Admixture occurs when individuals from two or more previously isolated populations
interbreed (Figure 1). The previously isolated populations are referred to as ancestral or
parental and the newly formed population is referred to as admixed. In non-human species,
the same process is often referred to as hybridization. Admixed or hybrid individuals have
mixed ancestry. Admixture mapping is a method for capitalizing on recent admixture to
correlate ancestry at genetic loci with a phenotype.

Most genetic variance is shared between populations but allele frequencies can vary,
sometimes substantially so. For example, the null Duffy antigen has frequencies of ~100%
in West African populations and ~0% in populations outside of Africa. Admixture mapping
is designed to locate genetic loci with excess ancestry with respect to the phenotype, based
on the assumption that causal variants leading to increased risk or trait values occur more
frequently on chromosomal segments inherited from the ancestral population that has higher
disease risk or larger average trait values.

Linkage analysis (Units 1.4, 1.9) directly measures recombination over a limited number of
generations, which limits its resolution to an interval of ~10 cM. Such intervals can
potentially contain hundreds of genes. In contrast, association mapping (Units 1.12, 1.17,
1.18, 1.20) indirectly measures recombination across many generations back to the most
recent common ancestor of the entire sample. Consequently, association mapping allows for
localization of signals typically down to 0.1 to 0.01 cM. Admixture mapping originally
worked best for recent admixture, approximately <20 generations. Currently, the availability
of improved methods and larger data sets allow for investigation of admixture dating back to
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<100 generations. Thus, resolution of admixture mapping is better than that of linkage
analysis but not as good as association analysis.

STRATEGIC APPROACHES
Data requirements for admixture mapping include genotype data for samples from the
admixed and ancestral populations. The original methods were based on a minimal number
of markers ascertained to differ widely in frequency across the ancestral populations (Smith
et al., 2004). These markers, known as ancestry-informative markers or AIMs, were
ascertained by using one of several measures of population differentiation (Rosenberg et al.,
2003). The two most widely used measures of population differentiation were delta, the
difference in allele frequencies between the parental populations, and FST, the ratio of
observed variance in allele frequencies to the variance in allele frequencies expected in the
absence of population structure.

Although dense sets of markers are collectively more informative about ancestry, a
methodological requirement for independent markers and the cost of de novo genotyping
kept the number of markers used in admixture mapping in the low thousands. Current
methods have relaxed the requirement for independent markers. In conjunction with less
expensive genotyping by genome-wide microarrays (Units 1.20, 2.9, 2.11) or whole genome
sequencing (Units 18.2, 18.4), admixture mapping can now use all of the available genotype
data, resulting in improved power to detect disease susceptibility or trait loci. As another
consequence, it is no longer necessary to measure population differentiation as a precursor
to admixture mapping. For admixed African Americans (for whom admixture began ~8
generations ago), approximately 50,000 random markers are required to detect all ancestry
switches, ranging from ~39,000 random markers up to ~160,000 random markers (Figure 2).
As the number of generations since admixture began increases, more markers are required to
detect all ancestry switches because recombination events accumulate linearly with the
number of generations. Consequently, roughly twice as many markers are required to detect
all ancestry switches for Latino Americans (for whom admixture began ~16 generations
ago) as for African Americans.

Inferring Local Ancestry
Ancestry at any given locus, known as local ancestry, is unobservable and therefore has to
be inferred. Ideally, at a fully informative marker, the allele frequency in one parental
population is zero and the frequency of the same allele in the other parental population is
one. In this scenario, inference of ancestry at that marker for any individual in the sample is
deterministic. Unfortunately, there are very few such markers across the human genome. In
the more common situation that multiple alleles are present in each parental population,
inference of local ancestry is probabilistic.

Sophisticated algorithms based on hidden Markov models have been developed to infer
ancestry probabilistically. The basic task is to infer the location of every ancestral switch,
which is a recombination event that transitions from a haplotype from one parental
population to a haplotype from another parental population. One class of such algorithms
relies on reference allele frequencies for each of the parental populations. Software
employing this class of algorithms includes LAMP (Sankararaman et al., 2008). The other
class of such algorithms relies on reference haplotypes for each of the parental populations.
The latter class, exemplified by HAPMIX (Price et al., 2009) and PCADMIX (Henn et al.,
2012), is generally more sensitive than the former, which can be good or bad depending on
the quality of the reference data. The latter requires larger reference data sets because larger
sample sizes are required to capture haplotypic diversity than to estimate allele frequencies.
A limited number of reference haplotypes can lead to inaccurate ancestry inference in
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genomic regions with high haplotypic diversity, such as the major histocompatibility
complex (MHC) on chromosome 6. On the other hand, using reference haplotypes rather
than allele frequencies makes it possible to combine ancestry inference with imputation of
untyped markers. Currently, the most accurate software for local ancestry inference for
unrelated individuals is LAMP-LD and for nuclear trios is LAMP-HAP (Baran et al., 2012).

An additional requirement of admixture mapping is a genetic map. The genetic map
provides the hidden Markov model with local recombination rates, which informs the
likelihood of a recombination event at a given locus, which in turn informs the likelihood of
an ancestry switch at that locus. There are currently two genetic maps that are useful for
admixture mapping. One map is specific for African Americans (Hinch et al., 2011). The
other map is combined over multiple continental populations and is therefore generic (http://
mathgen.stats.ox.ac.uk/impute/ALL_1000G_phase1integrated_v3_impute.tgz).

The choice of external reference data is critical. The reference samples typically serve as
proxies for the true ancestral populations, given that we generally do not have historical
samples of the true ancestral populations. For admixed African Americans, the HapMap or
1000 Genomes CEU and YRI samples perform quite well. First, the number of generations
since admixture began in the history of admixed African Americans is sufficiently small so
that allele frequencies in the CEU and YRI samples have not experienced much random
genetic drift. Consequently, the CEU and YRI samples provide very good estimates of
historical allele frequencies. Second, genetic variance between the CEU and YRI samples
exceeds genetic variance between the various ancestral African ethnic groups collectively
representing African ancestry or between the various ancestral European ethnic groups
collectively representing European ancestry. Consequently, we can reasonably infer whether
a chromosomal segment represents African or European ancestry, but it would be incorrect,
for example, to infer that African ancestry in admixed African Americans solely derives
from the Yoruba.

In the absence of reference data representing the parental populations, it is still possible to
detect admixture because allele frequencies in admixed populations reflect the allele
frequencies in the parental populations linearly weighted by the parental population’s
contribution to ancestry. With reference data, detection of admixture is more powerful and
labeling of populations is possible

Principal components analysis of genome-wide genotype data is widely used to detect
population structure. Assuming no residual structure, admixture among K ancestral
populations will be reflected by the top K-1 principal components, with or without reference
data. When using genome-wide genotype data, these principal components correlate very
strongly with global ancestry, which is the genome-wide average of the local ancestries. To
infer local ancestry, local principal components must be used (Qin et al., 2010). Methods
using this approach are currently underdeveloped relative to the approaches based on hidden
Markov models described above.

Testing Local Ancestry
Admixture mapping is simply a test of the local ancestry-phenotype correlation. Such a test
can be performed in a number of ways (Hoggart et al., 2004; Montana and Pritchard, 2004;
Patterson et al., 2004). One test is a case-only statistic that is based on comparing local
ancestry with global ancestry. The case-only statistic is based on the assumptions that there
is no systematic deviation of ancestry in cases vs. controls, i.e., there is no confounding due
to population stratification, and that controls contribute only noise to the estimation of
ancestral allele frequencies. A second test is a case-control statistic that is based on excess
ancestry in cases but not in controls (Figure 3). The case-control statistic does not rely on
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either of the two assumptions of the case-only statistic and therefore yields a more robust
test.

Admixture mapping can be performed using likelihood ratio tests or regression. The
preferred method is to use generalized linear models as they allow for many different
phenotypic distributions, such as binary data, continuous data, count data, and ordinal data.
For example, logistic regression is used with binary (case-control) data and linear regression
is used with continuous data (quantitative traits). Generalized linear models readily allow for
inclusion of covariates, interaction terms, and other model extensions without requiring
specialized statistical software (Redden et al., 2006; Shriner et al., 2011a).

Estimating the Testing Burden of Genome-Wide Admixture Mapping
Genome-wide admixture mapping requires multiple comparisons and correcting for this is
required to maintain control of the false positive error rate. The genome-wide significance
level should account for the correlation of ancestry between markers, analogous to how the
genome-wide significance level in association studies should account for the correlation of
genotype between markers (i.e., linkage disequilibrium). The first analytical solution to this
issue was developed for sparse maps of (nearly) uncorrelated AIMs (Sha et al., 2006). More
recently, a more general solution based on autocorrelation was developed for dense maps of
(correlated) random markers (Shriner et al., 2011b). Both of these solutions are data-
dependent and therefore automatically account for the generally unknown population history
of admixture. Therefore, these solutions are generically useful for admixture analysis,
regardless of the number of ancestral populations, the number of generations since
admixture began, or the rate of gene flow.

Replication and Follow-Up
Admixture mapping is fundamentally a statistical procedure, like linkage analysis or
association testing. Consequently, replication of a finding in an independent data set is
required (see UNIT 1.9). Also, follow-up studies for admixture peaks are very similar in
design to follow-up studies for linkage peaks (see UNIT 1.9). When fine-mapping an
admixture signal, the underlying causal variant (or variants) must display allele frequency
differences and/or effect size differences, to generate the differential risk by ancestry
detected by admixture mapping.

Joint Ancestry and Association Testing
A recent development in analysis of admixed individuals is a class of tests designed to
jointly assess admixture and association. Joint testing offers two main advantages: power to
detect disease susceptibility loci or trait loci is increased and association testing provides
resolution to help localize admixture signals. For related individuals, the transmission-
disequilibrium test can be performed separately with local ancestry and with genotype and
the results combined into a single chi-squared test (Tang et al., 2010). For unrelated
individuals, two tests have been devised to date. One combines the ancestry and genotype
data into a single test and evaluates the test at a significance level appropriate for association
testing (Pasaniuc et al., 2011). The other test first assesses ancestry, calibrated at a
significance level appropriate for admixture mapping, and then updates the probabilities that
the locus affects the phenotype with the genotype data, now calibrated at a significance level
appropriate for association testing (Shriner et al., 2011b).

COMMENTARY
Admixture mapping and association studies are complementary. Admixture mapping is a
test of the local ancestry-phenotype correlation, whereas association studies test the
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genotype-phenotype correlation. Admixture mapping is premised on population
differentiation between the ancestral populations, whereas association studies are premised
on similar allele frequencies across ancestries. Observed genotypes are conditional on
unobserved but inferable local ancestry. That is, genotype and local ancestry are correlated,
but conditioning genotype on local ancestry in association testing controls confounding due
to population stratification.

As long as populations interbreed, admixture mapping will be a relevant gene mapping
technique. The first applications of admixture mapping were to African Americans, for
which the ancestral Europeans and West Africans genetically differ at the inter-continental
level. Other examples of admixed populations for which the parental populations differ at
the intercontinental level include Ashkenazi Jews (Eastern European and Middle Eastern
ancestry), Australian Aboriginals (Aboriginal and European ancestry), Pacific Islanders
(European and Polynesian ancestry), and Uyghurs (Asian and European ancestry) (Winkler
et al., 2010). More generally, admixture mapping is relevant for two or more ancestral
populations. For example, Hispanics are three-way admixed individuals, with ancestry
derived in various proportions from Africans, Amerindians, and Europeans. The South
African Coloureds are thought to represent five-way admixture of Bantu-speaking Africans,
Europeans, Indians, Khoisan, and Southeast Asians. It is also possible to analyze admixture
between more closely related ancestral populations (Shriner et al., 2011a).

CONCLUSIONS
Many phenotypes show population-specific effects, but whether such effects reflect
environment or genetics remains largely unknown. For the proportion of phenotypic
variance that is genetic, admixture mapping is a powerful technique for mapping genes
conferring differential risk. Generalized linear models provide a highly flexible way to
perform admixture mapping using widely available statistical software. The basic
requirements for admixture mapping are genotype and phenotype data (including covariates
as desired) from the admixed sample, genotype data for the parental populations (or proxies
thereof), and a genetic map. The currently recommended software to infer ancestry is
LAMP-LD if the sample consists of unrelated individuals or LAMP-HAP for nuclear trios.
Dense panels of random markers provide better coverage of ancestry switches than do sparse
panels of ancestry-informative markers. Given that high-throughput genotyping of dense
panels via commercial chips is now cheaper than low-throughput genotyping of sparse
panels, it is cost-effective to acquire high-density genotype or sequence data that can serve
double-duty in ancestry inference and association mapping. The main limitation for
admixture mapping is the availability of reference data for the parental populations for
admixed samples other than African Americans. New methodologies will continue to be
developed as populations with increasingly complex admixed histories are studied.
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Figure 1.
The admixture process. After two generations of interbreeding between previously isolated
parental populations, chromosomes in admixed individuals are mosaics of ancestry.
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Figure 2.
Marker density to detect all ancestry switches. The number of ancestry switches detected as
a function of marker density for an individual with the median number (n = 191, solid line)
or most extreme numbers (n = 35 or 737, dashed lines) of ancestry switches among 1,976
African Americans (Adeyemo et al., 2009). For admixed African Americans, high-
throughput genotyping of approximately 1 million markers using commercially available
microarrays is more than sufficient to extract all of the information on local ancestry.
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Figure 3.
Detecting excess ancestry at a disease locus. The black line represents local ancestry among
controls and the red line represents local ancestry among cases. Excess local ancestry in
cases but not in controls suggests the presence of a disease locus.
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