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Overview of Analytical Models for the Design of

Linear and Planar Motors
J. W. Jansen, J. P. C. Smeets, T. T. Overboom, J. M. M. Rovers, and E. A. Lomonova

Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands

In this paper, an overview of analytical techniques for the modeling of linear and planar permanent-magnet motors is given.
These models can be used complementary to finite element analysis for fast evaluations of topologies, but they are indispensable for
the design of magnetically levitated planar motors and other coreless multi-degrees of freedom motors, which are applied in (ultra)
high-precision applications. The analytical methods describe the magnetic fields based on magnetic surface charges and Fourier
series in 2-D and 3-D.

Index Terms— Analytical models, linear synchronous motors, magnetic levitation, permanent magnets (PM), planar motors.

I. INTRODUCTION

I
N high-precision motion systems, linear and planar

permanent-magnet (PM) motors are commonly applied in

multi-degrees of freedom (DOF) motion systems because of

their linearity and low stiffness. To obtain a high-position

accuracy during dynamic motion, a good predictability of

the force is a prerequisite for these motors. Furthermore,

the integration of these motors in light-weight constructions

to increase the acceleration results in a further integra-

tion of functionalities and the requirement to compensate

and control local mechanical deformation in these actuator

systems.

In such high-demanding applications, accurate modeling

is an essential part in the design and control of linear and

planar motors. Finite element analysis (FEA) can be rather

complicated and slow due to the large volume in which

the energy conversion takes place. Analytical models can

be an alternative when they accurately describe all complex

boundaries and particularities, such as slotting, end-effects,

force distributions, and parasitic force and torque components.

The two most developed models are the harmonic model

and the surface charge model. Harmonic models are applied

to describe magnetic fields in periodical structures [1], [2].

Extensions have been made to include slotting [3], [4] and,

recently, to describe systems in the 3-D space [5]. Surface

charge models describe the field of separate PMs and can be

applied in structures without slotting [6]. As a result, not only

the force but also its distribution in a magnet array can be

obtained, which cannot be predicted with FEA.

This paper describes these two modeling classes for linear

and planar motor structures. Examples of the application of

these models are given.

II. 3-D MAGNETIC FIELD MODELING

An analytical expression for the magnetic flux density in

linear or planar motors can be derived by applying the static
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field theory in which steady currents and stationary charge

distributions are modeled by means of the four coupled first-

order Maxwell equations. The Maxwell equations can be

expressed by uncoupled second-order equations by writing

them in terms of the magnetic vector and scalar poten-

tial, A and Ψ , respectively. These second-order differential

equations are written in the form of a Poisson or Laplace

equation.

Two different methods can be applied to solve these second-

order differential equations, and, thereby, model the flux

density distribution in linear or planar motors. First, the

complete magnetization vector or current density distribution

can be described with Fourier series. The magnetic fields

are obtained by the harmonic modeling technique, in which

the method of separations of variables is applied to derive a

solution for the Poisson or Laplace equation. Second, each

magnet or coil can be individually modeled by solving the

second-order differential equations by means of the free-space

Green’s function, which leads to the current or the charge

model for the magnetic vector and magnetic scalar potential,

respectively.

A. Harmonic Modeling

For periodical structures, the harmonic modeling is a suit-

able method to describe the magnetic flux density. The struc-

ture may contain complex iron boundaries, such as slots. In

this method, the geometry is subdivided into regions. These

volumes deviate from each other due to different material

properties and the presence of magnets or coils [5]. A region

is defined to be continuous if the length of the region is equal

to the pitch of the periodicity of the motor, and, is referred

to as non-continuous if the pitch of the region is smaller than

the periodicity. Non-continuous regions are, for example, a

slot or a cavity, as shown in Fig. 1. In case of linear or planar

machines, both the magnets and coils may be considered, and,

therefore, the harmonic model is presented in terms of the

magnetic vector potential.

The magnetic flux density distribution, B, can be written in

terms of the magnetic vector potential as

B = ∇ × A. (1)

0018-9464 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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The magnetization vector, M, is defined as

M = χH + M0 (2)

M =
Br

µ0
(3)

where χ is the magnetic susceptibility, M0 is the residual

magnetization and Br is the remanent flux density. This

definition of the magnetization vector gives the constitutive

relation

B = µ0 (H + M) = µ0µr H + µ0M0 (4)

where µr is the relative permeability. The 3-D magnetic vector

potential can be expression in the form of the Poisson equation

∇2A = −µ0 (∇ × M0) − µJ (5)

where J is the current density distribution of the coils. Both the

current density distribution [5] and the magnetization vector

[7], [8] can be modeled in a 3-D Euclidian space with a

double Fourier series. For example, a rectangular current in the

x-direction, Jx , is described by

Jx = Jxcc cos(ωk x) cos(ωl y) + Jxcs cos(ωk x) sin(ωl y)

+Jxsc sin(ωk x) cos(ωl y) + Jxss sin(ωk x) sin(ωl y) (6)

with spatial frequencies

ωk =
kπ

τx

(7)

ωl =
lπ

τy

. (8)

It is assumed that the current is only flowing in the

tangential, x, y-direction, and, that the magnetization vector

is symmetrical in the x, y plane. In combination with the

Coulomb Gauge condition, ∇ · A = 0, the following solution

for the magnetic vector can be obtained

Ax =

∞
∑

k=0

∞
∑

l=0
[

(
ωl

λ

(

c1eλz + c2e−λz
)

+ Cxcs ) cos(ωk x) sin(ωl y)

+ (
ωl

λ

(

c3eλz + c4e−λz
)

+ Cxsc) sin(ωk x) cos(ωl y)

+ (
ωl

λ

(

c5eλz + c6e−λz
)

+ Cxcc) cos(ωk x) cos(ωl y)

+ (
ωl

λ

(

c7eλz + c8e−λz
)

+ Cxss ) sin(ωk x) sin(ωl y)

]

(9)

Ay =

∞
∑

k=0

∞
∑

l=0
[

(
−ωk

λ

(

c1eλz + c2e−λz
)

+ Cysc) sin(ωk x) cos(ωl y)

+(
−ωk

λ

(

c3eλz + c4e−λz
)

+ Cycs ) cos(ωk x) sin(ωl y)

+(
ωk

λ

(

c5eλz + c6e−λz
)

+ Cyss ) sin(ωk x) sin(ωl y)

+(
ωk

λ

(

c7eλz + c8e−λz
)

+ Cycc) cos(ωk x) cos(ωl y)

]

(10)

Az = 0 (11)

Fig. 1. Part of a linear motor, including the division in regions and boundary
conditions.

where

λ =

√

ω2
k + ω2

l . (12)

The constants C are related to the magnetization vector and

the current density distribution and are equal to

Cxcs =
µ0ωl Mzcc − µJxcs

ω2
k + ω2

l

(13)

Cxsc =
−µ0ωl Mzss − µJxsc

ω2
k + ω2

l

(14)

Cxcc =
−µ0ωl Mzcs − µJxcc

ω2
k + ω2

l

(15)

Cxss =
µ0ωl Mzsc − µJxss

ω2
k + ω2

l

(16)

Cysc =
−µ0ωk Mzcc − µJysc

ω2
k + ω2

l

(17)

Cycs =
µ0ωk Mzss − µJycs

ω2
k + ω2

l

(18)

Cyss =
−µ0ωk Mzcs − µJyss

ω2
k + ω2

l

(19)

Cycc =
µ0ωk Mzsc − µJycc

ω2
k + ω2

l

. (20)

To derive a solution for the magnetic fields by means of

the harmonic model, an expression of the magnetic vector

potential is obtained for each region. The unknown coeffi-

cients, c1–c8, are solved by applying boundary conditions

between the different regions. The continuous boundary con-

ditions are applied between regions with an identical pitch, in

which the magnetizing vector is embedded in the tangential

components, as defined in (4). At the boundary of a region

with soft-magnetic material or at the border of a region

with infinite height the Dirichlet and Neumann boundary

condition appear, respectively. Inside non-continuous regions,

the Neumann boundary condition must yield at the vertical

boundaries. Therefore, these regions have a pitch equal to

twice the length of the region [9]. Continuous regions have

a periodical boundary conditions at both vertical boundaries

of the geometry. This boundary condition is fulfilled by

describing the x- and y-component as a double Fourier series.

Finally, at the boundary between a continuous and a non-

continuous region, a combination of continuous and Neumann

boundary conditions needs to be applied, as shown in Fig. 1.

Since the two neighboring regions have a different spatial

frequency, mode-matching needs to be applied [4].



JANSEN et al.: OVERVIEW OF ANALYTICAL MODELS FOR THE DESIGN OF LINEAR AND PLANAR MOTORS 8206207

The mode-matching technique is based on the fact that

magnetic fields, described as Fourier series, are identical at

both sides of the boundary. This means that the coefficients of

the Fourier series in one region can be expressed as a function

of the periodicity of the Fourier series in the other region and

vice versa, as illustrated in [9]. Along the entire boundary

of the continuous region, a boundary condition is defined for

the tangential components, as shown in Fig. 1. Therefore,

these boundary conditions are evaluated as a function of the

harmonics in the continuous region. The boundary condition

for the normal component of the magnetic fields is only

defined across the overlapping area of both regions, and

therefore, it is solved as a function of the harmonics in the

non-continuous region.

The 3-D harmonic modeling cannot only be applied in

motors [8], [10], but is also able to model contactless energy

transfer systems by means of an inductive coupling [5]. The

model is able to take different kind of boundaries around the

coils into account, such as soft-magnetic plates and complex

structures with cavities with or without a coil inside. The 3-D

model can be simplified to a 2-D one, by assuming an infinite

length in the x- or y-direction. Thereby, the harmonic k or l

becomes equal to zero, resulting in an expression for the

magnetic fields with a single Fourier series.

B. Charge Modeling

For non-periodical actuator or motor structures, charge

modeling can be applied as an alternative to the harmonic

model. In charge models, every PM is modeled individually.

The charge model can be derived from the scalar potential Ψ ,

that is

H = −∇Ψ (21)

∇2Ψ = ∇ · M. (22)

For a magnet with a uniform magnetization, the scalar poten-

tial is given by

Ψ =
1

4π

∮

s

M(x′) · n

|x − x′|
dS (23)

where n is the normal to the magnet surface S. For a magnet

with a parallel magnetization in the positive z-direction, the

model results in a surface charge model, as shown in Fig. 2,

with two surface charges σ = M·n. The magnetic flux density

is described by [6]

Bx =
Br

4π

1
∑

i=0

1
∑

j=0

1
∑

k=0

(−1)i+ j+k log (R − T ) (24)

By =
Br

4π

1
∑

i=0

1
∑

j=0

1
∑

k=0

(−1)i+ j+k log (R − S) (25)

Bz =
Br

4π

1
∑

i=0

1
∑

j=0

1
∑

k=0

(−1)i+ j+k tan−1

(

ST

RU

)

(26)

where

R =
√

S2 + T 2 + U2 (27)

S = x − (−1)ilm/2 (28)

Fig. 2. Charge model of a magnet which has a parallel magnetization in the
positive z-direction.

T = y − (−1) jwm/2 (29)

U = z − (−1)khm/2. (30)

this method assumes that the permeability in the whole

domain is equal to unity. Magnetic materials can be included

by the method of imaging. In addition, the relative permeabil-

ity, µr , of a magnet array, such as applied in planar motors

can be considered in this way by mirroring n-times in both

the top and bottom side of the magnet array itself [11]. The

magnetization of each layer of images is equal to

Mn =
2

µr + 1

(

−
µr − 1

µr + 1

)n

M0. (31)

Due to the low-relative permeability of modern NdFeB mag-

nets (µr = 1.03 − 1.05), the adjustment of the magnetiza-

tion of the magnets itself (n = 0) is sufficient to reduce

the error of the magnetic flux density prediction with a

factor 10 [11].

III. LINEAR MOTORS

Linear PM motors are widely used as direct-drive solutions

in the industry because they offer good servo performance

and high-force densities. In high-precision applications, the

structure of such motors usually adopts an air-cored coil

assembly, which is positioned inside a U-shaped stator with

a double PM array. Owing to a constant reluctance path for

the PM field through the moving coil assembly, the coreless

structure does not suffer from end-effects or cogging forces.

As a result, this topology merits itself in terms of low-force

ripples and, hence, a good force predictability. Iron-cored

linear motors offer higher force densities compared with their

coreless counterpart by embedding the coils inside a laminated

yoke with slotting. However, they intrinsically suffer from

the aforementioned force ripples, which should be minimized

when it is desirable to exploit the high-force capabilities of

iron-cored motors in high-precision applications.

Ripple reduction by means of a design optimization,

requires a fast and precise modeling technique, which includes

both the slotting and finite length of the yoke. Although both

effects can be considered with magnetic equivalent circuit

modeling [12], [13], the circuit continuously changes when

the slotted yoke is moved with respect to the PM array.

In addition, the coarse discretization of the magnetic structure

and the difficult nature of the airgap permeances result in an

inaccurate prediction of the force ripples. A more accurate

method of predicting the 2-D magnetic field distribution, and,

hence, the force ripples is achieved by means of a confor-

mal mapping [14]. In this method, the complex geometrical

structure of the linear motor is mapped to a rectangular
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Fig. 3. Schematic view of the linear PM motor, including the extra slot for
modeling the finite yoke length.

shaped domain with a complex mapping function. Inside the

rectangular domain, the magnetic field distribution is more

easily calculated. Because it is impossible to find an analytical

expression for the complex mapping functions when many

slots are considered, this method has to be used in conjunction

with numerical toolboxes, which are computationally demand-

ing and do not always guarantee convergence.

A direct expression for the 2-D magnetic flux distribution

can also be obtained from the harmonic model presented in

Section II. Aside from describing the fields in the airgap and

PM array alone, this method also makes it possible to obtain

the fields inside the different slots when each of them is

considered as a separate region. As an example, the fields

are calculated in a commercially available linear motor. The

model of the motor is shown in Fig. 3. The PM array adopts

a north–south magnetization and has a pole pitch of 12 mm.

The coil unit comprises six concentrated coils and a laminated

iron yoke. The clearance between the yoke and magnet array

is equal to 1 mm. To account for the finite yoke length inside

the analytical model, the structure, shown in Fig. 3, includes

an extra slot, which has a larger width and height compared

with the other slots. The inclusion of the extra slot, however,

results in an increased yoke height. It is important to note that

the width of the extra slot is chosen such that the modeled

domain inhabits periodicity. In the considered problem, the

magnetic fields in 10 regions are calculated.

Provided the flux density distribution, the force vector acting

on the coils and yoke can be calculated by means of the

Maxwell stress tensor

F =
1

µ

∮

S

T · nd S (32)

T =
1

µ

∮

S

r × T · nd S (33)

where S is a closed surface surrounding the body, n is

the outward normal vector to S, and r is the arm to the

point of rotation. Usually, this point is the center point of

mass of the moving member. The Maxwell stress tensor, T,

is given by

T =

⎡

⎣

(

B2
x − 1

2
| �B|2

)

Bx By Bx Bz

By Bx

(

B2
y − 1

2
| �B|2

)

By Bz

Bz Bx Bz By

(

B2
z − 1

2
| �B|2

)

⎤

⎦. (34)

Fig. 4. (a) Thrust force, (b) normal force, and (c) torque predicted with the
analytical model and FE-model.

In (32), the integral is evaluated along a line through the air-

gap. Fig. 4 shows the thrust and normal force when the

motor is moved over two pole pitches with respect to the PM

array. The three-phase currents are commutated such as to

produce maximum thrust force for a peak current density of

8 A mm−2. Fig. 4(a) and (b) also shows the results obtained

from FEA and it is concluded that the thrust and normal force

predicted with the analytical model have a maximum error

of 1%.

In some applications, it is also desirable to know the torque

acting on the linear motor [15], [16]. The torque is calculated

with (33), but in this case the integral has to be evaluated

along a contour, which closely follows the outer shape of

the yoke [17]. This contour is shown in Fig. 3. As shown

in Fig. 4(c), the calculated torque shows good agreement

with FEA.

IV. PLANAR MOTORS

Planar motors or actuators are capable of delivering motion

in a horizontal plane. Several types of planar motors can

be distinguished based on the number of DOF and the

range of motion of the DOF. For high-precision applications,

6 DOF, long-stroke planar motors, which can both provide

magnetic levitation and propulsion in the xy-plane have been

investigated in the past decades [18]–[23]. These motors can

either be constructed with stationary magnets and moving

coils or the other way around with moving magnets and

stationary coils. Moving-magnet motors are usually coreless.

In moving-coil motors iron could be used behind the stationary

PM array.
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Fig. 5. Double-layer planar motor [21]. (a) Top view. (b) Side view.
Dimensions in millimeter.

An example of a 6 DOF moving-magnet planar motors is

shown in Fig. 5 [21]. The translator contains 281 PM arranged

in a quasi-Halbach magnetization. The coil array (160 coils)

consists of two layers of coils. The top layer (horizontally

oriented) can produce a levitation force and a force in the

y-direction, whereas the bottom layer (vertically oriented) can

produce a levitation force and a force in the x-direction.

As the magnetic flux density of the coils reduces exponentially

with the distance from the magnet surface, the height of the

bottom layer (7.6 mm) is larger than the height of the top

layer (2.0 mm) to distribute the power dissipation equally

over the coils. Each coil is connected to its own power

amplifier.

To predict the force and torque in planar motors, finite

element methods are not suitable as planar motors have a large

volume in which the energy conversion takes place and which

requires a dense mesh. Therefore, analytical techniques are

used for the analysis and design of these motors. As the forces

in ironless planar motors are only based on the interaction

between the PM array and the current carrying coils, the force

and torque exerted on the magnets are calculated with the

Lorentz force law

F = −

∫∫∫

Vcoil

J × BdV (35)

T = −

∫∫∫

Vcoil

r × J × BdV . (36)

A. Harmonic Model

The magnetic flux density of a planar magnet array can

be effectively modeled with a harmonic model [7], [8].

An accurate expression can be obtained for the magnetic

flux density of the full magnet array with a low number of

harmonics at the consequence that the end-effects are not

included. Therefore, harmonic models are most suitable for

the modeling of moving-coil planar motors. The magnetic flux

density of the magnet array with quasi-Halbach magnetization,

as shown in Fig. 5, can be described in the region of the coils

as

B =

∞
∑

k=1

∞
∑

l=1

K eλzM

⎡

⎣

ωk sin
(

ωk x M
)

cos
(

ωl y M
)

ωl cos
(

ωk x M
)

sin
(

ωl y M
)

−λ cos
(

ωk x M
)

cos
(

ωl y M
)

⎤

⎦ (37)

where

K =
Br eλ(−mb)

(

eλmb − eλmt
)

πλ
(

k2 + l2
) (

(µr − 1)2e2λmb − (µr + 1)2e2λmt
)

(

(µr − 1)eλmb
(

a(k)
(

πa(l)
(

k2 + l2
)

− λlτb(l)
)

−λkτa(l)b(k)
)

− (µr + 1)eλmt (a(k)(πa(l)
(

k2 + l2
)

+ λlτb(l)
)

+ λkτa(l)b(k)
))

(38)

a(k) =
4

kπ
cos

(

k(τ − τm)π

2τ

)

sin

(

kπ

τ

)

(39)

b(k) =
4

kπ
sin

(

k(τ − τm)π

2τ

)

sin

(

kπ

τ

)

(40)

and where ωx = ωy , τ is the pole pitch, τm is the size of

the magnet magnetized in the x-direction, and mb and mt are

the z-coordinates of the bottom and top of the magnet array,

respectively. It should be noted that also in this method the

air holes in the magnet array are assumed to have the same

permeability as the magnets.

The Lorentz force and torque integrals over the coils can

be obtained analytically in the z-direction, and the integrals

in the x- and y-directions can be solved analytically for

straight current carrying volumes parallel or at an angle of

45° with respect to the magnet array. As a result, the harmonic

modeling technique gives fast calculation results for these coil

orientations [8].

B. Charge Model

With the charge model, every individual magnet in the

magnet array can be modeled and, hence, end-effects and

variations in the magnet array, due to, e.g., manufacturing

tolerances, can be included [24]. Furthermore, the force on the

individual magnets, and therefore, the force distribution inside

a planar magnet array can be predicted [25]. The Lorentz

force and torque have to be calculated numerically. Only an

analytical expression can be obtained when a straight current

carrying volume is parallel to the sides of a magnet [26].

The force distribution in the magnet array will mechanical

deform it. Two causes of deformation can be distinguished.

Deformations due to the forces exerted by the current carrying

coils, which can be obtained by calculating the force on each

magnet using the charge method and static deformations due

to the forces between the individual magnets.
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Fig. 6. Dimensions of two cuboidal magnets.

The static force between two magnets (dimensions defined

in Fig. 6) with parallel magnetization in the z-direction is given

by [6]

F =

1
∑

i=0

1
∑

j=0

1
∑

k=0

1
∑

l=0

1
∑

p=0

1
∑

q=0

(−1)i+ j+k+l+p+q ψ (41)

where

ψx =
1

2
(T 2 − U2) log(R − S) + ST log(R − T ))

+T U tan−1

(

ST

RU

)

+
1

2
RS (42)

ψy =
1

2
(S2 − U2) log(R − T ) + ST log(R − S))

+SU tan−1

(

ST

RU

)

+
1

2
RT (43)

ψz = −SU log(R − S) − T U log(R − T )

+ST tan−1

(

ST

RU

)

− RU (44)

S = dx − (−1)i l1

2
+ (−1) j l2

2
(45)

T = dy − (−1)k w1

2
+ (−1)l w2

2
(46)

U = dz − (−1)p h1

2
+ (−1)q h2

2
(47)

R =
√

S2 + T 2 + U2. (48)

The expression of the force between two magnets with per-

pendicular magnetization vectors is given in [27].

When the forces on the individual magnet are known, the

displacement of the magnet assembly can be determined from

a mechanical model. A mechanical FEA model can be used

to extract the mode shapes 
 and eigen frequencies � of the

magnet assembly. The quasi-static deformation �p(t) due to

a force distribution F(t) is described by

�p(t) = �
(


2
)−1

�TF(t). (49)

The amplitude of each mode shape An is given by

An = �nF (50)

where �n is the column of � corresponding to mode

shape n.

C. Real-Time Control

To control a planar motor, decoupling algorithms for the

force and torque are applied [28]. For that purpose, at every

sample time the relation between the coil currents and the

Fig. 7. Typical trajectory of a planar motor in the xy-plane.

force, torque and amplitude of the mode shapes of the trans-

lator should be obtained. They can be determined from the

presented analytical models. As planar motors are inherently

linear, superposition can be applied, and the total transfer

function for a system with Nc coils may be described as

w = Ŵ(p)i

Ŵ(p) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Fx,1 Fx,2 · · · Fx,Nc

Fy,1 Fy,2 · · · Fy,Nc

Fz,1 Fz,2 · · · Fz,Nc

Tx,1 Tx,2 · · · Tx,Nc

Ty,1 Ty,2 · · · Ty,Nc

Tz,1 Tz,2 · · · Tz,Nc

A1,1 A1,2 · · · A1,Nc

A2,1 A2,2 · · · A2,Nc

...
...

. . .
...

An,1 An,2 · · · An,Nc

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(51)

where p its the position of the translator and w is the wrench

vector containing the total force, torque, and mode shapes

w =
[

Fx Fy Fz Tx Ty Tz A1 A2 · · · An

]T
. (52)

Each element of Ŵ describes the interaction between a coil and

the force, torque or the mode-shape of the translator per unit

of current. To control the planar motor in real-time, the current

should be obtained from the inverse of the mapping Ŵ. The

coil currents i to obtain a certain wrench vector w is equal to

i = Ŵ(p)−1w = Ŵ(p)T
(

Ŵ(p)Ŵ(p)T
)−1

w. (53)

If the force and torque model are based on the harmonic

model, real-time analytical expressions for the mapping can be

derived (while considering only the first harmonic) [8], [29].

In other cases, for example when the forces and torques are

based on the surface charge model, also look-up tables can be

applied to determine the mapping at each position.

In Fig. 7, a typical trajectory in the xy-plane of a planar

motor is shown. Fig. 8 shows the corresponding acceleration

profile and the deformation of the translator of the planar

motor. In this simulation, the mode shapes have not been

controlled by the commutation algorithm. It can be observed

that largest deformation is in the first mode shape (A1,rms =
267 nm), whereas the other mode shapes have at least a factor
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Fig. 8. Acceleration profile and mode shape amplitudes during levitation
and fast motion in the xy-plane over the trajectory in Fig. 7.

two smaller amplitude. The static deformation of the magnet

assembly is clearly visible in the second mode shape A2.

Obtaining these results from FEA is impossible as the force

calculation algorithms require that all magnets are surrounded

by an air layer. Given typical gaps of 30–50 µm between mag-

nets, this would require a too large mesh. Therefore, analytical

models are indispensable for the design of planar motors.

V. CONCLUSION

An overview of analytical techniques for the design of

linear and planar motors is given. These methods can be used

in parallel or as an alternative to FEA. Harmonic modeling

is the most suitable method for 2-D analysis of slotted and

slotless motors and can in certain situations also be applied

to 3-D structures. Models based on magnetic surface charges

are essential for the design of magnetically levitated planar

motors and coreless linear motors as they not only can predict

the force and torque on the total magnet assembly, but also

their distributions. Furthermore, individual variation of magnet

properties and dimensions can be considered.
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