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SUMMARY

The role of Computer Aided Engineering in vehicle development has been significantly increased during the
last decade. Specialised simulation tools became very complex. however, growing demands on complexity
and particularly interdisciplinarity of vehicles and their simulation models have led to a number of
approaches trying either to develop multidisciplinary simulation tools or to connect various specialised
simulation tools by interfaces. This paper addresses some aspects of interconnection of the specialised
simulation tools as one possibility for simulating complex mechatronic vehicle systems. It classifies the
interfaces between specialised software packages in general, mentions some historical development of the
interfacing and further discusses the examples of the implemented couplings between the Multibody
System codes and Computer Aided Control Engineering tools. Finally, the performance of selected
interfaces is compared on an example simulation of a controlled vehicle suspension.

1. INTRODUCTION

Current vehicles and their components can be modelled with many targets, from
different points of view, in several levels of complexity and using various Computer
Aided Design (CAE) tools ranging from tools based on universal spreadsheets Lo very
complex specialised tools. The increasing demands on vehicles together with
relatively cheap and powerful electronics and actuator technology enable to extend
purely mechanical systems with new control features. Such multidisciplinary systems
together with requirements for shorter development times, lower development costs
and new quality of products being developed have raised new requests on CAE tools.

Two basic strategies for modelling model the complex multidisciplinary vehicle
systems can be distinguished. On one hand, the multidisciplinary systems can be
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modelled in one multidisciplinary environment often based on block oriented
modelling or bond graphs. It means that all model components are implemented in a
single environment. However, these tools do not usually offer effective specialised
algorithms and particularly as large support of library elements as traditional spe-
cialised packages. This approach seems to be more widely used in the future, since the
multidisciplinary tools are still in fast development.

Interfacing or coupling of specialised simulation tools is another of the possi-
bilities for simulating the multidisciplinary models. In this case the models are
prepared in specialised tools, which offer large support of library elements as well as
intuitive modelling for the given sub problem. The paper addresses the interfaces in
general, and coupling of CACE and MBS tools in particular.

The main CAE methods under consideration in this paper are Multibody Systems
(MBS) and Computer Aided Control Engineering (CACE). However, the other CAE
tools such as FEA (Finite Element Analysis), CFD (Computational Fluid Dynamics)
and last but not least CAD (Computer Aided Design) can also contribute to the final
multidisciplinary vehicle model.

2. CLASSIFICATION OF INTERFACES

Simulation tools have been originally designed as stand-alone applications. It is not
very common for two simulation tools to use the same model data format (the same is
true for most software engineering).

Several types of interfaces have been developed and implemented during recent
years. The classification, which summarizes the most important features of the
interfaces, seems to be necessary. Many different criteria for classifying the interfaces
have been already presented in literature, for example [1-5]. Some classification
categories are presented in the following paragraphs.

2.1. Work Flow

2.1.1. Uni-Directional and Bi-Directional Interfaces
If interfaces are evaluated from the work flow point of view a distinction can be made
between uni-directional and bi-directional interfaces. A uni-directional interface is
needed if one program is used as a pre-processor for a second program. Typical
examples are grid generators for finite element analyses or codes generating symbolic
code of a system to be included into a model and solved in another tool.
Bi-directional interfaces handle the flow of information between two running
simulations. Consequently, the simulation results are at least partially available in
both tools. Interfaces based on co-simulation are a typical example of this group.
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2.2. Mathematical Physical Aspects

2.2.1. Model Description Level

For the classification of interfaces it is helpful to distinguish between different levels
of model descriptions. Firstly, simulation models are often described with application
specific parameters. In this case, only the class of a model element, often represented
by a number or keyword, and values for pre-defined variables are given in a database
file. The database input files contain certain library elements, for example a spring in
an MBS code, which is referenced by its type-identifier and parameters. Such a
description has the advantage that parameter-based input files are relatively short and
of low complexity. However, the parameters in such input files do not give a lot of
information about the underlying physical element definition. Interfaces based on
such native model descriptions, and especially in the case of commercial packages
changing the input file is often the simplest way to access these programs in an
automated way.

The second level of the model description is the so-called descriptive level. In this
case, a description of physical properties of the system as well as the parameters is
defined. It includes particularly models described with sets of differential equations or
transfer functions. The solution in time domain can be obtained by the connection of a
model in descriptive level with an additional numerical solver. State-space matrices
are a special case, that is linear time independent systems.

The so-called operational models represent the third description level of models.
This level of models can directly generate new information about the structure and
parameters of the model, for example its time behaviour. Thus, operational models
can be realised as differential equations with a solver in order to generate the data
about model behaviour in the time domain. An operational model can be a ‘black
box’, meaning that the actual model properties are hidden from the user and only
responses on defined inputs are given. Therefore operational models are common for
interfaces, especially for co-simulation purposes.

2.2.2. Numeric Integration
Another classification of interfaces is based on their numerical integration schemes.
The numerical integration of the coupled system can be performed in one tool by a
common numerical integrator; this method is often called tight or close coupling. In
this case, the sub-models have to be connected into one complete model and all the
states of such a complete model have to be accessible by a single numerical integrator.
Furthermore, the integrator must be able to handle all types of model behaviour and
equations used by the included models.

The numeric integration can also be distributed. In this case the coupled tools each
use their own solvers and only inputs and outputs are exchanged, most often at pre-
defined communication time points. This scheme is often called (noniterative) weak
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or loose coupling. The states of one sub-model are hidden for the numerical
integrators of the other sub-models. Since both systems are solved separately by a
special optimised numeric integrator, the performance could be increased; however,
the communication intervals have to be chosen carefully as a trade-off between
computational performance and numerical stability. Furthermore, it can be shown that
some systems, for example with algebraic loops between the subsystems, do not
converge at all with the noniterative loose coupling scheme and the iterative approach
is proposed [3].

It should be noted at this point that both tight and weak coupling can be achieved
independently from the selected implementation method. However, in practical
applications the term co-simulation is often used exclusively for loose coupling in
combination with a multi-process or inter-process communication (IPC) solution. In
the following paragraphs, the term co-simulation will be used as a synonym for loose
coupling in general.

2.2.3. Model Size Adaptation

Often models of different complexity are coupled. Differences are either the model
size, for example the number of degrees of freedom, or in the type of system
description. Many physical problems can be described, for example, dimensionless, in
one, two, or three dimensions. If models of different complexity are coupled, so-
lutions have to be found to either reduce the complexity of a sub-model to that of the
main model or to interpolate between the sub-models. An example for model
reduction are the use of modal representation of flexible bodies or the mathematical
model reduction techniques used in control design; an example for the need of
interpolation is the simultaneous use of 1D, 2D and 3D models in a turbine
simulation.

2.3. Software, Hardware and Implementation Issues

2.3.1. Programming Technique

From the programming implementation point of view the interface can be realized as
a single process or a multi-process solution. This classification is independent of the
selected numerical integration aspect. Single processes can be obtained on the source
code level or on the object code level. In the first case, source code is transferred and
all sub-models or programs are compiled and linked into a single executable. The
interface based on source code is platform independent. On the other hand it is
possible to interchange pre-compiled objects and link them into a common ex-
ecutable. This can only be done, however, if all code modules have been compiled for
the same platform and operating system. In a multi-process solution all models are
simulated in their own executables and small-size code implementing the
communication routines is added.
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2.3.2. Data Transfer

In a coupled simulation the data have to be transferred between the sub-models. Data
transfer can be performed inside a code by defined parameter lists of subroutine calls
or between codes by file transfer, inter-process communication, or a mixture of both.
The choice between the methods depends on the amount of information exchanged,
performance, and the simulation environment available.

File interfaces are often used if models are results of pre-processors, have to be
portable across platforms, and if a large amount of data has to be transferred between
simulations. They are exported from one program and imported by the partner program.
Inter-process communication (IPC) can be chosen if the processes run in parallel and
the amount of data is not too large. The IPC processes can be connected by a network.

Inter-process communication in itself is a large field, and the selection of soft- and
hardware is based on the requirements. Communication can be achieved by using
directly basic functionalities of operating systems as shared memory or sockets, or by
using more comprehensive commercial or public-domain packages which supply
communication libraries as PVM, MPI, or CORBA, [6-8].

If large amounts of data have to be exchanged, for example in a coupled simulation
of CFD and FEA programs, often file interfaces and IPC are used in parallel.
Communication routines are used to schedule the process, but the bulk of the data
describing a model is exchanged by files.

2.3.3. Platform Dependence
The coupling of simulations can be realized either on a single CPU as single platform,
single node, or several computers of the same type (e.g., clusters) or on different
nodes of the same computer single platform, multi node, or on different computers of
different types and/or operating systems multi platform. All these variations require
different solutions for simulation interfaces.

For complex work flows comprising several programs on distributed networks a
number of specialized coupling libraries (e.g., CORBA) and work flow managers,
addressing the questions mentioned above, have been developed.

3. HISTORICAL OVERVIEW

The previous paragraphs have opened a wide range of possibilities for the interfacing
of simulation tools. Historically, the demand for interfaces came from the multibody
code users and developers. It was driven by the necessity to design and simulate new
mechatronic products where the controller complexity increased as well as by need to
include elastic bodies into MBS. The export of linearised models from the MBS
packages to the CACE tools is a relatively simple task, but such an interface did not
satisfy all demands on the coupling anymore.
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The MBS codes were historically better prepared for the model export than CACE,
and since the activity came from the groups developing multibody packages, it was
also simpler to adapt the MBS code in order to be able to communicate with CACE
packages.

Originally, in the early nineties the tight coupling, that is numerical integration of
the whole system by one integrator, was preferred because of foreseen stability
problems of weak-coupling (co-simulation) and also available computer power. Still,
the numerical integrators in CACE tools did not show the performance of the
specialised integrators in the MBS tools. The tight coupling was realised both on the
descriptive model basis and on the operational model basis, in both cases as single
process solutions.

Later the co-simulation interfaces came, which opened questions of inter-process
communication. The main motivation was to enable simulation of complex MBS
models, which could not be handled by tight coupling interfaces and/or to increase
simulation speed. It was a small step from single process solution to the IPC.

All mentioned versions were transferring MBS model to CACE tool or were based
on the co-simulation. The so-called “‘inverse™ interfaces, which transfer control
structures to the MBS, came in the last years of the previous century. The goal was to
simplify controller design in MBS package and furthermore to use more powerful and
robust numerical apparatus available in MBS packages.

MBS INTERFACE

Linear System
. A, B, C, Dinfile .

Symbolic Code

e b %187 41T P01 5
i TR e bah Tk G e B ek g
"

_— Rl
[MEspdE IR ARG e

Fig. 1. Typical example of interfaces between MBS and CACE tools.
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The current developments are performed under new objectives such as software
support and maintenance. The interfaces, which are based IPC strategies or code-
export with precompiled libraries, are preferred.

Figure 1 presents a typical example of a family of interfaces between MBS and
CACE tools. The arrows indicate the direction of data flow, that is right sides or
inputs/outputs. The sign ‘[ defines on which side the numerical integration is
performed.

4. EXAMPLES OF INTERFACES

The MBS package SIMPACK, [9], has one of the most extensive sets of interfaces,
and for this reason is used as an example to illustrate the possible options, although
other MBS packages such have some comparable features [10, 11]. Among the
interfaces to the other CAE tools, SIMPACK offers also interfaces to CACE tools
such as MATRIXx/SystemBuild and MATLAB/Simulink.

During last ten years several types of SIMAX and SIMAT interfaces has been
implemented to couple SIMPACK with CACE tools:

o Linear System Interface,

Symbolic Code Interface,

Function Call Interface,

Single Process Co-Simulation Interface,
IPC Co-Simulation Interface,

Inverse Symbolic Code Interface,

MBS Syntax Interface.

4.1. Linear System Interface

One possibility to describe general linear systems is by linear system matrices A, B,
C, D for state space representation of the system dynamics in the form of

X = Ax + Bu,
y = Cx 4 Du.

SIMPACK can directly generate time-invariant matrices A, B, C, D for a given
linearisation state to a text file readable by CACE tools. The Linear System Interface
is classified as descriptive model file interface with tight coupling implemented as a
single process.

The Linear System Interface is suitable for linear system analysis and control
design. Systems represented by the matrices are easily interchangeable not only
between program packages, but also between different computer platforms.
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4.2. Symbolic Code Interface

Nonlinear multibody systems can be described by sets of nonlinear differential
equations. A symbolic code generated by SIMPACK is an optimised FORTRAN code
representing the nonlinear differential equations describing a specific multibody
model, that is descriptive models.

The symbolic code has to be linked and compiled together with an interface
allowing the generated code to be called in the CACE convention as a user defined
dynamic subsystem, for example Simulink S-function. Finally, the SIMPACK model
is represented by one block with corresponding inputs and outputs in a SystemBuild
or Simulink block diagram. Similarly to the Linear System Interface, the Symbolic
Code Interface is a file interface working with descriptive models, is implemented as
single process tight coupling, but accounts for the full nonlinear dynamic model
behaviour.

The Symbolic Code Interface is independent of a computer platform, but if the
multibody system is modified, the FORTRAN code must be generated, compiled and
linked again.

4.3. Function Call Interface

Similarly to the Symbolic Code Interface the Function Call Interface generates a set
of nonlinear differential equations of the multibody system and the whole system is
numerically integrated by the CACE tool (tight coupling). In this case the generic
SIMPACK database file with application specific parameters, in which the multibody
system is described, is used.

Because of operational model transfer, no additional files need to be generated by
SIMPACK and no compilation is necessary if the model is changed. It enables a
SIMPACK MBS model to be quickly tuned in interaction with Simulink simulation.
The Function Call Interface even enables to create the data files for SIMPACK post-
processing including 3D animation during the SystemBuild or Simulink simulation. It
makes the interface bi-directional.

The Function Call Interface is also created as a user defined dynamic subsystem
(single process) in the CACE tool, but in this case, the interface includes all
SIMPACK libraries, in which SIMPACK elements, equation generation and file
handling are programmed. Figure 2 presents the implementation of the Function Call
Interface with MATLAB/Simulink.

SIMPACK and the CACE tool must run on the same platform, or at least on a
SIMPACK supported system.

The current developments are focused on the function call interface, which uses
high performance of SIMPACK numerics. The tight multi-process connection
between MATLAB and SIMPACK is performed by MATLAB ENGINE.
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Fig. 2. Structure of the SIMAT Function Call Interface.

4.4. Co-simulation Interfaces

Both co-simulation interfaces are based on operational models with weak coupling. Tt
means that both codes, SIMPACK as well as the CACE tool, provide the numerical
integration and communicate with each other in time steps, which are in both cases
fixed. Between these time points SIMPACK provides the continuous integration using
inputs obtained from CACE tool and returns new outputs at the new time step, and
vice versa, CACE tool numerically integrates its part using the inputs obtained from
SIMPACK in the last time point.

Since all MBS model components are solved inside SIMPACK, no restrictions
are applied to the modelling. The interface is capable of using models in the
differential algebraic equation formulation where the state vector can include
rigid body states, elastic body states, force element states, holonomic constraints
and other algebraic equations to determine additional auxiliary conditions (e.g., for
the on-line determination of accelerations and of friction forces). As in the Function
Call Interface, all simulation results are available for post-processing in both
SIMPACK and CACE tool. The restrictions are that through the use of sequential
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(““step-by-step™) co-simulation system stability can often only be reached by
relatively small communication intervals and, for some cases, stability is not even
theoretically guaranteed. However, the small communication intervals decrease the
simulation speed.

4.4.1. Single Process Solution

The single process solution has been developed for MATLAB/Simulink as an
extension of the Function Call Interface because MATLAB/Simulink was not able to
handle models described with differential algebraic equation.

The Single Process Co-Simulation Interface is also created as a CACE user defined
dynamic subsystem (S-Function), which includes SIMPACK numeric libraries with
numeric integrators, The Simulink numeric integration is the master, which considers
the SIMPACK model block as discrete and communicates with it in periodic fixed
time steps.

4.4.2. Two Process Solution

A combined simulation of SIMPACK and the CACE tool can be performed using co-
simulation via inter-process communication (IPC). For this possibility SIMPACK and
the CACE tool do not need to run on the same computer, Each package forms its own
executable which communicates by the means of sockets, i.e. a network link
providing a two-way communication channel between processes, either user-
programmed or based on commercial or public-domain IPC libraries. Data exchange
is performed in discrete fixed time steps between the two processes.

4.5. Inverse Symbolic Code Interface

The Inverse Symbolic Code Interface includes the CACE model into the SIMPACK
model. The CACE subsystem is created in the CACE environment. The C-source
code and interface files are generated with the aid of AutoCode Export (MATRIXx) or
Real Time Workshop (MATLAB), compiled and linked with SIMPACK libraries. A
new SIMPACK user element, which contains the original CACE model, is created
(single process) and can be used in SIMPACK models. Furthermore, the SIMPACK
user has access to the model parameters defined in the original CACE subsystem. The
interface generates the code, which is independent of the CACE installation. Thus the
CACE subsystem — SIMPACK user element can be created on other platforms than
the one SIMPACK is running on and licensed for.

4.6. MBS Syntax Interface

MBS Syntax Interface offers the exchange of parameters in the application specific
parameter level. Sometimes the result of a CACE calculation is only couple of

B S it s B
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parameters for which the Inverse Symbolic Code Interface export would be too
cumbersome. In this case it is possible to save the results of the control design or
parameter optimisation in the syntax of single SIMPACK elements. An element thus
defined is then placed in the data base from which the simulation model is assembled
by special script files.

5. COMPARISON OF INTERFACES

The family of interfaces contains several members. Each interface has its specific
function and fulfils certain requirements. If the mechatronic design is required, the
interface must enable modification of both MBS and CACE part of the model. The
application of symbolic code interfaces seems in such a case rather inconvenient
because of the necessary recompilation of the model after its modification. Or, if a
mechanical model described with differential algebraic equation is to be coupled with
the CACE, one should be careful about numerical integrators available in CACE
tools.

In order to compare the efficiency of Function Call (FC) Interface, Single Process
Co-Simulation (CoSi) Interface and Co-Simulation Interface with Inter-Process
Communication (IPC) a simple simulation example is presented. The FC Interface
uses the numerical integration in MATLAB/Simulink (tight coupling) and the CoSi
Interface numerically integrates the MBS and CACE parts separately (weak
coupling). The IPC Co-Simulation Interface is also based on the weak coupling,
but is implemented as multi(two)-process solution with IPC.

5.1. Simulation Model

Since the numerical integration of systems described with differential algebraic
equation is not straightforward in Simulink, the SIMPACK model should be described
with ordinary differential equations; the mechanical model should not contain any
algebraic constraints, for example caused by closed kinematic loops.

The mechanical model of order 38 (Fig. 3) represents a platform truck, which is
equipped with semi-active dampers on the driven axle. The semi-active dampers are
controlled by an extended groundhook controller, [12], implemented in MATLAB/
Simulink. The model was designed to optimise semi-active control algorithms for
road-friendly trucks [13]. The original purpose of the model was to investigate the
vertical dynamics, because the vertical dynamics plays a significant role in road-tyre
forces generation, but in this paper it is used to provide a comparison between the
performances of different kinds of interfaces.

Two different road surfaces are used to excite the model: (i) a deterministic ramp
0.08 m high and 5.8 m long with ascent and descent lengths 2.5m, [14], and (ii) a
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Fig. 3. Vehicle model.

stochastic road. In both cases the simulation time is set to 5 s and the initial velocity is
20 m/s.

5.2. Simulation Results

The comparison of the performance has been performed on a PC based two-processor
computer (Intel XEON 1.7 GHz, 768 MB RAM) with MS Windows XP operation
system. This hardware configuration should be an advantage for the multi-process
IPC Interface, because SIMPACK can run on one processor and MATLAB/Simulink
on the other one. To get the results also for more traditional one-processor computer
for the multi-process IPC Interface, the second processor was suppressed. The
influence of the two-processor architecture compared to one-processor architecture is
marginal for the single process interfaces (FCI and CoSi).
The model has been simulated in seven simulation environments:

. Function Call Interface (FCI)

. Single process Co-Simulation (CoSi) with communication step T=0.01s

. Multiprocess IPC Co-Simulation on both processors (MIPC) with T=0.01s
. Multiprocess IPC Co-Simulation on single processor (SIPC) with T=0.01s
. Single process Co-Simulation (CoSi) with T=0.002s

. Multiprocess IPC Co-Simulation on both processors (MIPC) T=0.002s

. Multiprocess IPC Co-Simulation on single processor (SIPC) T=0.002s

~1 O R D =

In order to get average values, the model has been simulated five times in each
simulation environment. The normalised average simulation times are presented in
Figure 4 as well as in Table 1. The FCI simulation times are used as a basis for the
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Fig. 4. Simulation times.

Table 1. Comparison of normalised simulation times (FCI = 100%).

Interface FCI CoSi MIPC SIPC CoSi MIPC SIPC
T [s] - 0.01 0.01 0.01 0.002 0.002 0.002
Deterministic 100 80 113 122 148 198 211
Stochastic 100 41 35 36 73 56 60

normalisation both for deterministic and stochastic road. Moreover Figure 4 presents
the absolute simulation times.

The results indicate that the model with the deterministic road is faster, if
numerically integrated in one environment. The integrator can control the step size in
a relatively free range. The co-simulation interfaces are limited by the fixed
communication steps, which seems to be too short for some phases of this simulation
scenario. However, in the case of the stochastic road, the co-simulation seems to be an
advantage, because the steps remain relatively small and the mechanical part is
numerically integrated with an optimised integrator. The two-processor architecture
accelerates the computation by about 5 to 7%. It is caused by the different complexity
of the SIMPACK and MATLAB/Simulink models, i.e. the computer spends
significantly more time with integrating SIMPACK model than MATLAB/Simulink
one. The differences between single (CoSi) and two-process (MIPC and SIPC)
solution are caused by the communication overhead of the IPC solution, which is
independent of the model complexity but depends on the sampling rate.
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6. CONCLUSIONS

The classification of interfaces has been introduced. Various interfaces, which
connect MBS and CACE tools have been presented. The family of interfaces contains
several members, each of which has its specific function.

The simulation example showed that the selection of the interface depends on
many factors. The selected system, truck with controllable damping, is not very
sensitive to instable behaviour, because no energy is added to the whole system. Thus
the simulation time is of prime interest. The example has shown that too small
communication step can significantly decrease the performance of the simulation and
that the communication overhead plays a considerable role for simple scenarios.

Since the hardware implementation of the controller is usually performed by
digital controllers with defined constant sample rate, the weak coupling with the same
sample rate as future digital controller is of advantage.

The development of MBS/CACE interfaces has not been concluded with the IPC
interfaces. Further development will include numerical aspects of co-simulation, for
example co-simulation interfaces with variable time steps for data exchange, code
generation for real-time applications and model optimisation for special cases such as
hardware in the loop applications.
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