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Abstract: Since the introduction of glyphosate (N-(phosphomethyl) glycine) in 1974, it has been
the most used nonselective and broad-spectrum herbicide around the world. The widespread use
of glyphosate and glyphosate-based herbicides is due to their low-cost efficiency in killing weeds,
their rapid absorption by plants, and the general mistaken perception of their low toxicity to the
environment and living organisms. As a consequence of the intensive use and accumulation of
glyphosate and its derivatives on environmental sources, major concerns about the harmful side
effects of glyphosate and its metabolites on human, plant, and animal health, and for water and soil
quality, are emerging. Glyphosate can reach water bodies by soil leaching, runoff, and sometimes by
the direct application of some approved formulations. Moreover, glyphosate can reach nontarget
plants by different mechanisms, such as spray application, release through the tissue of treated
plants, and dead tissue from weeds. As a consequence of this nontarget exposure, glyphosate
residues are being detected in the food chains of diverse products, such as bread, cereal products,
wheat, vegetable oil, fruit juice, beer, wine, honey, eggs, and others. The World Health Organization
reclassified glyphosate as probably carcinogenic to humans in 2015 by the IARC. Thus, many review
articles concerning different glyphosate-related aspects have been published recently. The risks,
disagreements, and concerns regarding glyphosate usage have led to a general controversy about
whether glyphosate should be banned, restricted, or promoted. Thus, this review article makes an
overview of the basis for scientists, regulatory agencies, and the public in general, with consideration
to the facts on and recommendations for the future of glyphosate usage.
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1. Introduction

Since its introduction in 1974, glyphosate (N-(phosphonomethyl) glycine)—the active
ingredient in the commercial Roundup® and RangerPro® products—has been the most
used nonselective and broad-spectrum herbicide around the world [1]. Chemically, it
is formulated as ammonium, di-ammonium, dimethyl ammonium, potassium, and iso-
propylamine salts [2]. The glyphosate-based herbicides (GBHs) are also formulated with
adjuvants (such as the polyoxyethylene amine (POEA), alkyl polyglycolide, polyethylene
alkyl ether phosphates, and quaternary ammonium compounds) as surfactants to promote
the uptake and translocation of the active ingredient in plants [3,4]. It is an organophosphate
molecule that contains –PO3H2, –COOH, and –NH2 as the functional groups [5].

Glyphosate acts by inhibiting the enzyme 5-enol-pyruvyl-shikimate-3-phosphate syn-
thase (EPSPS) (EC. 2.5.1.19) with the interruption of aromatic amino acid biosynthesis
in the shikimate pathway [6]. These inhibited amino acids are essential for protein and
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secondary-metabolite biosynthesis, such as that of flavonoids, lignin, and phytoalexins [7].
Moreover, the shikimate-pathway interruption affects the carbon flow and fixation to pro-
duce energy, and the whole metabolism function [8]. Because the shikimate pathway is not
present in mammals, it could be a desirable herbicide. Unfortunately, this pathway is also
present in some fungi and bacteria that are present in diverse microbiota (i.e., gut, soil, and
plant-surface microbiota) [9,10].

GBHs are traditionally applied at high concentrations (6.7–8.9 kg ha−1) and low concen-
trations (0.53–1.0 kg ha−1), respectively, before and after the establishment of conventional
crops [11]. They have also been used to control invasive vegetation in forestry [12], algae
proliferation in aquaculture [13], and invading weeds around perennial trees [14]. They
have been used too for weed control in home gardens, parks, and across urban areas [15].
The global use of glyphosate and GBHs rose from 56, 296 tons in 1994 to 825, 804 tons in
2014, with an estimation of 740–920 thousand tons in 2025 [16].

The widespread use of glyphosate and GBHs in agricultural fields and home gardens
is due to their low-cost efficiency in killing weeds, their rapid absorption by plants, and
the general erroneous perception of their low toxicity and slow generation of herbicide
resistance [6]. The commercialization of the first glyphosate-resistant soybean (Glycine max)
variety (Roundup Ready) in 1996, and subsequent resistant-tolerant varieties of maize
(Zea mays), canola (Brassica napus), and cotton (Gossypium hirsutum), have resulted in the
increased commercialization and dose administration of GBHs [17]. Currently, the use
of glyphosate and GBHs is widespread around the world in developed and developing
countries [18]. Next-generation resistant varieties to glyphosate are encoded to produce
a glyphosate oxidase enzyme to convert glyphosate into aminomethyl phosphonic acid
(AMPA) and glyoxylate [19]. Despite this, the residue persistence of glyphosate and AMPA
are determined by factors such as the soil properties and environmental conditions [20].
Moreover, after 46 years of glyphosate-based product application, approximately 38 differ-
ent glyphosate-resistant (GR) weed species have been reported [21]. Several studies show
that the half-lives of glyphosate and AMPA range between 0.8 and 151 and 10 and 98 days,
respectively [1].

As a consequence of the intensive use and accumulation of glyphosate and GBHs
on environmental sources and food [22], major concerns about the harmful side effects
of glyphosate and AMPA on human, plant, and animal health, and on water and soil
quality, are emerging [6]. Moreover, the glyphosate residues in the effluents are too dif-
ficult to purify, and, thus, they have a long-term life in water and soils [23]. Exposure to
glyphosate and AMPA has been shown to induce antibiotic resistance in Salmonella spp.
and Escherichia coli, and in soil bacteria in general [24]. Toxicity to honeybees, birds, am-
phibians, fishes, and others, has also been documented [25–28]. Moreover, reports indicate
that exposure to GBHs, even at below the indicated concentrations, causes tumorigenic,
carcinogenic, teratogenic, hepatorenal, and endocrine disruption effects, in addition to
oxidative stress [29].

Since the World Health Organization reclassified glyphosate as probably carcinogenic
(Group 2A) to humans in 2015 by the IARC [30–32], many review articles concerning
different glyphosate-related aspects and its controversy have been published [16,33–36].
Recently, the use of GBHs has been restricted or banned in many countries, including
Germany, Italy, France, the Netherlands, Belgium, the Czech Republic, Denmark, the
United Arab Emirates, Bermuda, Qatar, Costa Rica, and Mexico [34,37,38]. By contrast,
regulatory authorities, such as the European Commission, the United States Environmental
Protection Agency (U.S. EPA), and the Canadian Pest Management Regulatory Agency,
reviewed the matter and concluded that glyphosate and GBHs are safe and do not pose
adverse effects to human health [38,39]. These disparities have led to a general controversy
and different regulatory laws around the world, ranging from complete bans to unrestricted
policies [40].

The risks, disagreements, and concerns regarding glyphosate usage have generated
controversy about whether glyphosate, the most used nonselective and broad-spectrum
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herbicide around the world, should be banned, restricted, or promoted. There is a need for
an overview with a risk assessment for scientists, regulatory agencies, and the public in
general that considers the facts and recommendations about the future of glyphosate usage.
Therefore, in this review article, two topics are summarized: (1) the environmental impact
of glyphosate; and (2) the health effects of glyphosate.

2. Environmental Impact of Glyphosate
2.1. Behavior and Fate of Glyphosate

After its administration, glyphosate can biotransform in soil by mineralization, immo-
bilization, or leaching; however, it cannot be significantly volatilized because of its high
vapor pressure (Figure 1) [38]. Mineralization is the principal mechanism of degradation,
involving biotic and abiotic pathways, with AMPA as the major metabolite, as well as other
products, such as methyl phosphonic acid [CH3P(OH)2], sarcosine (C3H7NO2), glycine,
phosphate (PO4

3−), carbon dioxide (CO2), and ammonia (NH3) [41,42]. The microbial
activity that promotes glyphosate mineralization depends on factors such as the soil physic-
ochemical characteristics, temperature, pH, and organic-matter content [43]. Thus, high
levels of organic C and organic matter tend to be beneficial to the environment by delaying
leaching and promoting their slow degradation and release in soil [44]. Nonetheless, ex-
cessive glyphosate depositions could saturate the soil capacity to delay leaching and its
gradual mineralization [45]. Some metals in the soil, such as manganese oxide (MnO2),
promote the abiotic degradation of glyphosate [46].
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Glyphosate and AMPA mineralization are related to many soil physicochemical fac-
tors, and they too can be variable in short periods under certain specific circumstances [47].
After revision, Bai and Ogbourne [1] concluded that the half-lives of glyphosate and AMPA
residues vary between 0.8 and 151 and 10 and 98 days, respectively. The degradation of
glyphosate through mineralization is directly affected by the physicochemical properties of
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soil (organic-matter content, pH, and texture), climatic conditions (temperature and humid-
ity), and biological properties (microbial diversity and activity) [20,48]. Thus, glyphosate
and AMPA exhibit from low to very high persistence in soil (Table 1).

Table 1. Glyphosate and AMPA persistence in soil.

Glyphosate
Dose (kg ha−1) Half-Life (d) Soil Properties Location Reference

1.54 98 (Gly), 51 (AMPA) Clay and sandy Sweden [20]
5 42 (Gly) Loamy China [43]
1 613 (Gly and AMPA) Boreal sandy Finland [49]

2.1 60 (Gly and AMPA) Silty loam Argentina [50]
0.25 9 (Gly) and 32 (AMPA) Sandy Denmark [51]
1.8 18 (Gly) and 250 (AMPA) Sandy Italy [52]
8 31 (Gly and AMPA) Sandy loam Spain [53]

As mentioned before, glyphosate may biotransform in soil by immobilization and
leaching. Glyphosate immobilization occurs naturally rapidly, and it is affected by the or-
ganic matter, mineral availability, clay, and phosphate concentration [54]. Thus, glyphosate
will accumulate for a long time in soils with high organic matter, phosphate, clay content,
Al and Fe concentrations, and low pH, and it is easily leached under the opposite condi-
tions [55]. The phosphonic acid structure of glyphosate binds with the cations contained in
clay structures and organic matter in soil [54]. Soil minerals such as Al and Fe in the oxide
state have strong chemical affinities with the phosphonate, amino, and carboxyl groups
of glyphosate, while inorganic phosphorus binds competitively to its sorption sites [56].
Glyphosate acts as a polyprotic acid that binds anions and cations at 4–8 pH in soils [57].
The immobilization in the soil is not a permanent process, and it decreases after a certain
period [58].

Despite glyphosate being immobilized by high soil affinity, factors such as the con-
centration, prevalence, and mineralization rate are determinants for its leaching [55,59].
Rainfall and the soil structure are determinants for leaching too [60]. Glyphosate can reach
the water sediment or water surface either in dissolved or particle form [38]. Leaching is
a growing concern because it contaminates the water [16]. Glyphosate is also introduced
to water bodies by runoff, but rarely by its direct application (i.e., unwanted seaweed
control) [61]. Because AMPA is more mobile, it is found in higher concentrations by leach-
ing [62]. AMPA is also a degradation product of the sweetener acesulfame; nonetheless,
the leached AMPA in water bodies is related to glyphosate residues [63].

2.2. Glyphosate Residuality

Glyphosate and GBH application has been rising considerably since the late 1970s
because of the false belief in their low toxicity and mobility in the environment, and after
the introduction of genetically modified corn, soybean, and cotton [64]. Glyphosate is
the most used (>100 crops) and sealed (>130 countries) herbicide around the world [16].
A consequence of the intensive use of glyphosate and AMPA is being detected in the
residuality of soil, water, and nontarget plants [1].

Glyphosate and AMPA can appear residually at the cropping site and around it [22].
The principal effects of their residuality are the toxicity to soil microbial communities
and the reduction in nutrient availability [65]. Microbial communities have essential
functions, such as improving the soil structure and making nutrients available to plants [66].
Nonetheless, their activity is regulated by nematodes that feed them [67]. Because of such
importance, microbial communities and nematodes are proposed as indicators of soil
quality and health [68]. In a coffee plantation with 22 years of glyphosate application, the
soil nematode population was lower than that in a plantation with 7 years of no-glyphosate
application [69]. However, glyphosate has not yet been conclusively implicated in the
repercussions to nematodes per the current extent of the research [70–72]. The residuality
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of glyphosate antagonizes some enzymes in the soil, such as acid phosphomonoesterase
(EC. 3.1.3.2), urease (EC. 3.5.1.5), β-glucosidase (EC. 3.2.1.21), and alcohol-dehydrogenase
(EC. 1.1.1.1) [73].

As mentioned before, glyphosate and AMPA can reach water bodies by soil leaching,
runoff, and sometimes by the direct application of some approved formulations [74].
AMPA could be present in water as the degradation product of detergents; nonetheless,
AMPA detection by detergents always corresponds to specific sites, such as plant treatment
effluents and stormwater discharge [75]. Glyphosate has been detected in many water
bodies, ranging from 2 to 430 µg L−1 [22]. In sediment samples from the United States,
the glyphosate concentrations ranged from 397 to 476 µg L−1 [76]. According to Wang
et al. [77], the microbial degradation of glyphosate in water sediments is slower than in
soil environments. Some aquatic species, such as fish and amphibians, could be affected by
glyphosate concentrations over 400 µg L−1 [78]. The free fish species could be exposed via
gills and dietary routes [79]. Amphibians are susceptible to glyphosate residues because of
their dual life cycle (aquatic/terrestrial) [74]. Despite the studies that argue that glyphosate
is not toxic to aquatic species [80,81], the growing evidence suggests the potential impact
on aquatic environment species and human health [82–84]. It is important to consider that
this can be mixture effects in the soil and water that are not usually taken into account by
single-substance dosage studies.

Glyphosate can reach nontarget plants by different mechanisms [36]. Spray application
is the primary route, with more than a 10% application rate to nontarget crops after
application in crops such as soybean and cotton [85,86]. This spray drift caused distorted
fruit in tomatoes, even at minor doses of lethal concentrations [36]. Another mechanism is
the release of glyphosate through the tissues of treated plants, such as weeds [87]. Decaying
plant matter from weeds is decomposed and absorbed by the soil, and, thus, some traces
of glyphosate, available for both target and nontarget plants, are reincorporated by root
absorption [36]. Moreover, glyphosate inactivates the EPSPS enzyme, which plays a key
role in the synthesis of phenolic compounds that have a function in the plant defense
mechanisms [88]. The pathogen’s colonization rate was increased in wheat and barley roots
when glyphosate was administrated before planting [89]. Nontarget plants are affected
indirectly by the alterations in the soil characteristics and their microbial communities,
which affect nutrient availability and thus alter the plant defense physiology [36]. Other
potential side effects on nontarget plants are root disruption and increasing fruit drop [90].
As a consequence of this nontarget exposure, glyphosate and AMPA residues are being
detected in the food chains of diverse products, such as bread, cereal products, wheat,
vegetable oil, fruit juice, beer, wine, honey, eggs, and others, at concentrations that range
between 2.948 and 0.0005 mg kg−1 (Table 2) [91].

Table 2. Residual concentrations of Glyphosate and AMPA from different food sources.

Food Source Glyphosate (mg kg−1) AMPA (mg kg−1)

Beer <0.0005 <0.001
Wine 0.0031 <0.0007

Mineral water <0.0006 <0.0005
Milk <0.0006 <0.0025

Fruit juice 0.0016 <0.0006
Baby food <0.001 <0.0025

Potatoes and vegetables <0.001 <0.0025
Honey 0.0030 <0.0025
Eggs <0.001 <0.0025

Meat and fish <0.001 <0.0025
Pulses 0.0012 <0.0025

Oilseeds and vegetable oil <0.001 <0.0025
Pseudo cereals <0.001 <0.0025

Breakfast cereals 0.0036 <0.0025
Durum wheat 0.139 0.0107
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Table 2. Cont.

Food Source Glyphosate (mg kg−1) AMPA (mg kg−1)

Pastry and snacks <0.001 <0.0025
Bread 0.0019 <0.0025

Flour and baking mixtures <0.001 <0.0025
Other cereal products <0.001 <0.0025

Source: Zoller et al. [91].

3. Health Effects of Glyphosate

After the EPSP inhibition by glyphosate application, the target plants suffer alterations
in their physiology and die after 7–21 days [92]. Since the shikimic acid pathway is present
in plants, fungi, and some microorganisms, but absent in animals such as mammals, this is
the parameter that states that glyphosate is not toxic for animals, even after evidence of
exposition and toxicology effects [38]. In mammals, glyphosate and AMPA are considered
nontoxic because of their limited tissue and gastrointestinal absorption [39]. Nonetheless,
GBHs have demonstrated their toxic effects on nontarget aquatic and terrestrial organ-
isms [26,93,94]. Moreover, a considerable portion of the toxicity of GBHs is attributed to
the surfactant POEA [4,93,95].

3.1. Human Health Effects

The increasing global use of GBHs has led to a concern about their residuality on
water sources, nontarget plants such as food, and the environment. This human exposure
promotes the absorption of residues through ingestion, inhalation, and dermal contact [96].
Residues of glyphosate and AMPA were detected in the urine of the general public from the
United States (60–80% of sampled) and Europe (44% of sampled), with 2–3 and <1 µg L−1

means, respectively, and 233 and 5 µg L−1 maximum concentrations, respectively [97,98].
The human health effects of glyphosate and GBHs have been studied and documented
(Figure 2) [29,99,100]. Nonetheless, there is a general lack of accord as to glyphosate and
GBH health effects.
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There are many laboratory-based studies that report the negative effects of glyphosate
and GBHs on human cells. Generally, the variation in the results relies on many vari-
ables, such as the methodology, dose and exposure time, GBH formulation, and cell type
(Table 3) [29]. Despite the inconclusive and sometimes contradictory results on human
health, the summarized results are a base statement for future decisions about glyphosate
and GBH toxicological effects.

Table 3. Effects of glyphosate and GBHs on human in vitro cell cultures.

Human Cell Type Dose of Glyphosate
(µg mL−1) Exposure Time (h) Evaluated Effects References

Blood 0.500 52
Mutagenicity, Cytotoxicity,

DNA damage, Hemolysis, Acetyl
cholinesterase activity

[101–109]

Epithelial 0.300 18 Oxidative stress, Cell
damage, Genotoxicity [110–112]

Embryonic 0.450 24 Cell damage, Toxicity,
Endocrine disruption [113–115]

Pluripotent stem 0.100 48 Blood–brain barrier [116]

Renal 0.600 24 Cell viability, Apoptosis,
Cell viability [117]

Hepatic 0.540 24
Transcriptomic changes,

Genotoxicity, Oxidative stress,
DNA damage,

[112,118–120]

Breast 0.100 48 Endocrine disruption, Toxicity,
DNA damage, [121,122]

Ovarian 0.500 72 Abnormal growth, [123]

Pulmonary 0.540 24 Cell viability [119]

Neuronal 0.540 24 Toxicity, DNA damage [119]

Sperm 0.36 1 Cell viability, DNA fragmentation [124]

Despite the recognized residuality of glyphosate and AMPA (0.8–151 and 10–98 days,
respectively) in the environment [125], it is difficult to predict the significance and the
impact of these residues when there are not enough long-term and independent data
related to their safety, health, and toxicity. Nonetheless, some epidemiological studies with
concluding correlations between glyphosate and/or GBH exposure and health problems,
such as cancer, respiratory disease, neurological and congenital effects, and others, have
been reported.

In terms of epidemiological cancer studies, Leon et al. [126] conclude that there exists
a moderate correlation between glyphosate exposure and β-cell cancer lymphoma. Besides
direct exposition and ingestion, glyphosate could be inhaled from the air environment [1].
It is important to mention that the air exposure that was evaluated by Leon et al. [126] was
about five times less than the acceptable daily intake proposed by the EFSA [39]. The results
by Hoppin et al. [127] show a connection between glyphosate exposure and allergic and
nonallergic wheeze in male farmers. Recently, some studies have evaluated the neurological
effects of glyphosate exposure [128,129]. Caballero et al. [128] found a 33% higher risk
of Parkinson’s disease mortality after glyphosate exposure. Von Ehrenstein et al. [129]
conclude that there is a correlation between glyphosate prenatal exposure and autism
spectrum disorder. During pregnancy, the fetus could be exposed indirectly to glyphosate;
thus, Parvez et al. [130] used urine samples and concluded that >90% had glyphosate-
detectable levels that were correlated with shortened pregnancy.

The toxicity of glyphosate and GBHs to different human cells has been demonstrated.
However, most epidemiological studies lack glyphosate-administrated doses to directly
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confirm its effect. On the basis of the in vitro and epidemiological results, it is difficult to
directly infer that glyphosate and GBHs pose a risk to human health and safety.

3.2. Health Effects on Other Organisms

Glyphosate and GBHs are perceived as a group of chemicals that are well regulated in
their environmental risks and health effects on nontarget organisms [131]. Moreover, some
research states that glyphosate is nontoxic or slightly toxic to different organisms [132–135].
However, numerous studies have demonstrated the toxicological effects of glyphosate
and GBHs on a wide range of nontarget organisms. Glyphosate showed an adverse
effect on unicellular organisms, such as Euglenia gracilis, where glyphosate at 3 × 10−3 M
reduced the chlorophyll, photosynthesis, and respiration [136]. In rhizobium bacteria,
glyphosate applied to glyphosate-resistant crops, such as soybean and corn, decreased the
proliferation of Acidobacteria, which are implicated in biogeochemical processes related
to nutrient acquisition [137]. In poultry microbiota, exposure to glyphosate affects the
availability of some beneficial bacteria, such as Lactobacillus spp., Enterococcus faecium,
Bifidobacterium adolescentis, and Bacillus badius [10].

Glyphosate also demonstrated negative effects on multicellular organisms found in
soil and water. The population and radial growth of some mycorrhiza fungi, such as
Cenococcum geophilum and Hebeloma longicaudum, were reduced after glyphosate exposure
at concentrations of >5000 ppm [138]. Kittle and McDermid [139] conclude that glyphosate
decreased the macroalgae chlorophyll content. As mentioned, nematodes are important
for maintaining a healthy ecosystem in the soil. Dominguez et al. [135] demonstrated
that AMPA decreased the bodyweight of juvenile nematodes. Zaller et al. [131] analyzed
the effect of GBHs on the correlation between Lumbricus terrestris and mycorrhizal fungi.
Arthropods are 90% of the animal kingdom, and they have an important function in the
ecological balance and in human nutrition [140]. In the research, Daphnia magna and
D. spinulata were treated with glyphosate and, after 48 h at 150 mg L−1, the organisms were
immobilized [141]. The effect of glyphosate and POEA on crayfish (Cherax quadricarinatus)
was evaluated after 50 days of exposure, and the results show a reduction in somatic-cell
growth and a reduction in the muscle glycogen and lipid reserves [142].

Insects are invertebrates from the Arthropoda phylum, and they have also been af-
fected by the use of glyphosate and GBHs. Three different concentrations of glyphosate (2.5,
5.0, and 10 mg L−1) were mixed in a sucrose solution, and the results show that glyphosate
damaged the cognitive functions of bees (Apis mellifera) [143]. GBH was harmful to the lar-
vae eggs of Trichogramma pretiosum [144]. The negative effects of glyphosate and GBHs have
also been demonstrated in molluscs, such as aquatic snails (Pseudosuccinea columella) [145]
and terrestrial snails (Helix aspersa) [146]. Glyphosate was also toxic to fish [147], amphib-
ians [148], and birds [149].

4. Conclusions

Glyphosate is the most used nonselective and broad-spectrum herbicide around the
world. Glyphosate and GBH application has been increasing considerably since the late
1970s because of the false belief in their low toxicity and mobility in the environment. As a
consequence of their overuse, glyphosate and AMPA are being detected residually on soil,
water, and nontarget plants, causing considerable negative side effects to the environment
and to the health of humans and other organisms. This review article presents the state
of the art on the environmental and health effects of GBHs, glyphosate, and its principal
residue, AMPA. It can be concluded that the indiscriminate use of glyphosate and GBHs
has led to documented effects on nontarget organisms. As a consequence of all the recent
controversy, glyphosate and GBHs have been either restricted or banned. Nonetheless,
further studies are needed on the side effects of glyphosate and GBHs on the environment,
human health, and nontarget organisms to fill in the gaps in the knowledge. This general
overview provides a risk assessment for scientists, regulatory agencies, and the public in
general, with consideration to the facts on the glyphosate-usage risks.
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109. Kwiatkowska, M.; Reszka, E.; Woźniak, K.; Jabłońska, E.; Michałowicz, J.; Bukowska, B. DNA damage and methylation induced
by glyphosate in human peripheral blood mononuclear cells (in vitro study). Food Chem. Toxicol. 2017, 105, 93–98. [CrossRef]
[PubMed]

110. Elie-Caille, C.; Heu, C.; Guyon, C.; Nicod, L. Morphological damages of a glyphosate-treated human keratinocyte cell line
revealed by a micro-to nanoscale microscopic investigation. Cell Biol. Toxicol. 2010, 26, 331–339. [CrossRef]

111. Heu, C.; Berquand, A.; Elie-Caille, C.; Nicod, L. Glyphosate-induced stiffening of HaCaT keratinocytes, a Peak Force Tapping
study on living cells. J. Struct. Biol. 2012, 178, 1–7. [CrossRef]

112. Mañas, F.; Peralta, L.; Raviolo, J.; Ovando, H.G.; Weyers, A.; Ugnia, L.; Cid, M.G.; Larripa, I.; Gorla, N. Genotoxicity of glyphosate
assessed by the comet assay and cytogenetic tests. Environ. Toxicol. Pharmacol. 2009, 28, 37–41. [CrossRef]

113. Mesnage, R.; Bernay, B.; Séralini, G.E. Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell
toxicity. Toxicology 2013, 313, 122–128. [CrossRef]

114. Benachour, N.; Séralini, G.E. Glyphosate formulations induce apoptosis and necrosis in human umbilical, embryonic, and
placental cells. Chem. Res. Toxicol. 2009, 22, 97–105. [CrossRef]

115. Benachour, N.; Sipahutar, H.; Moslemi, S.; Gasnier, C.; Travert, C.; Séralini, G.E. Time- and dose-dependent effects of roundup on
human embryonic and placental cells. Arch. Environ. Contam. Toxicol. 2007, 53, 126–133. [CrossRef] [PubMed]

116. Martinez, A.; Al-Ahmad, A.J. Effects of glyphosate and aminomethylphosphonic acid on an isogeneic model of the human
blood-brain barrier. Toxicol. Lett. 2019, 304, 39–49. [CrossRef]

117. Gao, H.; Chen, J.; Ding, F.; Chou, X.; Zhang, X.; Wan, Y.; Hu, J.; Wu, Q. Activation of the N-methyl-d-aspartate receptor is involved
in glyphosate-induced renal proximal tubule cell apoptosis. J. Appl. Toxicol. 2019, 39, 1096–1107. [CrossRef] [PubMed]

118. Mesnage, R.; Biserni, M.; Wozniak, E.; Xenakis, T.; Mein, C.A.; Antoniou, M.N. Comparison of transcriptome responses to
glyphosate, isoxaflutole, quizalofop-p-ethyl and mesotrione in the HepaRG cell line. Toxicol. Rep. 2018, 5, 819–826. [CrossRef]

119. Hao, Y.; Zhang, Y.; Ni, H.; Gao, J.; Yang, Y.; Xu, W.; Tao, L. Evaluation of the cytotoxic effects of glyphosate herbicides in human
liver, lung, and nerve. J. Environ. Sci. Heal. Part B Pestic. Food Contam. Agric. Wastes 2019, 54, 737–744. [CrossRef]
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