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Abstract: As a critical indictor in the Battery Management System (BMS), State of Charge (SOC)

is closely related to the reliable and safe operation of lithium-ion (Li-ion) batteries. Model-based

methods are an effective solution for accurate and robust SOC estimation, the performance of which

heavily relies on the battery model. This paper mainly focuses on battery modeling methods, which

have the potential to be used in a model-based SOC estimation structure. Battery modeling methods

are classified into four categories on the basis of their theoretical foundations, and their expressions

and features are detailed. Furthermore, the four battery modeling methods are compared in terms

of their pros and cons. Future research directions are also presented. In addition, after optimizing

the parameters of the battery models by a Genetic Algorithm (GA), four typical battery models

including a combined model, two RC Equivalent Circuit Model (ECM), a Single Particle Model (SPM),

and a Support Vector Machine (SVM) battery model are compared in terms of their accuracy and

execution time.

Keywords: lithium-ion battery; battery model; state of charge; model-based SOC estimation;

electric vehicles

1. Introduction

As fossil fuel reserves continue to decrease, new means of transportation that are independent of

traditional fuels have to be found to meet the requirements of our daily life. Consequently, electrical

vehicles (EV) have been regarded as a potential solution. In order to increase the acceptance of EV

in the market, the performance of the energy storage system has attracted much attention from both

industry and academia. As the only power supply in pure EV, the capability of the battery pack is of

great importance. Lithium-ion (Li-ion) batteries have higher energy density, longer cycle life, and no

memory effect compared with other battery types [1,2]. Additionally, the price of the li-ion battery

continues to decline, which makes it a popular choice for EV applications [3]. In order to ensure the

safety and reliable operation of the battery pack, SOC has to be estimated [4,5].

Although numerous SOC estimation methods have been exhibited and classified in [6–10],

accurate, efficient, and reliable SOC estimation solutions are still needed in real-time applications.

As discussed in our previous work [10], SOC estimation methods are mainly divided into five

categories: the Coulomb counting method; the Open Circuit Voltage (OCV) method; the impedance

spectroscopy-based method; the model-based method, and the artificial neural network-based method.

The Coulomb counting method calculates SOC through the integration of current, and has high

computational efficiency. The accuracy of Coulomb counting method is sensitive to initial SOC and the
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accumulation of the current measurement error. OCV method depends on the relationship between

SOC and OCV. The long battery relaxation time for measuring the OCV makes it impractical for most

online SOC estimations. Impedance spectroscopy is hard to measure accurately, while artificial neural

networks are closely related to the training samples. Generally, model-based SOC estimators are

supposed to have a superior performance. However, their performance relies on an accurate battery

model. In the model-based estimation structure, much attention has been paid to different estimation

algorithms, while a complete review of the battery modeling methods is seldom seen in the literature.

Therefore, this paper reviews important battery modeling methods from the SOC estimation point

of view.

The modeling technologies for Li-ion batteries are discussed in [11], where data-driven battery

models are not discussed. Battery modeling methods for EV are discussed in [12], but the paper does

not give the detailed features of each method or the connections between each method. Different from

previous works [11,12], this paper divides the battery modeling method into four categories: empirical

model, Equivalent Circuit Model (ECM), electrochemical model, and data-driven model. According

to the structure of the model-based estimation, the advantages and disadvantages of each modeling

method are presented. In addition, the future trends for next-generation modeling technology are also

presented. Moreover, four typical modeling methods in SOC estimation area including the combined

model [13], two Resistance-Capacitance (RC) ECM [10], Single Particle Model (SPM) [14] and Support

Vector Machine (SVM) battery model [15] are compared through an experiment on a LiFePO4 battery

in terms of accuracy and computational efforts.

The rest of this paper is organized as follows. After introducing the principle of model-based

SOC estimation, the features of the four modeling methods are detailed in Section 2. Section 3 gives

the advantages and disadvantages of each modeling method and previews future trends in battery

modeling methods. Four typical modeling methods are compared in terms of modeling accuracy and

execution time in Section 4. Conclusions are drawn in Section 5.

2. Battery Modeling Methods

In this section, the effect of the battery model on the accuracy of the model-based estimation is

analyzed. Then, the features of each modeling method are detailed.

2.1. Battery Model and Model-Based SOC Estimation

The driving conditions of EVs are significantly different in different countries and regions [16],

which means that the estimation methods should be able to accurately estimate SOC under diverse

driving conditions [17]. Therefore, advanced SOC estimation methods with good robustness are

needed for EVs. Model-based methods have frequently been used for the SOC estimation area due

to their good accuracy and robustness. The structure of the model-based SOC estimation method is

illustrated in Figure 1.

 

–

Figure 1. Framework of the model-based State of Charge (SOC) estimation methods.
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We see from Figure 1 that the model-based estimation consists of two major parts: a battery model

and an estimation algorithm [14,15,18–21]. In the model-based estimation structure, a battery model

is established to predict the terminal voltage, and the current, SOC, and temperature are the usual

inputs. In order to clearly explain the process of model-based estimation, it is assumed that the battery

model is exactly equivalent to the real battery and the measurement from sensors does not contain any

noise. Therefore, if the real SOC is the input of the battery model, the predicted voltage of the battery

model is expected to be the same as the measured terminal voltage. However, errors in SOC always

exist in real applications. The deviation between the output of the battery model and the terminal

voltage can be used to correct the SOC in each sampling time. Afterwards, the corrected SOC acts as

the input of the battery model for the calculation of the terminal voltage in the next cycle. As discussed

in [22], the SOC estimation error contains dynamic transient error and steady state error. The dynamic

transient error can be small when using a large gain L in the estimation algorithm, while the errors

related to the modeling accuracy are independent of L [22]. This means that the gain L cannot correct

battery modeling errors. Therefore, an accurate battery model surely improves the accuracy of SOC

estimation. The model-based SOC estimation methods are insensitive to the initial SOC due to the fact

that it has a closed loop structure [10].

After pointing out the main function of the battery model in the model-based estimation structure,

different kind of battery modeling methods are detailed in this section. According to their modeling

principles, modeling methods are mainly divided into four categories: empirical models, ECMs,

electrochemical models, and data-driven models.

2.2. Empirical Model

In empirical models, the battery terminal voltage is represented as a mathematical function of

the SOC and the current [23]. Considered a simplified electrochemical model, an empirical model

represents the essential nonlinear characteristics of a battery with reduced order polynomial or

mathematical expressions.

In Table 1, yk is the terminal voltage, E0 is OCV when the battery is fully charged, Ri is the internal

resistance, K1 is the polarization resistance, ik is the instantaneous current, and zk represents the

battery SOC. The Shepherd model [24], the Unnewehr universal model [25,26], and the Nernst model [27]

in Table 1 are the classical empirical models in the literature. The accuracy of the three models in

predicting the terminal voltage is compared in [23]. The Nernst model obtains the best accuracy, and

the Shepherd model performs especially well in a continuously discharging current. Generally, the three

models in Table 1 can be combined for better accuracy in the following form [13]:

yk = E0 − R · ik −
K1

zk
− K2 · zk + K3 · ln(zk) + K4 · ln(1 − zk). (1)

Table 1. Typical empirical models.

Model Type Model Equations

Shepherd model [24] yk = E0 − R · ik −
K1

zk

Unnewehr universal model [25,26] yk = E0 − R · ik − K1 · zk

Nernst model [27] yk = E0 − R · ik − K2 · ln(zk) + K3 · ln(1 − zk)

There are other ways to improve the modeling accuracy of the basic empirical models.

The accuracy of the empirical model can be improved by adding more parameters [28]. Since the

Shepherd model suffers from algebraic loop and simulation instability in real-time applications,

a modified Shepherd model is proposed for describing the dynamic behavior of the battery [29].

Replacing the voltage of the internal resistance with the polarization voltage term, it is validated



Appl. Sci. 2018, 8, 659 4 of 17

under a constant current profile. In order to improve the dynamic performance of the modified

Shepherd model, the OCV-SOC relationship is taken into consideration in [30] and a term related to

the polarization voltage is added. The error band of the modified Shepherd model is within ±5% in

the dynamic current profile. To further solve the singularity in the Shepherd model, another extension

proposed in [31,32] obtains relative error below 0.5% in FTP72 cycles and the execution time is between

2.35 µs and 4.35 µs. The Nernst model can also be improved by adding two additional constants,τ1 and

τ2, to have a stronger ability to describe the dynamic terminal voltage [27]. Classical empirical models

have flaws during the relaxation time [33] because the hysteresis effect [34] of the battery voltage is not

considered. Therefore, the term s·M is added to the Nernst equation to represent the hysteresis effect,

where M is the correction term to be identified [35]. Moreover, an enhanced self-correcting model

considering the voltage hysteresis is proposed in [36], which includes the gradual hysteresis voltage

as a function of SOC and the instantaneous hysteresis voltage changes with the sign of the current.

Detailed expressions of the abovementioned empirical models are illustrated in Table 2. Considering

more effects inside the battery, the accuracy of the empirical model is improved but the computational

burden is also increased.

Table 2. Modified empirical models.

Reference Model Expression

[29]
yk = E0 − K · Q

Q−ik ·T
+ A · e−B·ik ·T

Q is the battery capacity, A is the exponential zone amplitude, B is the time constant inverse of
the exponential zone, K is the polarization voltage.

[30]

Discharge: yk = E0 − R · ik − K · Q
Q−ik ·T

· (ik · T + i∗) + A · e−B·ik ·T

Charge: yk = E0 − R · ik − K · Q
ik ·T−0.1·Q · i∗ − K · Q

Q−i·t · ik · T + A · e−B·ik ·T

i* is the filtered current through the polarization resistance.

[31,32]

yk = E0 − R · ik − Rpol · ik
∗ − K · Q ·

(

1
zk+z0

− 1
)

+ A · e−B·(1−zk)

τ di∗

dt + i∗ = i

Rpol =

{

K
zk

discharge
K

λ−zk
other conditions

Rpol is the polarization resistance.

[27]
yk = E0 − R · ik − K2 · ln(τ1 + zk) + K3 · ln(τ2 + 1 − zk)
τ1 and τ2 are the two additional constants.

[35]

yk = E0 − R · ik − K2 · ln(zk) + K3 · ln(1 − zk) + sk · M

sk =











1 ik > ε

−1 ik < −ε

sk−1 |ik| ≤ ε

ε is a small positive number, M is the correction term.

[33,36]

yk = OCV(zk) + M0 · sk + M · hk − R · ik

hk = e(−|
η·ik−1 ·γ·T

Q |) · hk−1 −

(

1 − e(−|
η·ik−1 ·γ·T

Q |)
)

· M · sign(ik−1)

sk =

{

sign(ik) ik > 0

sk−1 otherwise

M and M0 are the parameters estimated from the test data.

2.3. Equivalent Circuit Model

ECM consists of a voltage source related to SOC, an internal resistor, and Resistance-Capacitance

(RC) networks, which is able to describe the electrical relationship between the inputs (current, SOC,

and temperature) and the terminal voltage [37]. Compared to empirical models, ECMs are much easier

for the understanding of the electrical characteristic of the battery. Moreover, due to the plentiful

circuit components and their combinations, ECM gives researchers sufficient freedom to design a
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suitable structure for their applications. Generally, in ECM, the resistor indicates the self-discharge

and the high-valued capacitor or the voltage source stands for the battery OCV. The RC pairs with

different time constants stand for the diffusion process in electrolyte and porous electrodes and the

charge transfer and double-layer effect in the electrode. The Rint model, Thevenin model, Partnership

for a New Generation of Vehicles (PNGV) model, and General Non-Linear (GNL) model are the four

common ECMs in the literature, and are illustrated in Table 3.

Table 3. The expressions of the four common ECMs.

Model Expression

Rint model [38]

R0

Uoc
Ut

I

 

  

   

    

     

Ut = Uoc − I · R0

Ut is the terminal voltage, Uoc indicates the OCV. I is the discharging current
and Ro is the Ohm resistance.

Thevenin model [39,40]

  

R0

Uoc
Ut

IR1

C1

 

   

    

     

Ut = Uoc − U1 − I · R0

R1 is the polarization resistance and C1 is the polarization capacitance, U1 is
the voltage of the RC network.

PNGV model [41]

  

   

R0

Uoc

Ut

IR1

C1
Ccap

    

     

Ut = Uoc − Ucap − U1 − I · R0

Ccap is the bulk capacitance.

GNL model [42]

  

   

    

R0

Uoc

Ut

IR2

C2Ccap
C1

R1

     Ut = Uoc − Ucap − U1 − U2 − I · R0

R2, C2 are the concentration polarization resistance and capacitance.

As seen from Table 3, the structures of the different ECMs have some connections. By adding an

additional RC network to the Rint model, the Thevenin model is achieved and can better capture the

dynamic terminal voltage of battery. Considering the effects of OCV variation, the PNGV model is

obtained after adding a capacitor Ccap to the Thevenin model [39,40]. Ccap describes the OCV variation

by the accumulation of the discharging current [43]. Adding more RC networks helps with describing

the terminal voltage in more detail; the PNGV model usually has better accuracy than the Rint and

Thevenin models. Compared with the Thevenin model, one more RC network is included in the

GNL model by taking into account the concentration polarization effect. In terms of SOC estimation

area, ECMs with one RC or two RC pairs are especially popular for modeling the battery. Twelve

battery models including the empirical models and ECMs with different RCs are compared in terms

of modeling accuracy, which proves that one RC ECM is more suitable for the LiNMC battery and

one RC ECM with one-state hysteresis is the best choice for the LiFePO4 battery [44]. Ten lumped

parameter models for Li-ion battery are compared in terms of modeling accuracy and the effects of the
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model on the SOC and State-of-Power (SOP) estimation are also discussed in [45]. The experimental

results on the New European Drive Cycle (NEDC) show that two RC ECM is an optimal choice for the

energy storage system and one RC ECM with hysteresis voltage is preferred for battery with strong

hysteresis effect in the terminal voltage. Therefore, adding more RC networks generally improves the

modeling accuracy, but having more than two RC networks also increases the computational burden.

ECMs can be modified in several ways to improve their ability to describe the terminal voltage.

In order to describe the inherent electrochemical property of the battery, a physically based ECM is

proposed through analyzing the Warburg element from the Electrochemical Impedance Spectroscopy

(EIS) measurement [46]. The difficulty of online EIS measurement in real-time applications may

decrease the accuracy of the physically based ECM. For a better interpretation of electrochemical and

thermal behaviors, a multiphysical battery model with 11 parameters is proposed in [47]. The modeling

accuracy is less than 2% for the electrical part and the mean error is 2.45% for the thermal part in the

experimental test. For real applications, there should be a good tradeoff between the complexity and

accuracy before applying ECM to a specific application.

2.4. Electrochemical Model

According to the electrochemical kinetics and the charge transfer process, electrochemical models

are established for the purpose of describing the inner reactions inside the battery. Electrochemical

models are the foundation of a series of physical laws, such as Faraday’s first law, Ohm’s law, Fick’s law

of diffusion, and the Butler–Volmer equation. The electrochemical model is expressed in a nonlinear

Partial Differential Equations (PDEs) form. Therefore, in order to have a direct analytical solution,

the prerequisite of using the electrochemical model is changing the PDEs into Ordinary Differential

Equations (ODEs). Numerical methods such as integral approximation, Pade approximation, the Ritz

method, the finite element method, and the finite difference method are often selected to discretize the

nonlinear PDEs in the electrochemical models [47,48].

In Faraday’s law of electrolysis, the pore-wall flux Ji is related to the divergence of current flow in

the electrolyte phase. The pore-wall flux is calculated as follows:

Jn(t) =
I(t)

F · Sn
, Jp(t) = −

I(t)

F · Sp
, (2)

where n, p denote the negative and positive electrodes, respectively.

Ohm’s law indicates the distribution of potential between the electrolyte and the active material.

Fick’s law of diffusion reveals the relationship of the concentration and the diffusion flux, which

is capable of describing the diffusions in both the electrolyte and the electrode. The Butler–Volmer

equation points out the impact of the electrode potential on the electrode current.

Two kinds of electrochemical models utilized in the literature are the pseudo-2D model and the

Single Particle Model (SPM), as shown in Figure 2. The pseudo-2D model [49–51] is based on the

concentrated solution theory and the porous electrode theory. The structure of the porous electrode

increases the area of the specific surface, which adequately facilitates the electrochemical reactions.

The active material is able to sufficiently contact the electrolyte with the benefit of the porous structure.

Pseudo-2D models regard the active material in the electrode as spherical particles with equal size

and volume.

SPM [52–54] is a simplification of a pseudo-2D model that regards the electrode as a single particle.

If the liquid phase concentration and electrode potential are assumed to be constant, the reactions in the

electrode are identical for different particles. Thus, the electrochemical reactions of different particles

in the electrode can be considered as a single spherical particle. Compared with the pseudo-2D model,

the description of the migration of the Li ions inside a solid particle is much easier for SPM.



Appl. Sci. 2018, 8, 659 7 of 17

 

Figure 2. Structure of the pseudo-2D (P2D) model and SPM. Reproduced from [55]. Copyright 2017,

Electrochemical Society.

A pseudo-2D model is more suitable for analyzing the mechanism of the Li-ion battery, while

SPM is possible for battery SOC estimation [54,56,57]. In [54], SPM is reorganized in a state-space form

with only eight unknown parameters, and SOC is estimated by an Iterated Extended Kalman Filter

(IEFK). Nonlinear geometric observer is designed to estimate SOC on the basis of SPM, which obtains

a less than 4.5% SOC estimation error [56].

Parameters in the electrochemical models generally have their own physical explanations.

However, it is normally quite difficult to obtain the real parameters in electrochemical models.

Therefore, heuristic methods such as Particle Swarm Optimization (PSO) and Genetic Algorithm

(GA) are used for the parameter identification of the electrochemical model [14,58,59]. Despite the

requirement of knowledge of the electrochemical process, the computational burden should also

be considered if an electrochemical model is used in BMS. The full-order electrochemical model

consists of 17 PDEs, but the number of the parameters is still as many as 30~100 after discretizing [60].

Consequently, efforts are needed to reduce the order of the electrochemical model. The full order

model is reduced by considering three aspects: a polynomial approach for the ion concentration in

the electrode, a state space model for the concentration in the electrolyte and linearized potential,

and electrochemical kinetics [61]. After assuming that the electrolyte concentration is constant,

the electrochemical model is simplified through an approximate solution of the diffusion equation

in the active material [62]. The diffusion process is represented by a high pass filter and a pure

integrator in [63]. The electrical analogy of the charge migration and diffusion equations are utilized

for accelerating the simulation time of the electrochemical model. However, even if the electrochemical

model is simplified, the calculation process is still complex and the accuracy is hardly guaranteed

under diverse operating conditions.

2.5. Data-Driven Model

Due to the fast development of data mining methods in the machine learning area, the relationship

among the variables in the battery can be directly established without any previous knowledge.
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The battery models based on this kind of modeling method are closely related to the history data

of the measurement. The applications of the machine learning methods make the modeling process

much easier, as illustrated in Figure 3. After collecting enough training samples from the applications,

a data-driven model is established through the training process of the machine learning algorithm.

As shown in Figure 3, the data-driven model directly reflects the relationship between the input (the

current I, SOC, temperature T) and the terminal voltage U.

 

Figure 3. The process of establishing the data-driven model.

A Radial Basis Function Neutral Network (RBFNN) is a multilayer neural network containing a

plurality of nodes in each layer and can capitalize on Gaussian function as activation function in the

hidden layer. Since RBFNN generally has a better performance than a traditional Neutral Network

(NN), it is used to model the nonlinear relationship of battery [64]. Support Vector Machine (SVM) has

a more strictly mathematical proof and converges to an optimal solution faster than NN. Replacing

experiential risk minimization to structural risk minimization makes the SVM more suitable for solving

a small-sample-size problem. The output of the two-level structure SVM is terminal voltage, while

current and SOC are the input vector and RBF is the kernel function [15]. Extreme Learning Machine

(ELM) has better accuracy and needs less training time than other NNs if the same number of hidden

neurons is selected. Therefore, ELM is used to model the battery by adopting a two-level ELM and the

sigmoid function is chosen as the activation function [65]. Data-driven models are able to predict the

terminal voltage if a suitable dataset is provided. However, the accuracy of the data-driven method is

related to the training dataset, which also limits its extensive usage.

3. Discussion on the Battery Modeling Methods

The connections between the four modeling methods are discussed and the pros and cons of

each method are listed in this section. Furthermore, the future trends in battery modeling methods

are discussed.

3.1. Comparison of the Battery Modeling Methods

The modeling methods discussed in this paper are summarized in Figure 4. According to the

description in the previous section, the pros and cons of the modeling methods are listed in Table 4.

Different battery modeling methods have some essential connections, as shown in Figure 5.

Describing the specific reactions inside a battery in detail, the electrochemical model is the basis

for the other models. The empirical model is known as a simplified electrochemical model. Circuit

components in ECM are an alternative to chemical reactions in the electrochemical model. With the

simple structure of ECM, the physical variables in ECM are easily explained and understood. Moreover,

denoting the identical physical characteristics in a battery, some terms in the empirical model are

equivalent to those in ECM [30]. The data-driven method directly describes the characteristics of the

electrochemical model through data analysis.
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
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Figure 4. The classifications of battery modeling methods.

Table 4. Pros and cons of the modeling methods.

Modeling
Methods

Empirical Model
Equivalent Circuit

Model
Electrochemical

Model
Data-Driven Model

Modeling
expression

Ut =
f (Uoc, SOC, I)

Ut

= f (Uoc(SOC), I, R, C)
Ut

= n · fPDEs

Ut

= f (I, SOC, T)

Pros
Simple expression,

computational
efficiency

Easily understood,
widely used in SOC

estimation

High accuracy of
voltage calculation

High accuracy of voltage
calculation, do not need

prior knowledge of
the battery

Cons
Limited capability
of describing the
terminal voltage

Complex parameter
identification process

Require prior
knowledge of the

battery, time
consuming

Laborious training dataset
collection process

 


      

 

Figure 5. The connections of different modeling methods.

3.2. Future Trends of Battery Modeling Methods

As previously described, the accuracy of the battery model is critical for the model-based SOC

estimation methods. Hybrid models utilizing the advantages of each modeling technology are

proposed for the purpose of improving the modeling accuracy. In [66], the Thevenin model represents

the voltage corresponding to the current profile, while the nonlinear part of the model is represented by

the Shepherd model. Likewise, the Nernst model can also replace the nonlinear OCV-SOC relationship
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of ECM for improving the modeling accuracy [67]. Since the kinetic battery model is capable of

capturing the nonlinear capacity effects (such as the recovery effect and rate capacity effect), a hybrid

battery model including ECM and a kinetic battery model is proposed for modeling batteries [68].

The electrochemical model can also be combined with the ECM by using the electrical analogy of the

mass transport equations in electrodes and electrolytes [69]. In order to predict the variation of the

parameters and the polarization voltage drop under the changing current, Butler–Volmer equation is

simplified and added to the Thevenin model in [70].

ECM has been extensively applied to SOC estimation area but the relationship between the

numbers of RC pairs and the accuracy of the ECM still needs further explanation. Several publications

have tried to explain the relationship between the numbers of the RC networks and the accuracy of

ECM [44,45,71,72]. However, the essential reason why some models are good for the specific battery is

not fully known.

Once the structures of the battery model are determined, how to find the optimal parameters for

each model is becoming important for the accuracy of the model. However, the importance of the

parameters is not the same for the SOC estimation results. The updating frequency of each parameter

does not need to be the same, since the parameters vary with different time scales. For example,

the capacity decreases slowly with the lifespan of the battery, while the RC parameters change in the

discharging process [22,73]. More work is still needed to find the key parameters in the battery models

for SOC estimation and decide on a reasonable updating frequency for each parameter. Moreover,

although temperature affects the performance of the Li-ion battery [74,75], the battery models for most

SOC estimation methods have not taken temperature into consideration.

4. The Performance of the Four Typical Battery Models

In order to show the performance of the four typical modeling methods in more detail, the combined

model [13], two RC ECM [10], SPM [14], and SVM battery models [15] are compared in terms of accuracy

of voltage response and execution time in this section. For the details of each model, please refer

to [10,13–15]. For fairness of comparison, GA [76] is used to optimize the parameters in the combined

model, two RC ECM, and SPM. Our paper uses the MATLAB command ga to implement the parameters

optimization by GA [77]. A LiFePO4 battery is discharged by NEDC profile in the MACCOR 4000 series

test bench [10]. The nominal capacity of the battery is 10 Ah, and the nominal voltage is 3.2 V.

The temperature in the test chamber is set to 25 ◦C and the sampling time is 1 s for data acquisition.

The step time for the simulation of the models is also set to 1 s in this paper. In order to verify the

four modeling methods, the LiFePO4 battery is discharging under multi-NEDC driving cycles. All the

measurements from MACCOR are shown in Figure 6.

–

–

 
(a) 

Figure 6. Cont.
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(b) 

 
(c) 

OCV is measured with 5% SOC interval after two hours’ battery relaxation time. Therefore, the 

      

       
  

Figure 6. Measurement during multi-NEDC driving cycles. (a) Current; (b) voltage; (c) SOC.

OCV is measured with 5% SOC interval after two hours’ battery relaxation time. Therefore,

the two RC ECM can be built on the basis of the measurement in Figure 7.

OCV is measured with 5% SOC interval after two hours’ battery relaxation time. Therefore, the 

 

      

       
  

Figure 7. OCV measurement.

With the constraint that the diminishing of OCV with the decrease of SOC, a high-order

polynomial function represents the OCV-SOC relationship, as follows:

OCV = −330.2741 · SOC8 + 1507.8350 · SOC7 − 2869.7023 · SOC6

+2949.8632 · SOC5 − 1773.9467 · SOC4 + 632.0383 · SOC3 − 128.9882 · SOC2

+13.8940 · SOC + 2.6371

(3)

Equation (3) further acts as the voltage source in the two RC ECM. The modeling results of the

four modeling methods are shown in Figures 8 and 9.
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(a) 

  
(b) 

Figure 8. Voltage prediction achieved by using the four models. (a) Voltage; (b) absolute error.

 
(a) 

 
(b) 

Figure 9. Zoom of the voltage prediction achieved by using the four models (from 7221s to 8054 s):

(a) Voltage; (b) absolute error.
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We can see that all the methods are able to predict the battery terminal voltage in Figure 8a. SVM

and SPM achieve better results than the other two methods, as shown in Figure 9a, but the results of

the two RC ECM and the combined model are also acceptable. The absolute error of the four methods

(Figure 8b) proves that SVM obtains the best result of the four models, and the Mean Absolute Error

(MAE) of SVM is 0.0034 V. The good accuracy of SVM is because the same data is used in SVM for

training and testing. For further testing the SVM battery model, an Urban Dynamometer Driving

Schedule (UDDS) [78] is applied to the SVM, trained by the measurement from NEDC. The results for

the SVM battery model shown in Figure 10 are much worse than those in Figure 8. The MAE of the

results in Figure 10 is 0.0632 V. Therefore, the accuracy is doubtful if another driving cycle different

from the training samples is applied to the SVM battery model. The details of the absolute error in

Figure 9b clearly show the performance of the four models in terms of accuracy of voltage prediction,

while SPM shows comparable results to SVM. MAE and the execution time of the four models are

listed in Table 5.

 

6.3649 × 10−7
9.6155 × 10−7
2.2105 × 10−5

Figure 10. The performance of the SVM battery model in UDDS.

Table 5. Comparison of the four models in MAE and execution time.

Model Type MAE (V) Execution Time (s)

Combined model 0.0212 6.3649 × 10−7

Two RC ECM 0.0184 9.6155 × 10−7

SPM 0.0159 2.2105 × 10−5

SVM 0.0034 0.0018

The MAE of SVM is much smaller than the others three models. Although GA is applied to

optimize the parameters, it is still difficult to obtain true values for each parameter for SPM. Hence,

the differences in MAE are not obvious for the SPM, the two RC ECM, and the combined model, since

SPM contains as many as 28 parameters. The execution time in this paper is measured in MATLAB

2017b on a 64-bit computer with 2.30 GHz CPU, and the mean execution time of the battery model

at each step is calculated in Table 5. It can be seen from Table 5 that the execution time of SVM is

0.0018 s, which is much longer than in the other models. An optimal model for the SOC estimation in

real-time applications should include a good trade-off between accuracy and execution time. Therefore,

considering the flaws of SPM and SVM, the combined model and ECM are still the first choice if their

accuracy is acceptable for the specific application.

5. Conclusions

Considering the requirement in terms of robustness and accuracy for SOC estimation, model-based

estimation has become popular for EV applications recently. By analyzing the structure of the

model-based SOC estimation, it is found that the performance of SOC estimation is closely related to

the accuracy of the battery model. This paper provides an extended review of the battery modeling

methods. According to their features and theoretical foundations, the latest battery models are
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classified into four categories: empirical models, ECMs, electrochemical models, and data-driven

models. On the basis of the electrochemical reactions inside the battery, the electrochemical models

are the foundation of the other models. Empirical models are developed by using mathematical

expressions to simplify the electrochemical model. The circuit components in ECM can be regarded as

an alternative to the reactions in the electrochemical model. Moreover, the data-driven models can

be seen as describing the performance of the electrochemical model through the data analysis of the

training samples.

The features and connections of the modeling methods and their future trends have been discussed.

Empirical models and ECMs are easier to be understood and have a higher computational efficiency.

The accuracy of the data-driven model closely relies on the training dataset. Electrochemical models

give deep insight into the mechanism of the battery. In order to develop high-fidelity battery models,

hybrid modeling methods and the relationship between ECM and the number of RC networks still

require further research. In addition, more attention should be paid to how to update the parameters

in the battery model. Temperature plays a key role in battery characteristics, but most of the proposed

model-based SOC estimators have still not taken temperature into consideration.

Four typical models are compared in terms of accuracy and execution time with the measurement

data from a LiFePO4 battery. After optimizing the parameters in each model by GA, the four models

obtain acceptable results. The most accurate SVM model obtains 0.0034 V in MAE and the execution

time of the combined model is only 6.3649 × 10−7 s (MATLAB 2017b, 64 bit, 2.30 GHz CPU). SVM and

SPM obtain better results in terms of accuracy, but the execution time of SVM and SPM is also longer

than for the other two models. However, considering the flaws of SVM and SPM, the combined

model and ECM are recommended for a LiFePO4 battery if their accuracy is acceptable for a specific

application. It should be noted that the conclusions obtained from the experimental results in this

paper are only limited to the LiFePO4 battery, which has a flat OCV-SOC curve.
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