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Abstract: In the face of large-scale environmental mapping requirements, through the use of
lightweight and inexpensive robot groups to perceive the environment, the multi-robot cooper-
ative (V)SLAM scheme can resolve the individual cost, global error accumulation, computational
load, and risk concentration problems faced by single-robot SLAM schemes. Such schemes are robust
and stable, form a current research hotspot, and relevant algorithms are being updated rapidly. In
order to enable the reader to understand the development of this field rapidly and fully, this paper
provides a comprehensive review. First, the development history of multi-robot collaborative SLAM
is reviewed. Second, the fusion algorithms and architectures are detailed. Third, from the perspective
of machine learning classification, the existing algorithms in this field are discussed, including the
latest updates. All of this will make it easier for readers to discover problems that need to be studied
further. Finally, future research prospects are listed.

Keywords: SLAM; visual SLAM; LiDAR SLAM; multi-sensor fusion; multi-robot SLAM; mobile robot

1. Introduction

With the continuous development of mobile robot technology, robots have come
to be applied in many fields. Countries around the world are constantly developing
robotics technology to realize the application of robots in more diverse scenarios, including
rescue robots for disaster rescue, exploration robots for harsh environments (e.g., deep
sea exploration), and unmanned vehicles for planetary exploration and self-driving cars.
The wide application range of these robots also raises a key issue: the robots need to carry
high-precision simultaneous localization and mapping technology. Without this technology,
rescue robots cannot find injured people in unknown environments promptly, exploration
robots cannot effectively explore unknown environments, unmanned vehicles for planetary
exploration cannot locate themselves, deep-sea exploration robots cannot build a complete
map of the seafloor, and autonomous vehicles may deviate from the track while driving,
creating serious safety hazards. SLAM technology can help mobile robots to locate their
position and construct maps of the surrounding environment effectively; as such, it has
become a key technology for solving these problems.

SLAM is short for simultaneous localization and mapping. SLAM technology origi-
nated in the field of robotics, proposed by Smith et al. [1] in 1986 at the IEEE Conference
on Robotics and Automation. The SLAM problem can be formulated in terms of putting
a robot in an unknown position in an unknown environment, and determining whether
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there exists a way for the robot to gradually describe the map of the environment while
moving and estimating its motion.

In this paper, SLAM is classified according to the types of sensors used by robots,
such as camera, LiDAR, and sonar. SLAM methods using these sensors are called VSLAM
(visual simultaneous localization and mapping), laser SLAM, and sonar SLAM, respectively.
Of these, VSLAM is the closest to the way in which humans perceive their environment.
In the early days of SLAM, researchers focused more on other sensors, such as LiDAR,
sonar, and IMUs. In recent years, with the continuous development of SLAM technology,
it is no longer limited to a single robot in single-sensor SLAM form. SLAM technology
has begun to develop in the direction of multi-sensor fusion and multi-robot collaboration;
for instance, the well-known unmanned technology [2], swarm robot [3], VIO-SLAM [4],
VL-SLAM [5], and so on.

In 2016, Cadena [6] took the lead in proposing three eras of SLAM development
based on the research process of algorithms. According to the emphasis of this paper,
the SLAM eras can re-divided by focusing on distributed data fusion. In addition, this
paper describes the outstanding contributions and achievements of SLAM at different times
from the aspects of theory, single sensor, and sensor fusion. Figure 1 depicts the division
of SLAM into three eras, based on its evolution since 1986. The following provides an
introduction to these three eras.

• The theoretical era (1986–2010): The SLAM problem was first proposed by Smith,
Self, and Cheeseman [1] in 1986. It involves converting several problems into a state
estimation problem. The extended Kalman filter [7], particle filter [8], maximum
likelihood method, and other methods can be used to solve such problems. In fact, in
an unknown location and environment, the robot needs to determine its position by
repeatedly observing environmental characteristics during its movement [9], conse-
quently building an incremental map of the surrounding environment according to
its position, allowing it to achieve the goal of simultaneous positioning and map con-
struction. In this era, a large number of SLAM algorithm theories were proposed. In
these three decades of development, researchers roughly divided relevant algorithms
into two categories: optimization-based and filtering-based. In 2010, Strasdat [10]
summarized and compared filtering and optimization methods, which marked the
end of the theoretical era and laid a theoretical foundation for the later single-sensor
SLAM, multi-sensor SLAM, and distributed SLAM.

• The single-sensor era (1990–2015): During this period, the theory of SLAM was put
into practice, and many problems were identified and solved. Many scholars studied
the basic characteristics of SLAM problems, including observability, convergence, and
consistency. The researchers came to understand the sparsity of the SLAM problem
(i.e., the sparsity of the H-matrix structure in the incremental equation), which plays a
key role in improving the efficiency of SLAM. In 1990, Moutarlier [11] took the lead in
applying the EKF (extended Kalman filter) to run SLAM on a mobile robot equipped
with a horizontal scanning laser rangefinder and odometer. This also marked the
beginning of the single-sensor era. Lu [12] first proposed a 2D SLAM algorithm
based on graph optimization in 1997. In 1999, Gutmann [13] formally proposed the
graph optimization framework. In the single-sensor period, 2D laser SLAM methods
emerged, such as Fast SLAM [14], Karto SLAM [15], G mapping [16], and other
classic models. In the 1990s, visual SLAM began to emerge, and feature methods
such as SUSAN [17] and SIFT (scale-invariant feature transform) [18] were proposed.
During the rapid development of VSLAM, many classic VSLAM algorithms emerged,
including the well-known ORB-SLAM [19], Mono SLAM [20], and PTAM [21]. In
addition, some major open-source SLAM frameworks and data sets were put forward
at this stage. After 2015, the single-sensor SLAM blowout period ended, and many
classic single-sensor SLAM algorithms had reached maturity in terms of application,
thus marking the end of the single-sensor era. In this era, a large number of SLAM
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techniques based on one sensor emerged, laying a solid foundation for the subsequent
development of multi-source data fusion SLAM.

• The fusion era (2003–present): During this period, the limitations of single-sensor
SLAM were gradually exposed, leading SLAM researchers to pay more attention to
multi-source information fusion technology. Information fusion technology originated
in the early 1980s and, with the continuous development of technology, information
fusion in the context of SLAM also began to develop. Multi-sensor fusion technology
has vigorously developed, among which the multi-sensor VIO-SLAM, VL-SLAM, and
LIO-SLAM techniques have developed rapidly. In addition, classical multi-sensor
fusion frameworks, such as LOAM [22], LeGO-LOAM [23], LVI-SAM [24], and DS-
VIO [25], were also proposed and put into practice in this period. Swarm robots first
appeared in 1988 [26], but they did not start to grow significantly until 2003. At first,
researchers experimentally applied the algorithms designed for single-robot systems
to the multi-robot systems and obtained many successful cases, such as the multi-robot
EKF algorithm [27] and multi-robot CL (cooperative localization) algorithm [28]. In
addition, many classical distributed SLAM frameworks have been proposed, such
as CCM-SLAM [29], CVI-SLAM [30], Co SLAM [31], DDF-SAM [32], and so on. In
the fusion era, SLAM researchers have begun to pay attention to the collection of
multi-source information and, at the same time, have continued to integrate SLAM
technology with the emerging disciplines of machine learning and deep learning,
making SLAM more and more intelligent and adaptable to multi-source data. At the
same time, the use of diverse and rich information enables SLAM systems to adapt to
changes in the environment well, allowing the system to operate for a long time with
a low failure rate.

The theory era

1986--2010

The single sensor era

1990--2015

The fusion era

2003--Presemnt

The formulation of the 

SLAM problem

Studies the basic characteristics 

of SLAM problem

A solution to the 

diverse SLAM problem

Figure 1. Different eras of SLAM development: the theoretical era, the single-sensor era, and the
fusion era.

Since Smith et al. first proposed the concept of SLAM at the IEEE Robotics and Au-
tomation Conference in 1986, SLAM theory and technology has developed rapidly. In
2006, Durrant-Whyte et al. presented two survey papers describing the SLAM problem.
The first part [33] can be regarded as a simple introductory tutorial, while the second
part [34] provides an introduction to the newer methods at that time. In 2008, Aulinas and
Josep et al. [35] discussed the advantages and disadvantages of SLAM based on filtering
methods, as well as elaborating on the practicability of filtering methods. Strasdat et al. pub-
lished review papers in 2010 and 2012, comparing filter-based methods [10] to optimization-
based ones [36]; after this point, optimization-based methods came into the mainstream. In
the two review papers published by Gamini Dissanayake in 2011 [37] and 2016 [38], the
observability, consistency, convergence, and computational efficiency and complexity in
modern SLAM research were elaborated on in detail. In 2016, Saeedi et al. surveyed the
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field of multi-robot SLAM [39]. They discussed various algorithms and briefly detailed
the motivation, advantages, and disadvantages of each algorithm. In addition, they also
introduced the scenarios in which multiple robots were widely used at that time. In 2021,
Dorigo et al. published a review focused on swarm robots [40], passing from introducing
the origin of swarm robots to detailing the current technical status of distributed robots, in
which they identified the most promising research directions, including some technologies
that require targeted breakthroughs in the future development process.

At present, there are many reviews focused on multi-robot SLAM, but few papers
have combined multi-robot fusion SLAM with semantics. At the same time, there are few
reviews and summaries in terms of data fusion algorithms and multi-robot architectures.
Considering the research gaps in these aspects, this paper was conceived. The existing
SLAM technology survey and the development history of SLAM are summarized. Al-
though similar research has been carried out, a large number of these studies have only
focused on one aspect of SLAM and do not provide a more comprehensive summary
regarding the development of SLAM. At the same time, large literature surveys have
combed traditional SLAM algorithms without detailing the rapid development of multi-
robot SLAM and multi-robot semantic SLAM. While there have been reviews focused on
multi-robot SLAM, they did not fully elaborate on the data fusion aspect. Therefore, it
was considered necessary to conduct a comprehensive review of multi-robot SLAM, in
order to help researchers and students to obtain a more comprehensive understanding of
multi-robot SLAM and multi-source heterogeneous data fusion SLAM.

This paper provides three key contributions:

• From the perspective of, and method used for multi-modal data fusion, data fusion
technology is divided into homogeneous and heterogeneous data fusion. Then, these
two data fusion approaches are classified and distinguished according to the algorithm.
The literature focused on the system structure of SLAM is combed, and the papers
on distributed SLAM published in recent years are summarized. At the same time,
Citespace is used to conduct an overall analysis of the SLAM and distributed SLAM
fields, in order to analyze and predict the development of distributed robot SLAM in
the future.

• The common sensor types in SLAM are reviewed, carefully dividing several common
single-sensor types in SLAM and introducing them along with examples. In addition,
multi-sensor fusion SLAM and multi-robot SLAM approaches are sorted and classified
based on these sensor types.

• Semantic SLAM is combined with distributed robot SLAM and the content of seman-
tic SLAM is integrated into multi-robot SLAM. From the perspective of generating
semantic labels, multi-robot semantic SLAM is divided into three categories: su-
pervised learning methods, unsupervised learning methods, and semi-supervised
learning algorithms.

This paper is overall structured as follows: In the Introduction section, the develop-
ment of SLAM and the division of the eras are introduced. In Section 2, the main sensors
used in SLAM and the classification of multi-source data fusion algorithms are detailed, and
relevant SLAM data sets are introduced. At the same time, CiteSpace is used to expound
the development history and hotspots related to SLAM in recent decades, as well as promi-
nent authors, laboratories, and countries. In Section 3, single-robot SLAM is discussed,
which is introduced from the perspective of single or multiple sensors. In the single-sensor
section, the well-known LiDAR SLAM, visual SLAM, and sonar SLAM are introduced. In
the multi-sensor section, four kinds of multi-sensor fusion methods are introduced and
classified from the aspects of algorithm and coupling type. Section 4 elaborates on the
content of distributed SLAM, focusing on emphasizing the content related to the fusion
of different individual sensor data, that is, homogeneous data. Existing multi-agent data
fusion schemes are categorized from the perspective of algorithm and structure, and the
future development prospects of distributed SLAM are predicted. At the same time, this
section also points out the direction for the combination of distributed SLAM and semantic
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SLAM, which is also an important direction regarding the integration of deep learning
and AI techniques into the multi-robot formation context. Finally, in Section 5, the paper
is summarized and future research prospects are discussed. Aiming at the development
prospect of distributed SLAM, several directions for future distributed SLAM research
are proposed, providing high-quality and comprehensive guidance for novel distributed
SLAM approaches. The section table of contents for this article is shown in Figure 2.

Current 

status of 

SLAM

Summary 

and 

prospect

Single 

robot 

SLAM

Analysis of SLAM 
development

Early fusion

Metaphase fusion

Late stage fusion

SLAM sensor Visual SLAM

Sonar SLAM

Future development and 
conception of distributed SLAM

Section 2 Section 3

Section 5

Homogeneous 

Data Fusion 

SLAM

Multi-sensor SLAM

Single sensor SLAM

SLAM framework

Laser SLAM

VIO-SLAM

VL-SLAM

LIO-SLAM

Other Sensor Fusion

Data fusion method

Multi-source data fusion 
algorithm classification

SLAM dataset

Multi-

robot data 

fusionMulti-robot architecture

Multi-robot SLAM components

Section 4

Visual front end

Cooperative 
Pose Estimation
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Collaborative
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Loop back test

Hybrid 

Distributed

Centralization

Multi-robot semantic SLAM
Multi-robot semantic 

SLAM

 
Application of 

CNN

Figure 2. Framework of this paper. This paper consists of five parts, from the origin of SLAM to its
development in the future, involving a comprehensive description of the development process of
distributed SLAM and directions for future development.

2. Related Work
2.1. SLAM Sensors

SLAM is mainly classified according to the type of sensor(s) used. There are three
common SLAM sensors in existing research: laser, visual, and IMU (inertial measurement
unit). In addition to these common sensors, there are also olfactory [41], thermal [42],
magnetic [43], and other sensors. These sensors provide a robot with the ability to sense
the world.

Starting with the three sensor types commonly used in the research process, this
section mainly introduces the development process of laser, visual, and IMU sensors, as
well as their engineering problems. Through the analysis of SLAM hardware, it is possible
to understand how the robot senses the world through the use of sensor data in SLAM.

2.1.1. Laser Sensors

Before 2000, most of the sensors used for SLAM were laser sensors. The proposal
of the laser originated from Einstein, who took the lead in proposing the concept of the
“wave–particle duality” of light, which led to the concept of the laser. As early as 1992,
Mitsubishi applied LiDAR for automatic driving technology, as it can be used to well-
display the distance between cars. During the war in Afghanistan, the United States
initiated research into LiDAR unmanned driving technology, in order to deal with the
high number of roadside bombs. The project—though of little success—accelerated the
development of LiDAR technology. In 2004, the Defense Advanced Research Projects
Agency (DARPA) held the first autonomous driving challenge [44,45], but none of the
25 teams that entered completed the challenge. After the race, Velodyne founder David
Hall used the opportunity to invent the 64-line mechanically rotating LiDAR. This LiDAR
restores three-dimensional information about the surrounding environment through a
point cloud scanned in a 360-degree rotation, and is the earliest three-dimensional (3D)
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LiDAR. By the third edition of the challenge, in 2007, six teams had completed the challenge,
five of which were equipped with Velodyne’s 64-line LiDAR. Since then, the Velodyne
LiDAR has also become a standard configuration for self-driving cars [46].

More and more companies have begun to enter the field of LiDAR. In 2007, Google
proposed its laser radar. In 2014, Hesai Technology, Robo Sense, and Fase Laser were
established in China and entered into the laser radar field. In 2016, surveying and map-
ping LiDAR giant Sure Star released its first vehicle-mounted LiDAR. Dozens of LiDAR
enterprises, such as Vanjee Technology, LS LiDAR, and Benewake, have gradually devel-
oped into world-class LiDAR enterprises. In the same year, more and more technological
enterprises began to enter the laser radar field, such as Huawei, DJI, and NIO LiDAR, and
have now penetrated the daily lives of populations around the world. LiDAR technology
has also been included into electronic consumer goods, such as the iPhone 12Pro and iPad
Pro, allowing 3D modeling to be realized with mobile phones. LiDAR is a very traditional
SLAM sensor that provides information about the distance between the robot itself and ob-
stacles in the surrounding environment. Common LiDAR sensors include SICK, Velodyne,
Rplidar, and so on.

The sensors used in laser SLAM are generally two-dimensional (2D) or 3D LiDAR
sensors. A 2D LiDAR is also known as single-line radar; that is, the line bundle emitted by
the laser source is a single line. It can scan and identify obstacles in the plane and update
the status in real-time, which is more suitable for self-localization and the mapping of
objects in the plane state. Three-dimensional (3D) LiDAR is also known as multi-thread
LiDAR. Velodyne divided 3D LiDAR products into 8, 16, 32, 64, and 128 threads early in
their development. Of course, 3D LiDAR is not limited to these threads, and there are many
other types of multi-threaded LiDAR; for example, the Pandar40, recently launched by
Hosay Technology, is a 40-thread LiDAR. Such 3D LiDAR sensors can scan and identify
obstacles in the stereoscopic plane, and have the characteristics of high measurement
accuracy, a wide range, being unaffected by light, and a quick response in both dynamic
and static states. The difference between 3D and 2D LiDAR is that 2D LiDAR lacks height
information and cannot image, and so can only facilitate navigation in real-time. Three-
dimensional LiDAR can perform three-dimensional dynamic real-time imaging and restore
three-dimensional spatial information. Table 1 compares 2D and 3D LiDAR.

Table 1. Two representative categories of laser sensors.

Type 2D Laser Radar 3D Laser Radar

Characteristic

It can scan and identify the
obstacles in the plane and can
update the status in real-time,
small in size and lightweight.

It can scan and identify obstacles in the
three-dimensional plane, has high
measurement accuracy, wide
measurement range, strong
anti-interference ability, strong
penetration ability, and can respond
quickly in dynamic and static states.

Principal
manufacturer

Sure Star, Robo Sense, Innoviz,
LeddarTech

SLAMTEC, Hensai Technology,
Velodyne, Quanergy

Representative
products XD–TOF–10HM,XD–TOF–10H ULTRA Puck VLP–32C,Leddar

M16,VLS–128

Chief application Obstacle monitoring, unmanned
ranging Unmanned driving, terrain mapping

Mainstream 2D laser sensors are suitable in enabling planar moving robots to localize
and build a 2D raster map. These 2D raster maps are useful for robot navigation, as most
robots cannot yet fly in the air or walk up steps, and so are limited to two dimensions.
In the early stage of SLAM research, most SLAM approaches used 2D laser sensors and
relied on filtering methods for mapping, such as KF and PF. With the development of 3D
multi-threaded LiDAR, laser SLAM has also expanded from the original 2D laser SLAM
to 3D laser SLAM, which has greatly accelerated the development of laser SLAM. Over
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time, the applications of LiDAR sensors have ranged from classic parking assistance to
modern autonomous driving technology. Many mass-production cars are now equipped
with multi-thread LiDAR sensors, such as the Audi A8, Mercedes-Benz S-class, XPeng P5,
NIO ET7, Pole Fox Alpha S, and so on. In the context of SLAM, there are many classic
LiDAR algorithms, including G mapping [16], Hector [47], Cartographer [48], and so on.

2.1.2. Visual Sensors

Visual sensors imitate the human eye, and 80% of the information in the human per-
ception system comes from the visual system. Therefore, how to apply the powerful visual
perception system is a hot research topic in both the scientific and industrial communities.
In 1839, a Frenchman named Louis Daguerre invented the first real camera, the portable
wooden case camera. In 1888, the United States Kodak company produced film and, in
the same year, invented the first film-mounted portable square box camera. In 1960, color
film was introduced providing an option beyond black and white, making the images
that people produced with the camera more and more wonderful. In the 1970s, people
began to imagine and study unmanned driving and indoor self-localization and mapping,
technologies which require the use of visual sensors. Researchers now use visual sensors to
capture large segments of video data for effective analysis. A video is a sequence of still
images, which is a man-made concept developed along with film and television technology.
Generally speaking, continuous visual effects will be produced as long as the refresh time
interval between two frames is less than 50 ms. In 1986, the concept of visual SLAM was
proposed at the IEEE Conference on Robotics and Automation held in San Francisco, and
VSLAM dominated by visual sensors began to gain the attention of many researchers.

Vision-based autonomous driving technology has attracted the attention of many
researchers since its appearance, as the cost of multi-emission module LiDAR sensors
remains high, thus increasing the cost of the vehicle. As a more cost-effective alternative,
visual sensors have attracted the attention of more and more unmanned driving manufac-
turers [49]. There are also many traditional visual sensor manufacturers, such as Germany’s
Bosch, Continental, and South Korea’s LG. America’s Robotics and Zebra have also set up
separate divisions for visual sensors. Sunny Optical, founded in 1984, and Largan, founded
in 1987, dominate the visual sensor market in China. The most representative company
in the field of pure-vision autonomous driving is Tesla. Tesla’s autonomous driving tech-
nology does not even require the use of high-precision maps and vehicle-to-everything
(V2X) technology to implement autopilot. It is well-known that vision-only autonomous
driving requires a large amount of driving data for training. Tesla cars running on roads
around the world provide a large amount of driving data, which can be used to train
Tesla’s autonomous driving technology. Similarly, as the main direction of early unmanned
driving, pure visual SLAM has been adopted by many car companies. The more famous
pure vision algorithms include Apollo Lite (the L4-level solution of pure vision cooperated
by Baidu and Weltmeister) and P7 (of XPeng). These visual algorithms generally need to be
combined with high-definition maps and V2X, and such solutions can achieve the same
automatic driving effect as pure laser sensors.

The number and types of sensors used in several common car models with driverless
technology are summarized in Table 2.

It can be seen from the table that these driverless cars are equipped with a large
number of cameras. As a different route from LiDAR, the use of pure visual sensors is
closer to the human driving mode. In this paper, visual SLAM sensors are divided into
four categories, according to their working mode: monocular cameras, binocular cameras,
RGB-D cameras, and event cameras. Monocular cameras, as the name implies, possess only
one camera. They can judge the distance of an object according to the parallax formed by
the trajectory of the object in images. The disadvantage of monocular cameras is that they
will produce visual errors when the depth is unknown. The principle of a binocular camera
is similar to that of human vision. The triangulation principle is used to calculate the depth
information of the scene through the image parallax, allowing for reconstruction of the
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three-dimensional shape and position of the surrounding environment. In RGB-D cameras
(also called 3D cameras), the D stands for depth information. The key applications of depth
cameras are 3D reconstruction, object localization, and recognition. At present, there are
three mainstream types of depth camera: structured light, time-of-flight, and binocular
stereo. Event cameras [50] have been around since 1990, and the first commercial event
cameras were released in 2008. At present, many commercial companies are committed to
the development of event cameras, including Samsung (South Korea), Prophesee (France),
IniVation (Switzerland), and CelePixel (China). Event cameras are mainly used in feature
extraction and tracking, optical flow, 3D reconstruction, SLAM, and other applications.
Table 3 lists some common camera types.

Table 2. The number and type of sensors used in common driverless cars.

Company Type of Car Number of
Cameras

Number of
Radar Sensors

Number of
Ultrasonic Sensors

Zhiji Zhi ji L7 12 5 12
Tesla Model 3 8 1 12
LynkCo Mobileye 12 5 12
Xpeng Xpeng P7 14 5 12
Ideal Ideal ONE 5 5 12
BMW BMW iX 5 5 12
Mercedes Benz EQS 5 6 12

Honda Honda Flagship
Legend 5 10 12

Table 3. Common vision sensors.

Camera Type Manufacturer Configuration Measuring Range Applicable Scene

D435I Intel Binocular + TR active infrared 0.1–10 m Indoor/Outdoor
Kinect2 Microsoft TOF 0.5–4.5 m Indoor
ZED Stereolabs Binocular 0.3–25 m Outdoor
FS830-BD Percipio Structured light 0.5–5.5 m Indoor
D1000-IR-120 MYNT Binocular + IR active infrared 0.37–7 m Indoor

2.1.3. IMU Sensors

Inertial motion unit (IMU) sensors, which consist of a combination of accelerometers
and gyroscopes, are often used to detect acceleration and angular velocity in order to
represent motion and motion intensity. The original IMU was designed by Ford to help
navigate U.S. Air Force aircraft. With scientific and technological development, IMUs have
gradually been applied in various civil and industrial fields. IMU sensors are now widely
used in the daily lives of many people, such as in the automatic steering function of mobile
phones, pedometers, virtual reality helmets, and so on. According to Global Info Research,
the global revenue related to IMU sensors is about 4 billion USD.

At present, the most popular IMU sensor type is IMUs with MEMS (micro-electro-
mechanical system) technology integrated with internal sensors. At present, the main
companies producing MEMS-type IMUs include Analog Devices, EMCORE, Honeywell,
Collins Aerospace, and so on.

In SLAM, IMU sensors can be used to obtain angular velocity and acceleration infor-
mation, and have the advantages of fast data collection, being lightweight, high sensitivity,
and high output frequency. However, they also have the disadvantages of large cumula-
tive errors and being unable to run for a long time. In the actual use process, IMUs are
usually integrated with visual or laser sensors, where the visual and/or laser positioning
information is used to estimate the zero bias of the IMU, thus reducing the divergence and
cumulative error in the IMU caused by the zero bias.
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2.1.4. Sonar Sensors

The working principle of sonar (sound navigation and ranging) sensors is to use the
characteristics of sound waves to propagate underwater and complete the detection of
the underwater environment through electroacoustic conversion and signal processing
technology. Sonar is generally divided into active and passive sonar according to the
different working methods. Active sonar is mainly used in search and positioning, and
passive sonar is primarily used in measuring and tracking target distance. In exploring the
sea area of the location, sonar provides people with much ocean distance information that
cannot be provided by vision and laser. Because of its unique characteristics, sonar is widely
used in underwater navigation, Doppler speed measurement, marine ecological monitoring,
and other fields. The leading companies producing sonar are Raytheon Technologies
Corporation in the United States, Thales Group in France, Kongsberg Gruppen in Norway,
Ultra Electronics Holdings plc in the United Kingdom, etc.

Four commonly used sensor types in SLAM—laser, visual, sonar, and IMU—are
analyzed in this section. They have their respective advantages and disadvantages, and
their applications in SLAM also differ. Recent studies have shown that many niche sensors
can also be used for SLAM, such as olfactory [41], thermal [42], magnetic [43], event
camera [50], luminous depth camera [51], and light field camera [52] sensors. However,
these sensors are not currently used in mainstream SLAM research. Therefore, the current
focus of this paper is the three types of sensors detailed above.

2.2. SLAM Data Sets

In SLAM, data sets are also needed to analyze the feasibility of the algorithm. At
present, commonly used SLAM data sets include the KITTI data set, Eu Roc data set, TUM,
Oxford, ICL-NUIM, and so on. In Table 4, the relevant information of several commonly
used SLAM data sets is listed for comparison.

Table 4. Commonly used data sets in SLAM.

Data Set Year Unit of Supply Camera Rada IMU Moving Object Surroundings

UTIAS [53] 2011
University of Toronto
Institute of Aeronautics and
Astronautics

1 × Monocular
camera N N UGVs (5) Nine individual data sets

KITTI [54] 2012 Karlsruhe Institute of
Technology, Germany, Toyota

2 × Color camera,
2 × Grayscale
camera

Y Y Car Outdoor 39.2 km

TUM RGB-D [55] 2012 Munich Industrial University 1 × RGB-D N N Handheld and
wheeled robots 39 indoor sequences

NYUDv2 [56] 2012 New York University 1 × Color camera,
1 × RGB-D N N Handheld and

wheeled robots
1449 annotated RGB images and depth
maps, 407,024 unlabeled images

ICL-NUIM [57] 2014 Royal Academy of London 1 × RGB-D N N Handheld and
wheeled robots 8 sets of outdoor sequences

EuRoC [58] 2016 ETH Zurich 1 × Binocular
grayscale camera N Y UAV 11 sets of indoor/outdoor sequences

Oxford
Robotcar [59] 2017 Oxford university 6 × Color camera Y N Car 100 sets of outdoor/urban sequences

Scan Net [60] 2018 Stanford University 1 × RGB-D N N Handheld camera 21 sets of indoor sequences

Re Fusion [61] 2019 University of Bonn 1 × RGB-D N N Handheld robot 26 sets of outdoor sequences

Cityscapes [62] 2019 Darmstadt University of
Technology Stereo camera N N Car 19 sets of outdoor sequences

Air Museum [63] 2020 French aerospace laboratory
2 × Stereo
monochrome
camera

N Y 3 × Wheeled robot,
1 × UAV Five interior scenes

S3E [64] 2022 Sun Yat-sen University 1 × Stereo camera Y Y UGVs (3) Seven outdoor scenes, five interior scenes

Y indicates that the sensor is used in the data set; N indicates that the sensor is not used in the data set.

2.3. Analysis of SLAM Development Based on Literature Data

In this section, the most important SLAM laboratories in recent years are analyzed, as
these laboratories are the main drivers of SLAM research. These laboratories are listed in
Table 5, and the main research directions of these laboratories are detailed. At the same
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time, links to the websites of the laboratories are attached to the table for the reader’s
convenience.

Table 5. The main SLAM laboratories.

Laboratory Research Direction Website Link

ETH Zurich Create robots and intelligent systems that can operate autonomously in
complex environments. https://asl.ethz.ch/ (accessed on 14 June 2023)

University of Minnesota
Vision-/laser-assisted inertial navigation systems, multi-robot/-sensor
positioning, optimal information selection and fusion, mobile operation,
human–machine cooperation, and so on.

http://mars.cs.umn.edu/ (accessed on 14 June
2023)

Munich Industrial University Image-based 3D reconstruction, optical flow estimation, robot vision, visual
SLAM, and so on.

https://cvg.cit.tum.de/research (accessed on 14
June 2023)

Hong Kong University of
Science and Technology

Tightly coupled algorithm for visual–inertial navigation based on UAV.
Representative work: VINS-Mono.

https://uav.hkust.edu.hk/ (accessed on 14 June
2023)

Zhejiang University SLAM, AR, 3D reconstruction. Representative achievements: RKSLAM,
ACTS, swarm drones.

http://www.cad.zju.edu.cn/english.html
(accessed on 14 June 2023)

Wuhan University
Computer vision, remote sensing imaging, SLAM, image and video
processing and analysis, robot vision navigation and positioning, multi-sensor
integration.

https://cvrs.whu.edu.cn/ (accessed on 14 June
2023)

Institute of Automation,
Chinese Academy of Sciences

3D computer vision, including camera calibration as well as 3D reconstruction,
pose estimation, vision-based robot navigation, and vision services.

http://vision.ia.ac.cn/index.html (accessed on 14
June 2023)

Tsinghua University Computational photography, brain science and international frontiers of
artificial intelligence, biological intelligence, computational imaging.

http://media.au.tsinghua.edu.cn/english/
index/index.html (accessed on 14 June 2023)

Carnegie Mellon University Robot perception, structure, service type, field machines. https://www.ri.cmu.edu/ (accessed on 14 June
2023)

University of California, San
Diego

Multi-modal environment understanding, semantic navigation, autonomous
information acquisition.

https://existentialrobotics.org/index.html
(accessed on 14 June 2023)

TU Munich 3D reconstruction, robot vision, deep learning, visual SLAM, and so on. https://cvg.cit.tum.de/research/vslam)
(accessed on 14 June 2023)

Since its introduction, SLAM has been widely used in robotics. A total of 8377 mobile
robot papers published in the past three decades were obtained from the Web of Science
Core Collection using “SLAM” as a search keyword (accessed on 15 February 2023), from
which the keyword heatmap shown in Figure 3 was generated (the larger a circle, the more
frequently the keyword appeared; the circular layer shows the time from the past to the
present from the inside out, with darker colors indicating earlier publication of papers in
that direction). The big circles represent directions and algorithms in SLAM, including
multi-robot SLAM, laser SLAM, visual SLAM, and some corresponding map fusion, data
association, and path planning approaches, among others. The circles in the middle cover
the filtering methods, optimization methods, and so on, which are used to complete the
SLAM work. From the figure, the key research directions in the SLAM field and the main
algorithms that can be used can be clearly seen. The connection between each big circle
and the middle small circle also reflects the relationship between SLAM branches and
corresponding algorithms, such that the connections between different SLAM techniques
and algorithms can also be seen.

The rapid development of SLAM has also led to its multi-directionality. As such,
determining the main directions of SLAM development is also a major focus of this paper.
As shown in Figure 4, a keyword emergence map was obtained based on the 8377 retrieved
mobile robot papers. Judging from the keywords of these SLAM-based papers and journals,
the directions of map positioning, feature extraction, and data association have become the
new focus of researchers. Keyword emergence refers to keywords that appear frequently
over a short period, and red horizontal lines are formed from the start to the end year
of keyword emergence. Therefore, the length of the red horizontal line indicates the
importance of keywords in the field of SLAM research. The longer the emergence length,
the longer the popularity of the keyword and the stronger the research frontier. The
burst intensity was obtained based on the number of papers and the keywords over
the past 20 years. The higher the burst intensity, the higher the attention paid to the
research direction.

https://asl.ethz.ch/
http://mars.cs.umn.edu/
https://cvg.cit.tum.de/research
https://uav.hkust.edu.hk/
http://www.cad.zju.edu.cn/english.html
https://cvrs.whu.edu.cn/
http://vision.ia.ac.cn/index.html
http://media.au.tsinghua.edu.cn/english/index/index.html
http://media.au.tsinghua.edu.cn/english/index/index.html
https://www.ri.cmu.edu/
https://existentialrobotics.org/index.html
https://cvg.cit.tum.de/research/vslam)
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Figure 3. Heatmap of keywords used in the field of mobile robot SLAM.

rgb--d camera 

three--dimensional display

visual--inertial slam

2005--2023

visual--based navigation

Figure 4. Keyword emergence map.

With the development of SLAM, multi-robot SLAM has gradually become the main
research object of researchers. A total of 259 papers on multi-robot SLAM were retrieved
from the Web of Science Core Collection with “Distributed SLAM” as the keyword (accessed
on 16 February 2023), allowing for the generation of the keyword heatmap shown in
Figure 5. The heatmap includes some algorithms and steps involved in multi-robot fusion,
co-robot positioning, autonomous driving, and multi-robot SLAM. From the figure, we
can determine the popular research directions in multi-robot SLAM and the algorithm
knowledge that can be used. The connections between circles also reflect the relationships
between the multi-robot SLAM research direction branch and the corresponding algorithm.
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Figure 5. Heatmap of keywords used in the field of multi-robot SLAM.

The countries of the authors of the 8377 papers obtained when using “SLAM” as the
search keyword were obtained, allowing for a simple summary to be developed. Figure 6
presents colors from light to dark, corresponding to five levels; namely, lower, low, middle,
high, and higher (countries with less than 30 publications per year are not marked). It can
be seen that China, the United States, and the United Kingdom play leading roles in this
field. In recent years, more SLAM laboratories have appeared in China, the United States,
and Europe, reflecting the rapid development trend of SLAM.
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Figure 6. Comparison of the number of papers published in various regions.

Figure 7 provides the statistics of countries in the world that have published papers
on distributed SLAM, considering the 259 papers published since 2006 retrieved from the
Web of Science Core Collection with “Distributed SLAM” as the keyword. The font size
indicates the number of papers published by a country: those countries with more papers
published have a larger font size; otherwise, the font size is smaller. It can be seen from
the figure that China, the United States, and various other countries were in the leading
position regarding distributed SLAM, and there are many countries in the figure. These
results also indicate that distributed SLAM—as the cutting-edge of SLAM technology—has
attracted the attention of a large number of countries.
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Figure 7. The degree of contribution of each region to the field of distributed SLAM: the larger the
font, the higher the number of contributions to the distributed SLAM field.

To understand the research enthusiasm in the field of robot SLAM over the past
two years, the number of papers published in 2021 and 2022 were collected, using five
keywords—“Multi-robot SLAM”, “Distributed SLAM”, “Semantic SLAM”, “Multi-sensor
SLAM”, and “Distributed semantic SLAM” (visited on 15 February 2023)—and a compar-
ison chart was drawn up. The blue box in the figure indicates the number of papers in
2022, while the red and green arrows indicate the change in the number of papers in 2022,
compared to 2021. It can be seen from Figure 8 that the number of papers on distributed
SLAM and distributed semantic SLAM has increased year by year, and it can be predicted
that the development momentum of distributed SLAM and semantic SLAM will be strong
in the future.

2021-2022 SLAM papers published in Web Of Science

ReduceIncrease2022

Figure 8. Comparison of papers published in 2021 and 2022 for several important branches of SLAM
development.

Distributed SLAM (also known as multi-robot SLAM) simply means that a robot
formation composed of multiple robots perceives the surrounding environment through its
sensors in an unfamiliar environment, then, draws a map of the unfamiliar environment
and locates the robot formation. Compared with a single robot, a multi-robot system
has incomparable advantages in environmental exploration and map construction. In a
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multi-robot system, members can share environmental information through communica-
tion. Multi-robot systems also have the advantages of high efficiency in traversing the
environment, less time consumption, high fault tolerance, strong robustness, and high cost
performance. Multiple simple and inexpensive multi-robot systems are more attractive
than one complex and expensive single-robot system. Since the 1980s, research on multi-
robot coordination systems has attracted extensive attention. This is because multi-robot
coordination can achieve more sensitivity, higher precision, and stronger carrying capacity
than a single robot. A total of 3952 papers on swarm robots were retrieved from the Web of
Science Core Collection from 1997 to 2022 (visited on 20 February 2023) using the keyword
“Cluster robot”, and their information was collected and organized into the graph shown
in Figure 9.
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Figure 9. The number of publications related to swarm robots indexed in the Web of Science in recent
years, as well as the number of papers produced by various countries.

2.4. Data Fusion Methods

The concept of data fusion was proposed in the 1970s, initially to meet the multi-source
correlation requirements of C3I (command, control, communication, and intelligence)
military systems, and then rapidly developed into an independent discipline. It is designed
to integrate information from multiple information sources and platforms and has become
a rapidly developing field in recent decades.

Data fusion can be divided into multi-source heterogeneous data fusion and multi-
source homogeneous data fusion. Multi-source heterogeneous data fusion is multi-sensor
fusion, which involves integrating the information obtained by different sensors of the
same individual, thus avoiding the perceived limitations and uncertainties of a single
sensor. Multi-sensor data fusion allows a robot to precisely perceive the environment
and targets, as well as improving the perception of external systems. At present, multi-
source heterogeneous information fusion is widely used in fault detection, remote sensing,
SLAM, and advanced driver assistance systems; for example, in some SLAM robots, the
fusion of visual and LiDAR sensors is used for data sharing. Multi-source isomorphic data
fusion is multi-robot data fusion, which integrates the information obtained by different
individual robots. The multi-robot system can achieve more accurate judgments regarding
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the environment and target objects by fusing the individual data of multiple robots. At
present, multi-source isomorphic data fusion is also widely used in multi-robot systems
for purposes such as exploration, SLAM, and surveying; for example, in some multi-robot
SLAM systems [65,66], data from multiple robots are fused to achieve a more accurate effect
than single-robot SLAM. In this paper, the key issues in the research of fusion algorithms
are summarized and these fusion algorithms are divided into three categories: early fusion,
mid-term fusion, and late fusion. The three fusion method types are analyzed in the
following.

Early Fusion

Early fusion—also known as data-level or pixel-level fusion—is the most direct way to
conduct data fusion. Its working principle is to fuse the observation information obtained
by all sensors first, where these data may have gaps in form and quantity. The advantage
is that all of the data can be considered, the amount of data loss is small, and detailed
information can be obtained that cannot be provided by other fusion layers. Therefore,
among the three types of fusion algorithms, the fusion accuracy is the highest when using
early fusion.

Early fusion mainly includes five steps: multi-sensor and multi-robot information
acquisition, data pre-processing, data fusion, and result output. Information acquisition
is mainly divided into two types: homogeneous and heterogeneous. For the fusion of
homogeneous data, as long as the timeline and the matching accuracy between sensors are
well-matched, data from the same type of sensor can be fused. For example, the fusion of
image information between different visual sensors involves first performing multi-scale
transformation on the image information and then fusing the multi-scale coefficients. The
measured objects between heterogeneous sensors generally have different characteristics,
such as pressure, temperature, color, grayscale, and so on. Therefore, a common processing
method involves converting this information into electrical signals, which can then be
processed by a computer through A/D conversion. After being converted into digital
information, the data is pre-processed by filtering, where useful information can be obtained
after the filter removes the interference and noise information from the data. After the
system fuses the useful information, features are extracted from the fused information and
the system may finally make a decision. The key to early fusion is to unify the timeline of
data generated by each sensor and the matching accuracy between sensors, such that the
data generated by each sensor can be effectively fused.

Some representative algorithms for multi-source data fusion in the early fusion cate-
gory include V-LOAM [67], LIMO [68], MSF-FKF [69], OKVIS [70], DM-VIO [71], and so
on. These multi-sensor fusion algorithms effectively integrate the data of different sensors
in the form of probabilistic and filtering techniques, then carry out feature extraction and
decision-making planning using the integrated data. Another example is C2TM [72] for
multi-robot fusion, which integrates the keyframes obtained between various agents and
then tracks and maps the integrated data. The following introduces the two types of early
data fusion: using the same sensor and different sensors.

(a) Same sensor data fusion

For data fusion with the same sensor, image fusion is taken as an example. The process
of pixel-level image fusion mainly includes three steps: image transformation, image
coefficient fusion, and inverse transformation. Through these three steps, two different
photos can be merged at the pixel level. Existing pixel-level image fusion methods mainly
fall into four categories: methods based on multi-scale decomposition, methods based on
sparse representations, methods that perform fusion directly on image pixels or in other
transform domains, and methods that combine various models. Figure 10 takes image data
as an example to show the fusion process in early fusion of the same data.
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Figure 10. Image integration method based on multi-scale [2].

(b) Different sensor data fusion methods

Compared with the data fusion considering the same modality, data fusion with
different sensor types is more challenging. As it involves the fusion of different types
of data from different kinds of sensors, this kind of fusion is mostly used in unmanned
vehicles, in which the information generated by radar, sonar, visual, and other sensors is
fused. For example, data fusion between heterogeneous sensors was introduced in the
2022 review of driverless vehicles by Wei et al. [2]. In the following, the fusion of radar
and visual data is taken as an example to analyze fusion between different sensors. First,
the fusion algorithm generates an ROI (region of interest) based on radar points [73], and
then extracts the corresponding region on the visual image. Then, the feature extractor and
classifier are used to detect the target in the image.

Data-level fusion has been conducted by many researchers, due to the comprehensive-
ness of the resulting data. Knuth [74] proposed a distributed algorithm for relative pose
fusion in 2012. This algorithm can fuse relative position measurements between vehicles to
construct a complete 3D pose when GPS (global positioning system) data are unavailable.
In 2013, Knuth [75] proposed the D-RPGO (distributed Riemann pose graph optimization)
algorithm, which fuses the relative measurements between robot formations. It collects the
relative measurements between agents through the agent robots in the robot formation and
then fuses them using a method based on pose graph optimization. Overall, these studies
highlight the significant improvement obtained when considering distributed collaborative
pose estimation over automatic pose estimation after using D-RPGO. Figure 11 depicts the
process of early fusion between different data types.

Figure 11. Data-level-based image and radar data fusion [2].

The advantage of data-level fusion is that a large amount of information from the
original data is retained and it has high accuracy. However, its limitation lies in the low effi-
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ciency of data-level fusion, long processing time, and poor real-time performance. Second,
the ability to analyze the data is limited. To facilitate the comparison of pixels, data fusion
requires high registration accuracy of the sensor information. In addition, the advantages
and disadvantages of the original information of the sensors will be superimposed, further
influencing the fusion effect.

2.5. Mid-Term Fusion

Mid-term fusion is also known as feature-level fusion, and many previous studies
have been published in the field of multi-modal data fusion. The core idea is that the
features extracted from the modal data can largely represent the data directly. Based on
these features, the fusion can be carried out by different methods; that is, the feature fusion
mentioned in this paper. Feature fusion first requires extraction of the features from the
data. Taking multi-robot visual SLAM as an example, when the data collected by each
sensor are collected, the feature points in the data are extracted first. Commonly used
feature point extraction methods include Harris corner, FAST corner, GFTT corner, SURF,
and so on. After extracting the feature points, the multi-robot SLAM system merges these
feature points into fusion features, which are input into a model to obtain the prediction
result. Another example is certain face recognition algorithms, which combine multi-modal
features such as skin color and motion into larger feature vectors, and then use these
feature vectors as the input to the face detection model to detect faces. In multi-robot laser
SLAM [65], keyframes of the environment are generally collected by the front end of the
laser sensor, following which, feature-level fusion is performed based on these keyframes
to achieve the purpose of multi-robot data fusion.

Mid-term fusion is widely used for multi-source data fusion. This is due to mid-term
fusion being based on the feature level, allowing it to retain a certain amount of data
redundancy, and so will not cause a surge in computational difficulty due to a large amount
of data. For example, DEMO [76], LOAM [22], LeGO-LOAM [23], and MSF [69] can be used
for single-robot multi-sensor fusion. In these multi-sensor fusion frameworks, the data
of the sensors are first processed by feature processing or other pre-processing, following
which the processed data are integrated to achieve the effect of multi-sensor fusion. Other
examples include Co SLAM [31], CSFM [77], CCM-SLAM [29], CVIDS [78], and so on in the
field of multi-robot SLAM. Based on keyframes, these multi-robot frameworks integrate
the extracted keyframes through a certain method, in order to obtain the fused feature data,
which are then analyzed and processed. Overall, these studies highlight the widespread
use of mid-term fusion in the field of data fusion.

With the development of deep learning technology, various neural networks have
been proposed. These algorithms can effectively complete the extraction of features in
different modal data [79]. Compared with the method of directly fusing different sensor
data in early data fusion, mid-stage fusion approaches can convert the original data into
the expression form of high-level features [80], which can allow for better fusion between
different modal data. For image data, a CNN (convolutional neural network) is generally
used to extract features from the data. Some semantic SLAM methods [81] use a CNN
to perform semantic segmentation and extract semantic labels, after which this semantic
information is fused.

Mid-term fusion has the advantage that multiple features can be fused in different
ways [82], but the fusion system requires a learning phase for the combined eigenvectors.
In addition, medium-term fusion methods are also affected by the problem of time syn-
chronization between different data sources. Regarding the time synchronization problem,
the time synchronization between different hardware sensor data is mainly divided into
two cases: hard synchronization [83] and soft synchronization. To better solve the problem
of time synchronization, researchers have also proposed a variety of methods to solve the
synchronization problem, including convolution, training, pooling fusion, and so on. These
methods can effectively integrate discrete time-series with continuous signals to achieve
time synchronization between modalities.
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Lazaro et al. [84] proposed a multi-robot SLAM model in 2013, which uses three robots
equipped with laser range finders simultaneously. The robots can collect odometry and
laser data at the same time, which are stored in their respective robot systems. When the
robots meet, the data are fused to form a global map in the same coordinate system. The
form of mid-term fusion is used for data fusion, and NTP is used to synchronize the clocks
of the robots to complete time synchronization. In the same year, Forster [77] proposed
a CSFM system based on keyframe merging of multi-robot maps. When the keyframe
information of each MAV (micro aerial vehicle) is received, the overlap degree is also
detected. If there is no overlap, it will fuse the maps. This algorithm is a typical example of
feature fusion, and is a good application of mid-term fusion in SLAM. The actual effect of
the feature-level fusion is shown in Figure 12.

Figure 12. The actual effect of mid-term (i.e., feature-level) fusion: (a) Feature-level fusion of hetero-
geneous data, (b) Feature-level fusion of homogeneous data [2].

The advantage of mid-term fusion is that it can achieve good compression of the
original data, and will not directly fuse many original data, as is the case for data-level
fusion. In addition, the result of mid-term fusion can provide the feature information
needed for decision analysis to the maximum extent, thus providing good data support
for the later decision. Second, mid-term fusion does not require the transmission of a large
amount of raw data: only the data with extracted features is transmitted, such that the
required bandwidth is low. However, the disadvantage is that the data fused in this manner
may be subject to time synchronization problems, and there are also problems related to
factors such as low accuracy of the fused data and information redundancy.

2.5.1. Late Fusion

Late fusion is also called decision-level fusion. Before fusion, each local sensor extracts
features according to its front-end data and completes decision-making and classification
tasks independently. The essence of the decision level is to coordinate each robot or sensor,
according to certain working criteria, in order to reach a globally optimal decision. It can be
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said that decision-level fusion involves the joint decision of all robots or sensors. In theory,
the reliability and accuracy of this decision are much higher than that of a single individual
or a single sensor.

Late fusion is a kind of high-level fusion method, and its results can provide an
accurate basis for system command and control decisions. Therefore, late fusion must
start from the needs of the actual decision-making problem, make full use of the feature
information of each individual and the extracted measurement object in the sensor, and
adopt the appropriate fusion method.

The late fusion process does not fuse the original data dimension but, instead, fuses
the output scores of classifiers trained with different modal data, and then fuses the
obtained results in a certain way to obtain the final decision result. The advantage of this
method is that it can make data fusion easier. Mid-term fusion of different types of data
features leads to different representations, while semantic-level decisions have the same
representation, such that the fusion process is relatively simple. Second, late fusion can be
extended according to the type(s) of data used in the fusion process which, in turn, provides
more flexibility. Common late fusion methods include the majority voting method [85],
the average fusion method, the Bayesian rule fusion method [86], the fuzzy set theory
method [87], and Dempster–Shafer theory [88].

Some typical representative late fusion approaches in multi-source data fusion appli-
cations include VIL-SLAM [89], LIOM [90], LINS [91], and VINS-Mobile [4] in the context
of single-robot multi-sensor data fusion. In these frameworks, each sensor performs feature
extraction and pose estimation through the original data obtained, then outputs the estima-
tion results. These estimation results are then fused to achieve the effect of decision-level
fusion. In multi-robot systems, PTAMM [92] and VIR-SLAM [93] are representative late
fusion approaches. They obtain distance measurements from individual robots, then map
the trajectories of others into their frames to make decisions. Figure 13 shows a schematic
diagram of late fusion. Such a fusion type has higher confidence relative to a decision made
by one sensor or robot.

In 2013, Zhao et al. [85] used a maximum likelihood classifier, SVM, and multinomial
logarithmic regression for feature analysis of hyperspectral data features, and used a voting
method for data processing of hyperspectral data. At the same time, the majority voting
method was used to fuse the classification graphs of all classifiers to obtain the final fusion
result. In 2014, Bigdeli et al. [94] proposed a powerful classifier fusion method based
on Bayesian theory. The proposed method combines hyperspectral and LiDAR data for
land-cover classification and applies an SVM-based classifier fusion system for the fusion
of hyperspectral and LiDAR data at the decision level. The data fusion of these two data
classifiers greatly improves the accuracy over each individual classifier.

The advantages of late fusion are as follows: data of different modalities can have
different feature representations, strong fault tolerance, good openness, short processing
time, low requirements for information transmission bandwidth, and small dependence
on sensors. The data types can be homogeneous or heterogeneous, with strong analytical
capability and a low processing cost at the fusion center. However, the disadvantage of
decision fusion is that it requires pre-processing of the original sensor data to obtain the
respective decision results, such that the overall pre-processing cost is high. At the same
time, decision-level data fusion can also lead to a loss in correlation between different
modal features.

This section summarizes three common data fusion levels in the field of distributed
SLAM which are widely used for multi-source data fusion. The data fusion approaches
targeted in this section are oriented toward multi-sensor and multi-robot data fusion. The
principle of the fusion of both is the same, such that the analysis can be merged when the
fusion algorithm is analyzed. Table 6 compares the advantages and disadvantages of these
three types of fusion methods.
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Figure 13. Late data fusion (a) Decision–level fusion of heterogeneous data, (b) Decision–level fusion
of homogeneous data [2,94].

Table 6. Comparison of the advantages and disadvantages of the three fusion levels.

Fusion Type Early Fusion Mid-Term Fusion Late Fusion

Fusion level Data level Feature level Decision level

Common
algorithm

Weighted mean; optimization methods;
artificial neural networks [95]; color
space fusion

Principal component analysis; linear
discriminant analysis; neural networks

Majority voting [85]; average value fusion; Bayesian
rule fusion [86]; ensemble learning; Dempster–Shafer
(D-S) [88]; fuzzy set theory [96]

2.5.2. Classification of Multi-Source Data Fusion Algorithms

There are three forms of data type combination for multi-source data fusion: data
fusion considering different sensors of the same robot, data fusion considering the same
sensor on different robots, and data fusion considering different sensors on different robots.
These three fusion forms correspond to the fusion of data of the same or different types.
These types of data fusion can all be classified as multi-modal data fusion. Below, the
main algorithms used for data fusion are divided into two types: traditional methods and
cutting-edge methods.

(a) Traditional Methods

Traditional data fusion methods were widely used in the early development of data
fusion, and include three categories: rule-based fusion methods, classification-based fusion
methods, and estimation-based fusion methods.

Rule-based fusion methods can achieve good results on multi-type data with a high
degree of time alignment, and a common method in this category is the linear weighted
fusion method [97]. This method can combine the color information and high-level semantic
information obtained by different sensors linearly to obtain the fused data.

Classification-based fusion methods classify the results of multi-modal observations
into pre-defined categories. Classification methods include SVM [94], the Bayesian prob-
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ability algorithm [98], D-S theory [88], dynamic Bayesian network [86], the maximum
entropy model, and so on. Bayesian methods are the most commonly used classification
methods, which serve as a basis for most fusion algorithms. In this context, the Bayesian
approach involves combining the multi-robot data according to the rules of probability
theory, where the combined data can be used at both the feature level and the decision
level. The dynamic Bayesian network is widely used for processing time-series data, which
makes the fusion method more suitable for multi-robot SLAM data fusion collection.

Estimation-based methods include the KF (Kalman filtering) [99], EKF [100], and PF
fusion [101] methods. These methods estimate the state of the moving target well, according
to various sensor data. Among them, KF is a classical algorithm which can process dynamic
data in real-time and obtain a system state estimate from fused data with unified meaning,
making it very suitable for linear model systems. Compared with KF, EKF is more suitable
for non-linear model systems. PF is more commonly used to estimate state distributions for
non-linear and non-Gaussian state-space models.

(b) Cutting-Edge Methods

The application of machine learning methods such as deep learning in the field of data
fusion is a good example of cutting-edge fusion techniques. At present, commonly used
frontier fusion methods include data fusion methods based on pooling, deep learning [102],
and graph neural networks.

Data fusion methods based on pooling [103] can compute computer vision features
to create a joint representation space facilitating feature vector fusion [104]. In addition,
the elements in the multi-modal vector can also carry out multiplicative interactions on
this basis. On the other hand, pooling can also mine deep information through network
modules [105], then fuse these different levels of information [106] to further improve the
data extraction ability of the system.

Multi-modal data fusion methods based on deep learning [95] are the mainstream
data fusion methods at present. Deep learning models in algorithms can be generally
divided into discriminative and generative models. Common deep learning networks
include CNNs [107], RNNs [108], and so on. These models can process the data of different
modalities separately and then fuse the information.

A multi-modal data fusion method based on graph neural networks [109] can be well-
applied for topological relationship modeling between each mode. At the same time, it is
also suitable for modeling the topological relationships between multiple modalities [110],
allowing for better information transfer. The relevant methods still represent a frontier
research direction that requires further exploration.

3. Single-Robot SLAM
3.1. Single-Robot Single-Sensor SLAM
3.1.1. SLAM Framework

As shown in Figure 14, the framework of modern single-robot SLAM can be divided
into the following five steps: sensor reading, foreground thread, background thread, loop
detection, and mapping.

The five processes are briefly described in the following.

(a) Sensor information reading

Sensor data reading is very important in SLAM. Similarly, in humans, the eyes, ears,
and nose obtain information from the outside world all the time, and one’s state can be
judged through this information. At present, the mainstream sensors include visual sensors,
laser sensors, IMU sensors, and sonar sensors. They produce images, multispectral images,
IMU data, and other different modalities of data. Taking visual SLAM as an example, the
front-end generates image information through visual sensors and then processes these
images. In the decades of development of visual SLAM, many information processing
methods have been developed. The two most-recognized visual geometric methods are the
feature point method and the direct method.
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Figure 14. Schematic diagram of the SLAM framework.

The feature point method involves extracting special points in an image, such as
corners, edges, and blocks. One of the most common of these feature points is the cor-
ner point. Corner detection has been developed for more than 40 years. Over time, this
method has become more suitable for practical applications. Since Moravec first proposed
the Moravec corner detection operator [111] in 1980, corner detection entered the “fast
lane” of development. After that, Harris [112], Shi-Tomasi [113], SUSAN [17], and G.Lowe
proposed the SIFT operator [114] in 1999, and operator detection entered a new era. Five
years later, G. Lowe improved the SIFT algorithm [18] and made the system more perfect.
In 2006, E. Rosten proposed the FAST operator [115], which broke the dilemma of cum-
bersome and slow efficiency in corner detection and greatly improved the speed of corner
detection, allowing for better application of corner detection in image matching, video
tracking, 3D modeling, and other practical fields. In addition, algorithms such as Harris
corners [112], FAST corners [115], and GFTT corners [113] provide good ways to generate
high-quality features.

Although feature point methods occupy the mainstream in visual odometry, it is time-
consuming to extract feature points and they cannot be used in the case of missing features.
The direct method can solve these problems well, which not only saves time but also can
still work in the case of missing features. In addition, the direct method can be used to
construct semi-dense maps [116] and dense maps [117], which is not possible when using a
feature point method. A common direct method is the optical flow method, which can be
divided into two types according to the amount of pixel motion: sparse optical flow and
dense optical flow. The sparse optical flow method is used to calculate partial pixel motion,
and Lucas–Kanade [118] is the main representative algorithm. The computation involving
all pixels is called dense optical flow, mainly represented by the Horn–Schunck optical
flow [119]. According to the different pixels used in a direct method, it can be divided
into three types: sparse, dense, and semi-dense. Compared with the feature point method,
which can only construct sparse maps, the direct method can recover the structure of semi-
dense and dense maps. The well-known SLAM algorithm, DTAM [120], is a dense direct
method, which uses all the pixels. LSD-SLAM [117] and DSO [121] are semi-dense direct
methods, which use only pixels with distinct gradients. SVO [122] is also a semi-dense
direct method, which uses pixels in the fields around FAST feature points.

(b) Foreground thread

The foreground thread mainly extracts features according to the data of the sensor,
tracks and solves the problem, and tracks the position of the device in real-time through
the data transmitted back from the sensor. Different forms of data are processed in different
ways by the foreground thread. Taking visual SLAM as an example, after determining the
matching points, the system will estimate the camera pose according to these points. When
the camera is monocular, the system will estimate the motion from two sets of 2D points;
this problem needs to be solved using epipolar geometry. When the camera is binocular
and RGB-D, the system will generally solve it through PnP [123], where the most important
step is restoring the pose of the image. Taking laser SLAM as an example, commonly used
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foreground registration algorithms are ICP (iterative closest point) and PL-ICP (point-to-
line iterative closest point). These registration algorithms are performed by matching the
point cloud data between two frames and then obtaining the pose difference before and
after the sensor, which gives the mileage data.

(c) Background thread

The foreground thread can estimate the motion trajectory and landmark in a short time
according to the adjacent data information, but researchers prefer to ensure the optimal
state of the car in the whole motion estimation. Therefore, in the background thread, the
state estimation problem of the car over a long period in the future is considered. In this
paper, according to different assumptions, the back-end solving algorithms are divided into
two categories: filter-based methods and non-linear optimization methods (represented by
graph optimization). Table 7 lists the respective advantages and disadvantages of these
two categories, as well as representative SLAM algorithms.

Table 7. Comparison of filter-based and non-linear optimization algorithms.

Algorithm Filtering Method Non-Linear Optimization Method

Advantage
Simple method. In the case of limited computing resources and
simple estimation, the filtering method represented by EKF is
more effective and is commonly used in laser SLAM.

It can be globally optimized and works well.

Disadvantage Not suitable for large scenarios. In the vision-based SLAM
scheme, the efficiency is very low due to the high data volume.

With the accumulation of time, there is more and more data and
the solution scale becomes larger.

Representative algorithms KF, EKF, UKF, PF BA (bundle adjustment) [124]

Stand for SLAM Karto SLAM [15] LSD-SLAM [117]

(d) Loop detection

Loop detection (also known as loop closure detection) refers to the ability of the robot
to recognize that it has been to a certain scene, and then match the map generated at
the moment with the map just generated such that the map is closed. The reason why
loop detection is crucial is that, if the loop detection is successful, it can significantly
reduce the cumulative error and help the robot to avoid obstacles more accurately and
quickly. Therefore, loop detection is very necessary for large areas and in large scene map
construction contexts. Errors in SLAM mainly come from three directions: observation
errors, errors in odometry, and errors due to wrong data association. At present, there
are two common loop closure detection methods: bag-of-words models (which is also the
most commonly used method), such as ORB-SLAM [19], and methods which determine
candidate frames according to the disparity and keyframe link relationships, such as
LSD-SLAM [117].

(e) Mapping

SLAM stands for simultaneous localization and mapping, and mapping is one of the
two main goals of SLAM. Mapping is particularly important in SLAM operation instances,
and the quality of mapping directly determines whether SLAM can be successfully applied
in practice. It is considered that the whole process of mapping can be simply summarized
into the five aspects of positioning, navigation, obstacle avoidance, reconstruction, and
interaction.

There are many types of maps but, to facilitate differentiation, map types are divided
into dense maps, sparse maps, and semantic maps in this paper, as shown in Figure 15.
Sparse maps occupy less memory, can be constructed in real-time, and feature simple points
and lines; therefore, it will be difficult to complete tasks such as navigation and obstacle
avoidance. In a dense map, all of the parts seen will be modeled, which takes up more CPU
memory and cannot be compared with the sparse map in terms of real-time performance;
however, it allows for actions such as navigation and obstacle avoidance, which require
clear details. A semantic map is a kind of map that is often used in autonomous driving
SLAM construction. The semantics of an image are typically divided into three layers: the
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visual layer, the object layer, and the concept layer. SLAM requires high-precision maps to
provide a lot of driving assistance information, and semantic high-precision maps meet this
condition. Therefore, semantic maps are more helpful to improve the accuracy, real-time
performance, security, and robustness of vehicle positioning in the SLAM context.

Three kinds

Map form

Sparse map

Dense map

Semantic map

Figure 15. Three types of maps.

3.1.2. Laser SLAM

LiDAR-based SLAM employs 2D or 3D LiDAR. In indoor robots, 2D LiDAR is gen-
erally used, while in the field of unmanned driving, 3D LiDAR is generally used. The
advantages of LiDAR are a large scanning range, lesser influence of lighting conditions,
high precision, and high reliability. The disadvantages are that it is expensive, the installa-
tion deployment requires a certain structure, the resolution in the vertical direction is small
and too sparse, and few features can be provided, making feature tracking difficult. The
maps built by LiDAR SLAM are often represented by occupancy raster maps, where each
raster is in the form of a probability, allowing for compact storage, making it particularly
suitable for path planning. This paper mainly considers 2D and 3D laser SLAM.

The development of laser SLAM can be traced back to the driverless car competition
held by DARPA, and many excellent algorithms have emerged in its development over
more than ten years. Before 2010, most of the SLAM algorithms were based on filter forms:
PF [125], KF, EKF, and information filters are the main filtering methods derived from the
Bayesian filter. The EKF method is a classical method used to solve SLAM problems; for
example, the EKF-SLAM, which first applied the EKF to 2D lasers [11], and CF SLAM [126],
using EIF in combination with EKF on this basis. In addition to filtering methods, graph
optimization methods have also been gradually applied by scholars. In 1997, Lu et al. [12]
introduced graph optimization into 2D SLAM for the first time, where graph optimization
opened a new research environment for laser SLAM methods, such as Karto SLAM [15] and
Lago SLAM [127]. In 2002, Montemerlo et al. first applied PF to laser SLAM, resulting in the
Fast SLAM model [14], which provides a very fast 2D laser SLAM. In particular, Fast SLAM
provides a fast-matching method that can output a raster map in real-time; however, it
will consume more memory in a large-scale environment. On this basis, Cartographer [48]
realized real-time SLAM combining 2D and 3D laser data, which solved the problem of
real-time indoor drawing.

Due to the high price of early 3D LiDAR, few researchers made developments in
the field. However, with the decline in its price, 3D LiDAR gradually appeared in the
field of vision of researchers. In 2014, Zhang et al. proposed the LOAM [22] algorithm,
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providing a very novel feature extraction method at that time. On this basis, V-LOAM [67]
and LeGo-LOAM [23] were also introduced, which improved the robustness and provided
optimization for variable ground environments. Although 3D LiDAR is powerful, it will
achieve better results when paired with IMU, GPS, and/or other sensors. For example,
LIO-SAM [46] tightly couples 3D LiDAR and IMU data, greatly improving its robustness.
LOCUS 2.0 [128] is based on the generalized iterative closest point algorithm of normal,
which makes it possible to integrate other sensing modes in various loose coupling schemes.

In general, these studies reflect the development process and development difficulties
of laser SLAM. Table 8 lists the more classical laser SLAM techniques for reference.

Table 8. Laser SLAM methods.

Type Year Sensor Algorithm Innovation

EKF-SLAM [11] 1990 2D laser Filtering The EKF was applied to 2D laser SLAM for the first time; the feature map can be
well-constructed.

Fast SLAM [14] 2002 2D laser Filtering The particle filter was applied to robot SLAM for the first time; the matching speed is very
fast.

CF SLAM [126] 2009 2D laser Filtering EKF and EIF were combined for the first time.

Karto SLAM [15] 2010 2D laser Optimization Back-end optimization with loop-back detection was introduced for the first time in laser
SLAM.

Hector SLAM [47] 2011 2D laser Filtering The 2D SLAM system was combined with 3D scan-matching technology and an inertial
sensing system.

Lago SLAM [127] 2012 2D laser Optimization 2D Laser SLAM with linear approximation graph optimization.

LOAM [22] 2014 3D laser Optimization Good real-time performance, constant velocity motion assumption, no closed-loop
detection.

V-LOAM [67] 2015 3D laser, monocular
camera Optimization High precision and good robustness of the algorithm, uniform drift assumption, no closed

loop detection.

Cartographer [48] 2016 2D laser Optimization Using a sub-map and closed loop, it provides a solution for indoor real-time mapping.

LeGO-LOAM [23] 2018 3D laser, IMU Optimization Compared to LOAM, back-end optimization is added to make the diagram more complete.

LIO-SAM [46] 2020 3D laser, IMU, GPS Optimization A variety of sensors are tightly coupled, and the robustness is strong.

LOCUS 2.0 [128] 2022 3D laser Filtering Other sensor data can be robustly fused in a loosely coupled scheme.

3.1.3. Visual SLAM

The eyes are the main source by which humans access external information. Visual
SLAM has similar characteristics, allowing massive and redundant texture information to
be obtained from the environment and having strong scene recognition ability. Early visual
SLAM methods were based on filtering theory; however, this is not practical due to its
non-linear error model and the huge amount of calculation required. In recent years, with
the progress of non-linear optimization theory considering sparsity, camera technology,
and computational performance, it has become possible to run visual SLAM in real-time.
The advantage of visual SLAM is that it can exploit rich texture information. For example,
billboards with the same size and different content cannot be distinguished by the laser
SLAM algorithm based on a point cloud, while visual data can easily distinguish their
content, bringing incomparable advantages in relocation and scene classification.

In the development history of VSLAM, monocular VSLAM developed earlier, as it
requires the use of only one camera to complete SLAM and, thus, won the favor of many
researchers; examples include Mono SLAM [20], PTAM [21], and DTAM [120]. Among
them, PTAM (published in 2007) was the first system to apply non-linear optimization to
SLAM, and it was also the first time that the front-end and back-end were distinguished in
VSLAM. It can be said that PTAM is a landmark SLAM algorithm for VSLAM, and this
system is used by the majority of scholars. SVO [122], ORB-SLAM [19], S-PTAM [129], and
so on, are all extended versions based on PTAM. ORB-SLAM is another highly iconic visual
SLAM method. Its authors, Mur-Artal et al., subsequently proposed ORB-SLAM2 [130] and
ORB-SLAM3 [131]. Among them, ORB-SLAM2 is a highly mature VSLAM system. It not
only can carry monocular, binocular, and RGB-D cameras for real-time map reconstruction,
but can also run in real-time on the GPUs (graphics processing units) of mobile phones,
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drones, and cars under the premise of ensuring high positioning accuracy. It can be said
that ORB-SLAM2 is the pinnacle of feature point methods.

The front-end of VSLAM is mainly of two types: feature point methods and di-
rect methods. The advantage of feature point methods is that they can accurately deter-
mine the position and effectively process the image; examples include ORB-SLAM [19],
S-PTAM [129], ORB-SLAM2 [130], DVO-SLAM [132], and so on. Direct methods can di-
rectly process the data of the image while, at the same time, addressing the problem that
feature point methods are time-consuming and cannot be used normally in the event of
missing features. Relevant methods include LSD-SLAM [117], DTAM [120], DSO [121],
binocular DSO [133], and so on. Similarly, in VSLAM with an RGB-D camera as the main
sensor, many algorithms use ICP as the feature point method for camera motion estimation,
such as Kinect Fusion [134], Kintinuous [135], and Elastic Fusion [136]. Table 9 lists current
commonly used open-source VSLAM algorithms for reference.

Table 9. VSLAM open-source algorithms.

Project Year Sensor Front-End Back-End Mapping Introduce Code Link

Mono SLAM [20] 2007 M F F S The first real-time monocular SLAM system based on EKF. [137]

PTAM [21] 2007 M F O S The first monocular SLAM based on non-linear
optimization. [138]

DTAM [120] 2011 M D O D Works well in the case of missing features and blurred
images. [139]

Kinect Fusion [134] 2011 R D O D Inexpensive and works in real-time. [140]

Kintinuous [135] 2012 R D O D Works in a wide range of environments in real-time with
strong robustness and small drift. [141]

DVO-SLAM [132] 2013 R D O D The trajectory error is small. [142]

LSD-SLAM [117] 2014 M D O S-D It can run in real-time and build large-scale, consistent
maps of the environment. [143]

SVO [122] 2014 M SD O S
The combination of a feature method and a direct method
eliminates the problems associated to the feature extraction
technique and the robust matching technique.

[144]

ORB-SLAM [19] 2015 M/S/R F O S Has strong robustness and can run both indoors and
outdoors. [145]

ORB-SLAM2 [130] 2016 M/S/R F O S Extending ORB-SLAM to binocular cameras, also a model
framework for many SLAM methods. [146]

Elastic Fusion [136] 2016 R D O D Makes full use of depth information to solve the problem of
indoor mapping. [147]

S-PTAM [129] 2017 S F O S Has good robustness and accuracy in indoor, outdoor,
dynamic objects, and other conditions. [148]

Binocular DSO [133] 2017 S D O S Can achieve more accurate dense 3D reconstruction. [149]

DSO [121] 2018 M D O S Has good accuracy and robustness. [150]

Sensor: M, Monocular camera; S, Stereo camera; R, RGB-D camera. Front-end: D, Direct method; F, Feature point
method; SD, Semi-Direct method. Back-end: F, Filtering; O, Optimization. Mapping: S, Sparce; D, Dense; S-D,
Semi-Dense.

Although monocular cameras are relatively simple, there have been few VSLAM
algorithms considering a single-robot monocular camera in recent years. However, due to
their speed, convenience, low cost, and other advantages, they have come back into the view
of researchers in the field of distributed SLAM. Large-scale distributed SLAM also mainly
uses low-cost and highly applicable sensors, a requirement which monocular cameras
fit exactly. Researchers have gradually developed more and more reliable and efficient
monocular SLAM systems; for example, the open-source TANDEM framework developed
by Cremers et al. at the Technical University of Munich in 2021 [151]. This framework is
capable of real-time tracking and dense reconstruction using only a monocular camera.
The novelty of this algorithm is that it not only provides a new monocular real-time dense
SLAM framework, but also integrates learning-based multi-view stereo into direct VO. It is
also the first depth map rendered by the global TSDF (truncation sign distance function)
model to implement a monocular dense tracking front-end. In the same year, their team
open-sourced another work, MonoRec [152], which only requires a monocular camera to
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achieve semi-supervised dense reconstruction of dynamic environments. The framework
combines depth multi-view stereo and monocular depth estimation algorithms to recover
accurate dense 3D reconstruction with a monocular camera. Therefore, it can be said that
monocular cameras may already be used as the main sensor type for distributed SLAM.

The development of visual SLAM has a history of several decades. Although the
relevant theory is becoming mature, it still faces many challenges in complex environments.
For example, how to deal with loop sequences and multiple video sequences, how to
close loops, eliminate error accumulation, how to deal with large-scale scenes with high
efficiency and precision, how to deal with dynamic scenes, and how to deal with fast motion
and strong rotation. These problems also point to directions for the future development
of VSLAM.

3.1.4. Sonar SLAM

Sonar is a kind of technology and equipment that uses the propagation and reflection
of sound waves in water to carry out navigation and ranging. Ships, submarines, and
anti-submarine aircraft equipped with sonar can accurately determine the locations of local
ships, torpedoes, and mines.

The combination of sonar and SLAM was also realized early in the development
of SLAM. The essence of sonar is ultrasound, which can be used to measure distance
information. At the same time, it can also be used to extract the features of the environment,
forming a rough image of the external landscape. With the development of driverless
technology and underwater exploration technology, sonar-based ultrasonic SLAM has once
again become active in relevant fields. As the second-largest space for human development
after the land, the ocean is rich in mineral resources and energy resources, which can
provide a large amount of material basis for human development. As the main body
of underwater vehicle exploration, AUVs (autonomous underwater vehicles) have also
become key research objects. At the bottom of the ocean, the SLAM algorithm becomes
more important, as there exists no accurate map for assistance. Many achievements in AUV
technology have been made in various countries throughout the world, such as the United
States Navy Underwater Warfare Center “large diameter UUV (unmanned underwater
vehicle)”, the “Marum-seal” AUV developed by the University of Bremen for scientific
research, “Twin-Burger” developed by the Research Institute of the University of Tokyo,
and “Hairen No.1”, a large ROV jointly developed by Shenyang Institute of Automation of
the Chinese Academy of Sciences and Shanghai Jiaotong University.

In 2006, Mallios et al. introduced a KF-based method for AUV-suitable navigation
systems that fuses DVL and USBL acoustic navigation data [153], providing excellent 3D
position estimation. Using recent data sets for fusion, the performance of the algorithm was
evaluated. In 2008, Walter et al. introduced an autonomous underwater vehicle SLAM [154]
implementation using FLS (forward-looking sonar) data for hull inspection tasks. The
experimental results demonstrated that the system can effectively draw the hull diagram
in a challenging marine environment. In 2010, Johnson-Roberson et al. proposed a robust
and scalable SLAM algorithm [155] to support the deployment of robots in real-world
applications. At the same time, the system can be effectively applied for large-scale 3D
reconstruction and visualization. In 2013, Fallon et al. introduced a system [156] and an
autonomous underwater AUV equipped with low-cost sonar and navigation sensors. In
2015, Matsebe et al. conducted experiments in an underwater cave [157], using an AUV
equipped with two sonars to map the horizontal and vertical planes of the cave. A ping
SLAM framework was deployed at the test site, which could significantly reduce and limit
the positioning error in fully autonomous navigation. In 2019, Rahman proposed a SLAM
system based on tightly coupled keyframes [158] which has the function of loop closure and
relocation for the underwater field. It can be said that sonar SLAM has good application
prospects for underwater natural environment exploration and terrain mapping [159].
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3.1.5. Summary of SLAM Algorithms

Single-sensor SLAM has been developed for decades, and various mature SLAM
algorithms have also emerged. Several classical SLAM algorithms are shown in Figure 16,
which are mainly divided into two categories: those based on filtering methods and those
based on optimization methods. Considering SLAM development so far, the types of SLAM
methods in various directions are diverse; however, they are inseparable from these two
basic SLAM algorithms. The Bayesian filtering method is commonly used in traditional
SLAM, covering the algorithms in the early stage of SLAM research. As time passed,
more and more non-linear data appeared. As such, modern SLAM scholars began to use
smoothing optimization methods to deal with this non-linear data, in order to achieve more
stable and efficient SLAM. Figure 16 summarizes the two main branching structures of the
SLAM algorithm and their respective sub-divisions.
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Figure 16. Summary of SLAM algorithms. Single-sensor SLAM methods were divided into two
categories—according to traditional filtering methods and modern optimization algorithms—and the
known SLAM algorithms with high frequency were classified. In this way, the structural diagram of
the SLAM algorithms was obtained.

3.2. Single-Robot Multi-Sensor SLAM

Single-robot multi-sensor data fusion refers to multi-source heterogeneous data fu-
sion, which involves the fusion of data from multiple sensors in an individual robot [160].
Meanwhile, multi-robot fusion SLAM involves the fusion of data from multiple robots.
Therefore, single-robot heterogeneous data fusion SLAM is first introduced, before intro-
ducing multi-robot homogeneous data fusion SLAM. As stated in the previous section, the
information provided by a single sensor is limited, and so multi-sensor fusion can provide
more comprehensive information to the robot. However, the key problem faced when
conducting multi-sensor fusion is that the data from different sources lead to difficulties
in data fusion. Therefore, the key to multi-source heterogeneous data fusion is to break
through the differences between non-homogeneous data to complete data fusion. The most
critical challenges in multi-sensor data fusion lie in the following two points:

• Ambiguity in data associations, which is reflected in the fact that each obtained data
type has obvious differences in terms of attributes, expression, and quality. The
difference in data attributes mainly derives from in the difference in data structure.

• A basic theoretical framework and generalized fusion algorithm have not yet been
formed. The difficulty lies in the determination of fusion criteria under a large number
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of random and uncertain problems, as well as how to effectively fuse under these
uncertain reactions considering the premise of imprecise, incomplete, unreliable, and
fuzzy measurements.

Common multi-sensor fusion approaches in the literature include VIO-SLAM, VL-
SLAM, VIL-SLAM, and other sensor fusion SLAM. This paper considers the multi-sensor
fusion problem from these four aspects.

3.2.1. IMU–Visual Fusion

SLAM involving the fusion of visual and IMU data is also known as VIO-SLAM. Visual
sensors work well in most textured scenes, but have many drawbacks; for example, white
walls and glass will lead to feature loss, moving too fast will lead to a loss in positioning and
tracking, and so on. At the same time, IMUs also have shortcomings related to their long-
time use, which can lead to high cumulative errors; low-precision IMUs will easily diverge
with long-term use, while the price of high-precision IMUs is too high. Their advantages lie
in their high output frequency, the ability to output six degrees of freedom in measurement
information in a short time, and the high accuracy of their relative displacement data.

Therefore, there are certain complementary properties between visual and IMU posi-
tioning schemes. Through combination of the two, the IMU can provide short-term accurate
positioning for the vision when the visual sensor fails for a short time. When the IMU
diverges and accumulates errors due to its zero bias, the visual positioning information
can be used to estimate the zero bias of the IMU. The fusion of the two can resolve the
problem of low output frequency in visual pose estimation. At the same time, the accuracy
of the overall pose estimation is improved, and the robustness of the whole system is
strengthened. The resulting system is called VIO (visual–inertial odometry), or sometimes
VINS (visual–inertial system). An example of a visual sensor combined with an IMU is
shown in Figure 17.
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Figure 17. Schematic diagram of the VIO process. The system is composed of a vision module and
an IMU module. It outputs bit pose data through local optimization and loop closure detection [161].

In this paper, the algorithms adopted for sensor fusion are summarized into two types:
optimization-based and filtering-based.

In the optimization-based VIO algorithm, a tightly coupled fusion method is generally
adopted and the optimization method is used to maintain the sliding window estimator
to minimize the visual re-projection error and the IMU measurement error. For example,
OKVIS [161] uses the full probability method to tightly integrate the IMU error term with
the landmark re-projection error. The tightly coupled VINS also maximizes the use of
sensing cues and non-linear estimates, greatly improving the accuracy and robustness of
the system. VINS-Mono [162–164] is the most accurate and robust VINS hardware platform.
It tightly couples IMU data, making the performance more stable, and the loop closure
feature can also be added as an additional measurement for tightly coupled non-linear
optimization. In addition, the loopback detection in the system can further improve the
accuracy and robustness. For the multi-sensor SLAM system, real-time performance is



Machines 2023, 11, 653 30 of 74

also one of the problems that the system needs to consider. To solve the real-time problem
of the system, VINS-Mobile [4,163] has proposed a real-time monocular visual odometry
method that is compatible with running on iOS devices. It supports a variety of visual–
inertial sensor types, while also featuring line-space calibration, online temporal calibration,
and visual loop closure functions. To make VIO more practical, DM-VIO [71] proposes a
monocular visual–inertial ranging system. The system performs well in flight, handheld,
and automotive scenarios, while also making attitude map BA possible.

With respect to filter-based VIO algorithms, MSCKF (multi-state constraint Kalman
filter) [165] was proposed first. It uses an EKF-based tightly coupled fusion framework, and
optimally uses multiple measurements of visual features to provide positioning information.
Compared with optimized VIO algorithms, such as VINS and OKVIS, its accuracy is
comparable but its speed is faster. The loosely coupled multi-sensor fusion framework SSF
is also based on EKF filtering [166]. It can perform intra-sensor and inter-sensor calibration,
and is used for vehicle pose estimation. MSF [69], which also uses loose coupling, is an
updated state buffering scheme based on the IEKF (iterated extended Kalman filter). This
structure requires less hardware, but its accuracy is poor compared with the tightly coupled
fusion scheme, and it cannot directly estimate the state scale by itself. To solve this problem,
the ROVIO [167] filter fusion framework—also based on the IEKF—proposed a solution. It
implements multi-camera support in a tightly coupled manner. At the same time, aiming at
the visual information, the system uses the image block around the point corresponding to
the landmark point in the image as the descriptor of the landmark point, then obtains the
photometric error and updates the filtering state of the transformed photometric error. This
system proves to be very robust to complex trajectories if the computational performance
is sufficient.

Several open-source VIO fusion algorithms are detailed in Table 10 for reference.

Table 10. VIO fusion algorithms.

Algorithm Name Year Submitting Unit Algorithm Type Fusion Type Code Link

MSCKF [165] 2007 University of Minnesota F T [168]

SSF [166] 2012 ETH Zurich F L [169]

MSF [69] 2013 University of Edinburgh F L [170]

OKVIS [70] 2013 Imperial College London O T [171]

VINS-Mono [163] 2017 Hong Kong University of Science and Technology O T [172]

VINS-Mobile [4] 2017 Hong Kong University of Science and Technology O T [173]

ROVIO [167] 2017 ETH Zurich F T [174]

DM-VIO [71] 2022 Munich Industrial University O L [175]

Algorithm type: F, filtering; O, optimization. Fusion type: L, loosely coupled; T, tight coupling.

VIO includes two types of fusion: loose coupling and tight coupling. Loose coupling
means that the IMU and the camera perform their motion estimation separately, then fuse
their pose estimation results. At the same time, the update frequency of motion estimation
and pose estimation in loose coupling is inconsistent, and there is some information
exchange between modules. Inertial data are usually used as the core in the loosely
coupled method, while visual measurement data can be used to correct the cumulative
error generated by inertial measurement data. Tight coupling refers to merging the state
of the IMU and the state of the camera to jointly construct the motion and observation
equations for state estimation. At the same time, the scale metric information in the IMU can
be used to assist the scale estimation in vision. Tightly coupled algorithms are more complex
but make full use of the sensor data, which can achieve better results. Consequently, tight
coupling has an excellent effect on the ambiguity of association, can reduce the inaccuracy
and interference of sensor measurements, and can better reduce the ambiguity between
multi-sensor fusion associations.
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3.2.2. Visual–LiDAR Fusion

The fusion of visual and laser SLAM is also called VL-SLAM; it has strong advantages.
This hybrid solution provides improved SLAM performance, especially under aggressive
motion, lack of light, and lack of visual features. The fusion of laser and visual data
can effectively break the deadlock and obtain better map information than individual
visual or laser SLAM. At present, mature driverless cars install a certain number of laser
sensors based on visual sensors, such as the Mercedes-Benz F 015 Luxury in Motion,
Volkswagen A7, Audi Delphi, NIO ET7, and Ultra Fox Alpha S. These unmanned vehicles
are equipped with a certain number of visual and laser sensors. Figure 18 shows the
VL-SLAM framework.
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Figure 18. Schematic diagram of VL-SLAM [5]. The framework is divided into three steps. First, in
the data processing step, feature detection and tracking is performed on the two modalities. In the
estimation step, the vehicle displacement is first estimated from the tracked features, after which
the map and feature landmarks are detected and matched. Pose optimization is performed after
successful matching. Finally, the global optimization trajectory or local optimization trajectory is
determined according to the detection of loop closure.

In VL-SLAM, feature-based methods are usually used as the fusion of laser and visual
data requires information based on visual odometry. In this paper, VL-SLAM is divided
into three categories based on the visual odometry processing method: filtering-based,
bundle-adjustment-based, or factor graph-optimization-based.

Regarding filter-based approaches, in 2017, López and Elena et al. proposed an
aerospace robot [176] equipped with a monocular camera and a 2D LiDAR sensor and inte-
grating both data into a SLAM system. The proposed algorithm improves the 6D attitude
estimation using the EKF to achieve low-cost, high-efficiency operations. Considering the
problem of visual tracking failure, Xu et al. [177] proposed a SLAM algorithm based on
LiDAR and RGB-D camera fusion in 2018, which can use the LiDAR pose to localize the
point cloud data from the RGB-D camera and build a 3D map when visual tracking fails.

In terms of fusion algorithms based on bundle adjustment, DEMO [76] is a loosely
coupled multi-sensor fusion method based on BA optimization proposed earlier. The
system first processes the image and then optimizes the motion estimation in parallel
with batch optimization. In the case of sparse depth information of the image, DEMO can
effectively use the image depth information to solve the problem. Similarly, LIMO [68] is
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another bundle adjustment algorithm based on robust keyframes. In this method, camera
and laser information are tightly coupled, and a genetic algorithm is introduced to search
for possible LIMO parameter values. Its key advantage is that it retains the carrying
information set, which also ensures an accurate pose. A similar tightly coupled algorithm,
VIL-SLAM [89], uses stereo VIO to perform fixed-lag pose map optimization. The proposed
algorithm also generates the closed-loop corrected 6-DOF LiDAR attitude in real-time
by tightly coupling the stereo visual–inertial odometer and LiDAR. Such an algorithm
framework also gives the system higher accuracy and robustness. However, these fusion
algorithms based on bundle adjustment do not perform well when conducting large-scale
mapping. To address this problem, Shin et al. [178] proposed an optimization method based
on sliding windows. When optimizing the pose graph, the system strictly marginalizes
the pose of the sliding window. This feature also ensures that the system can be used for
accurate pose graph SLAM.

Fusion algorithms based on factor graph optimization have only been developed in
recent years. For example, LVI-SAM [24], proposed in 2021, is based on a factor graph,
with tightly coupled visual and laser data for initialization estimation. The algorithm
framework runs the two systems in parallel, performs loop closure detection through
vision, and puts the results into the laser inertial navigation unit for optimization. The
operation of the dual system makes the framework more robust in scenes lacking texture
or features. Another tightly coupled system also based on factor graphs is VILENS [179],
which achieves the purpose of real-time processing of LiDAR data by directly extracting
line and surface features from LiDAR point clouds. This system utilizes visual, IMU, laser,
and other sensors, and integrates the kinematics of the robot leg as a dedicated residual
of the factor map, rather than relying on an external filter. This feature facilitates the tight
integration and noise modeling of the system.

Table 11 summarizes several common VL-SLAM algorithms for reference.

Table 11. Vision and laser fusion algorithms.

Algorithm Name Year Algorithm Type Fusion Type Features Code Link

DEMO [76] 2014 B L IMU independent module fusion with [180]
V-LOAM [67] 2015 B T vision state estimator Not open-source

LIMO [68] 2019 B T Take advantage of minimizing residuals to [181]
VIL-SLAM [89] 2019 B T achieve better accuracy and robustness at a [182]
LVI-SAM [24] 2021 F T higher computational cost [183]

Algorithm type: B, Bundle adjustment; F, Factor graph. Fusion type: L, Loosely coupled; T, Tight coupling.

In the process of laser–visual fusion, as the data types differ, reducing the ambiguity
between the two types of data has become a key technical point in the fusion process. In
the tightly coupled type, they run in separate laser and visual threads. For example, in
LVI-SAM [24], the two systems use data from each other to simplify the initialization. Some
tightly coupled types will first process the visual data based on optimization, then use the
corresponding information to assist the laser radar to draw a complete map, such is the case
for VIL-SLAM [89]. It can be seen that the main influencing factors of association ambiguity
are the inaccuracy and interference of sensor measurements. On one hand, the tightly
coupled VL-SLAM can run in two threads; on the other hand, they can learn from each
other and correct the wrong information in each other. This model reduces the ambiguity
between the two types of data and better realizes correct and complete environmental map
construction.

3.2.3. Laser–IMU Fusion

The fusion of laser and IMU data is also called LIO-SLAM. These two data types can
complement each other, providing higher-accuracy analysis data for the robot. According to
the type of fusion algorithm adopted in the fusion of LiDAR and IMU data, the algorithms
can be divided into two types: tightly coupled and loosely coupled. The two types are
described below.
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Loosely coupled laser odometry. In 2015, Tang et al. [184] proposed a method based on
the EKF using loosely coupled IMU and LiDAR, using a new scanning method based on the
INS (inertial navigation system) and a low-cost LiDAR to perform 2D pose measurement.
The two complement each other and can establish a long-term navigation process. In
addition, it can provide centimeter-level positioning accuracy, even when the GNSS (global
navigation satellite system) is degraded or denied access. In 2014, Zhang and Singh
introduced LOAM [22], which defines edges and planar 3D feature points for frame-by-
frame tracking. It uses high-frequency IMU measurements to interpolate the motion
between two LiDAR frames, and the motion is used as prior information for accurate
matching between features to achieve high-precision odometry. Given the shortcomings of
LOAM, Shan et al. proposed LeGo-LOAM [23] in 2018, which is an improved scheme of
LOAM using a loosely coupled laser odometer based on ground optimization. The fusion
algorithm is a set of lightweight algorithms which can perform real-time pose estimation
in low-power embedded systems, as well as integrating loop optimization to correct for
pose drift. In 2022, Chen et al. [185] proposed Marked-LIEO, a vision-assisted laser–inertial
navigation system that can realize the pose estimation of mobile robots in indoor long
corridor environments. The system realizes multi-sensor fusion localization based on visual
label constraints by a graph optimization method, effectively improving the localization
accuracy and robustness in specific scenarios. Figure 19 shows the structure of a loosely
coupled LIO-SLAM.
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Figure 19. A loosely coupled LIO-SLAM model [90]. The system is composed of four sequential
modules, including a laser inertial ranging module and a laser mapping module. Through the cooper-
ation of the four modules, robust motion estimation and motion mapping in highway environments
can be realized.

Tightly coupled laser odometry. Soloviev et al. [186] proposed a tightly coupled
EKF laser scanning–inertial navigation solution in 2007. In this algorithm, the LiDAR can
determine the step size using the predicted orientation from the IMU; at the same time, the
EKF is used to correct the IMU state to keep it in the LiDAR measurement domain. The
measurement results indicate that its position error at the meter-level is small within the
200-meter range of activity. Based on the filtering method, Hemann [187] also proposed a
long-distance state estimation algorithm in the absence of GPS in 2016. Their approach uses
a 2D laser and IMU tightly coupled ESKF (error state Kalman filter) to fly long distances
without GPS while maintaining a highly certain state estimate, which also reduces the
computational time required to search the global elevation map. LIPS (LiDAR-inertial plane
SLAM) was proposed by Geneva et al. [188] in 2018, which is one of the early works focused
on the tight coupling of LiDAR and IMU. It is a graph optimization-based laser–inertial 3D
planar SLAM system with good robustness. LIO-Mapping was proposed by Haoyang [189]
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in 2019, in order to solve the problems of motion distortion and feature tracking in laser
sensors. It uses an IMU to centrally address the shortcomings of LiDAR. Compared with a
simple LiDAR sensor and the loosely coupled laser inertial odometer, LIO-Mapping is more
stable and the update frequency is higher. In 2020, Shan and Englot et al. [46] proposed a
tightly coupled smooth mapping laser inertial odometry framework based on LIO-SAM.
This framework consists of LIO-SAM + VINS-Mono’s SLAM framework and an extended
version of LeGo-LOAM. The algorithm adds an IMU pre-integral factor and GPS factor into
the framework and uses factor graph optimization to calculate the pose. It can complete
the trajectory estimation and map construction for mobile robots with high accuracy and in
real-time. Table 12 summarizes several representative SLAM algorithms for reference.

Table 12. Classic LIO-SLAM algorithms.

Algorithm Name Year Submitting Unit Algorithm Type Fusion Type Code Link

LOAM [22] 2014 Hong Kong University of Science and Technology O L [190]

LIPS [188] 2018 University of Delaware O T [191]

LeGo-LOAM [23] 2018 Stevens Institute of Technology O L [192]

LIO-Mapping [189] 2019 Hong Kong University of Science and Technology O T [193]

LIOM [90] 2019 Northeastern University F T [194]

LIO-SAM [46] 2020 Massachusetts Institute of Technology O T [195]

Marked-LIEO [185] 2022 Central South University O L Not open-source

Algorithm type: F, filtering; O, optimization. Fusion type: L, loosely coupled; T, tight coupling.

3.2.4. LiDAR-Visual-IMU Sensor Fusion

LVI-SLAM is the SLAM obtained by the laser, vision, and IMU sensor data fusion. It
can achieve high precision and robust state estimation and mapping; three kinds of sensors
are related, and the system can operate normally when one or two types of sensors are
degraded. Currently, coupling VIO and LIO generates most of the common LVI-SLAM.

In 2020, Camurri et al. [196] proposed Pronto. Its core is the EKF method, which
fuses leg odometry and IMU information loosely coupled for attitude and velocity es-
timation. Then, it corrects the attitude estimation information through LO and VO. In
2021, Zhao et al. [197] proposed an IMU-centric VIL-SLAM system. The system framework
is composed of IMU odometry, VIO, and LIO. IMU is the center of the framework, and
VIO and LIO are used to constrain IMU deviation for motion prediction of IMU odome-
try. In 2022, Zheng et al. [198] proposed FAST-LIVO, which enables SLAM functions by
tightly coupling laser, vision, and IMU data. The system tightly coupled VIO and LIO
and improved the overall stability through the information complementary between the
two subsystems and obtained a better SLAM algorithm. Figure 20 presents a diagram of a
tightly coupled VIL-SLAM structure.
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3.2.5. Other Sensor Fusion

In addition to the above-mentioned fusion methods considering visual, IMU, and
laser sensor combinations, there are many other sensors used in SLAM. For the fusion of
these sensors, there are also many fusion algorithms, including the use of filtering and
optimization fusion algorithms, as well as the use of deep learning, adversarial learning,
and other new fusion methods [199].

Filtering methods: In 2018, Khan et al. [99] used the KF to fuse an ultrasonic range
sensor, IMU, and wheel-speed meter to achieve multi-sensor fusion SLAM. In 2019, Jang and
Kim [100] combined millimeter-wave radar, Doppler velocimetry, and IMU for underwater
environments to realize panel-based bathymetric SLAM. In 2021, Almalioglu et al. [200]
used the UKF to fuse IMU and millimeter-wave radar information to complete low-cost
pose estimation for indoor SLAM.

Optimal fusion algorithm: In 2022, Wisth et al. [179] proposed VIENS, a tightly cou-
pled system based on factor graphs. This system processes LiDAR data in real-time by
directly extracting line and surface features from LiDAR point clouds. In addition, the
system can seamlessly integrate data from visual, IMU, laser, and other sensors. In 2018,
Rahman et al. [201] proposed using a system based on non-linear optimization, tightly cou-
pling IMU, stereo vision, and sonar information and applied the algorithm to explore harsh
environments such as underwater caves, and achieved good results. In 2019, Rahman [202]
proposed SVln2, which added a depth sensor based on the previous one. The system can
achieve loop closure and relocation by tightly coupling sonar, vision, inertia, and depth
sensor information. The experimental results of the data set show that it has a good effect
on accuracy and robustness.

Deep learning methods: In 2020, Zou et al. [203] used WiFi radio maps and spatial
maps to achieve high-precision positioning of mobile robot platforms in complex indoor
environments. In 2021, Kim [102] proposed a general method for unsupervised uncertainty
estimation by deep networks, while introducing uncertainty estimation and a balanced
VIO method to overcome the limitations of learning uncertainty associated with a single
sensor. Table 13 summarizes several other sensor fusion methods for reference.

Table 13. Several VIO fusion algorithms.

Algorithm Name Year Performance and Contribution Fusion Algorithm

Khan et al. [99] 2018 Uses KF to combine multiple ultrasonic distance sensors, IMUs, and wheel encoders for
localization and occupancy grid maps. KF

Jang and Kim [100] 2019 A robust measurement update method for a panel-based SLAM algorithm. Constrained extended Kalman
filter

Zou et al. [203] 2020 WiFi signals are used to achieve high-precision positioning of mobile robot platforms in complex
indoor environments. Adversarial learning

Almalioglu et al. [200] 2021 UKF is used to fuse IMU and millimeter-wave radar to complete low-cost pose estimation for
indoor SLAM. UKF

Kim et al. [102] 2021 The limitation of single-sensor uncertainty is overcome. Unsupervised learning

VILENS [179] 2022 Sensor information such as inertial, mechanical leg, and LiDAR data can be seamlessly fused. Factor graph optimization

In addition to the four sensors introduced in this article, many multi-sensor fusion sys-
tems integrate niche sensors in multi-sensor data fusion. In 2005, Ocaña et al. [204] integrated
WiFi and ultrasonic signals to run SLAM algorithms. In 2007, Ho-Duck Kim et al. [205] used
a digital magnetic compass and ultrasonic data to locate and map mobile robots in indoor
environments. In 2011, Shkurti et al. [206] integrated IMU, pressure sensor, and monocular
camera sensor information to estimate the 6-DOF attitude of an amphibious robot. In 2013,
Mirowski et al. [207] proposed SignalSLAM, which integrated Bluetooth, magnetic signals,
and radio frequency signals based on WiFi SLAM to obtain the running trajectory of the
smartphone. In 2021, Joshi et al. [208] collected the IMU and depth information in the robot
and integrated it with the visual tube estimator through water depth positioning to restore
the robot’s attitude.
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Various types of sensor fusion methods bring more choices for SLAM, and diverse
sensors also provide more kinds of information for map construction in the SLAM context.
Based on this information, robots can build maps that better fit the real-world environment.
A more realistic map can also help the robot to better adapt to an unfamiliar environment,
making the SLAM more efficient and better completing the actual task.

3.3. Summary

This section mainly introduced the content related to single-robot SLAM. From the
perspective of sensors, single-robot SLAM was divided into single-sensor SLAM and multi-
sensor SLAM, where single-sensor SLAM mainly focuses on some of the more classical
SLAM methods, including visual SLAM, laser SLAM, and sonar SLAM. At the same time,
this section also introduced many algorithms involved in the development of single-sensor
SLAM over the past few decades, dividing them into two categories (based on optimization
and filtering). By introducing single-sensor SLAM, the advantages and disadvantages of
visual and laser sensors and data can be understood, which paves the way for subsequent
multi-source data fusion. The multi-sensor part was sorted into four types: VL-SLAM,
LIO-SLAM, VIO, and other multi-sensor fusion. Multi-sensor fusion was also introduced in
the context of filtering-based and optimization-based algorithms, as well as tight coupling
and loose coupling. In general, the considered studies emphasized that multi-sensor fusion
SLAM can address the obvious problems in single-sensor SLAM and can better adapt to
complex and changing environments, leading to great application prospects. Compared
with single-robot SLAM, multi-robot SLAM has better environmental adaptability and
better robustness. Therefore, existing multi-robot SLAM fusion schemes are introduced in
the following section of this paper.

4. SLAM with Multi-Robot Data Fusion

Multi-robot SLAM is also known as homogeneous data fusion SLAM or distributed
SLAM. The widespread deployment of the internet of things and various computing
systems has led to the formation of heterogeneous multi-agent systems. Multi-robot agents
can solve many problems that are complex for a single robot to solve [209]. They can
perform task decomposition, alliance formation, task assignment, etc., and divide complex
issues, that a single robot cannot translate, into many subtasks [210] to run independently.
Therefore, multi-agent systems are widely used in AUV, UAV, UGV, UUV, and MAV [211].
With the continuous development of multi-agent systems, the technical algorithms of
multi-robots [212] are also increasing. A recent survey on SLAM found that the hot spot of
SLAM technology has gradually shifted from a single robot to a multi-robot system [213].
Synthesizing and comparing different discussions, this paper considers that multi-robot
SLAM has the following four advantages compared with single-robot SLAM:

• Strong adaptability to the environment: Compared with a single-robot operation, a
multi-robot operation has strong flexibility, with better functional and spatial distribu-
tion than that in the single-robot scenario.

• Strong robustness: In multi-robot systems, the completion of a task requires the
participation of multiple robots as a whole, rather than depending on a single robot. If
one robot in the system makes a mistake or is damaged, the deployment system can
transfer the task to another robot. At the same time, if the working environment of the
robot changes or the multi-robot system fails, the multi-robot system can coordinate
each robot through its controller to re-assign tasks to adapt to the new environment.

• Cheaper to manufacture: Single-robot SLAM requires the robot’s functionality to be
able to cope with everything possible, whereas multi-robot SLAM tends to use multiple
low-cost robots in collaboration to complete a task. Therefore, multi-robot systems
have lower requirements regarding the performance and hardware of a single robot.

• High work efficiency: Multiple robots can complete each part of the task at the same
time through mutual coordination and cooperation, with a clear division of labor and
high efficiency.
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Multi-robot SLAM is introduced from three aspects in the following: components of
multi-robot SLAM, multi-robot SLAM architecture, and multi-robot semantic SLAM.

4.1. The Components of Multi-Robot SLAM

Although the development of multi-robot cooperative SLAM has entered the “fast
lane”, there are still many technical challenges in the research of this aspect. Compared
with single-robot control, multi-robot systems require the exchange of a large amount
of information, and the large number of calculations and communications can block the
communication channel and cause delays. Therefore, how to allocate the limited communi-
cation resources in the multi-robot system is a problem to be solved in distributed SLAM
scenarios. When an agent repeatedly passes through a scene during movement, whether
the scene can be quickly matched by other agents will also affect the matching accuracy and
pose accuracy. In the development stage of multi-robot SLAM, visual sensors—as sensors
that can receive more information—have been favored by distributed SLAM researchers.
Similar to classical monocular visual SLAM, multi-agent cooperative visual SLAM can
also be roughly divided into two parts: visual odometry and pose optimization. However,
multi-agent cooperative visual SLAM mainly involves the processing of information from
different agents. This paper introduces the main components of multi-robot SLAM by tak-
ing multi-robot cooperative visual SLAM as an example. Its key technologies are discussed
in the following sections.

4.1.1. Front-End Data Acquisition

Front-end data collection is an indispensable part of multi-agent cooperative SLAM.
Taking the visual front-end as an example, it is generally divided into direct-method-based
and feature point-method-based (as introduced in detail in Section 2). The direct method
operates directly on pixels, which has the advantage of high accuracy and high efficiency,
and works well when considering a single agent. However, in a multi-robot SLAM system,
it is difficult to establish the pixel relationships between different agent cameras; this can
be considered as a critical direction in future cooperative SLAM research.

Algorithm-wise, when considering the front-end data collection part, past studies
have mainly focused on the Bayesian filter, which can well-solve the problem of system
state changes when the sensor measurement is estimated, and is considered the core of all
distributed SLAM. Special versions of this include the KF, hidden Markov filters, PF, and
so on. These algorithms are also common filtering methods used in multi-robot SLAM. The
front-end sensors of collaborative robots are generally designed to be lightweight while
having high efficiency, low price, and rapid data collection speeds. Therefore, commonly
used sensors include monocular visual sensors, stereo visual sensors, 2D LiDAR sensors,
and IMU sensors.

In 2013, Zou et al. [31] first proposed a multi-robot system, Co SLAM, based on
monocular visual odometry. The covariance matrix method is used in the front-end to
maintain the invariance of the obtained map points, and the beam adjustment method
is used to estimate the pose between cameras. Another innovation of this system is that
the dynamic points in the video can be distinguished from static points. In the same year,
Forster proposed CSFM [77], a monocular visual odometry method based on the EKF
algorithm. The system uses three agents to process the keyframe features and conduct
relative pose estimation between the keyframes. Their test showed that the system can
provide very good results in indoor and outdoor environments and has stable operation. In
contrast to these two kinds of monocular-based distributed SLAM, Schmuck [29] developed
a centralized multi-robot system CCM-SLAM based on a monocular camera. It retains
many of the advantages of the monocular camera, and each robot in the system is only
equipped with a monocular camera, a communication unit, and a processing board. At the
same time, the system is equipped with a central server with more computational power to
collect agent data and merge the optimization maps. The front-end of the system uses the
ORB-SLAM system based on keyframes and, at the same time, uses the bag-of-words library
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model to query the keyframe library. This framework also greatly guarantees the individual
autonomy of the agent robot, reduces the cost of collaborative SLAM, and improves the
bandwidth problem caused by the use of monocular cameras. In 2017, Schmuck et al. [214]
proposed a new and powerful architecture for monocular vision in multi-UAV SLAM based
on the special point method, and adopted a centralized architecture to uniformly process
the data from a single robot.

However, pure monocular multi-robot systems lack absolute scale, and ambiguity may
occur in the size factor. To resolve these problems, Karrer et al. proposed CVI-SLAM [30]
in 2018, a multi-robot system with monocular and IMU sensors. The local keyframes are
triangulated in the front-end of the system, following which the accuracy and consistency of
the map are improved by local beam adjustment. In 2021, Cao proposed VIR-SLAM based
on monocular–IMU fusion [93], which uses a double-layer sliding window technology,
combines VIO with UWB (ultra-wide band) ranging, and uses VIO for accurate short-time
relative pose estimation.

In addition to the monocular and monocular + IMU combination, depth visual data
collected from binocular and/or RGB-D cameras is also a choice category for multi-robot
SLAM. In 2014, Riazuelo [72] proposed a multi-robot system C2TAM using RGB-D as
the visual sensor, which could run SLAM through PTAM on RGB-D image sources. In
2021, Chang [215] proposed Kimera-Multi based on binocular cameras, which combines
CPU-based metric semantic mapping and distributed PGO optimization to reconstruct
the environment and generate a semantic map. In addition, research teams have aimed to
make multi-robot SLAM systems more portable; for example, Castle et al. [92] proposed
PTAMM in 2008. This system was designed to provide a portable SLAM system that is easy
to move and uses a centralized architecture to triangulate keyframes and perform BA opti-
mization for real-time map construction. Open VSLAM was proposed by Sumikura [216]
in 2019, which is compatible with various types of camera models, runs VSLAM with
equirectangular images, and also makes tracking and mapping independent of camera
orientation.

From the above, it can be considered that monocular cameras are quite popular in
multi-robot SLAM due to their cost-effective, convenient, and rapid characteristics. In this
section, the monocular camera is taken as an example, and there are two main methods for
the implementation of visual multi-robot SLAM based on monocular cameras. The first
is the SFM [217,218] method, the basic principle of which is shown in Figure 21. In 2005,
Royer proposed a computational method for mobile robot localization based on learned
video sequences. This method uses monocular vision to learn video sequences [219], then
conducts 3D reconstruction to calculate the pose of the robot for autonomous navigation
in real-time. A study has also used the method of locating online keyframes for video
reconstruction of sequence sets [220], which is suitable for narrow streets and city centers.
In addition, Mouragnon et al. [221] proposed the local bundle adjustment technique,
which can quickly and accurately establish the model, reconstruct the key points in the
image into 3D points, and match them through monocular video sequences. The second
approach to multi-robot SLAM with monocular cameras is to transform SLAM modeling
into a Bayesian inference problem, which is often referred to by researchers as a filtering-
based method. In single-robot SLAM, the modeling problem is usually transformed
into a KF for solving [20]; while in multi-robot SLAM it is transformed into an EKF for
solving. In 2002, Fenwick et al. [222] proposed a multi-robot SLAM-EKF system based on
an indoor environment for the first time, and proposed the CML (concurrent mapping
and localization) algorithm. The algorithm is based on stochastic estimation and uses a
feature-based approach to extract landmarks from the environment, providing a theoretical
framework for cooperative CML; however, this theoretical framework has no practical
results in large environments and cannot deal with real-time constraints. Therefore, in 2004,
Rodriguez-Losada et al. [27] proposed a real-time distributed multi-robot SLAM framework
that can be fused with the local map of the large environment under the framework based
on EKF, in order to solve several problems inherent to this local map fusion method. After
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an experiment in an indoor environment, it was found that this scheme has a good effect
on the realization of multi-robot collaborative mapping and the accuracy of mapping.
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Figure 21. Basic principle of visual SFM (structure-from-motion).

These two schemes have good application prospects in the process of front-end data
collection and data fusion. Strasdat et al. [10,36] compared the two methods and concluded
that the SFM-based method produces more accurate results per unit of computing time but,
in the case of dealing with resources, the filtering-based device method is more effective.

4.1.2. Collaborative Pose Estimation

Algorithms for recovering the relative positions between cameras in single-robot
VSLAM usually employ the five-point algorithm [223], which can be used in the robust
hypothesis and test framework to carry out the estimation of structure and camera motion.
Similarly, the real-time estimation of the 6-DOF pose [224] is a basic task in multi-robot
cooperative visual SLAM. Estimating the position and orientation of a formation of robots
is a prerequisite for the successful execution of advanced tasks such as surveillance, un-
derwater exploration, and rescue missions. Camera pose estimation can be achieved by
fusing information from multiple cameras. In this paper, mainstream collaborative pose
estimation algorithms are divided into filtering-based and optimization-based methods.

Among the filtering-based algorithms, there currently exist methods based on EKF
and PF. In multi-robot cooperative SLAM based on EKF [225], the unknown variables are
estimated by the EKF filter, where the state variables of the system include the motion
parameters of the agent robot and the three-dimensional coordinates of the landmark.
The SLAM algorithm performs EKF iteration on these system state variables to solve the
problems of pose estimation and updating the three-dimensional coordinates of landmarks.
However, with an increase in the number of landmarks, the iterative efficiency of the EKF
method gradually decreases. In practical applications, the number of landmarks should
be limited to ensure the real-time performance of the system. At the same time, to better
reduce the amount of calculations, the system may remove the target from the state variable,
retain the current and past poses of the agent robot, and then rely on the agent robot pose
observation model. This approach, known as MSCKF [165], is the main method used for
designing visual–inertial odometry.
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In 2003, Eliazar et al. [226] proposed a SLAM algorithm, DP-SLAM, based on a
laser range finder. This algorithm is based on PF to represent the robot pose as well as
possible map configurations. This new distributed particle mapping enables the algorithm
to efficiently maintain and update candidate maps and robot poses. At the same time, the
algorithm can implement a simple particle filter on the map and the robot pose, as well as
using distributed particle mapping (DP-mapping) to effectively maintain a large number
of mappings. In 2005, Martinelli et al. [225] proposed a robot localization method based
on EKF. In this localization method, the members of the robot formation are equipped
with proprioceptive sensors and exteroceptive sensors—where the latter make relative
observations between the robots—and the two sensors are fused using an extended Kalman
filter. This algorithm can reduce the pose estimation error by integrating the relative
observation, relative bearing, and relative distance. Figure 22 shows the pose determination
process for swarm robots.
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Figure 22. Robot pose determination process.

Among the optimization-based methods, the most important method is keyframe
optimization, which solves the current pose through the alignment of 3D points with
2D points, such as the PnP algorithm and non-linear least squares optimization method.
Keyframe optimization can build the map between frames by triangulating the matched
feature points, following which the keyframe pose and 3D map are optimized using the
beam adjustment method. To ensure the efficiency of SLAM, pose calculation and map
construction tasks are generally solved in parallel.

In 2007, Ziparo [227] proposed a distributed formation for multi-robots in harsh
environments, adopting the RFID (radio frequency identification) electronic tag feature
method. This method uses the feature method to estimate the position of the agent robot
and uses RFID tags to construct the environment map. Experiments showed that the
multi-robot system could run well in environments characterized by thick fog, poor fire
visibility, and low communication efficiency. In 2015, Paull [228] proposed an underwater
C-SLAM framework, which adopted a graph-based approach and used multiple AUVs
to communicate only through unreliable bandwidth acoustic channels. To reduce the
communication packet size, the framework locally marginalizes all vehicle pose estimates
between acoustic communications.

In recent years, UWB has also been widely used for accurate indoor pose estimation
and positioning in close range, due to its disregard for range detection and high accu-
racy. Distributed pose estimation has also begun to rely on the combination of UWB and
other sensors to achieve low-drift and high-precision robot swarm localization. In 2022,
Liu et al. [229] proposed a distributed SLAM robot trajectory estimation method based on
UWB and odometry. The distributed attitude estimation was carried out through short-
term UWB ranging and odometry in order to determine the individual attitude of the robot.
In the same year, Nguyen et al. [230] also proposed a multi-robot cooperative localization
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method combining UWB, IMU, and visual data. The proposed method does not rely on
loop closure and only requires ranging data from neighboring robots to achieve accurate
pose estimation.

4.1.3. Map Positioning

(a) Map positioning

In research on robot swarms, map localization is very important. The key problem
is that each robot needs to know its position [231] so that it can clearly mark its position
information on the map and then transmit it to other robots. At present, most localization
methods are developed for single-robot SLAM applications, and these algorithms cannot
be directly transferred to collaborative SLAM for team member position estimation. As
the basis of mapping, localization problems require dealing with odometry noise before
merging maps. To this end, researchers have proposed many map positioning solutions,
including GPS positioning, dead reckoning positioning, landmark positioning, and map
matching positioning.

In the early development of swarm robots, GPS was used to reduce the uncertainty
in robot pose estimation; however, in harsh environments such as adventure rescue and
underwater exploration scenarios, GPS signals will be blocked, and the robot formation
cannot receive GPS signals well.

Dead reckoning generally refers to the position and orientation of the robot at the
current time, calculated according to the odometer and gyroscope carried by the robot,
according to the state at the previous time and the difference in the current sensor reading.
This kind of algorithm generally uses probabilistic methods based on Bayesian estimation,
multiple hypothesis localization, Markov localization, Monte Carlo localization, and/or
other methods. In the localization methods for dead reckoning, researchers have focused
on fusing dead reckoning with other sensor sources. The positioning flowchart is shown in
Figure 23. For example, Feng et al. [232] proposed a map positioning method based on EKF
and UKF (unscented Kalman filter) which combines IMU and UWB data into an integrated
indoor positioning system, greatly improving the robustness and accuracy of the system.
Thrun et al. [233] proposed an incremental method of parallel mapping and localization for
mobile robots based on 2D laser range finders, which can achieve fast scan matching and
mapping. At the same time, it was the first time that a posterior estimation method was
combined with the idea of MLE (maximum likelihood estimation) to build an incremental
map, which could be used to build a large map of the periodic environment in real-time on a
low-end computer. The proposed posterior estimation method also enables robots to locate
themselves in 3D maps created by other robots. In addition, Thrun et al. [234] proposed
an efficient probabilistic algorithm to solve the problem that CML in [222] could not be
applied in large environments. Their algorithm uses a multi-robot hybrid map-building
method combining fast maximum likelihood map growth with a Monte Carlo locator. This
combination yields an online algorithm that can build maps in large environments, and
can also handle large odometry errors.

Landmark locations include artificial landmarks and self-landmarks. Artificial land-
marks are not useful due to their high cost and great limitations. Self-landmark localization
has been widely used in robot CL (cooperative localization) algorithms. In the early devel-
opment of CL, centralized CL algorithms considered robots as “portable beacons” [235,236];
that is, robot formations were divided into two groups: one moving and one stationary
(acting as beacons). The drawback of this approach is that it limits the motion of part
of the robot swarm. In 2000, Foxe et al. proposed the distributed CL algorithm [237],
which is a probabilistic algorithm for multi-robot cooperative positioning based on Markov
positioning. It has good performance in terms of reducing the uncertainty between two
robots in robot localization. In the same year, Bekey proposed a distributed CL algorithm
based on EKF [238]. This method allows the robot formation to decompose the cooperative
localization task into N filters, then independently propagate its state with covariance
estimates. In 2002, Howard et al. proposed a centralized CL algorithm based on MLE [239],
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which can locate the position of the robot formation on the map without using GPS, ex-
ternal landmarks, or environmental measurements, and is also robust to changes in the
environment. In 2003, the same research and development team proposed a decentralized
CL algorithm based on MLE [240]. This algorithm only uses the robot itself as a landmark,
and can locate nearby robots very well. The system does not require any external land-
marks and does not require any robots to remain stationary. This feature makes the system
robust to environmental changes and poor motion sensing, and it can complete the map
localization of robots effectively.
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Figure 23. Robot map positioning process [232] (IMU sensor combined with UWB for integrated
navigation positioning). ab represents the acceleration value measured by the three-axis accelerometer,
an represents the acceleration value after a coordinate transformation; Wb represents the angular
velocity measured by the three-axis gyroscope, Wn represents the angular velocity calculated by the
general navigation, and the two are fused to obtain Wbn and sent to the attitude array for solution.

Map-matching localization methods for robots generally adopt the Monte Carlo
method (MCL) [237]. Such an approach was first proposed by Fox, which was a probabilis-
tic method based on Markov localization. When a robot meets another robot, the MCL can
update its position in time and can also conduct verification by detecting the surrounding
environment. The feature of timely location updates makes the system more accurate in
collection of the environment, which requires the robot to keep its own movement and
measurement tracking after detecting other robots. Compared with traditional single-robot
localization, the localization speed and accuracy can be greatly improved with the MCL.

(b) Classification of algorithms

With the continuous development of SLAM technology, map positioning algorithms
are emerging continuously. In this paper, such algorithms are divided into four categories
according to the theory used for dealing with information uncertainty, as follows.

Bayesian filtering theory. These methods include KF, EKF, UKF, MHT (multiple
hypothesis tracking), ML (Markov localization), and so on. This type of algorithm is also
collectively referred to as a probabilistic method, which is a widely used processing method
to deal with uncertain information, and was also an early method applied to address the
map creation problem. The advantages of these methods are that they are suitable for
uncertain models, perfect theoretical frameworks, and clear physical meaning. However,
the disadvantage is that they are computationally expensive. An earlier probabilistic
map construction method is that of Elfes [241], which uses probability values to represent
the possibility of occupying obstacles in a grid map. Olson [242] proposed a probabilistic
mapping technology for mobile robots based on maximum likelihood estimation, which can
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match the map generated by the current position with the previous map in the probabilistic
sense.

Grey system theory. This describes methods and a theoretical basis for dealing with
all kinds of complex and uncertain information, pioneered by Professor Deng Ju-long [243],
allowing for unknown data to be mined based on a small sample and poor information (in
terms of a Grey number set).

Fuzzy theory. This category includes landmark location methods based on fuzzy
theory and methods based on fuzzy EKF. Fuzzy theory algorithms are based on fuzzy
mathematics [244], proposed in 1965. This kind of method is greatly affected by qualitative
judgment, and the cognitive expression is based on experience. Although their accuracy
is typically low, they have strong robustness, can discuss uncertain information from a
new angle, and use flexible operators. In 1997, Oriolo et al. [245] proposed the concept of
“fuzzy maps”, used fuzzy sets and membership degrees to describe the uncertainty in sonar
data, and used fuzzy operators to realize multiple data fusion and establish fuzzy sets to
describe the environmental map. In 1999, Gasos et al. [246] used fuzzy sets to describe the
uncertainty between robot sensing data and the environment, and created a feature map of
the environment. This is also a classic case of early fuzzy set application in SLAM.

Rough boundary theory. This type of method includes the multi-robot exploration [247]
method based on an approximation set with unclear boundaries, which gradually ap-
proaches the unknown data through the upper and lower approximation method in order
to complete the mining of position data.

These algorithms have their own research object, methodological basis, and corre-
sponding characteristics. The main features of these algorithms are listed in Table 14.

Table 14. Map localization methods for dealing with uncertain data.

Algorithm Name Bayesian Filtering Theory Grey System Theory Fuzzy Theory Rough Boundary Theory

Research object Random uncertain Poor information uncertain Cognitive uncertainty Uncertain boundaries

Method basis Mapping Information coverage Mapping To divide

Data request Typical distribution Arbitrary distribution Membership is known Equivalence relationship

Features Large sample data Small sample data Experience data Information sheet

These theoretical algorithms are based on uncertain system theory and allow for
data mining in the context of multi-robot SLAM and multi-robot exploration under robot
uncertainty. At the same time, in the process of map positioning, these algorithms can be
used to solve the location uncertainty of the robot itself.

4.1.4. Collaborative Map Building

Multi-robot algorithms have emerged in recent years, and a key issue for detecting
the effectiveness of multi-robot algorithms is whether the common reference frame maps
constructed by different robots in different frames can be merged. Two key problems
emerge in the research on local map fusion of robot formations: first, each robot will have
its local coordinate system, and transforming the coordinate system of one robot into the
coordinate system of another robot is a non-linear process. This is inconsistent with a linear
feature transformation representation, so simply adding local maps is ineffective for map
fusion. Second, a complex data association problem needs to be solved in the process of
fusion, which involves establishing the correspondence between landmarks in the local
map of the robot. To estimate the relative transformation between local maps, most studies
on collaborative SLAM have utilized inter-ring detection. The mapping of swarm robots is
introduced in two aspects in the following.

(a) Fusion types

Map Building for Swarm Robots is divided into direct and indirect map building
according to the processing method used to fuse the map.



Machines 2023, 11, 653 44 of 74

Direct map fusion refers to direct calculation of the transformation between robot
reference coordinates. This mainly relies on direct robot rendezvous techniques, which
require high-precision transformation estimates to be provided. However, this fusion
method is limited by specific conditions, such as robot rendezvous or specific landmarks,
and its implementation is relatively singular. In addition, direct map fusion mainly uses
customer information to exchange data with sensors, and sometimes requires the robot(s)
to be controlled effectively, which is difficult to achieve with heterogeneous robots.

Direct algorithms are mainly used in collaborative robots for map fusion in specific
environments. In 2012, Benedettelli [248] proposed an algorithm that works in the context of
lines and line segments. In the algorithm, when two robots meet, the local maps generated
by them will be combined according to the relative distance and azimuthal measurement
from robot to robot, and the combined map will be used as data for each robot at the
beginning of the single-robot SLAM algorithm. In the VIR-SLAM [93], proposed in 2021,
when they pass through a common anchor, robots can directly estimate the position between
them when they meet, and the robots only need to send their current position with the
anchor position to range the neighboring robots. After the transformation matrix is correctly
estimated, the information collected by the neighboring robots can be correctly placed in
the robot’s map frame. Ziparo et al. [227] proposed the use of RFID landmarks as features
and, at the end of the task, each robot can perform map merging through the local map
based on RFID association and easily merge into the global topological map. To ensure
global consistency, the merged map can also be corrected in an offline manner.

Indirect map fusion uses overlapping regions in the map to convert between maps;
the fusion effect is shown in Figure 24. In indirect map fusion, the map data only forms
a common interface, using the same common format to expose the map for indirect map
fusion. The sensor devices mounted on the robot at the same time may differ and the SLAM
algorithm is used when creating the map, which also makes indirect map merging more
flexible than direct map merging. Regarding the practical effect, indirect map fusion does
not require the robot to be controlled and is more suitable for heterogeneous robot groups.
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Figure 24. Block diagram for determination of overlapping areas. An office map is taken as an
example, where two robots build a map around a desk, communicate with each other after forming
their mapping, and locally fuse the locations where the keyframes overlap when they meet. The
keyframes are detected when the robots do not meet, and map fusion is performed when the
keyframes overlap. When the keyframes do not overlap, the mapped data are used to communicate
with the robots again.
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In 2005, Thrun et al. [249] proposed an algorithm aimed at the multi-robot SLAM
problem, which enables a team of robots to build a joint map when the starting position is
unknown and the road surface is ambiguous. In addition, by using a sparse information
filtering technique, this algorithm can also represent the mapping and robot pose by a
Gaussian Markov random field. After that, Birk and Carpin et al. [250] proposed a special
similarity measure and a random search algorithm. This algorithm can allow each robot to
draw maps independently and, after drawing these maps, perform map integration. It uses
a heuristic algorithm based on a special image similarity function which can glue the map
well so that the maps collected by each robot can collectively form a whole map. Romero
et al. [251] split indirect map fusion into two parts in 2010. The algorithm converts the
reference frame of the second robot with the landmark to the reference frame of the first
robot by calculating the coordinate transformation. There is only one map framework in
the algorithm, which fits the maps created by two robots in the same environment, based
on FastSLAM. The disadvantage of the algorithm is that, although the accuracy of the maps
is high and the data correlation is strong, the overlap between the maps is not high ,and so
they cannot be merged.

In [214], a pair of matching KFs (Kq, Km) was used for map fusion, with Mq and Mm
belonging to two different maps with different scales. Their method calculates the two map-
pings and converts them into the coordinate system of a third combined mapping, Mf (map
fusion). Ref. [234] proposed an extension which enables a robotics team to integrate data
into a single global map with computational scalability. In 2014, Riazuelo [72] proposed a
hybrid SLAM framework based on keyframes which moves the map optimization step to a
robot cloud server. Each robot in the system can explore new areas and estimate the map;
then, the cloud server runs the map optimization service, and after it detects the common
areas it fuses them into a single map independent of the process. The innovation of this
framework lies in the parallelization of online estimation, which allows for optimization
of large maps in a short time. Table 15 compares the characteristics of the two map fusion
algorithms.

Table 15. Map localization methods for dealing with uncertain data.

Method Direct Fusion Indirect Fusion

Map format Multiple coordinate systems for conversion. There is only one common format to expose maps.

Mode of integration Through rendezvous and coordinate transformation of specific
landmarks, the maps are fused.

Map merging is performed according to the overlapping areas in
the maps.

Advantage High-precision transformation estimation can be provided. Merging maps is more flexible and straightforward.

Shortcoming It can only be used under certain conditions. The merged maps are coarse, lack detail, and have a certain
degree of drift.

(b) Map fusion algorithm

With the development of distributed robot SLAM, many algorithms for map fusion
have been proposed. In this paper, we summarize these algorithms and categorize them
into four categories: EKF, particle filter framework, EM (expectation maximization), and
clustering methods. These map fusion algorithms have various advantages and limitations.
For example, although the methods based on EKF are simple and easy to implement, they
involve complex calculations and have a low fault tolerance rate. The methods based on the
particle filter framework are simple to calculate, but the problem of particle degradation
and depletion has not yet been solved. EM-based methods have good robustness with
respect to data association errors and are suitable for unknown scenes with large and cyclic
terrain, but cannot be used for incremental map building. These four types of algorithm
are described in the following.

The paper on topological map merging published by Huang and Wesley H. et al. [252]
in 2005 is a representative work focused on map fusion using a clustering algorithm. They
proposed an algorithm that can merge two topological maps by using the structure of
the maps to find a set of hypothesis matches, which are then divided into consistent
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cluster combinations using a geometric transformation of the hypotheses. The method of
simultaneous map storage also helps to merge maps from multiple robots.

Andersson proposed the EKF-based map merging algorithm [253], which can be
used to align and link maps and trajectories when there is no initial data of relative poses
for multi-robot systems, and which can also recover the robot’s trajectory. The use of a
smoother algorithm also reduces the position uncertainty between the two robots before
the robots rendezvous. In 2006, Zhou et al. used EKF to estimate the position of a robot
and landmarks [254]. This method does not require processing of historical measurements,
greatly reducing the memory and computational requirements for the robot formation.
The algorithm computes the coordinate transformation between two maps by processing
the relative pose measurements between pairs of robots, then merges the maps created
independently by different robots. Their experimental results indicated that the accuracy
of the generated map is high and the effect is good. It can be seen that, when dealing with
large maps, SLAM algorithms based on EKF present a good divergence trend and mapping
effect.

In 2006, Howard et al. [101] proposed a PF-based map fusion algorithm, in which
robots measure the relative pose of each other when encountering another robot. The
algorithm then processes the measurements of the robots through a filter to fuse the
measurements into a common map. The innovative advantage of this algorithm is that
the data of the robot can be fused on the same map without knowledge of the initial pose
of the robot. Second, it has the advantages of fast speed, good effect, and real-time map
construction. Gil et al. [255] proposed a method to jointly build a common map based on
Rao Blackwell particle filters in 2010. This method uses feature-based SLAM to represent a
map as a set of 3D landmarks, where each landmark consists of a global position in space
and a visual description definition.

The merging of multiple robot occupancy grid maps, proposed by Birk and Carpin
et al. [250] in 2006, is a representative paper on the EM algorithm. The EM algorithm [234,256]
does not produce a full posterior. All robots in the robot team operate independently at the
same time, combining different local maps into a global map. The EM algorithm has the
advantage of not requiring information about the relative pose of the robots with respect
to each other but, rather, identifies the same regions of the map and uses these regions
to glue the map together. The map fusion method here is classified as an indirect map
fusion method.

4.1.5. Loopback Detection

Loop detection has always been a key component in visual SLAM systems. In multi-
agent collaborative visual SLAM, there are generally two methods for loop detection:
intra-camera loop closure and inter-camera loop closure. The former reduces the drift error
through the scene once reached by a single camera, while the latter approach detects the
overlap area between multiple maps to perform map fusion between multiple agents. Both
of these methods need to be implemented through position recognition and pose graph
optimization; these steps are used to optimize the pose [29] of the keyframe and the 3D coor-
dinates of the feature points. In multi-robot systems operating in large-scale environments,
loop closure detection priority is the core of multi-robot SLAM. Denniston et al. [257] pro-
posed a technique to prioritize the computation of loop closure candidates, which provides
a good solution to the problem of more scalable loop closure detection in multi-robot
systems. The proposed algorithm provides a system that can prioritize loop closure in large
multi-robot laser SLAM systems while being scalable in terms of the number of robots and
the size of the environment. Through a test on a data set, it was found that this technique
can better assess loop closure during the task, thus improving the performance of the SLAM
system.

One study [234] used a particle filter for posterior calculation; namely, a recursive
filter using the Monte Carlo method. Compared with the Kalman filter, its state-space
model can be non-linear, and the noise distribution may also be of various forms. An online
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algorithm was used, such that the posterior algorithm can also deal with pose bias and
map estimation without closure. For indoor mapping algorithms, previous studies have
focused on a closed loop to deal with large errors, which is a complex process involving
multiple iterations through all available data. However, the method presented in [234] is
an online algorithm, which also fills a gap in the previous literature in this respect.

4.2. Multi-Robot SLAM Architecture

At present, multi-robot SLAM systems can be divided into three forms, according to
their architecture: centralized, distributed, or hybrid. Some papers have also described
them in terms of the two cases of centralized and decentralized. The different classification
methods yield similar results.

4.2.1. Centralized

In a centralized architecture, the data collection is carried out by the formation of
robots, while the data collection is summarized by a unique robot or calculated by a central
processor after the completion of data collection. After the central processor has processed
the data from all of the machines, it transmits back the information needed by each robot.
This mode of operation requires the robot system to have good bandwidth, as well as
stable and accurate data transmission to the specified location. In addition, centralized
architectures are extremely sensitive to a central “commander” and if one of the robots
in the formation of the centralized node responsible for creating the mapping fails the
whole system may stop working. The centralized architecture is schematically depicted in
Figure 25.
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Figure 25. Centralized architecture schematic diagram. The agent robot runs a real-time VO and
maintains a local map of size N in its memory, as well as a communication module to exchange data
(keyframes with map points and reference frames of the current position) with the server. Servers are
ground stations that perform non-time-critical and computationally expensive processes.

After the introduction of distributed robotic systems, Cohen [258] published the first
paper on centralization in 1996. They proposed that centralized multi-robot systems can
achieve not only greater robustness, but also higher efficiency than single-robot systems.
In 1998, Khoshnevis [259] discussed the idea and advantages of centralized development,
and proposed that centralized control enables low-cost agents, low power requirements,
and highly scalable systems. After that, centralized multi-robot algorithmic systems began
to emerge in large numbers. In 2002, Fenwick [222] introduced an algorithm that can
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combine the sparse sensors of multiple autonomous vehicles, such that a formation of
autonomous vehicles can form a cooperative CML. This algorithm was also the first to
migrate the CML algorithm from a single vehicle to multiple vehicles. Another innovation
was to determine the lower algorithm performance bound of cooperation, allowing for
calculation of the minimum number of cooperative vehicles required to complete the task.
The CML algorithm is an effective multi-robot cooperative localization probability method
proposed by Fox [237] based on Markov localization, which can reduce the uncertainty
in the robot crowd in the process of robot localization. At that time, the application of
single-robot SLAM methods to multi-robot SLAM became the main direction of SLAM
research. In 2008, Tao Tong et al. [260] extended the EKF algorithm to the multi-robot
context, where the EKF algorithm is used to estimate the position of the robot and the
landmarks. The end position of the robot is calculated under the premise of considering
other robot configurations. This algorithm yielded good results for both sparse landmark
and dense landmark environments.

Take CCM-SLAM [29] as an example, which is a centralized cooperative monocular
SLAM system specifically designed for multiple UAVs or robots. Each agent is equipped
with a camera and a CPU, and the computing tasks requiring a large amount of calculation
are outsourced to the server. Among them, the VO end of the system adopts the ORB-
SLAM2 system; that is, the tracking and mapping are synchronized, one for camera pose
tracking and the other for map optimization. The main characteristics of the system are its
efficiency, strong robustness, scalability, and information sharing in the system architecture.
Considering the development of multi-robot systems, how to share the value of each
agent’s message, provide flexible operational information, and produce better efficiency
and accuracy in the collaborative system have become key drivers of future multi-robot
SLAM research.

The main disadvantage of the centralized approach is that the requirements on the
server are generally too high, resulting in higher overall costs. To solve this problem,
Mohanarajah et al. [261] proposed a 3D mapping method using low-cost robots on a
cloud server in 2015. This method can run a dense visual odometry algorithm on a
smartphone-level processor. At the same time, each agent robot is equipped with a clone in
the cloud server to manage keyframes and data accumulation tasks, as well as to deal with
the problem of agent collaborative localization in real-time. The algorithm innovatively
uses a mobile-phone-class processor with low computing power to run SLAM, and the
RGB-D camera can also provide color and depth frames for estimation of the robot’s
pose. Monocular cameras cannot provide much depth information, but the corresponding
algorithms have gradually emerged in recent years. In 2018, Schmuck [30] proposed CVI-
SLAM, which runs a cooperative SLAM system based on the keyframe method. It uses
an agent robot equipped with visual–inertial sensors and restricts the onboard computing
power. Through the centralized architecture and two-way communication between the
agent and the server, the accuracy of collaborative scene estimation was improved. In 2021,
Jang et al. [262] proposed a complete framework for centralized cooperative monocular
SLAM. It uses a feature-based front-end to merge the observer with the local map of the
observed robot through the MF module. In this way, fast, accurate, and stable recognition
of the rendezvous map fusion system can be realized.

Centralized aircraft formations are often used in UAV formation performances, multi-
aircraft collaborations [263], special applications, and various other scenarios. The way this
works is that the operators at the ground control station specify the task allocation scheme
and route, and the UAV itself does not make decisions. The centralized algorithm has been
well-used in the established environment of small-scale systems. Of course, centralized
architectures are also relatively mature in practical applications. For example, Hao proposed
a centralized architecture for an agricultural multi-robot system in 2003 [264] and 2004 [265].
The system relies on a centralized framework to establish an agricultural multi-robot system
which takes the trailer as the center, maintains a pre-determined geometry when moving,
and avoids collisions by changing the formation. The transporter can also transfer and
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transport according to its load, in order to realize cooperative harvesting by the multi-
machine architecture in agricultural scenarios.

The corresponding data fusion method of centralized architecture is centralized
fusion—that is, all measurement data are sent to a center for fusion estimation—also
called central fusion or measurement fusion. The fusion method can realize real-time data
fusion, the accuracy of data processing is high, and the algorithm is flexible. However, its
disadvantages are low reliability and requiring a large amount of data, making it difficult
to implement. In a centralized fusion method, the estimated value of the target state of
each sensor is fused through the fusion center to obtain the data complex. The centralized
fusion type is similar to early fusion, and involves storing all the original keyframe images
in the cloud together with the point-based map, then performing data fusion on the image
information. In the process of developing centralized architectures, from assigning tasks to
the robot formation by a single server to realizing mutual communication between robots,
as well as between robots and servers, the system stability and system task completion rate
have been greatly improved.

4.2.2. Distributed

In contrast to a centralized robot system, a distributed robot system is composed of
agents with independent decision-making abilities. These agents themselves have strong
coordination and autonomy. The distributed architecture of multi-robot SLAM is similar
to that of biological colony models, such as ant colonies, bee colonies, or fish schools. Its
advantage is that each sensor can form a local track, while data link technology is used as
data transmission support between robots. Distributed frameworks [266] are widely used in
dynamic environments and medium and even large-scale systems due to their advantages
of strong real-time performance, low computational burden, and strong anti-interference
ability. At the same time, the real-time interaction of the distributed formation of robots
also allows each robot to know its position, speed, altitude, and moving target, among
other information. Distributed cooperative robot algorithms provide a more flexible, stable,
and resilient implementation method for robot swarms, which have strong advantages
even when considering large-scale, complex, and changeable environments. Figure 26
provides a schematic of the distributed robot architecture.
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Figure 26. Distributed architecture schematic diagram [3].

Although distributed implementation is difficult and not easy to control, it is still an
important trend regarding the future development of robot formation, and more and more
researchers have studied it in detail. The approach of multi-robot CML is based on the
theory of random mapping introduced by Smith, Self, and Cheeseman [267], by extracting
unique static features from the environment, using these features for observations, simul-
taneously locating vehicles, and improving feature estimation. After that, Nerurkar [28]
proposed a multi-robot CL algorithm based on distributed maximum posterior probability.
Compared with the centralized CL algorithm based on the maximum posterior probability,
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the distributed CL algorithm can reduce the memory and processing requirements by
allocating data among the robots. In addition, the distributed conjugate gradient algorithm
is used to reduce the cost of calculating the maximum posterior probability estimate and
improve the robustness to single-point failure.

In 2010, Cunningham et al. [32] proposed the DDF-SAM method, which can efficiently
and stably distribute map information in a robot team and, at the same time, does not
require high communication bandwidth or computing costs. The system consists of three
modules: local optimization, communication, and domain graph optimization. The local
graph can be combined into a map describing the robot domain. At the same time, the
system has good resilience to robot failures and network topology changes, and so can be
extended to large robot networks. Given the disadvantages of DDF-SAM’s conservative
method to avoid repetition techniques and relying on the batch marginalization method
for map summarization, Cunningham et al. proposed DDF-SAM2.0 [268]. This method
enhances the local system in place of the local versus domain map in version 1.0, and
uses inverse factors as a tool to avoid double counting within the domain. The algorithm
not only can handle dynamic environments, but can also take images from monocular
cameras as input and classify where scenes overlap. Therefore, it also requires the cameras
to be synchronized, which also brings difficulties to the real-time implementation of this
collaborative SLAM method. However, under this premise, the paper combines the local
information and domain information into a single, consistent enhanced local map, thus also
providing a good map fusion method. Similarly, landmarks are widely used as a method for
distributed robot control. Ziparo et al. [227] proposed a multi-robot distributed formation
for environmental exploration. The formation of robots adopts the RFID electronic tag
feature method and, in a harsh geographical environment, robots can directly carry out
RFID-based feature detection. At the same time, to estimate the real position of RFID
tags in the active area, the formation uses SLAM based on EKF. The EKF-based algorithm
enables the robot formation to merge through the local map based on RFID association
after exploration and merge the map explored by the robot itself into the global topology
map, in order to maintain global consistency.

The existing SLAM approaches for dynamic scenes are mostly based on filtering
methods. In 2013, Zou Danping et al. [31] proposed a monocular cooperative SLAM
method based on SFM. This system can build a map and integrate camera views in dynamic
scenes, using images from different cameras to build a global 3D map. The experimental
results demonstrated that the proposed system has higher accuracy and stability than the
existing monocular SLAM. However, its disadvantages are also obvious: First, the cameras
must be synchronized and, second, the algorithm needs additional GPU for calculation,
which also means that the real-time performance of the algorithm cannot be guaranteed.
In 2022, Huang et al. [269] proposed DisCo-SLAM, a new distributed multi-robot SLAM
approach that enables the real-time use of 3D LiDAR. This system has a low requirement
for communication bandwidth and, at the same time, has good robustness at the output.

The fusion methods corresponding to the distributed architecture are called distributed
fusion. In this type of fusion method, each sensor is pre-processed first. Then, a local
estimator is given, which is sent to the central node for global fusion. However, as each
sensor on each individual can form its local track, distributed fusion is also called track
fusion or state vector fusion. Corresponding to distributed fusion, the fusion center fuses the
estimated value of the target state of each sensor to obtain the integrated track after fusion.

4.2.3. Hybrid

In a hybrid system, the system absorbs the advantages of both centralized and dis-
tributed control systems, making it more reasonable to solve the task allocation problem
when considering multi-type UAV clusters. At the same time, in the hybrid architecture, the
ground control station operator needs to summarize and analyze the information feedback
from each UAV. In addition, the architecture designs an initial task allocation scheme for
each UAV in the UAV swarm in the static environment. However, in a dynamic environ-
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ment, factors such as a change in the UAV state or the task will lead to re-distribution of
the task. At this time, the UAVs in the UAV swarm will exert their autonomy to collect and
analyze the task target information again, sharing and interacting with other UAVs in the
formation. The operator of the ground control station will also send task instructions to the
unmanned cluster at some specific moments; however, most of the time it will only rely on
the collaborative allocation of the UAV cluster itself. This working mode not only improves
real-time performance, but also greatly reduces the workload at the ground station. At the
same time, the obtained task allocation scheme is relatively reasonable. It can be stated
that the hybrid control system is complementary to the centralized and distributed system
models, and has greater real-time application significance.

In 2013, Forster et al. [77] proposed the first real-time cooperative monocular SLAM
system, which can operate stably in both indoor and outdoor environments. It is a typical
set of hybrid real-time monocular vision collaborative SLAM frameworks which can even-
tually facilitate three MAVs running at the same time. The system uses keyframe extraction
technology, and each agent robot acts as a distributed pre-processor to transmit the selected
keyframe features and relative pose estimates to the ground station in a binary manner.
This working method also brings the advantages of high robustness, low bandwidth, and
good stability of the system. After testing the system on two outdoor data sets, it was
field-run on multiple MAVs. In 2014, Riazuelo [72] proposed C2TM, which stores the
expensive map optimization part of the system in the form of services in cloud computing,
while the light camera tracks the client running on the local computer. This hybrid archi-
tecture mode reduces the computational intensity of the system on the agent robot, but it
requires an internet connection to ensure good data communication at all times. After that,
Schmuck also proposed a monocular UAV (unmanned aerial vehicle) formation system
using keyframe extraction technology [214]. The applicability of the hybrid system was
demonstrated in a multi-UAV scenario. Figure 27 shows an example hybrid architecture
framework.

The biggest challenges with hybrid systems are ensuring data consistency and avoid-
ing double counting of information, which is much more difficult than with centralized
client–server architectures. However, the advantage is clear: it avoids costly algorithmic
computations on the robot agent side. This allows the robot agents to devote their limited
resources to the most critical tasks, such as real-time visual odometry.

The corresponding fusion methods for hybrid frameworks are called hybrid fusion,
which are characterized by the fact that each sensor can directly send the data to the center
for fusion after collecting, or can send a layout estimate to the node center for fusion. This
fusion method has a strong adaptability, taking into account the advantages of distributed
and centralized approaches, as well as strong stability. However, its disadvantage is also
obvious; that is, the structure is more complex than those of centralized and distributed
systems, and the communication and overall calculation burdens are large.

There are three key distributed SLAM architectures. These different architectures also
represent the different operating modes of multi-robot SLAM, and the requirements for
robot agents, software, and hardware differ between them. These three multi-robot SLAM
architectures are detailed in Table 16 for reference.

Current research problems in the field of multi-robot SLAM include multi-robot coop-
eration middleware systems, multi-robot cooperative obstacle avoidance, and multi-robot
task allocation. Those associated with multi-robot applications mainly include distributed
multi-robot formations and multi-robot cooperative navigation. In the field of multi-robot
cooperative SLAM, there are more cooperative methods for multi-UAVs and single-soldier
robots. Such collaborative SLAM involves cluster + SLAM, with the ultimate goal of real-
izing lightweight multi-robot real-time positioning and path planning. At the same time,
a side-task can be opened at a specific area or object in order to perform multi-robot 3D
reconstruction (SFM) of the area or object of interest. Over the past decade, interest in
multi-robot SLAM has risen rapidly, followed by SLAM methods borrowing from various
transfer learning and deep learning approaches. Consequently, the directions of develop-
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ment in the SLAM field began to diversify. Table 17 introduces several common multi-robot
SLAM algorithms and provides an analysis of their front- and back-end characteristics and
map types.
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Figure 27. Example hybrid architecture model. Using the PTAM (parallel tracking and mapping) sys-
tem as the basic framework, the system sends the expensive computing tasks to a high-performance
server to run the cloud service execution. The system can run multiple tracking threads on the same
map data. The small circles in the figure represent the keyframes of the actual scene, and the figures
in the rounded rectangles represent the keyframe shape observed by the camera from a given angle,
where the keyframe shape observed by the camera from each angle is not the same. Through mutual
communication and the processing of the cloud server, a map aligned with the actual environment
is obtained.

This section introduces the three architectural forms of multi-robot SLAM and the
modes of data fusion utilized in these three architectural forms. With the development of
multi-robot SLAM, its advantages have gradually been revealed. However, multi-robot
SLAM also faces various challenges that need to be solved by researchers. Key issues in
multi-robot SLAM research include:

(1) How to perform distributed posterior estimation based on the available data collected
by different robots.

(2) Stable and efficient communication techniques in diverse environments.
(3) Application of deep learning in multi-robot SLAM.
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(4) The need for teamwork and shared global maps.
(5) Flexible transformation of cooperative technology according to the number of robots.

These problems also point the way for future research in the context of multi-robot
SLAM.

Table 16. Map localization methods for dealing with uncertain data.

Corresponding Architecture Centralized Distributed Hybrid

Type of fusion Centralized fusion Distributed fusion Hybrid fusion

Common fusion algorithms Mid-term fusion, late fusion Mid-term fusion, late fusion Early fusion, mid-term fusion

Features All measurements are sent to a center for
fusion estimation.

First, the sensors are pre-processed to
give local estimates, and then the track
association and global fusion are carried
out by the center node.

After collecting the data, the sensors are
sent to the center for fusion directly, or
can be sent to the center node for fusion
after calculating a layout estimate.

Advantages Little information loss, good
coordination, optimal task allocation.

Simple operation, no storage
requirements, no correlation estimation
error, strong real-time performance,
strong anti-interference ability, and low
data redundancy.

Strong adaptability, taking into account
the advantages of distributed and
centralized approaches, strong stability.

Disadvantages

Difficult to realize, poor robustness, poor
real-time and dynamic performance due
to the high bandwidth demand and
strong computing power required for the
central processor.

The prior information is not well-utilized
and the performance is poor.

The structure is more complex than the
previous two, which increases the costs
associated to communication and
computation.

Relevant algorithms KF fusion algorithm [260], neural
network fusion algorithm.

Weighting method, statistical clustering
method, classical assignment
method [28], multiple hypothesis
tracking methods, fuzzy function
association method [96], fuzzy logic
association method.

Factor graph fusion algorithm [77],
interacting multiple model
algorithm [72].

Table 17. Multi-robot SLAM scheme.

SLAM System Year Number of
Agents Architecture Front-End Back-End Map Style

PTAMM [92] 2008 2 C VO, SFM, pose estimation Triangulation, relocation, BA optimization. G

CoSLAM [31] 2012 3/4/12 D Monocular VO Inter-camera pose estimation, mapping, BA
optimization. G

CSFM [77] 2013 2 C Monocular VO Location recognition, map fusion, pose optimization, BA
optimization. L

C2TAM [72] 2013 2 H RGB-D VO, pose
estimation Triangulation, relocation, BA optimization. L

CCM-SLAM [29] 2018 3 C Monocular VO Location recognition, map fusion, redundant keyframes
are deleted. L

CVI-SLAM [30] 2018 4 C VO Triangulation, global map optimization, loop closure,
map fusion. G

Door-SLAM [96] 2020 2 D VO, point-to-point Loop closure, map fusion. L

VIR-SLAM [93] 2021 2 D VO, UWB, pose estimation Loop closure, direct map fusion, non-linear optimization. L

DisCo-SLAM [269] 2022 3 D LIO Loop closure, feature matching, global and local
optimization, and direct map fusion. G

CVIDS [78] 2022 3 C Monocular VO Loop closure, map fusion. L

Architecture: C, centralized; D, distributed; H, hybrid. Map style: G, global map; L, local map.

4.3. Multi-Robot Semantic SLAM

Early VSLAM relied more on geometric information to understand the surrounding
environment. However, with the continuous development of technology, VSLAM has
been gradually applied in more complex and large-scale environments. In a complex and
changing environment, simple geometric information cannot meet the data requirements of
the SLAM algorithm; therefore, it becomes necessary to use a neural network to extract the
semantic information from the environment, thus improving the performance of VSLAM.
Semantic information provides the robot with a means to understand a more realistic
environment. At the same time, the combination of semantics and SLAM also make
homogeneous data fusion easier. As different robots use the same semantic label for the
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same object in the environment, the difference between the two in data fusion is smaller,
which is more helpful for data fusion when utilizing multi-robot systems.

Semantic SLAM refers to SLAM systems that not only obtain geometric information
and robot motion information of unknown environments, but also detect and recognize ob-
jects in the scene. Such an approach can obtain semantic information, such as the functional
properties of the robot and its relationships to surrounding objects, even understanding
the content of the whole environment. Traditional VSLAM represents the environment in
forms such as point clouds, which are meaningless points to researchers. To perceive the
world at both geometric and content levels, in order to better serve humans, robots need to
further abstract the features of these points and understand them. With the development of
deep learning, researchers are gradually realizing its potential for addressing problems in
the SLAM field. Semantic information can help SLAM to understand the map at a higher
level. In addition, the semantic information reduces the dependence of the SLAM system
on feature points and improves the robustness of the system.

This section first describes the application of typical neural networks in VSLAM, then
expounds on the application and development prospects of semantic information in the
multi-robot SLAM context.

4.3.1. Neural Networks in Semantic VSLAM

Modern semantic VSLAM systems are inseparable from deep learning [270], and the
feature attributes and associations obtained through such learning can be used in different
tasks. The development of deep learning has shown that computers can complete the
tasks of object detection and semantic segmentation well, with their accuracy having far
exceeded even that of humans themselves. As an important branch of machine learning,
deep learning has achieved remarkable results in image recognition [271], behavior recog-
nition [272], image matching [273], 3D reconstruction, and other tasks. The application of
deep learning in computer vision can greatly alleviate the problems encountered by tradi-
tional methods, and its combination with VSLAM greatly enhances the ability of mobile
robots to understand and perceive the environment. At the same time, the positioning
accuracy of VSLAM and the advantages of deep neural networks in semantic extraction can
also greatly improve the accuracy of VSLAM algorithms. Compared with the shortcomings
of traditional VSLAM, in which it is difficult to deal with various environments and the
map model is only based on geometric information, semantic SLAM combined with deep
learning leads to better performance. At present, the network types that have achieved
good performance in semantic segmentation are Semantic Fusion, Semantic 3D Mapping,
Mask Fusion, CNN, Mask RCNN, and so on. In the following, a CNN is taken as an
example to specify the application of deep learning in VSLAM.

Traditional VSLAM approaches use the direct method or feature method for visual
matching; however, these methods have difficulty in obtaining better estimates under strong
lighting, sparse textures, and certain other environments. In contrast, deep learning-based
methods are more intuitive and concise. CNNs can learn from training data through the
feature detection layer, thus avoiding explicit feature extraction, as only implicit learning on
training data is carried out. Second, the advantages of CNNs in the field of image semantic
segmentation have also been fully proven.

The CNN is one of the earliest deep learning algorithms applied in SLAM. With time,
its application in SLAM algorithms has become more mature. As shown in Figure 28, in
2016, McCormac et al. proposed a 3D semantic mapping structure integrating a CNN
and dense SLAM [274], which fuses CNN semantic predictions from multiple viewpoints
into a dense semantically annotated map. The system can fuse the 2D segmentation of
each frame into a coherent 3D semantic map, where this map merging also leads to a
significant improvement in the corresponding 2D segmentation accuracy. In their self-built
data set, the labeling accuracy of the fused system was greatly improved. In 2017, Li et al.
proposed a structure that fuses monocular camera SLAM and deep neural networks in
a semi-dense manner [275]. It can use an efficient CNN in a real-time monocular SLAM



Machines 2023, 11, 653 55 of 74

system to predict semantic information and project semantic information into a globally
consistent 3D map. The semi-dense fusion method can also fuse the keyframes into the 3D
map well, allowing the system to reconstruct the 3D semi-dense environment without any
prior depth information.
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Figure 28. The CNN–SLAM structure [270].

CNNs are also widely used in multi-robot semantic SLAM, and many advanced multi-
robot semantic SLAM approaches use a CNN to generate semantic labels. For example,
in 2018, Li et al. [276] proposed a bounding-based multi-robot exploration strategy based
on a CNN to further solve the problem of robots exploring indoor environments. They
used a trained CNN classifier to classify the indoor scene where the robot is located,
and then determined the semantic information by observing the indoor environment. In
2020, Deng et al. [81] proposed a semantic SLAM framework for rescue operations. The
framework generates a dense point cloud map with semantic information by fusing the
semantic segmentation CNN network and the RGB-D SLAM front-end. With the help of
semantic information, it can help robots to recognize different types of terrain in complex
environments. The framework extracts semantic labels from RGB-D images and uses a
supervised learning algorithm to train a CNN network for semantic label generation. In
2021, Yue et al. [277] proposed a new hierarchical collaborative probabilistic semantic
mapping framework which uses a CNN to process the original image and obtain the
semantic image, then fuses the 3D point cloud map with it to obtain the local semantic map.
In this way, both single robots and multiple robots can generate a globally unified global
semantic map, which is an important step for the development of multi-robot collaborative
semantic SLAM.

4.3.2. Multi-Robot Semantic VSLAM

In a multi-robot cooperative SLAM system, the mutual communication and coordi-
nation between robots can allow for effective use of the spatially distributed information
resources and, further, improve the efficiency of problem solving. At the same time, the
failure of a single robot in the system will not affect the operation of other robots, leading
to better fault tolerance and anti-interference ability than a single robot. In recent years,
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the fusion of semantic information has been found to be helpful in improving the robust-
ness of multi-robot systems. At the same time, observing objects with multiple views can
effectively avoid the fuzzy problem of object association.

In recent years, CNN techniques have become the mainstream in computer vision
tasks such as image classification and segmentation. The meaning of semantic segmen-
tation is the problem of assigning dense semantic labels to images, and its principle is
to convert raw data, such as image data (as input), into a mask consisting of regions of
interest, then assign each pixel in the image a category ID according to its object of in-
terest in order to complete the classification of objects in the image. In short, the goal of
semantic segmentation is to assign a class label to each pixel of an image, so it can also
be considered as a classification problem. Semantic segmentation has been widely used
in remote sensing [278], automatic driving, facial recognition, image processing [279,280],
and other fields. This paper considers the application of semantic segmentation in SLAM
and divides semantic segmentation into supervised learning, unsupervised learning, and
semi-supervised learning algorithms through semantic tag generation.

(a) Supervised learning algorithms

Supervised learning is a paradigm of robot learning where the goal is to learn a
function. Supervised learning first generates semantic labels from the training data and
generates a corresponding function between the inputs and outputs. This function can map
the feature vector to the label according to the specified input and output.

The generation of semantic labels is usually calibrated by the neural network on the
original image data. However, in classification methods based on a supervised learning
algorithm, the segmentation neural network is usually trained by people to generate seman-
tic labels; that is, the generated semantic label categories are fixed at the beginning. When
faced with new image data, such neural networks can semantically annotate these images
based on the semantic labels that were fixed during training. At present, most advanced
multi-robot semantic SLAM systems are based on supervised learning for semantic label
generation. However, supervised learning algorithms cannot classify newly observed
features in the environment in an online manner; that is, the types of labels generated by
supervised learning algorithms are fixed. This is also an urgent problem to be solved in the
field of semantic segmentation.

In 2020, Rosinol et al. [281] proposed Kimera, an open-source C++ library dedicated to
real-time metric–semantic visual–inertial SLAM. It supports a 3D mesh model to reconstruct
the semantic markup, uses a 2D semantic markup image to annotate the global mesh
semantically, and estimates robot states using a visual–inertial sensor. The database can be
run in real-time on a CPU to generate 3D metric semantic maps from semantically labeled
images. At the same time, it also provides a set of test tools for continuous integration
and benchmarking, which also lays a foundation for future multi-robot semantic SLAM
research. In 2021, Rosinol et al. [282] refined Kimera, making it the first algorithm to build
a 3D dynamic scene graph from visual–inertial data. The algorithm framework includes
visual–inertial SLAM, metric semantic 3D reconstruction, and so on. In tests on a data set,
the algorithm constructed 3D dynamic scene graphs of complex indoor environments in just
minutes, while also running metric–semantic reconstructions in real-time. In the same year,
Chang et al. [215] extended Kimera and proposed Kimera-Multi, the first fully distributed
multi-robot system for dense metric semantic SLAM. This system constructs a semantic
3D mesh model of the environment in real-time through local sensing and intermittent
communication. Simulations in a data set indicated that the proposed system can construct
accurate 3D metric semantic grids with less computation and communication. Furthermore,
in 2021, Chang et al. [283] improved Kimera-Multi, a fully distributed multi-robot system
for constructing dense metric semantic SLAM. This system enables a team of robots to
collaboratively define semantically annotated 3D mesh estimates of the environment in real-
time. This distributed system achieves similar estimation accuracy to the centralized system
while having a more stable and accurate distributed trajectory estimation. Compared with
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the earlier version, its robustness and accuracy were greatly improved. Figure 29 shows
the workflow of supervised learning multi-robot semantic SLAM.
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Figure 29. Kimera 3D distributed semantic map construction. VIO quickly performs locally accurate
3D pose estimation, Mesher performs fast local 3D mesh reconstruction and avoids inter-robot
collisions. The global 3D mesh is constructed using the volume method and annotated semantically.

Deng et al. [81] proposed a rescue semantic SLAM framework based on supervised
learning algorithms in 2020. The framework extracts semantic labels from RGB-D images
and trains a CNN network to generate semantic labels. The final effect is that the system
can generate accurate dense semantic maps, while also using semantic information for
improved path planning. In 2021, Majcherczyk et al. [284] proposed a distributed data
storage and fusion method for collective perception in a swarm of robots with limited
resources. This method solves the large amount of data generated during the construction
of a multi-robot semantic map well, and can also conduct semantic annotation and semantic
data storage across the robot population, further reducing the hardware requirements for
distributed semantic SLAM. Then, 40 objects of 13 types were imported from the SceneNN
data set, and the environment was classified with semantic labels by using the classifier.
In 2022, Zobeidi et al. [285] proposed a method for the collaborative construction of
metric semantic maps based on the online Gaussian process regression method, an online
probabilistic metric semantic mapping method based on RGB-D data. Through validation
on the data set, it was found that the system has the same accuracy as a deep neural
network, and has good robustness in a noisy and high-uncertainty environment. In the
single-robot reconstruction sequence experiment, a data set containing 3700 RGB-D images
and 61 semantic categories was reconstructed by the supervised learning algorithm. The
experimental results demonstrated that the algorithm has fast reconstruction speed and
high accuracy.

(b) Unsupervised learning algorithms

Considering the drawback that supervised learning cannot classify newly observed
environmental features in an online manner, researchers have proposed unsupervised
learning algorithms. This means that, when the robot makes a novel observation in the
environment, it can invent a new label to label the observation. Although the algorithm
can label independently and it has strong autonomy, when multiple robots independently
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develop their labels for the same new category, such detection methods are prone to false
or inconsistent matches.

The unsupervised learning algorithm is a relatively advanced semantic tag generation
method in semantic SLAM. It gives individual robots great autonomy, but its difficulty is
how to unify the new labels generated between different robots for the same object. This
frontier problem has always been a research hotspot in the field of multi-robot semantic
SLAM. There are two common unsupervised learning algorithms; namely, clustering and
dimensionality reduction. The commonly used unsupervised method is the clustering
algorithm [286], which has been shown to have good effectiveness for segmentation pur-
poses in many fields. The clustering algorithm is used to perform clustering segmentation
through the use of artificially designed image features. When faced with a large number
of unlabeled data sets, clustering algorithms divide the data sets into multiple categories
according to the inherent similarity of the data. The similarity of data between categories is
small, while the similarity of data under the same category is relatively large, thus realizing
the classification and analysis of data. As shown in Figure 30, semantic labels can be
generated using a clustering algorithm.

In 2018, Wu et al. [287] proposed an unsupervised learning method for semantic label
generation which involves a kind of instance-level discrimination. It treats each image
instance as a unique class and trains a classifier to distinguish each instance category. The
algorithm uses a CNN to encode each image into a feature vector which is projected into a
128-dimensional space for normalization processing. The algorithm obtains the optimal
feature embedding by dispersing the training sample features on the 128-dimensional unit
sphere to the maximum extent, then learns the instance-level discrimination. Experimental
results indicated that the proposed method can outperform state-of-the-art image classifi-
cation methods on the ImageNet and Places data sets. In 2021, Van Gansbeke et al. [288]
proposed an unsupervised semantic segmentation framework consisting of two steps: First,
unsupervised saliency is used to predict object mask proposals, then, the resulting mask
is used as a prior for the self-supervised optimization objective. Finally, the pixels are
embedded for semantic segmentation of the image. In practice, the framework first learns a
pixel embedding function for semantic segmentation from an unlabeled image data set,
then performs instance semantic segmentation. In the experimental comparison stage,
the proposed framework presented better semantic label generation performance than a
supervised method pre-trained on ImageNet. Although the performance of unsupervised
learning was better for this data set, the performance needs to be improved in the case of
actual large-scale data. To this end, Gao et al. [289] proposed a large-scale unsupervised
semantic segmentation algorithm model in 2022 with the support of the large data set
ImageNet. This large-scale unsupervised semantic algorithm uses categories and shapes
learned from large-scale data to assign labels to pixels. They proposed that, given a large
image set, the algorithm will assign self-learning labels to each pixel in the image set. This
also verifies the feasibility of using unsupervised learning algorithms for the semantic
annotation of large-scale image data.

In multi-robot semantic SLAM, unsupervised learning algorithms also have a good
application prospect. In 2018, Li et al. [276] proposed a bounded-based multi-robot ex-
ploration strategy based on CNN, which also further addressed the problem of robots
exploring indoor environments. It considers the semantic information of indoor object
boundaries and integrates this information into the utility function after semantic classi-
fication in order to help robots explore indoor scenes such as offices and meeting rooms.
This also paved the way for the subsequent use of unsupervised learning to learn semantic
labels, such that the system can complete the determination of different local semantic
types by itself. In 2021, Jamieson et al. [290] proposed a multi-robot distributed semantic
SLAM solution in a new environment. The approach lets each robot model its observations
using an online semantic 3D SLAM system and create high-quality semantic maps. At the
same time, under the condition of stable communication conditions, the learned semantic
maps and models can be shared between the robots and human operators. In the study, it
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is proposed that each robot learns an unsupervised semantic scene model online, and a
multi-way matching algorithm is used to identify the consistent matching set of learned se-
mantic labels of different robots in order to overcome the obstacles related to unsupervised
learning. Compared with the existing technology, this solution improves the quality of the
global map by half, while the fused map is not degraded.

Image data Semantic label

Clustering

Pseudo Labels

Fine tuningSplit image

Clustering algorithm
RsNet classifier

Figure 30. An unsupervised semantic algorithm. The framework uses a RetNet classifier for classifi-
cation and then uses a clustering algorithm to cluster features. Finally, similar features are clustered
into the same set of semantic labels, and the semantic labels of the groups are obtained by fine-tuning.
Reproduced with permission of [289], Copyright of 2023 IEEE Transactions on Pattern Analysis and
Machine Intelligence.

(c) Semi-supervised learning algorithms

Semi-supervised learning algorithms were first proposed by S. Fralick [291] in 1967,
which solve the problem where there are few labels in the data set and only a small amount
of labeled data. In 2018, Zhou Zhihua [292] published a review of weakly supervised
learning algorithms, and classified weakly supervised learning into three categories: incom-
plete supervision, inexact supervision, and imprecise supervision. Incomplete supervision
refers to incompleteness, which means that only part of the data in the training data are
given labels, while some data have no labels. Inexact supervision refers to the fact that
only coarse-grained labels are given in the training data, which means that the human is
not accurate regarding the name of the object but, instead, gives the robot a vague label.
Imprecise supervision refers to the fact that the labels of the training data are not necessarily
correct; for example, if the label “cantaloupe” is given instead of “watermelon”. Incomplete
supervision is what we refer to as semi-supervised learning. Semi-supervised learning
has become very popular in recent years. Its advantage is that it does not require manual
labeling of all semantic tags, as in supervised learning [293], while its accuracy is higher
than that of unsupervised learning algorithms. Therefore, such approaches have gradually
become widely used for semantic segmentation.

In 2019, Berthelot et al. [294] proposed a semi-supervised learning method, MixMatch,
for semantic segmentation, which guesses low entropy labels through data-enhanced unla-
beled examples, then uses MixUp to mix labeled and unlabeled data. Experiments on a
data set showed that the semi-supervised learning method can reduce the labeling error
and protect the privacy of data well. In 2022, Lei et al. [295] proposed a multi-branch
weakly supervised learning network called WPSointNet for the semantic segmentation of
large-scale mobile laser scanning point clouds. They combined a basic weak supervision
framework with a multi-branch weak supervision module. In the case of an input point
cloud and a small number of labels, the predicted value of the input point cloud and the
underlying supervision signal of the entire network is output through the weak super-
vision framework. Experiments on public data sets showed that the weakly supervised
learning network WPSointNet has an overall accuracy of 96.76%, superior to most fully
supervised methods.

In the field of image recognition, semi-supervised learning is often used for facial
expression analysis. For example, in the application of a semi-supervised learning algo-
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rithm for facial expression recognition proposed by Badea et al. [296] in 2023, the authors
proposed a timid semi-supervised learning algorithm to improve the performance of super-
vised methods by introducing additional unique unlabeled data into the database. Their
experimental results indicated that the semi-supervised algorithm possesses good perfor-
mance in facial expression labeling. In the same year, Kirillov et al. [297] proposed an
open-source semantic segmentation model to segment everything. This model builds a
data engine and then constructs the largest split data set by this engine. Nearly 99.1% of the
semantic labels in this data set are automatically generated, and it presented good perfor-
mance in terms of accuracy, efficiency, and robustness. It can be said that semi-supervised
learning algorithms have good application prospects as a transitional stage between unsu-
pervised and supervised learning. Figure 31 depicts a semi-supervised semantic extraction
algorithm.

Labeled data Ensemble of weak teachers

Unlabeled dataMain learner

Figure 31. A semi-supervised semantic extraction algorithm. By learning the labeled data, the weak
set data are clustered, allowing for the generation of semantic labels for the unlabeled data.

In terms of SLAM application, Yue et al. [298] proposed a monocular depth estimation
algorithm based on a semi-supervised semantic algorithm in 2020, which uses the labeled
semantic real data and a semi-supervised semantic framework to semantically segment the
images obtained by monocular cameras. After the semantic segmentation of the image, the
semantic labels guide the construction of the depth estimation network. Experiments on
the framework in a data set demonstrated that the semantic information learned by the
semi-supervised semantic segmentation algorithm from the image can effectively improve
the effect of monocular depth estimation, and the accuracy was also better than a state-of-
the-art monocular depth estimation algorithm. In the same year, Rosu et al. [299] proposed
a semi-supervised semantic SLAM algorithm which propagates labels from the stable grid
to each camera frame through projection, then re-trains the semantic segmentation in a
semi-supervised way. In addition, this method uses semantic texture meshes to couple
scene geometry and semantics at independent resolutions. The tight coupling of geometry
and semantics also enables the method to represent semantics and geometry at different
resolutions, thus constructing a more complete semantic mapping system. The system can
also minimize memory usage.

Semi-supervised learning algorithms have also been considered by researchers in the
field of multi-robot SLAM. Maplab2.0, proposed by Cramariuc [300] in 2023, provides a
versatile open-source platform that facilitates the development, testing, and integration
of new modules and features in a full-fledged SLAM system. The system first uses mask
R-CNN to detect semantic objects in the image, then uses NetVLAD to extract descriptors in
the mask instance segmentation and track the detected objects. For the objects that are not
in the semantic label library, the system directly compares the object descriptors of the same
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class to find candidate semantic loop closures. A visibility filter is used to geometrically
verify the candidate flags and cluster the objects to obtain semantic labels for the novel
objects. When tested on the HILTI SLAM 2021 data set, the framework also demonstrated
superior performance and accuracy. At the same time, the system has the ability for large-
scale multi-robot and multi-conversation systems, consistent with the expected future
development of large-scale multi-robot SLAM. Semi-supervised learning can solve the
shortcomings of supervised learning, which requires a lot of human annotation, while also
addressing the problem of low accuracy in unsupervised learning. It has gradually become
a semantic annotation method that is favored by researchers.

It can be said that the semantic map gives multi-robot SLAM the “brain” to understand
the world. Through integration with deep learning, multi-formation robots are on the road
to autonomous control. Multi-robot SLAM can act like a bionic ant colony, with a large
number of very small individual formations acting to cooperate and execute commands,
thereby achieving more efficient task completion and a higher success rate.

5. Conclusions and Prospects

After years of development, single-robot SLAM approaches, such as laser SLAM and
visual SLAM, have emerged along with many excellent algorithms. However, with the
increased number of application scenarios, the limitations of single-sensor SLAM have
gradually been exposed. Researchers have begun to consider multi-source data fusion
and fuse homogeneous and heterogeneous data through early, middle, and late fusion to
obtain data more closely resembling the real environment. Multi-sensor SLAM can fuse the
information of different sensors with the help of filtering, optimization, and various other
algorithms in order to help robots better understand the surrounding environment, while
also solving the limitations related to the use of a single sensor. With the observation of
the biological world, it has been found that the clustering of organisms in nature (e.g., ant
colonies, fish schools, and bee colonies) allows a large number of small individuals to
obtain outstanding performance in hunting, migration, and other aspects. To achieve
similar effects as those achieved by biological swarms, multi-robot data fusion SLAM has
been proposed. Researchers achieved multi-robot SLAM similar to the operation of swarm
organisms, through the use of centralized, distributed, and hybrid architectures. At present,
the multi-robot SLAM algorithm is still generally based on EKF, particle filter, set member
estimator, sparse optimization technology, and other algorithms. With the development
of machine learning algorithms, such as deep-learning-based neural networks, and the
great potential of these algorithms in image data processing, researchers have begun to
combine machine learning techniques with SLAM approaches. In this way, semantic multi-
robot SLAM approaches based on deep learning have come into being. A deep learning
network can generate semantic labels not only by training on a data set, but also by using a
clustering method to generate semantic labels in an unsupervised manner. Deep learning
can further help robots to collect various environmental information and recognize the
same objects through semantic information, further realizing the construction of a global
map. The semantic map also increases the calculation accuracy of SLAM to a certain extent,
improves the positioning accuracy of scene SLAM, and provides the system with advanced
perception ability. The use of a deep learning network also provides the swarm robot
system with a strong learning ability, which is a key direction for the development of SLAM
in large clusters in the future.

Multi-robot SLAM is far superior to single-robot SLAM in terms of robustness, effi-
ciency, and practicability, and has thus attracted the attention of a significant number of
researchers. Robot swarms can fundamentally address the limitations of a single robot in
some environments, and can improve the interactions between robots and servers. On this
basis, some key research prospects in the field of multi-robot SLAM are as follows:
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(1) Small and numerous swarm robot systems. Swarm robot SLAM has begun to develop
in the direction of large robot swarm SLAM, with a large number of robots of small
size. Researchers are increasingly inclined to combine thousands of small and cheap
robots to achieve distributed robot SLAM, which is also the expected development
trend of swarm robots in the future. At the same time, how to transform the simple
behavior generated by a single individual into the collective behavior generated by a
large number of robot interactions, then give full play to the advantages of thousands
of swarm robots, is also very challenging.

(2) Self-learning ability of individual robots. Through deep learning, swarm robots can
self-learn and process massive information data. In recent years, the environment
of swarm robots has become more complex and changeable. A UAV formation may
have several or dozens of visual sensors collecting information at the same time and,
in future development, there may easily be thousands of UAVs to cluster. Therefore,
how to fully process and utilize the information and control the whole system in
real-time has become the development goal for robot swarms. How to combine deep
learning and swarm robot SLAM is another associated direction of future efforts.

(3) Human–computer collaborative interaction. By embedding some user-driven robots
in the cluster, the robot cluster can be directly controlled and manipulated by the
user; for example, a human may control the swarm robots as a whole through the
use of gestures and/or brain waves, such that the swarm can complete the specified
task more efficiently.

(4) Association of swarm robot SLAM with semantic maps. By using the SLAM frame-
work of deep learning, an accurate semantic map of the environment can be con-
structed. Distributed semantic SLAM systems have stronger robustness and accuracy
in complex dynamic environments. Multi-robot systems bring multi-view semantic
information to semantic VSLAM, which also reduces the ambiguity of object associa-
tions. At the same time, the fusion of semantic information will help the multi-robot
system to achieve more stable and accurate global map localization.
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Abbreviations
The following abbreviations are used in this manuscript:

AUV Autonomous underwater vehicle
BA Bundle adjustment
C3I Command, control, communication, and intelligence
CL Cooperative localization
CML Concurrent mapping and localization
CNN Convolutional neural network
DARPA Defense Advanced Research Projects Agency
DDF Decentralized data fusion
D-RPGO Distributed Riemann pose graph optimization
D-S Dempster–Shafer
EKF Extensible Kalman filter
EM Expectation maximization
ESKF Error state Kalman filter
FLS Forward-looking sonar
GNSS Global navigation satellite system
GPS Global position system
GPU Graphics processing unit
ICP Iterative closest point
IEKF Iterated extended Kalman filter
IMU Inertial measurement unit
INS Inertial navigation system
KF Kalman filtering
LIO Laser inertial odometry
MAV Micro aerial vehicles
MCL Monte Carlo method
MEMS Micro-electro-mechanical system
MF Map fusion
MHT Multiple hypothesis tracking
ML Markov localization
MLE Maximum likelihood estimation
MSCKF Multi-state constraint Kalman filter
PL-ICP Point-to-line iterative closest point
RFID Radio frequency identification
ROI Region of interest
SAM Smooth and mapping
SFM Structure from motion
SIFT Scale invariant feature transform
SLAM Simultaneous localization and mapping
TSDF Truncation sign distance function
UAV Unmanned aerial vehicle
UGV Unmanned ground vehicle
UKF Unscented Kalman filter
UUV Unmanned underwater vehicle
UWB Ultra wide band
VINS Visual-inertial navigation system
VIO Visual-inertial odometry
VSLAM Visual simultaneous localization and mapping
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